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Abstract

The leptonic mixing matrix may be understood as a consequence of remnant symmetries of
the mass matrices, which emerge from the spontaneous breakdown of a larger symmetry into
smaller non-commuting subgroups. The mixing patterns that may be obtained from groups of
order smaller than 1556 are presented. To dynamically realize this symmetry breaking pattern
an additional mechanism is needed. Here a minimal solution to this problem is provided, based
on non-trivial extensions of the flavour group. A scan over possible extensions of popular
flavour groups is presented and the smallest semidirect product extension of the group A4 is
discussed. A model based on this symmetry group is constructed and it is shown to naturally
give the required vacuum structure. Modifications that can account for the deviation from the
predicted value for the mixing angle θ13 are presented. The vacuum alignment mechanism is
applied in a model at the electroweak scale, which contains a dark matter candidate, and its
phenomenology is studied. Consistency conditions for CP transformations in the context of
discrete flavour groups are developed and they are shown to have non-trivial implications for
existing models. Finally, we give an outlook about how the Standard Model may be viewed
from a Planck scale perspective.

Zusammenfassung

Die leptonische Mischungsmatrix kann als Resultat übrigbleibender Symmetrien der Massen-
matrizen verstanden werden, die aus der spontanen Brechung einer größeren Symmetriegruppe
in kleinere nicht-vertauschende Untergruppen hervorgehen. Die Mischungsmatrizen, die auf
dieses Weise aus Gruppen mit Ordnung kleiner als 1556 folgen, werden präsentiert. Um diese
Art der Symmetriebrechung dynamisch zu realisieren ist ein zusätzlicher Mechanismus von
Nöten. Hier wird eine minimale Lösung dieses Problems präsentiert, basierend auf nicht-
trivialen Erweiterungen der Flavourgruppe. Eine systematische Suche nach solch möglichen
Erweiterungen wird präsentiert und die kleinste Erweiterung der Gruppe A4, die sich als
semidirektes Produkt schreiben lässt, wird diskutiert. Ein Model basierend auf dieser Symme-
triegruppe wird konstruiert und es wird gezeigt, dass es die Vakuumstruktur natürlich realisiert.
Modifikationen werden präsentiert, die die beobachtete Abweichung vom vorhergesagten Wert
für den Mischungswinkel θ13 erklären können. Dieser Mechanismus wird in einem Model an
der elektroschwachen Skala angewandt, das einen Kandidaten für Dunkle Materie enthält,
und dessen Phänemenologie wird studiert. Konsistenzbedingungen für CP Transformationen
im Kontext diskreter Flavoursymmetrien werden entwickelt und es wird gezeigt, dass diese
nicht-triviale Implikationen für existierende Modelle liefern. Abschließend geben wir einen
Ausblick, und diskutieren wie das Standardmodell aus der Perspektive der Physik an der
Planck-Skala verstanden werden kann.
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Chapter 1.

Introduction and Overview

The Standard Model (SM) of particle physics provides a very successful description of nature
down to length scales of 10−18 m, which are currently being tested at the Large Hadron
Collider (LHC). It is based on the gauge group SU(3)C × SU(2)L × U(1)Y , of which the
electroweak part is spontaneously broken by the Higgs mechanism. The recent observation by
ATLAS [1] and CMS [2] of a resonance at 126 GeV, which has all the properties one would
expect from a SM Higgs particle marks a striking success of the model. However, a number of
basic questions are left unanswered by the SM Higgs mechanism.

First, there is the flavour puzzle: in the SM, particle masses and mixings are generated
through the interaction of the particles with a background Higgs field that permeates all
of space. The numerical values of the masses are determined from the coupling strength of
this interaction, which may be different for every particle and their measured values are very
different indeed: varying from the top quark with Yukawa coupling close to one to the electron,
whose coupling is six orders of magnitude smaller. The flavour puzzle will be the topic of the
main part of the thesis. The second puzzle will be touched upon only in the last chapter and
goes by the name hierarchy or naturalness problem. Here the question is to understand the
SM in the context of a more complete theory in which the SM is thought to be embedded.
For example the SM cannot account for the existence of gravity and it is therefore expected
that the SM will at the very latest be superseded by a more complete theory at the energy
scale where gravitational interactions become strong. The large ratio of this Planck scale of
MPl = 1.2 · 1019 GeV to the electroweak scale of the order of 100 GeV is unnatural from an
effective field theory perspective. In Chapter 7 we provide a separate introduction to this
issue and we will therefore focus on the flavour problem here, which is the main objective of
this work.

Of the twenty-eight parameters in the SM (with Majorana neutrinos), twenty-two are flavour
parameters, which parametrize the interactions of fermions with the Higgs field. In this work
we will try to address this issue using symmetries. To appreciate why this might be a fruitful
approach it is suggestive to entertain the following gedankenexperiment. Imagine the SM
without its gauge symmetries: this would be a theory of vector bosons, fermions and scalars
that interact with each other in all possible ways1. Since there is no gauge principle, for
example each of the gluons would interact with each of the quarks with a different coupling
strength and the model thus has a gargantuan number of free parameters. Imposing gauge
symmetry, all of these effective couplings are still there, but they can all be expressed through
the three gauge couplings of the SM.

Flavour symmetries may thus be a useful tool to reduce the number of free parameters in
the flavour sector and a step towards solving the flavour puzzle. Before discussing how such
a symmetry can be concretely implemented, let us also briefly mention another motivation

1For the sake of argument, we here ignore the fact that such a theory cannot be consistently quantised.
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Chapter 1. Introduction and Overview

for flavour symmetries that is tied to the naturalness problem of the SM Higgs. To solve this
problem within effective field theory, it is generally necessary to introduce new physics at the
TeV scale such as supersymmetry, for example. However, bounds from flavour observables
such as flavour changing neutral currents (FCNCs) and lepon flavour violating (LFV) decays
put severe restrictions on the flavour structure of the new physics model. One possibility to
solve this flavour problem is the so-called Minmal Flavour Violation (MFV) paradigm [3, 4]
that postulates the SM Yukawa couplings to be the only source of flavour violation.

Now, how can such a flavour symmetry look like? The first difference to the gedankenexper-
iment outlined above is that there is no symmetry apparent in the experimental data. There,
if one measured the couplings strength of the various gluons to fermions, it would be hard to
miss the symmetry structure. In flavour symmetry models, the fact that we do not see the
symmetry directly in the data is accounted for by breaking the symmetry spontaneously. Since
all parameters we have measured in the flavour sector are really mass terms, one would not
expect to see the symmetry there, in the same way as the SU(2)L symmetry is not apparent
in the spectrum of quarks and leptons. However, there are some regularities in the flavour
parameters that may be indicative of a symmetry: for example the quark and charged lepton
mass matrices show a hierarchical structure and mass matrices of the type [5]

Mu ∼




ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1


 , Md ∼MT

e ∼ ε3



ε5 ε4 ε4

ε3 ε2 ε2

ε 1 1


 , (1.1)

where ε ≈ 0.2 ∼ θC is of the order of the Cabibbo angle, and each entry should be understood
to be multiplied by an order one coupling, capture the essential features of (i) hierarchical
mass spectra and (ii) mixing angles that scale with mass ratios. For example the Cabibbo
angle may be approximated by

θC ≈
√
md

ms
,

where md and ms are the masses of down and strange quarks, respectively. In the neutrino
sector the pattern is quite different: the neutrino masses show a much smaller hierarchy,
(m1 : m2 : m3) ∼ (ε2 : 1 : 1) and two of the leptonic mixing angles are large and do not seem
to scale with mass hierarchies.

Flavour symmetries can come in many different forms. For example they can be global or
local, continuous or discrete, abelian or non-abelian. As an example, consider one of the first
flavour symmetries [6] presented by Froggatt and Nielsen in 1979, which can account for the
hierarchical mass matrices of Eq. (1.1). They introduced a global U(1) symmetry under which
the various fermion generations transform with different charges. The charge assignments are
chosen such that the effective operator that leads to an element of the mass matrix of size εn

in Eq. (1.1) has a charge −n and therefore has to be multiplied by (S/Λ)n. After symmetry
breaking the scalar S obtains a vacuum expectation value (VEV) 〈S〉 /Λ = ε ≈ 0.2, and the
structure (1.1) is realized.

Many different options have been explored in the literature but no overall consensus of a
unique symmetry group has emerged. In the quark sector, continuous flavour symmetries such
as U(2) have gained popularity again [7, 8], as an outgrowth of studies of minimal flavour
violation.

Here we follow an approach [9–13] that explains the lepton flavour structure – which is
quite different from the quark sector – as the result of mismatched remnant symmetries of the

10



charged lepton and neutrino mass matrices, as will be reviewed in Chapter 2. Such symmetries
may arise from the spontaneous breakdown of discrete non-abelian flavour symmetries and
have proven to be successful in describing the large mixing angles observed in the lepton sector.
To realize this idea in concrete particle physics models, it is necessary to break the discrete
flavour symmetry into different subgroups using (at least) two different scalar fields - also
known as flavons - that transform under this symmetry. This, however, leads to a non-trivial
technical problem known as the vacuum alignment problem. The most general scalar potential
formed out of two such scalar fields does not admit the required vacuum configuration without
fine-tuning couplings in the scalar potential. Such fine-tuning is not acceptable as it generally
destroys all predictive power of a model.

In Chapter 3 we first review the solutions that have been put forward in the literature. These
solutions usually require the introduction of extra dimensions or continuous R-symmetries
within supersymmetry and therefore the flavour symmetry breaking scale has to be unobservably
high. This is hardly appealing as the only observable consequences of such models are the
predicted lepton mixing angles, many of which have now been ruled out by the recent
measurement of θ13. The reason why these models solve the vacuum alignment problem can be
traced back to the fact that particle content and symmetries of the models have been adjusted
such, that there emerges an accidental symmetry in the scalar potential under which both
flavons transform independently under the flavour group, which in itself has nothing to do with
the scale of symmetry breaking. Using this insight, we present a solution to vacuum alignment
problem that realizes this accidental symmetry by a minimal extension of the flavour group.
We give general conditions that are necessary for a model to solve the vacuum alignment
problem and present the results of a scan over all discrete groups of order smaller than 1000.

In Chapter 4 a concrete model based on the symmetry group Q8 oA4 is presented, which is
one of the smallest such extensions of the popular flavour group A4. The predictions for lepton
masses and mixings are discussed and it is shown that the required vacuum configuration can
be naturally obtained, without the need for extra dimensions or supersymmetry. Furthermore,
strategies are discussed to bring the model back into agreement with the recently measured
and quite large value of θ13.

The fact that this mechanism of vacuum alignment does not require a particularly high
flavour breaking scale is used in Chapter 5 where we present a model in which the flavour
breaking scale is identified with the electroweak scale. Here the SM Higgs is part of a multiplet
of scalar fields that also break the flavour symmetry. The role of the flavour symmetry is
twofold: first, it restricts the lepton flavour structure such that there are only 5 free real
parameters in the neutrino sector, thereby giving a predictive scheme for leptonic mixing that
is in good agreement with experiment, and secondly it protects the model from large flavour
violating amplitudes that usually plague multi-Higgs models. We discuss the bounds from
lepton flavour and collider experiments. As a bonus, there is a dark matter candidate in the
model, whose stability and phenomenology we study.

In Chapter 6 we discuss generalized CP transformations in the context of models with
discrete flavour symmetries, which has interesting implications in light of the beginning of
the era of leptonic CP violation. We show that a naive CP transformation given by complex
conjugation is often not consistent with the symmetries of the model. The requirement that a
CP transformation should not lead out of the orbit of group transformations leads to non-trivial
consistency conditions that have so-far not been fully appreciated in the literature. Using this
formalism we can clear up issues surrounding the so-called geometrical CP violation in models
based on the flavour groups T ′ and ∆(27).

11



Chapter 1. Introduction and Overview

In Chapter 7 we take a step back and discuss the naturalness problem in light of the
recent Higgs discovery. We discuss two scenarios where the particle physics action is directly
embedded into gravity without any intermediate scale and discuss their viability. Finally, we
conclude in Chapter 8.

Parts of this thesis have been published before, are in print or preparation. Sections 2.5.1 and
7.2 are based on collaboration with Kher Sham Lim and Manfred Lindner [14, 15], Chapters 3
and 4 are based on collaboration with Michael A. Schmidt [16, 17] and Chapters 5 and 6 and
Section 7.3 are based on collaboration with Manfred Lindner and Michael A. Schmidt [18–22].

12



Chapter 2.

Discrete Symmetry Groups and Lepton Mixing

In this chapter we start by giving a short review about flavour in the Standard Model and the
experimental status of lepton flavour observables. We then review how the large mixing angles
in the lepton sector may be understood as a result of mismatched remnant symmetries of the
mass matrices. This leads us to a brief discussion of non-abelian discrete flavour symmetries,
which may be viewed as being built up out of the remnant symmetries. After this, we show how
such an idea may be realized in a prototypical particle physics model. Finally, we attempt to
give an overview of the vast literature that has emerged since the discovery of a non-vanishing
value for the mixing angle θ13.

2.1. Flavour in the Standard Model

2.1.1. Theoretical Background

After all the media coverage, even my grandfather knows that it is the Higgs field H =
(H+, H0)T that gives masses to all fermions in the Standard Model. Denoting the quark and
lepton fields by Q = (u, d)T , uc, dc and L = (ν, e)T , ec, respectively1, we have the interactions

LY = QTYuu
cH −QTYddcH̃ − LTYeecH̃ + h.c. (2.1)

The conjugate of the Higgs field is given by H̃ = iσ2H
∗ and the transformation properties of

all the fields under the Standard Model gauge group SU(3)C × SU(2)L ×U(1) can be found in
Table 2.1. All fermions are written as left-handed Weyl spinors and Lorentz, color, isospin and
generational indices are suppressed. After electroweak symmetry breaking and in the unitary
gauge H0 = 1√

2
(v + h) with v = (

√
2GF )−1/2 = 246 GeV, these Yukawa couplings generate

LY =
[
uTMuu

c + dTMdd
c + eTMee

c
](

1 +
h

v

)
+ h.c. (2.2)

where the mass matrices are given by

MA =
v√
2
YA for A = u, d, e. (2.3)

This equation already shows that the Higgs-mediated interaction is flavour-diagonal in the
basis where the mass matrices are diagonal, a feature that is lost in many extensions of the
Standard Model. Defining the mass eigenstates (u0, uc0, d0, dc0) by

u = Vuu
0, uc = Vucu

c0, d = Vdd
0, and dc = Vdcd

c0, (2.4)

1We use a standard notation [5] and for an introduction we recommend [23].
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Chapter 2. Discrete Symmetry Groups and Lepton Mixing

gauge group Q uc dc L ec H

SU(3)C 3 3 3 1 1 1

SU(2)L 2 1 1 2 1 2

U(1)Y 1/6 −2/3 −1/3 −1/2 1 1/2

Table 2.1: Quantum Numbers of Standard Model particles.

with unitary matrices chosen such that

V T
u MuVuc = diag(mu,mc,mt) and V T

d MdVdc = diag(md,ms,mb), (2.5)

then the only flavour violating interaction in the SM is the charged current interaction

Lcc =
g√
2

[
u†σµd

]
W+
µ + h.c. =

g√
2

[
u0†σµV d0

]
W+
µ + h.c., (2.6)

with the famous Cabibbo–Kobayashi–Maskawa (CKM) matrix

V = V †uVd, (2.7)

that seems to describe all flavour effects in the quark sector to high accuracy. In the lepton
sector, we can repeat this analysis by defining

e = Vee
0, ec = Vece

c0 (2.8)

where the unitary matrices satisfy

V T
e MeVec = diag(me,mµ,mτ ). (2.9)

Note that as it stands, there is no mass term for neutrinos and we are thus free to redefine
ν = Vνν

0 such that the charged-current interaction is flavour diagonal. However, as will
be reviewed in the next section, it is known that neutrinos have a finite mass, which we
accommodate by adding the unique dimension-five term[24]

LW =
(Yν)ij

Λ
(LiH)(LjH) + h.c., (2.10)

which after electroweak symmetry breaking generates a Majorana mass term for neutrinos

Lν−mass =
1

2
νTMνν + h.c. with Mν = Yν

v2

Λ
. (2.11)

This mass term is the unique2 possibility to give neutrinos mass without introducing new
light states into the standard model. It can be viewed as being generated by the exchange of
heavy particles, as in the famous seesaw mechanism [26–30]. If one introduces additional light
neutral fermionic states, it is possible to generate Dirac masses for neutrinos. We will not

2In the SM, forbidding this operator is equivalent to forbidding Majorana mass terms for neutrinos. However
the operator may also be only generated radiatively from other other higher-dimensional operators with
∆L = 2 [25].
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2.1. Flavour in the Standard Model

discuss this possibility further as it is somewhat less appealing than the higher dimensional
operator option, which explains the smallness of neutrino masses through the existence of a
heavy mass scale Λ. The neutrino mass term fixes Vν to satisfy

V T
ν MνVν = diag(m1,m2,m3), (2.12)

where mi are the masses of the light neutrinos. As was the case for quarks, the only flavour
violating interaction is the leptonic charged current, which reads

Lcc =
g√
2

[
e†σµν

]
W+
µ + h.c. =

g√
2

[
e0†σµUν0

]
W+
µ + h.c., (2.13)

with the leptonic mixing matrix

U = V †e Vν , (2.14)

also known as the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix. This matrix may be
parametrized as U = Ũ P with

Ũ =




1 0 0
0 c23 s23

0 s13 c23


×




c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13


×




c12 s12 0
−s12 c12 0

0 0 1


 , (2.15)

where sij = sin θij , cij = cos θij and P = diag(eiϕ1 , eiϕ2 , 1) a diagonal phase matrix containing
the so-called Majorana phases.

2.1.2. Experimental Situation

Over the span of the last decade, the experimental knowledge of lepton flavour parameters
has greatly expanded, with major advances on the last missing mixing angle θ13 made in the
last twelve months. The mixing angles θij and the CP violating phase δCP may be accessed
in neutrino oscillation experiments, while the Majorana phases can only be measured in
lepton number violating processes such as neutrinoless double beta decay. We first discuss
the experimental determination of oscillation parameters and come back to the other types of
experiments later.

Neutrino oscillation experiments are greatly simplified by the fact that nature has chosen the
mixing parameters such, that it is usually sufficient to only consider a two-flavour sub-sector of
the full three-flavour framework. The parameter set {∆m2

31 ≡ m2
3 −m2

1, θ23} can be measured
using atmospheric neutrinos and will thus be often referred to as atmospheric parameters.
After the initial discovery of atmospheric neutrino oscillations by the SuperKamiokande
experiment [31] in 1998, these parameters have also been measured in long baseline experiments,
which look for the disappearance of a muon neutrino beam coming from an accelerator. The
solar parameters {∆m2

21 ≡ m2
2−m2

1, θ12} were originally determined in oscillation experiments
using neutrinos produced in fusion processes in the sun, but today the best measurement
comes from long baseline reactor experiments such as KamLAND [32]. The third mixing
angle θ13 can be measured in reactor experiments with very short baselines compared to the
solar reactor experiments, and in experiments using neutrino beams. The first indication
for a non-vanishing value for this this reactor angle came from the long baseline experiment
T2K [33] and MINOS [34] and the reactor experiment DoubleCHOOZ [35] in 2011 and was
established by the reactor experiments DayaBay [36] and RENO [37] in early 2012.
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∆m2
21

∣∣∆m2
31

∣∣ sin2 θ12 sin2 θ23 sin2 θ13 δ

[10−5 eV2] [10−3 eV2] [10−1] [10−1] [10−2] [π]

best fit 7.62+.19
−.19 2.55+.06

−.09 3.20+.16
−.17 6.13+.22

−.40 2.46+.29
−.28 0.8+1.2

−.8
3σ 7.12− 8.20 2.31− 2.74 2.7− 3.7 3.6− 6.8 1.7− 3.3 0− 2

Table 2.2: Global Fit of neutrino oscillation parameters adapted from [39]. The errors of the best fit values
indicate the one sigma ranges. In the global fit there is a nearly degenerate minima at sin2 θ23 = 0.430+.031

−.030,
see Fig. 2.1. We only report the values corresponding to normal hierarchy of neutrinos.

While the two flavour description of the neutrino oscillation experiments holds at leading
order, more information on the oscillation parameters can be obtained if one performs a global
fit over all available experiments. By now, there are (at least) three competing groups [38–40]
performing these global fits and we here report the values obtained by the Valencia group [39]
in Table 2.2. Note that θ13 is now among the most precisely measured leptonic mixing angles.
So far there is very little information about the Dirac CP phase δCP and whether the neutrino
spectrum shows a normal (∆m2

31 > 0) or inverted (∆m2
31 < 0) hierarchy. These questions can

be answered by oscillation experiments and will be a major goal of experimental efforts in the
coming years3.

Let us also briefly summarize the experimental information on lepton flavour coming from
experiments that are complementary to oscillation experiments. The absolute mass scale of
neutrinos can be obtained by precisely measuring the endpoint of the tritium beta decay
spectrum. The best limit on the effective electron neutrino mass m(νe) is given by

√∑

i

|Uei|2m2
i ≤ 2.3 eV (2.16)

at 95% confidence level by the MAINZ experiment [41]. The KATRIN experiment [42] will aim
to improve this bound by an order of magnitude and will therefore be competitive with bounds
coming from cosmology. The seven-year measurement of the cosmic microwave background by
WMAP [43] places an upper limit of

∑
mi ≤ 0.58 eV on the sum of neutrino masses, which

can be further improved to
∑
mi ≤ 0.36 eV if one includes information from supernovae,

large scale structure surveys and the Hubble constant measurement [44]. While these bounds
are supposed to be robust with regards to reasonable deformations of the standard ΛCDM
model of cosmology, they depend on some cosmological assumptions and the direct kinematical
determination of the absolute neutrino mass scale by KATRIN is therefore complementary.

Let us also briefly mention two other types of experiments that test symmetries in the
lepton sector: neutrinoless double beta decay experiments such as GERDA [45] and EXO [46]
among others, search for processes that violate lepton number by two units. 4 If light neutrino
exchange is the dominant mechanism for neutrino-less double beta decay, the current upper
limit [46] can be expressed as |mee| =

∣∣∑
i U

2
eimi

∣∣ ≤ (140− 380) meV, where the uncertainty
is due to the calculation of nuclear matrix elements.

Another type of experiment that tests symmetries of the lepton sector and so far has only
produced upper bounds are experiments that look for violations of lepton flavour involving

3Note that the large value of θ13 makes experiments looking for leptonic CP violation feasible (see Eq. (2.15)).
4Any signal would imply that (unless there are fine-tuned cancellations) neutrinos are Majorana particles [47,

48].
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2.2. Leptonic Mixing from Remnant Symmetries

charged leptons. For example the experiment MEG searches for the process µ→ eγ and has
recently reported a limit of Br(µ→ eγ) < 2.4 · 10−12 [49]. Lepton flavour violation involving
neutral leptons, a.k.a. neutrino oscillations, is well established and should therefore also exist
in its charged lepton variant. However, in the Standard Model any lepton flavour violating
amplitude has to involve a (tiny) neutrino mass term so that, for example, the SM prediction
for µ → eγ is Br(µ → eγ) ∼ (mν/mW )4 ∼ 10−52, i.e. unobservably small. However in
extensions of the Standard Model this link is broken and these experiments can give important
constraints on such models, as we will see in Section 5.3.

2.2. Leptonic Mixing from Remnant Symmetries

In Section 2.1.1 we have seen that the leptonic mixing matrix

U = V †e Vν . (2.17)

can be determined from the unitary matrices Ve and Vν satisfying

V T
e MeM

†
eV
∗
e = diag(m2

e,m
2
µ,m

2
τ ) and V T

ν MνVν = diag(m1,m2,m3). (2.18)

where the mass matrices are defined by L = eTMee
c+ 1

2ν
TMνν. We will now show how certain

mixing patterns can be understood as a consequence of mismatched horizontal symmetries
acting on the charged lepton and neutrino sectors [9–13, 50]. For this purpose let us assume
that there is a (discrete) symmetry group G under which the left-handed lepton doublets
transform under a unitary 3-dimensional representation ρ : G→ GL(3,C):

L→ ρ(g)L, g ∈ G. (2.19)

The experimental data clearly shows (i) that all lepton masses are unequal and (ii) there is
mixing amongst all three mass eigenstates. Therefore this symmetry cannot be a symmetry of
the entire Lagrangian but has to be broken to different subgroups Ge and Gν in the charged
lepton and neutrino sectors, respectively. If the fermions transform as

e→ ρ(ge)e, ν → ρ(gν)ν ge ∈ Ge, gν ∈ Gν , (2.20)

for the symmetry to hold, the mass matrices have to fulfil

ρ(ge)
TMeM

†
eρ(ge)

∗ = MeM
†
e and ρ(gν)TMνρ(gν) = Mν . (2.21)

It can easily be seen that if one chooses Ge or Gν to be a non-abelian group, this would lead to
a degenerate spectrum, which is not compatible with the data – we therefore restrict ourselves
to the abelian case. We further demand neutrinos to be Majorana particles, which implies
that there cannot be a complex eigenvalue of the matrices ρ(gν) and they therefore satisfy
ρ(gν)2 = 1, and we can further choose det ρ(g) = 1. This forces the group Gν to be a subgroup
of the Klein group Z2 × Z2. To be able to uniquely determine the mixing from the group
structure it is necessary to have all neutrinos transform as inequivalent singlets of Gν . The
same is true for the charged leptons, which shows that Ge cannot be smaller than Z3. We can
now determine the mixing via the unitary matrices Ωe and Ων , which satisfy

Ω†eρ(ge)Ωe = ρ(ge)diag, Ω†νρ(gν)Ων = ρ(gν)diag, (2.22)
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Chapter 2. Discrete Symmetry Groups and Lepton Mixing

where ρ(g)diag are diagonal unitary matrices. These conditions determine Ωe, Ων up to a
diagonal phase matrix Ke,ν and permutation matrices Pe,ν

Ωe,ν → Ωe,νKe,νPe,ν . (2.23)

It follows from Eq. (2.21 ) that one can choose Ωe,ν such that they coincide with Ve,ν . This
can be seen as

ΩT
eMeM

†
eΩ∗e = ΩT

e ρ
TMeM

†
eρ
∗Ω∗e = ρTdiagΩ

T
eMeM

†
eΩ∗eρ

∗
diag

has to be diagonal (only a diagonal matrix is invariant when conjugated by an arbitrary phase
matrix) and the phasing and permutation freedom can be used to bring it into the form
diag(m2

e,m
2
µ,m

2
τ ), and analogously for Ων . From these group theoretical considerations we

can thus determine the PMNS matrix

U = Ω†eΩν , (2.24)

up to a permutation of rows and columns. It should not be surprising that it is not possible
to uniquely pin down the mixing matrix, as it is not possible to predict lepton masses in this
approach.

Let us now try to apply this machinery to some interesting cases. We have seen that
the smallest residual symmetry in the charged lepton sector is given by the group Ge =〈
T |T 3 = E

〉 ∼= Z3. We use a basis where the generator is given by

ρ(T ) = T3 ≡




0 1 0
0 0 1
1 0 0


 . (2.25)

This matrix will be our standard three-dimensional representation of Z3 and the notation T3

will be used throughout this work. It is diagonalized by

Ω†eρ(T )Ωe = diag(1, ω2, ω) and Ωe = ΩT ≡
1√
3




1 1 1
1 ω2 ω
1 ω ω2


 , (2.26)

with ω = ei2π/3. Obviously it is enough to consider the generators of Ge, as e.g. ρ(T 2) is
diagonalized by the same matrix,

Ω†Tρ(T 2)ΩT = Ω†Tρ(T )ΩTΩ†Tρ(T )ΩT = diag(1, ω, ω2).

Having fixed the basis by choosing the Z3 generator the way we just did, it is now essentially
a question of choosing generators and studying the predicted mixing matrix. Let us first look
at the case where there is only one generator S of Gν , satisfying ρ(S)2 = 1 and det ρ(S) = 1:

ρ(S) = S3 ≡




1 0 0
0 −1 0
0 0 −1


 . (2.27)

Due to the degenerate eigenvalues there is a two-parameter freedom in the matrix Ων and it
will turn out to be useful to write it as

Ω†νρ(S)Ων = diag(−1, 1,−1) with Ων = ΩUU13(θ, δ), (2.28)
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2.2. Leptonic Mixing from Remnant Symmetries

and

ΩU =




0 1 0
1√
2

0 − i√
2

1√
2

0 i√
2


 and U13(θ, δ) =




cos θ 0 eiδ sin θ
0 1 0

−e−iδ sin θ 0 cos θ


 . (2.29)

Obviously this does not completely fix the leptonic mixing matrix yet, as the first and third
eigenvalue are the same and the corresponding eigenstates can be rotated into each other
without breaking the symmetry. To completely fix the mixing matrix we have to enlarge Gν
by another generator. Let us look at the effect of adding the symmetry generator U with5

ρ(U) = U3 ≡ −




1 0 0
0 0 1
0 1 0


 . (2.30)

This fixes the value of θ to zero, Ω†Uρ(U)ΩU = diag(−1,−1, 1), and thus the mixing matrix to
the famous tri-bimaximal mixing(TBM) form

U = Ω†TΩU = UHPS ≡




√
2
3

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3
− 1√

2


 , (2.31)

attributed to Harrison, Perkins and Scott [51–53], corresponding to the mixing angles sin2 θ12 =
1
3 , sin2 θ23 = 1

2 , and sin2 θ13 = 0. Until very recently, this pattern gave a good description
of the mixing matrix and the fact that this mixing pattern can be obtained from simple
symmetry considerations has prompted a lot of model building activity. In light of the recent
measurement of a non-vanishing θ13 there has been interest in the physical situation where
the (broken) flavour symmetry does not fully determine the mixing angles [54, 55]. For
example if the residual symmetry in the neutrino sector Gν is taken to be Gν = 〈S〉 ∼= Z2,
we have seen that the leptonic mixing matrix is given by U = UHPSU13(θ, δ). This is called
trimaximal mixing(TMM) [56–63] and the result of a deviation from θ = 0 in terms of mixing
angles is shown in Fig. 2.1 where one can read off that a 13-rotation about an angle of
θ ' 0.2 is required to accommodate the relative large value of θ13. In Section 2.5.1, we
will show that interesting new mixing patterns that can be obtained from flavour groups
of reasonable size all lie on the parabola U = UHPSU13(θ, δ = 0). It should be clear from
the discussion above that, a different choice of generators of the residual symmetry groups
leads to a different mixing pattern. For example, if we do not take Gν to be the Klein group
Gν =

〈
S,U |S2 = U2 = E;SU = US

〉 ∼= Z2×Z2 that leads to tri-bimaximal mixing, but rather
the isomorphic group Gν =

〈
S,X|S2 = X2 = E;SX = XS

〉 ∼= Z2 × Z2 with X = T 2ST and

ρ(X) =



−1 0 0
0 1 0
0 0 −1


 , (2.32)

the physical results will be different. This fixes

Ω†Xρ(X)ΩX = diag(−1,−1, 1) with ΩX = ΩUU13(θ = −π
4
, δ =

π

2
) (2.33)

5The minus sign is needed to have det ρ(U) = 1.
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Figure 2.1: Deviations from tri-bimaximal mixing of the form U = UHPSU13(θ, δ) (2.29). The yellow point
represents TBM, the continuous lines give the deviations with the angle θ given by the colour code in the top
right corner for δ = n

5
π
2

for n = 0, . . . , 5, where n = 0 is the outermost parabola etc. The one, two and three
sigma regions of a recent global fit [39] are indicated by dotted, dashed and continuous contours, respectively.
This pattern of perturbations can shift the mixing angles in the direction of the experimental data for θ ∼ .1− .2.
Note that the corrections to the solar angle are smaller than the corrections to the other angles.

which gives

‖ U ‖=‖ Ω†eΩX ‖=
1√
3




1 1 1
1 1 1
1 1 1


 , (2.34)

corresponding to the mixing angles sin2 θ12 = 1
2 , sin2 θ13 = 1

3 and sin2 θ23 = 1
2 . Here we used

the notation ‖ U ‖, which gives the matrix of absolute values of matrix entries. We will refer
to this mixing pattern as bimaximal mixing(BM).

2.3. Some Properties of Non-Abelian Discrete Symmetries

2.3.1. Building the Flavour Group

In the last section we have seen how interesting neutrino mixing patterns can arise from
mismatched remnant symmetries of the neutrino and charged lepton mass matrices. Here we
want to discuss how one could to try to reconstruct the complete flavour symmetry out of
these remnant symmetries. Clearly if one part of the Lagrangian exhibits a certain enhanced
symmetry, it does not mean that this symmetry has to be a symmetry of the entire Lagrangian.
For example the Higgs potential in the Standard Model only depends on the invariant
H†H =

∑4
i h

2
i and is thus invariant under a larger symmetry SO(4) ∼= SU(2)L × SU(2)R,

where hi are the four real components of the doublet. The accidental symmetry SU(2)R (which
is also called the custodial symmetry of the SM Higgs sector6) is broken in other parts of the
Lagrangian, e.g. by Yukawa couplings and gauge interactions.

6Strictly speaking, the diagonal subgroup SU(2)V left-over after EWSB is the custodial symmetry.
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SU(3)

∆(27)

PSL2(7)

T7

S4

A4

∆(96) SO(3)

Figure 2.2: Tree of (selected) discrete subgroups of SU(3) that contain three-dimensional representations.
The blue groups are used in so-called direct models, the red ones are used in indirect models (see text). The
location of the colored groups indicates the size of group with the smallest group A4, that contains 12 elements,
at the bottom.

If one accepts that there are the remnant symmetries Ge = 〈T 〉 ∼= Z3 and Gν = 〈S,U〉 ∼=
Z2 × Z2 we discussed in the last section, there are three logical ways to construct the flavour
group:

• all remnant symmetries are accidental, i.e. there is no flavour symmetry and the remnant
symmetries only emerge because of the chosen particle content etc. No model without
some flavour symmetry is known where this can be the case. However, so called indirect
models [64] are of this type as the symmetries of the mass matrices arise accidentally
and are different from the symmetries of the original models.

• some remnant symmetries are accidental, some are part of the flavour group. Some of
the most prominent models fall into this category, e.g. the flavour group A4 is generated
by the generators S and T . In A4 models [9, 10, 65–69] that predict TBM the symmetry
U is an accidental symmetry as we will discuss in detail in Section 2.4. This is why we
have also discussed the case Gν = 〈S〉 ∼= Z2, which leads to trimaximal mixing, as this
is the most natural deformation of A4 models.

• all remnant symmetries are part of Gf . The group generated by S, T and U is the
group S4 [12, 70–86] , which has also been widely used for model building. It has been
claimed [12, 13] that this is the unique symmetry that leads to TBM but this claim is
obviously incorrect [84, 87] and results from the flawed notion that symmetries of the
mass matrices have to be symmetries of the Lagrangian. Models that realize the last
two cases are also known as direct models [64].

A tree of (selected) discrete subgroups of SU(3) that contain three-dimensional representations
is shown in Fig. 2.2. All of the groups represented in this graph will at some point be used in
this thesis and we therefore briefly describe them here.

All of these groups may be written as semidirect products of two smaller groups. As the
concept of a semidirect product plays a prominent part in the later parts of the thesis we
define it here: given two groups N and H and a group homomorphism 7 ϕ : H → Aut(N), one

7A (group) homomorphism ρ : G → H is a mapping preserving the group structure, i.e. ρ(g1g2) =
ρ(g1)ρ(g2) ∀g1,2 ∈ G. A surjective homomorphism ρ : G→ H has the additional property im(ρ) = H.
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1

S
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T
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TST2

T2ST

(a) Cayley Graph of A4. Figure 3: The A4 symmetry of tetrahedron.

From these forms, it is found obviously that A4 is isomorphic to ∆(12) ! (Z2 × Z2) ! Z3,
which is explained in section 9.

They are classified by the conjugacy classes as

C1 : {a1}, h = 1,
C3 : {a2, a3, a4}, h = 2,
C4 : {b1, b2, b3, b4, }, h = 3,
C4′ : {c1, c2, c3, c4, }, h = 3,

(67)

where we have also shown the orders of each element in the conjugacy class by h. There
are four conjugacy classes and there must be four irreducible representations, i.e. m1 +
m2 + m3 + · · · = 4.

The orthogonality relation (11) requires

∑

α

[χα(C1)]
2 =

∑

n

mnn2 = m1 + 4m2 + 9m3 + · · · = 12, (68)

for mi, which satisfy m1 + m2 + m3 + · · · = 4. The solution is obtained as (m1, m2, m3) =
(3, 0, 1). That is, the A4 group has three singlets, 1, 1′, and 1′′, and a single triplet 3,
where the triplet corresponds to (66).

Another algebraic definition of A4 is often used in the literature. We denote a1 = e,
a2 = s and b1 = t. They satisfy the following algebraic relations,

s2 = t3 = (st)3 = e. (69)

The closed algebra of these elements, s and t, is defined as the A4. It is straightforward
to write all of ai, bi and ci elements by s and t. Then, the conjugacy classes are rewritten
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(b) Geometrical interpretation of A4 .

Figure 2.3: The symmetry group A4.The twelve group elements are connected by the generators S (red) and
T (blue). The picture 2.3b is taken from [88].

can define the semidirect product group N oϕ H via the multiplication rule

(n1, h1) ∗ (n2, h2) = (n1ϕh1(n2), h1h2) for n1,2 ∈ N and h1,2 ∈ H. (2.35)

Note that there can be more than one semidirect product between two groups, but in the
following we will often drop the index ϕ, as long as it is clear which group we are referring
to. (Another equivalent definition we will use is that a group G is a semidirect product of a
subgroup H and normal8 subgroup N if there exists a homomorphism G→ H which is the
identity on H and whose kernel9 is N.)

Let us present in some detail the case of the smallest group in Fig. 2.2, namely the
tetrahedral group A4. We will give the details for the other groups in the appendix. The group
A4 may be written as A4

∼= (Z2 × Z2) o Z3 where the Klein group N ∼= Z2 × Z2 is defined
by
〈
S,X|X2 = S2 = E,XS = SX

〉
, the group H ∼= Z3 is defined by

〈
T |T 3 = E

〉
and the

semidirect product is given by

ϕT (S) = TST−1 = XS, ϕT (X) = TXT−1 = S. (2.36)

Note that the last relation allows one to replace one generator of N , e.g. X = T 2ST , and we
arrive at the standard presentation of A4:

〈
S, T |S2 = T 3 = E, (ST )3 = E

〉
, (2.37)

that is represented graphically in Fig. 2.3a.
The other small groups in the tree shown in Fig. 2.2 can be represented in a similar way 10:

∆(3n2) ∼= (Zn × Zn) o Z3, ∆(6n2) ∼= (Zn × Zn) o S3, Tn ∼= Zn o Z3 (2.38)

where S4
∼= ∆(24) and the defining homomorphisms are given in App. A.1. S3 denotes the

group of permutations of three elements. It is in itself a semi-direct product S3
∼= Z3 o Z2 =〈

r, a; r3 = a2 = E, ara−1 = r2
〉

and is not to be confused with the matrix defined in Eq. (2.27).

8A normal subgroup N of a group G, denoted by N CG, is a subgroup, which is invariant under conjugation
by an arbitrary group element of G, i.e. gNg−1 = N .

9The kernel of a representation ρ is defined by ker ρ = {g ∈ G|ρ(g) = 1}.
10With respect to particle physics, ∆(3n2) has been studied in [89–92],T7 has been studied in [93–95]and

∆(6n2) has been studied in [88, 96].
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Another important class of groups can be constructed out of the known ones by so-called
non-split extensions of groups. As we will also encounter this concept later on, we here give a
definition and use the group T ′ as an example, as this is the most well-known group that can
be seen as a non-split extension of A4 and that has been used for model-building [97–104]. A
group G is an extension of H by N if there is a short exact sequence

1→ N
f→ G

g→ H → 1 (2.39)

defined by the homomorphisms f and g, which have to be injective and onto, respectively.
Therefore N ∼= ker g is a normal subgroup of G and G/N ∼= H. An extension is called split iff
it may be written as a semidirect product G = N oH.

T ′ is now a non-split extension of A4 = 〈S, T 〉 by Z2 =
〈
R,R2 = E

〉
, which we denote by

T ′ = Z2.A4. Let T ′ be generated by r, s, t,

〈
s, t, r|s2 = r, t3 = (st)3 = r2 = E

〉
; (2.40)

the short exact sequence is then defined by the images of the generators of the homomorphisms
in the short exact sequence

f(R) = r, g(s) = S, g(t) = T, g(r) = E. (2.41)

These type of extensions are of importance when one constructs representations of larger
groups out of the representations of smaller groups. To give an example, we consider the
case of the group A4. The presentation given in Eq. (2.37) may be represented by the three
one-dimensional representations

1i : ρ1i
(S) = 1, ρ1i

(T ) = ωi−1 i = 1, 2, 3. (2.42a)

These representations are really just representations of 〈T 〉 ∼= Z3 and for a good reason: we
have seen that A4 can be understood as the split extension (a.k.a. the semidirect product) of
Z3 by the Klein group Z2 × Z2. For any group G that is an extension of H one can construct
representations of G ρG : G → GL(n,C,) that are inherited from the representations of H
ρH : H → GL(n,C,) by ρG = ρH ◦ g with the onto homomorphism g : G → H given in
Eq. (2.39). Additionally, there is the three-dimensional representation ρ31

that is known to

us from the last chapter

31 : ρ31
(S) = S3, ρ31

(T ) = T3. (2.42b)

These representations11 can be multiplied according to the rules given in Table 2.4; also the
character table can be found there.

Using the construction from above we can now take it one step further and realize that
all group extensions of A4 have representations that correspond to representations of A4. As
group representations play an important role in model building this insight will be helpful to
solve the vacuum alignment problem in Section 3.2.

11It will turn out to be useful to use the notation 31 instead of 3, as will become clear later.
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1 T T 2 S

11 1 1 1 1

12 1 ω ω2 1

13 1 ω2 ω 1

3 3 0 0 -1

(a) Character Table.

1i × 12 = 1i+1 mod 3

1i × 13 = 1i+2 mod 3

1i × 31 = 31

31 × 31 = 11 + 12 + 13 + 31S + 31A

(b) Kronecker products.

Figure 2.4: Character table of A4 and its Kronecker products. A character χρ(g) is defined by trρ(g).
Characters are functions on conjugacy classes, which are shown in the top row. The conjugacy classes are
specified according to a representative of the conjugacy class. The values for the Clebsch-Gordon coefficients
are given in App. A.2.

2.3.2. On the Origin of Discrete Flavour Symmetries

We have seen that global non-abelian discrete symmetries may be used to construct models
that realize certain mixing patterns in the leptonic flavour sector. These models can be
motivated by a bottom-up approach from approximate remnant symmetries of the charged and
neutral lepton mass matrices. From a top-down approach, however, it is important to know
about the origin of discrete flavour symmetries. In this section we attempt to summarize two
approaches to tackle this question, namely the case of spontaneous breaking of a continuous
flavour symmetry down to a discrete subgroup and the possibility that the flavour symmetry
may arise from discrete symmetries of additional compactified space-time dimensions.

The smallest continuous symmetry group that has a three dimensional representation is the
group SO(3). The spontaneous breakdown of gauged SO(3) theories to discrete subgroups
has been discussed long ago [105–109], where it was shown that the spontaneous symmetry
breaking SO(3)→ A4 can be realized utilizing the seven dimensional representation 7 that
can be described by T abc, a symmetric traceless tensor in three dimensions. Amazingly, the
most general potential formed out of this scalar field is rather compact [105]

V = −µ
2

2
T abcT abc +

λ

4

(
T abcT abc

)2
+ c T abcT bcdT defT efa (2.43)

and it can be shown that in the parameter range µ2 > 0 and −λ/2 < c < 0, the global
minimum of the potential conserves an A4 subgroup. If one assigns the SM fermions to
representations smaller or equal to three, one sees that since

3× 3 = 1 + 3 + 5

the fermions cannot couple to the 7 at leading order. If one inisist on such a leading order
coupling no breaking to a discrete subgroup can be realized [110]. However, unless the flavour
symmetry breaking field transforms as a Higgs field (and the flavour symmetry breaking
scale is therefore the electroweak scale), fermion masses always arise from higher-dimensional
operators and there is no conceptional problem to couple e.g. 7× 7 to fermions.

As the global symmetry of the SM with Yukawa couplings switched off is U(3)5 [3], it
is natural to ask the question whether discrete family symmetries can be obtained from
spontaneous symmetry breaking to subgroups of U(3). While the U(3) case seems to be too
difficult [111], recently the spontaneous breaking of SU(3) has been discussed [112] and it was
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2.4. Prototype Model for Tri-Bimaximal Mixing

shown that the potential for a single 15 dimensional representation has global minima that
break to A4 or T7, depending on the potential parameters. In the case of a single 10 scalar
field the group ∆(27) can be obtained. For more exotic subgroups of SU(3) a translation
was given in [113] between the invariant subgroup and the representation and VEV of SU(3)
needed to break to it. However, no dynamical mechanism was presented to realize theses
VEVs.

In summary, the spontaneous breakdown of larger continuous groups to discrete subgroups
always requires large representations and the communication of the remnant symmetry to the
Yukawa sector either requires larger fermion representations or higher dimensional operators.
Furthermore, in any flavour model there needs to be an additional breaking step where the
non-abelian discrete symmetry is broken into different subgroups in the charged lepton and
neutrino sectors. To construct a model that realizes both is a formidable task, and it might
very well be impossible12.

For these reasons, another origin of family symmetries is quite popular: one can explain
the emergence of flavour symmetries by the introduction of additional compactified extra-
dimensions where fields are localised at different fixed points of orbifolds. A d-dimensional
orbifold is just the quotient of Rd divided by a discrete group S, so there is little surprise that
discrete flavour symmetries may emerge from such a setup. Indeed it has been shown that A4

may emerge from the orbifold T2/Z2 [114] and that pretty much every other discrete group can
be realized in such a bottom-up approach [115, 116] where one does not dynamically explain
the existence of the orbifold. In top-down models there are additional constraints from string
selection rules [117, 118] and anomaly cancellation conditions [119].

2.4. Prototype Model for Tri-Bimaximal Mixing

Let us now briefly describe a model [9, 10] that in a prototypical way realizes the ideas outlined
above, namely the breaking of a discrete flavour group to mismatched subgroups in the charged
lepton and neutrino sectors. We will take the group A4, which is the smallest group that has
a three dimensional irreducible representation.

As discussed in Section 2.2, the lepton doublets have to be assigned to the three-dimensional
representation and it turns out to be preferential to assign the SU(2) singlets ec, µc and τ c to
the one dimensional representations 11, 12 and 13

13. We have also already seen that, to get
a phenomenologically interesting mixing matrix, we need to break the flavour symmetry to
the subgroups Ge = 〈T 〉 ∼= Z2 and Gν = 〈S,U〉 ∼= Z2 × Z2 in the charged lepton and neutrino
mass matrices, respectively. The simplest realization of this idea is to introduce two (real)
scalar fields χ, φ ∼ 31, which to leading order (LO) only couple to the charged lepton mass
operator

−L(5)
e = ye(Lχ)11

ecH̃/Λ + yµ(Lχ)13
µcH̃/Λ + yτ (Lχ)12

τ cH̃/Λ + h.c. , (2.44)

and the neutrino mass operator

L(6)
ν = xa(LHLH)11

ξ/Λ2 + xd(LHLH)31
· φ/Λ2 + h.c. . (2.45)

12For some of the issues involved, see [109].
13This assignment enables one to explain the hierarchies in the charged lepton masses by different Frogatt-Nielsen

charges of ec, µc and τ c, which would not be possible if one had the assignment (ec, µc, τ c) ∼ 31.
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Chapter 2. Discrete Symmetry Groups and Lepton Mixing

L ec µc τ c χ φ ξ

A4 31 11 12 13 31 31 11
Z4 i −i −i −i 1 −1 −1

Table 2.3: Particle content of the prototype model. The flavons χ, φ and ξ do not transform under the SM.
The leptons transform in the usual way given in Table 2.1.

We have further introduced another scalar ξ ∼ 11 to generate the flavour group invariant
part of the mass matrix. For easy referencing, the particle content of this minimal model is
summarized in Table 2.3.

The leading-order separation can be explained by an auxiliary Z4 symmetry, under which
the fields transform as φ → −φ, L → iL and `c → −i`c with all the other fields invariant,
where `c = ec + µc + τ c is a shorthand notation. This is a discrete subgroup of the continuous
lepton number symmetry. For complex flavons one can also use a Z3 subgroup of lepton
number.

We thus need the vacuum configuration

〈φ〉 ∼ (u, 0, 0), 〈χ〉 ∼ (v′, v′, v′), 〈ξ〉 ∼ w (2.46)

which realizes

ρ31
(T ) 〈χ〉 = 〈χ〉 and ρ31

(S) 〈φ〉 = 〈φ〉 , (2.47)

i.e. the A4 symmetry is broken to 〈T 〉 ∼= Z3 by the VEV of χ and to 〈S〉 ∼= Z2 by the VEV of
φ. Overall there is no symmetry conserved by this vacuum configuration and it is a highly
non-trivial problem to dynamically realize this VEV configuration, as will be discussed in
great detail in Chapter 3. Anyhow, assuming this VEV configuration we get the mass matrices

ME =
vv′

Λ
√

2
Ω∗Tdiag(ye, yµ, yτ ) and Mν =

v2

2
√

3Λ2




ã 0 0

0 ã d̃

0 d̃ ã


 , (2.48)

with ã = xaw and d̃ = 1
2xdu. It can be easily checked that not only are ME and Mν invariant

under the remnant symmetries T and S

ρ(T )TMEM
†
Eρ(T )∗ = MEM

†
E ρ(S)TMνρ(S) = Mν (2.49)

that are part of the A4, but there is also the accidental symmetry

Mν = ρ(U)TMνρ(U), (2.50)

which we have encountered before in Eq. (2.30). Thus the mixing matrix is of the tri-bimaximal
form. The mass spectrum is given by

ΩT
TME =

vv′√
2

diag(ye, yµ, yτ ), ΩT
UMνΩU = diag(ã+ d̃, ã, d̃− ã). (2.51)
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2.5. Model Building Pathways Beyond Vanishing θ13

Deviations from θ13 = 0

new starting patterns

∆(96) ∆(384)

Deviations from TBM

corrections in neutrino sector

S broken S,U broken

charged lepton corrections

anarchy

Figure 2.5: Various possibilities to go beyond θ13 = 0.

There are thus only two parameters determining the three neutrino masses, which is a special
feature of this particular model and not a consequence of the remnant symmetries S and U ,
as the most general neutrino mass matrix invariant under this Klein group is given by [120]

Mν ∼




ã+ 2b̃ 0 0

0 ã− b̃ d̃

0 d̃ ã− b̃


 (2.52)

and thus has three independent masses. It has been pointed out [121] that this can lead
to testable predictions in neutrinoless double beta decay. To get the right values for the
atmospheric and solar mass splitting one needs to have a certain cancellation [122], i.e. for
the (overly simplistic) case of real ã, d̃, one needs d̃ ≈ −1.88ã.

2.5. Model Building Pathways Beyond Vanishing θ13

In Section 2.2 we have seen how special structures such as the tri-bimaximal neutrino mixing
pattern can be explained in terms of a mismatched breaking of a flavour symmetry into
different subgroups in the charged lepton and neutrino sectors. The recent results of the
reactor experiments Double Chooz, Daya Bay and RENO have, however, laid to rest this
simple picture of lepton mixing. In this section we attempt to give an overview of the vast
literature that has emerged since word of these results reached model builders.

One logical possibility that looks much more favoured now, is that there might not be
any special structure in lepton mixings that needs to be explained. It could rather be that
mixing angles are determined at a high scale from some (quasi-) random process. Indeed if one
randomly draws unitary 3×3 matrices with a probability measure given by the Haar measure of
U(3), i.e. the unique measure that is invariant under a change of basis for the three generations,
one finds a probability of 44% for nature to have taken a more ‘unusual’ choice [123]. This
cannot be interpreted, however, as an indication in favour of anarchy [124, 125], as the sample
(3 mixing angles and one mass ratio) is clearly too small to reconstruct the probability measure
to any degree of certainty [126]. The only statement one can make is that the (very limited)
data cannot rule out the anarchy hypothesis. For any values of the mixing angles one can
always find a flavour model which is in better agreement with the data14.

14It has been argued [127] that this can be done without increasing the degree of complexity of the model.

27



Chapter 2. Discrete Symmetry Groups and Lepton Mixing

n G n G n G n G

4 ∆(6 · 42) 9 (Z18 × Z6) o S3 13 ∆(6 · 262) 18 (Z18 × Z6) o S3

5 ∆(6 · 102) 10 ∆(6 · 102) 14 ∆(6 · 142) 24 Z3 ×∆(6 · 82)
7 ∆(6 · 142) 11 ∆(6 · 222) 15 Z3 ×∆(6 · 102)
8 ∆(6 · 82) 12 Z3 ×∆(6 · 42) 16 ∆(6 · 162)

Table 2.4: Groups generated by T3, S3 and U(n), that lead to new starting points. The series ∆(6n2) is
defined in Eq. (A.2) and the group (Z18 × Z6) o S3, apart from being defined by 〈T3, S3, U(9)〉, is the group
number 259 of order 648 in the SmallGroups catalogue of GAP [128] .

Considerations of anarchy might however be useful when thinking about constructing flavour
models in the sense that any model should be a lot better than anarchy. Two general avenues
seem to be promising:

• build models that give sharp predictions for the leptonic mixing angles in the experimen-
tally allowed regions. These models might then be falsified in the same way that models
that give tri-bimaximal mixing have been ruled out, i.e. by a further refinement of the
experimental determination of these angles. This seems to be the only fruitful direction
for models that explain flavour at high energy scales such as the seesaw or GUT scale,
because mixing angles are generically the only experimentally testable predictions of
such models.

• build models that can be tested in another sector by additional observables. Such
observables typically include rare lepton flavour violating (LFV) decays of leptons and
mesons and – ideally – a direct experimental access to the very fields that mediate the
flavour symmetry breaking. Typically such models will feature extended Higgs sectors,
but they will not uniquely determine the mixing angles, rather only giving relations
among the deviations from patterns such as tri-bimaximal mixing.

The various possibilities are summarized in Fig. 2.5 and we will now discuss them in turn.

2.5.1. New Starting Points

As reviewed in Section 2.2, to uniquely (up to discrete permutations) determine the mixing
angles from group theoretic considerations, it is essential (i) to have unbroken remnant
symmetries in the charged lepton and neutrino sectors and (ii) to have enough symmetries in
each sector that there are three inequivalent one-dimensional representations in each sector.
For the charged lepton sector this implies the existence of at least a Z3 symmetry and for the
neutrino sector one needs at least a Klein group Z2 × Z2 (there cannot be a cyclic group of
order larger than 2 in the neutrino sector as complex representations would forbid neutrino
mass terms.) The way to generate new mixing structures apart from TBM is now to embed
these abelian symmetries in different ways into some larger group. Once the group and the
embedding is specified, the Clebsch-Gordon coefficients of the specified group uniquely(up
to permutation of rows and columns) specifies the mixing pattern. We have performed
such an analysis [14]15, considering all discrete groups of order smaller than 1536 using the

15Recently a similar scan appeared [55], however, there the symmetry group of neutrinos was always taken to
be Z2, which does not allow one to predict sharp mixing patterns, but rather determines the mixing angles
up to a two-parameter freedom.
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2.5. Model Building Pathways Beyond Vanishing θ13

computer algebra program GAP [129]. Our results can easily be presented in a systematic way:
in Section 2.2, we saw that if the Z3 symmetry in the charged lepton sector is generated by
the matrix T3 given in (2.25) and the Klein group is generated by the matrices S3 and U3 of
Eqns. (2.27) and (2.30), the resulting mixing matrix is of the TBM form (2.31). Now, all new
mixing patterns16 found in the scan can be written as

U = UHPSU13(θ =
1

2
arg(z), δ = 0), (2.53)

which is the result of the remnant symmetry Ge = 〈T3〉 ∼= Z3 in the charged lepton sector and
the choice of S3 and

U(n) = −




1 0 0
0 0 z
0 z∗ 0


 with 〈z〉 ∼= Zn, n ∈ N (2.54)

as generators of a Klein group Z2 × Z2 in the neutrino sector. Note that for any z with
modulus one, we have [S3, U(n)] = 0 and U(n)2 = 13 and therefore the group generated by
S3 and U(n) is always a Klein group,〈S,U〉 ∼= Z2 × Z2. For the group generated by T3, S3

and U(n) to be finite, z has to be of the form given in (2.54), as may be seen by looking at
the group element (U(n)T )2 = diag(z, z, z∗2), which is of finite order n ∈ N iff zn = 1. The
requirement 〈z〉 ∼= Zn further fixes n to be the smallest n for which zn = 1. The names of the
groups generated for n = 4, . . . , 16 can be found in Table 2.4 and the groups ∆(96) (n = 4)
and ∆(384) (n = 8) have been obtained before in [50].

The predictions for mixing angles for all groups of order smaller than or equal to 1536 is
presented in Fig. 2.6. It should be clear that if one allows for groups of arbitrary size, the
parabola depicted in Fig. 2.6 will be densely covered. As one can see, the mixing patterns
corresponding to n = 5, n = 9 and n = 16 give a good descriptions of the leptonic mixing
matrix.

If we broaden our scan and allow for arbitrary remnant abelian symmetries Ge in the
charged lepton sector while keeping Gν fixed to being isomorphic to a Klein group, we find
that up to size 511 there are no new mixing patterns apart from the known ones that can be
generated by finite modular groups [50] and their subgroups. For completeness, we show these
mixing patterns in Fig. 2.7. It should be appreciated that only a limited number of starting
points can be realized using small groups.

2.5.2. Deviations from Tri-Bi-Maximal Mixing

The PMNS matrix is given by U = V †e Vν , where Ve diagonalizes the charged lepton mass
matrix Me and Vν diagonalizes Mν . Therefore deviations from TBM can be categorized in
two categories, namely if corrections dominantly stem from the charged lepton or the neutrino
sectors. This distinction is of course meaningless within the SM as a rotation can change a
charged-lepon correction into a neutrino sector correction. Within flavour models, there is
however a distinction, and we will therefore focus on model building based on small groups of
the form A4 etc. In particular, we will present a couple of minimal extensions of the prototype
TBM model introduced in Section 2.4.

16By new mixing patterns, we mean ones that have not been found before, e.g. in a scan over finite modular
groups [50].
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Figure 2.6: The new starting points that may be obtained from remnant symmetries Ge ∼= Z3 and Gν ∼= Z2×Z2

originating from flavour groups of size smaller than 1536. The index n refers to the one of the generators of the
Klein group (2.54). The group corresponding to n can be found in Table 2.4.

Corrections to the neutrino mass matrix: In Section 2.2, we discussed that a deviation
from θ13 = 0 can be explained by a breaking of the accidental symmetry U of the neutrino
mass matrix, Mν = ρ(U)†Mνρ(U). From Fig. 2.1, we can read off that an additional 1 − 3
rotation with a rotation angle of θ ∼ .1− .2 is needed.

This can easily be implemented in our protoype model of Section 2.4 by the introduction of
yet another flavon field ξ̃ [62, 63, 120, 130], which transforms as (12, i) under A4 × Z4, giving
another leading order operator

δL(6)
ν = xc(LHLH)13

ξ̃/Λ2 + h.c. . (2.55)

that contributes to the neutrino mass matrix as

δMν =
v2

2
√

3Λ2
c̃




1 0 0
0 ω 0
0 0 ω2


 , (2.56)

with c̃ = xcw̃. Clearly this mass matrix breaks the accidental symmetry U via the VEV
〈ξ̃〉 = w̃ of the additional singlet. In Section 4.4.2 a fully dynamical mechanism will be
presented that realizes this VEV configuration. As discussed before, the mass matrix is
diagonalized by the matrix ΩUU13(θ, δ). In the case where all mass entries are real, the mixing
angle θ is calculated to be

tan 2θ =

√
3c̃

2ã− c̃ . (2.57)
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Figure 2.7: The starting points that may be obtained from remnant symmetries Gν ∼= Z2×Z2 and an arbitrary
abelian symmetry Ge, originating from flavour groups of size smaller than 511. The structure of the group Ge
is indicated by the label given in the insert. All of these groups are known from the literature and the groups
interesting for phenomenology are shown in more detail in Fig. 2.6.

Note that this type of leading order correction is not as easily possible in S4 models as here
the symmetry U does not emerge as an accidental symmetry of the mass matrix. If one
parametrizes the deviations of the leptonic mixing matrix from tri-bimaximal mixing as [131]

sin θ13 =
r√
2

sin θ12 =
1√
3

(1 + s) sin θ23 =
1√
2

(1 + a) . (2.58)

where r is the deviation of the reactor angle, s is the deviation of the solar angle and a is the
deviation of the atmospheric angle, we find to first order in c the sum rule

a ≈ −1

2
r cos δCP , s ≈ 0, (2.59)

where δCP is the Dirac CP phase. Note that this information is also contained in Fig. 2.1.
One can go one step further and also break the remnant symmetry S in the neutrino mass

matrix. This is what generally happens if one includes higher-dimensional operators in the
neutrino sector and it has been done also at leading order in a variety of models e.g. by the
introduction of additional triplets that break the symmetry and couple to neutrinos at LO.
Such models generally cease to be predictive as even sum rules such as the one just presented
are broken.

Corrections to the charged lepton mass matrix: Another possibility is to break the
generator T that generates the remnant Z3 symmetry in the charged lepton sector [132–139]
while keeping the generators S and U in the neutrino sector intact. If one wants to generate
a correction at leading order, one can introduce another flavon field that couples to the
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Chapter 2. Discrete Symmetry Groups and Lepton Mixing

charged lepton (Lec)31
H̃/Λ operator and therefore has to transform as a 31 of A4. To break

the generator T the field has to have a different vacuum configuration from χ but it has to
transform in exactly the same way as χ under all symmetries. It will be shown in the next
section that this vacuum mismatch cannot be dynamically realized by any known mechanism
for vacuum alignment, as all mechanisms depend on different transformation properties for
fields that break the symmetry in different directions.

The next possibility is to appeal to higher dimensional operators that are always meant to be
present and will generically always break all remnant symmetries unless one introduces further
shaping symmetries. The problem with this approach is, however, that if one introduces all
higher dimensional operators consistent with the symmetries of the model, one generically
ends up with a large number of operators and loses much if not all of the predictive power
of the models [120]. A concrete analysis can only be performed in a complete model, as for
consistency one should include higher dimensional operators not only in the charged lepton,
but also in the neutrino sector and in the scalar potential of the flavon fields. This will be
presented for a complete dynamical model in Section 4.4.1.

A related possibility that has garnered much attention [138–140] recently is to try to connect
the rather large value of θ13 to the Cabibbo angle of the quark sector, which might be connected
by the numerological relation

θ13 ≈
1√
2
θC ≈ 9.2◦. (2.60)

A relation between θ13 and θC can be rather naturally realized in models based on Grand
Unified Theories (GUT) as there quark and leptons are unified into one multiplet and their
mass matrices are necessarily related, albeit in a model-dependent way. However, the most
famous GUT mass relation due to Georgi and Jarlskog [141], which is the result of most
models based on SU(5) or SO(10), gives

θ13 ≈
1

3
√

2
θC ≈ 3.1◦,

if one assumes TBM in the neutrino sector, and is therefore too small. If one assumes the
Georgi-Jarlskog operator is not there and the mass relation is due to one specific higher-
dimensional operator [142], other GUT relations can be found and a more favourable value for
θ13 can be ‘predicted’.
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Chapter 3.

The Vacuum Alignment Problem in Flavour
Models

In Section 3.1 the vacuum alignment problem of flavour models is discussed and the two main
solutions that exist in the literature are presented. In Section 3.2 a solution based on group
theoretical considerations is presented and the results of a scan over a catalogue of small
groups is discussed. In Section 3.3 some of the small groups found in the preceding section are
introduced to set the stage for the model building efforts of the next chapter.

3.1. The Vacuum Alignment Problem and Solutions in the
Literature

In the last chapter we have seen (in Section 2.2 ) how mismatched remnant symmetries of the
charged lepton and neutrino mass matrices may account for structures in the leptonic mixing
matrix, and in Section 2.4 how such an idea may be realized in a model based on A4. There
we had introduced two triplet flavons χ, φ ∼ 31, where an additional symmetry makes sure
that at leading order χ only couples to charged leptons and φ only couples to neutrinos. The
vacuum configuration 〈χ〉 = (v′, v′, v′) and 〈φ〉 = (u, 0, 0) of Eq. (2.46) realizes the breaking to
two different subgroups. We will now show that the complete potential

V = Vφ(φ) + Vχ(χ) + Vmix(χ, φ) (3.1)

does not admit solutions of this type, without fine-tuning the parameters in the part of the
scalar potential that connects φ and χ

Vmix(χ, φ) = κ31
(φφ)31

(χχ)31
+
(
κ12

(φφ)12
(χχ)13

+ h.c.
)

+ ρ31
χ(φφ)31

,

via non-singlet contractions. Before discussing the full potential, it is useful to look at the
potential for one of the triplets separately1

Vφ = µ2
φ (φφ)11

+ λ′1 (φφ)11
(φφ)11

+ λ′2 (φφ)12
(φφ)13

, (3.2)

where the cubic term is forbidden by the auxiliary Z4 symmetry (see Table 2.3). All solutions
of the extremal conditions

0 =
∂Vφ
∂φi

=
2

3
φi

(√
3µ2

φ + (2λ′1 − λ′2)
(
φ2

1 + φ2
2 + φ2

3

)
+ 3λ′2φ

2
i

)
(3.3)

1The operator (φφ)31
· (φφ)31

, which one would naively expect, can be expressed as a linear combination of

the other operators.
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Chapter 3. The Vacuum Alignment Problem in Flavour Models

can be written in the form

〈φ〉 = (u, u, u), 〈φ〉 = (u, 0, 0) or 〈φ〉 = (u, u, 0). (3.4)

Each of these solutions is degenerate with field configurations
〈
φ̃
〉

= g 〈φ〉

λ′2

λ′1

〈φ〉 ∝ (1, 1, 1)

Z3

〈φ〉 ∝ (1, 0, 0)

Z2

Figure 3.1: Phase diagram of the minimal
potential of one scalar triplet of A4.

that are connected to these via a group transformation
g ∈ A4, i.e. the solutions given above are represen-
tatives of orbits of physically identically vacua. One
can characterize the orbits by the conjugacy class(es)
G · Qi = {gQig−1|g ∈ A4} of the operators that leave
the representative vacuum configuration 〈φ〉 invariant,
i.e. Qi 〈φ〉 = 〈φ〉. The first vacuum configuration in
(3.4) leaves T and T 2 invariant, which both generate
the same Z3 subgroup. The second vacuum configura-
tion leaves invariant the Z2 subgroup generated by S
and the last vacuum configuration breaks the A4 group

completely. One can easily see that the Hessian
∂2Vφ
∂φi∂φj

of the third vacuum configuration 〈φ〉 = (u, u, 0) has two eigenvalues,

m2
1 = −1

2
m2

2 =
2
√

3λ′2µ
2
φ

4λ′1 + λ′2
, m2

3 = −
4µ2

φ√
3
,

that are necessarily of opposite sign, regardless of the choice of potential parameters. This
field configuration therefore represents a saddle point and has no physical relevance. The first
field configuration 〈φ〉 = (u, u, u) has the eigenvalues of the Hessian

m2
1 = m2

2 = −
2λ′2µ

2
φ√

3λ′1
, m2

3 = −
4µ2

φ√
3
.

Combining this with the vacuum stability conditions λ′1 > 0, λ′1 + λ′2 > 0 and µ2
φ < 0, we see

that this a (local) minimum for λ′2 > 0. For the second field configuration 〈φ〉 = (u, 0, 0) the
Hessian has the eigenvalues

m2
1 = m2

2 =

√
3λ′2µ

2
φ

λ′1 + λ′2
, m2

3 = −
4µ2

φ√
3
.

and it is therefore a (local) minimum for λ′2 < 0. As for the respective cases there is only
one minimum, the local minima are global ones and it is therefore clear that for λ′2 > 0
the global minimum is of the form 〈φ〉 = (u, u, u) and for −λ′1 < λ′2 < 0 it is of the form
〈φ〉 = (u, 0, 0), as is shown in Fig. 3.1. In isolation, the two triplets can therefore realize the
vacuum configuration required to describe lepton mixing.

To show that non-trivial cross-couplings between the two flavons forbid the mismatched
VEV configuration 〈χ〉 ∼ (1, 1, 1) and 〈φ〉 ∼ (1, 0, 0), it is useful to consider a slightly more
general situation by looking at the potential for φ augmented by the soft breaking terms2

Vsoft,Z3 = m2
s (φ2φ3 + φ1φ2 + φ3φ1) , (3.5)

2A symmetry is said to be softly broken if the symmetry breaking terms only have a mass-dimension smaller
or equal to three. This does not change UV properties of the theory and can be considered to be a
parametrization of spontaneous breaking in another sector.
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3.1. The Vacuum Alignment Problem and Solutions in the Literature

which parametrizes the symmetry breaking of A4 to 〈T 〉 ∼= Z3, regardless of the details of
how A4 is broken to 〈S〉 ∼= Z3, and under which φ transforms as φ1 → φ2 → φ3 → φ1. The
resulting minimization conditions

0 =

〈[
∂Vφ + Vsoft,Z3

∂φi

]〉
= m2

su, i = 2, 3 (3.6)

thus require m2
s = 0, which requires a fine-tuning of potential parameters. On the contrary, the

soft-breaking terms that respect the same Z2 symmetry 〈S〉 as the VEV 〈φ〉 do not disturb the
structure of the minimization conditions. However, if one looks at the minimization conditions
for the flavon χ with potential

Vχ = µ2
0 (χχ)11

+ ρ (χχχ)11
+ λ1 (χχ)11

(χχ)11
+ λ2 (χχ)12

(χχ)13
, (3.7)

with the soft-breaking terms

Vsoft,Z2 = m2
Aχ

2
1 +m2

Bχ
2
2 +m2

Cχ2χ3 (3.8)

which parametrize the symmetry breaking of A4 to 〈S〉 ∼= Z2, regardless of the details of how
A4 is broken to 〈S〉 ∼= Z2, one finds

0 =

[
∂V

∂χ1

]

χi=v′
=

2√
3

(
m2

0 +
√

3m2
A

)
v′ + 4λ1v

′3, (3.9a)

0 =

[
∂

∂χ2
V − ∂

∂χ3
V

]

χi=v′
= 2m2

B v
′, (3.9b)

0 =

[
∂

∂χ1
V − ∂

∂χ3
V

]

χi=v′
=
(
2m2

A −m2
C

)
v′. (3.9c)

The vacuum alignment thus requires m2
B = 0 and m2

C = 2m2
A and therefore two completely

different A4 contractions need to have the same coupling in the scalar potential, an option we
exclude as fine-tuning. Again in this case soft breaking terms that respect the same symmetry
〈T 〉 ∼= Z3 as 〈χ〉 do not change the structure of the minimization conditions. Even if one
sets the terms m2

s,A,B,C to zero, they will still be generated at loop-level and disturb the
VEV alignment. The breaking of A4 to two different subgroups thus requires a systematic
mechanism to forbid m2

s,A,B,C .
In the specific example given above, where the communication between the two sectors

proceeds via non-trivial couplings in the scalar potential, the soft breaking terms may be
expressed in terms of those couplings as

m2
A =

u2

2

(
Reκ12

+
Imκ12√

3

)
, m2

B =
2u2Imκ12√

3
, m2

s =
v′√
3

(
v′κ31

+ ρ31

)
,

while m2
C is only created at higher order. Hence, the minima with two different subgroups

cannot be realized as global minima of the most general scalar potential, without fine-tuning
the parameters that connect the two sectors. This can be also seen from Fig. 3.2, where the
distribution of the opening angle between the VEVs of the two triplet fields φ and χ is plotted
for a random scan over order one parameters of the most general scalar potential. In agreement
with our analytical study, one can identify three different phases of the theory: (i) one phase
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Figure 3.2: Distribution of the opening angle spanned by the two flavon fields for random values of potential
parameters for the most general scalar potential given in Eq. (3.1). The tri-bimaximal vacuum configuration
depicted in the inlay corresponds to an opening angle of 54.7◦. As discussed in the text, the figure shows that
there is no phase where this vacuum configuration is realized, but rather two phases can be identified: one
phase where both flavons conserve the same subgroup and point in the same direction (angle=0) and one phase
where the symmetry is broken completely. The TBM vacuum is part of the later phase but it is not special.

where both VEVs are aligned in the (1, 0, 0) direction and conserve a Z2 subgroup, (ii) another
phase where both VEVs are aligned, but this time in the Z3-conserving (1, 1, 1) direction and
(iii) a third phase where the symmetry is broken completely. The VEV configuration Eq. (2.46)
is part of this phase but it is only realized on a smaller dimensional sub-manifold of couplings,
indicating fine-tuning3. The discussion using soft-breaking terms makes it clear that this
problem cannot be solved by the introduction of additional singlets and the like, but rather
requires additional ingredients, which – this being particle physics after all – means additional
symmetries. The symmetry should forbid all couplings between the flavon sectors that break
A4 to Z2 and Z3, respectively, except for the quartic coupling where both couple in pairs
to singlets. This is equivalent to demanding that there are two independent A4 symmetries
Aν4 ×Af4 in the flavon potential, under which φ transforms only under the first group factor,
φ ∼ (31,11) and χ ∼ (11,31). This cannot be a symmetry of the entire Lagrangian, however,
as it must be broken by couplings to the leptons (e.g. the ones given in Eqs. (2.44) and(2.45)).

Note, that the Kronecker product 3×3 = 11+12+13+3S+3A allows couplings of the form
(χχ)12

(φφ)13
, (χχ)13

(φφ)12
and (χχ)3(φφ)3 in the minimal A4 model discussed above and

the desired vacuum alignment is thus not possible, without some additional mechanism. This
kind of coupling cannot be forbidden by assigning χ or φ to a unitary representation of an
additional internal symmetry group commuting with the flavour group, because non-trivial
contractions such as (χ†χ)3 and (φ†φ)3 will always be invariant under the commuting group.
In particular, it is not possible to forbid the coupling by introducing an additional commuting
group factor, which is a discrete group or a compact Lie group.

Setting these couplings to zero cannot be considered a viable option as loop effects such as

3For a recent attempt to characterize the fine-tuning of a new physics model by the Hausdorff dimension of
the phenomenologically allowed sub-manifold of couplings, see [143]. Here we follow [87] and demand that
for a natural model the alignment is realized ‘in a whole region of the parameter space’. We will come back
to this in detail later.

36



3.1. The Vacuum Alignment Problem and Solutions in the Literature

λi

κi

Z3

〈χ〉 ∝ (1, 1, 1)

〈φ〉 ∝ (1, 1, 1)

Z2

〈χ〉 ∝ (1, 0, 0)

〈φ〉 ∝ (1, 0, 0)

no conserved subgroup

〈φ〉 ∝ (1, 0, 0), 〈χ〉 ∝ (1, 1, 1)

(a) Cartoon phase diagram.

χ

χ

φ

φ

χ

χ

κ1λ2

(b) One-loop generation of dan-
gerous scalar couplings.

Figure 3.3: The left hand side shows the schematic phase diagram that emerges from the discussion of the
potential given in Eq. (3.1). There are parts of parameter space where the symmetry is broken to the subgroups
Z3 and Z2 respectively and a part of parameter space where the symmetry is broken totally. The TBM vacuum
configuration Eq. (2.46) is part of this phase but it is only realized an a smaller dimensional sub-manifold. This
requires a tuning of parameters as quantum corrections will push away from this manifold, even if one somehow
starts on it. This is illustrated in the figure on the right-hand side.

the one depicted in Fig. 3.3b and renormalization group running will generate these couplings,
as they are not protected by symmetries. Also it would severely limit the predictive power of
these theories as one would have to fine-tune scalar couplings instead of Yukawa couplings.
For this reason, the vacuum alignment problem has been mainly studied within the context
of supersymmetric models as well as in extra-dimensional models using brane constructions.
In the following two sections we will briefly review these approaches and we will then show
how the required vacuum alignment can be achieved with an internal symmetry group by
extending the flavour group in a non-trivial way.

3.1.1. Supersymmetric Models with R-Symmetries

In supersymmetric models there is another possibility to arrange for the correct vacuum
alignment if one introduces a continuous R-symmetry [69]. While we do not give a review of
supersymmetry, we briefly recall the notion of R symmetries. Under an R-symmetry different
components of the same superfields transform differently. We use a superfield notation4 under
which a chiral superfield

Φ(θ) = φ+ θψ + θ2F (3.10)

can be written as a expansion in the superspace coordinate θα, which is a Weyl spinor of the
Lorentz group. The expansion parameters are the components of the chiral superfield, namely
the scalar φ, the Weyl fermion ψ and the auxiliary field F . A continuous U(1)R symmetry
then acts as

Φ(θ)→ eiRΦαΦ(θe−iα), V (θ)→ V (θe−iα), (3.11)

where RΦ denotes the R-charge of the chiral superfield Φ and V is a vector superfield. While
the gaugino always has R-charge 1, the R-charges of the component fields of Φ are given by

R(φ) = RΦ, R(ψ) = RΦ − 1. (3.12)

4For an introduction to these concepts, see e.g. [144].
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A supersymmetric Lagrangian

L =

∫
d4θK +

(∫
d2θW + h.c.

)
(3.13)

is invariant under this symmetry if R(K) = 0 and R(W ) = 2. In the MSSM, if one assigns
an R-charge of 1/3 to all chiral superfields, of the SUSY conserving terms only the µ- term
µHuHd is forbidden. As this term is needed for electroweak symmetry breaking, one usually
introduces the discrete R-symmetry

Φ(θ)→ ±Φ(−θ) (3.14)

which is called R-parity. Under this symmetry, the MSSM fields Q, U c, Dc, L, and Ec are odd,
and Hu and Hd are even. Since the gauginos are also odd, all supersymmetric partners of SM
fields are odd and the lightest of these fields is therefore stable and a dark matter candidate.
R-parity also forbids all renormalizable operators that break baryon or lepton numbers and
stabilizes the lightest superpartner.

So how can a continuous R-symmetry be helpful to solve the vacuum alignment problem
in flavour models? The first thing to notice is that if one introduces a chiral superfield with
U(1)R charge 2, terms in the superpotential W are at most linear in this field. If we demand
that the R symmetry should contain the MSSM R-Parity, the chiral superfields Q, U c, Dc, L,
and Ec should have R-charge 1 and Hu and Hd should have R-charge zero. This of course
also fixes the R-charges of the flavons to be zero, as to allow the interactions

W ⊃ ye(Lχ)11
ecHd/Λ + yµ(Lχ)13

µcHd/Λ + yτ (Lχ)12
τ cHd/Λ+

+ (LHuLHu)11
(xaξ + x̃aξ̃)/Λ

2 + xd(LHuLHu)31
· φ/Λ2 (3.15)

that correspond to the interactions given in Eq.(2.45), which lead, in conjunction with the
symmetry breaking pattern

〈χ〉 = (v′, v′, v′), 〈φ〉 = (u, 0, 0), 〈ξ〉 = w, (3.16)

to the tri-bimaximal mixing pattern, as discussed in Section 2.4. Note that an abelian
symmetry Z3 is again employed to separate the charged lepton and neutrino sectors. To get
the correct vacuum alignment, it is necessary to introduce for every flavon ϕ an additional
chiral superfield ϕ0 with R-charge 2 that transforms in the same way as the original field
under A4 and Z3. These fields are commonly referred to as driving fields. Furthermore, it is
necessary to introduce an additional singlet flavon ξ̃, which transforms in the same way as ξ.
The complete particle content is summarized in Table 3.1.

The superpotential containing the driving fields and flavon fields is given by

WD = M(χ0χ) + g(χ0χχ) (3.17)

+ g1(φ0φφ) + g2ξ̃(φ0φ) + g3ξ0(φφ) + g4ξ0ξ
2 + g5ξ0ξξ̃ + g6ξ0ξ̃

2.

Each contraction is uniquely determined, as not more than 3 triplets are contracted here. The
two a priori identical fields ξ and ξ̃ have been rotated such that only ξ̃ couples to (φ0φ). To
determine the vacuum alignment, one has to minimize the scalar potential

V = VSUSY + Vsoft, (3.18)
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L ec µc τ c Hu,d χ φ ξ ξ̃ χ0 φ0 ξ0

A4 31 11 12 13 11 31 31 11 11 31 31 11
Z3 ω ω2 ω2 ω2 1 1 ω ω ω 1 ω ω

U(1)R 1 1 1 1 0 0 0 0 0 2 2 2

Table 3.1: Particle content of the SUSY A4 model. The driving fields with R-charge 2 are needed to realize
the correct vacuum alignment.

where VSUSY is the SUSY conserving part of the scalar potential,

VSUSY =
∑

i

∣∣∣∣
∂W

∂ϕi

∣∣∣∣
2

, (3.19)

and Vsoft denotes the soft-breaking terms. If we assume the scale of flavour breaking to be
much larger than the soft-terms, we can solve the equations in the supersymmetric limit:

0 =
∂WD

∂χ0,i
=

1√
3

(
Mχi + gχ{i+1}χ{i+2}

)
, (3.20)

0 =
∂WD

∂φ0,i
=

1√
3

(
g2ξ̃φi + g1φ{i+1}φ{i+2}

)
, (3.21)

0 =
∂WD

∂ξ0,i
= g4ξ

2 + g5ξξ̃ + g6ξ̃
2 +

g3√
3

(φ2
1 + φ2

2 + φ2
3), (3.22)

where we have used the notation {i} = i mod 3. These equations have as a solution the
desired vacuum configuration given in Eq. (3.16), with

〈
ξ̃
〉

= 0, v′ = −M
g
, u2 = −

√
3g4

g3
w2, (3.23)

where w remains undetermined. This is indicative of a flat direction in the potential that
has to be stabilized in some way [145]. Recently the cosmological implications of these flat
directions have been studied and they were found to be in conflict with the standard thermal
history of the universe [146].

The effect of adding soft supersymmetry breaking terms has been studied in [147] where it
was shown that these can give rise to non-vanishing VEVs of the scalar components of the
driving fields and the auxiliary components of the flavon fields. This may have unwanted
phenomenological consequences in the form of large lepton flavour violating interactions and
thus probably requires another solution to the SUSY flavour problem in terms of gauge
mediation [148] or via a separate mechanism (see e.g. [149]). The vacuum alignment problem is
only solved in the limit where the flavour breaking scale is much larger than the supersymmetry
breaking scale, and all the driving fields etc. therefore have to be unobservably heavy.

Let us take a step back and ask ourselves why this non-trivial setup is able to solve the
vacuum alignment problem. This can be readily understood once one realizes that at the
renormalizable level WD exhibits an ‘accidental’ symmetry Aν4 ×Af4 , under which φ and φ0

transform only under the first group factor, φ, φ0 ∼ (31,11) and χ, χ0 ∼ (11,31).
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3.1.2. Extra-Dimensional Models

One almost obvious possibility to solve the vacuum alignment problem is to physically separate
the two flavon fields by localizing them on different branes in an extra-dimensional space-
time [9]. In the easiest case, the spacetime is assumed to be the product of a Minkowski
space-time and an interval stretching from y = 0 to y = R. If one localizes the field χ on a
brane at y = 0 with potential

Vχ = µ2
0 (χχ)11

+ ρ (χχχ)11
+ λ1 (χχ)11

(χχ)11
+ λ2 (χχ)12

(χχ)13
(3.24)

and the field φ on a brane at y = R with

Vφ = µ′20 (φφ)11
+ λ′1 (φφ)11

(φφ)11
+ λ′2 (φφ)12

(φφ)13
(3.25)

from the discussion in the last section it is clear that there is finite range of parameters for
which the total potential energy

∫
d4x [Vχ + Vφ] has the global minimum 〈χ〉 = (v′, v′, v′) and

〈φ〉 = (u, 0, 0). Obviously the vacuum alignment problem is again solved by engineering an

‘accidental’ symmetry Aν4 ×Af4 .

 



 










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Figure 3.4: Sketch of an extra-dimensional
model that solves the vacuum alignment
problem. The fields ec, µc and τ c are local-
ized at the brane at y = 0 and L is localized
at y = R.

To generate the effective lepton operators one has to
localise ec, µc and τ c at the brane at y = 0 and L at the
brane at y = R. The neutrino mass operator (LHLH)φ
can then be written down as a local interaction at the
brane at y = R while the charged lepton mass operator
(LH̃`c)χ connects fields that are localised at different
branes. One therefore has to introduce an additional
fermionic field F (x, y) = (F1, F2) that lives in the bulk,
transforms as a triplet under A4 and has the same SM
quantum numbers (1, 1,−1) as a right-handed lepton.
Via the brane localized interactions

S ⊃
∫
d4xdyYee

c(χF1)δ(y) + YL(F2L)Hδ(y −R),

one can generate the charged lepton Yukawa couplings. One loop interactions involving F
also generate the dangerous couplings that connect φ and χ via non-trivial singlets. These
interactions lead to a shift in the vacuum expectation values, but they are naturally small,
being suppressed by 1/(RΛ)4. The setup of this model can be transfered to the case of warped
extra dimensions [150, 151], where the flavour symmetry might help to ameliorate bounds
from flavour observables [150, 152]. However, also in this case the flavour symmetry breaking
scale is usually high.

3.2. Group Extensions and Vacuum Alignment

3.2.1. Generalities about the Vacuum Alignment Problem

The distilled wisdom of the solutions of the vacuum alignment problem we have studied so far
is that one needs to engineer the particle content and symmetries of the model such that there
emerges an accidental symmetry Aν4 ×Af4 in the scalar potential that separates the flavons
of the neutrino and charged lepton sectors. While the approaches outlined above make use
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of well-known ingredients in a model builder’s toolbox, the concrete implementations in the
literature (which are mostly based on SUSY models with continuous R-symmetries) require a
plethora of unobservable new fields that live in a cascade of hidden sectors, each solving the
technical problem the last model building trick has brought up. For example, to realize the
flavour structure one has to introduce flavons, to realize their VEV structure one introduces
driving fields and to lift their flat directions and to break the U(1)R symmetry one introduces
yet additional fields. One is left with models that have only lepton mixing angles as their
(usually wrong) experimental predictions.

It is therefore of paramount importance to find new solutions to the vacuum alignment
problem that realize the accidental symmetry in a more economical way, preferably such that
the symmetry breaking may be realized at an energy scale at which it can be experimentally
tested. A first step in this direction was made by Babu and Gabriel [153], who have suggested a
group-theoretical mechanism to forbid the dangerous cross-couplings and thus a way to realise
the VEV alignment without using R-symmetries in supersymmetry or brane constructions.

They proposed an extension of the flavour group A4 in such a way that the Standard Model
leptons only transform under the A4 subgroup of the full flavour group. In the scalar sector,
the flavon χ of the charged lepton sector also transforms only under the A4 subgroup, while the
flavon φ of the neutrino sector transforms under the full flavour group G. For a suitably chosen
group G, it is then possible that the additional group transformations forbid the contractions
(φφ)12,3

and (φφ)31
, which lead to the dangerous couplings in the scalar potential and make

the correct vacuum alignment impossible. In other words, the additional discrete symmetry
leads to an accidental symmetry at the renormalizable level in the flavon potential, G×A4,
allowing for a different breaking of the two A4 subgroups of the accidental symmetry. The
coupling to leptons only respects the diagonal A4 subgroup, which is thus broken to different
subgroups in the charged lepton and neutrino sectors, as desired.

Note that this construction requires that the additional group generators cannot all commute
with the generators of A4, i.e. the flavour group G cannot be a direct product of A4 with some
other group. It thus has to be a non-trivial extension of A4. Such extensions can come in the
form of semidirect products or non-split extensions and have been introduced in Section 2.3.1.

In their work, Babu and Gabriel used a special type of semidirect product, a so-called wreath
product of A4 with S3, i.e. the product of four factors of S3 which are evenly permuted by the
group A4. It is thus a very complicated flavour group of order 12 · 64 = 15552 and requires
the use of very large representations up to dimension 48. This model further suffers from a
fine-tuning problem, as the diagonal and off-diagonal elements of the neutrino mass matrix
are generated by operators with very different mass dimension, 5 and 10, even though both
entries should be of comparable size.

In the remainder of this and in the following chapter, we address these issues and are present
the result of a search for simpler and more attractive semidirect product groups G = N oH as
well as general group extensions G satisfying G/N ∼= H with H being A4, T7, S4, T ′ or ∆(27) 5,
which lead to an accidental symmetry G×H in the flavon potential at the renormalizable level.
We include all discrete groups up to order 1000 in our search and find several candidate groups.
The smallest candidate groups are of order 96, in particular the semidirect product group of
the quaternion group with A4, Q8 oA4, which we discuss in more detail in Section 3.3. This
group does not have representations of size larger than four and, in the model we present in

5This mechanism is of course not limited to these five groups, but is also relevant for other flavour groups,
such as the ones generating new starting points with θ13 6= 0 discussed in Section 2.5.1.
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Chapter 4, on-and-off-diagonal entries in the neutrino mass matrix are generated at the same
order.

In the following, we explain the type of groups we are searching for and why we are searching
for them. We always use the group A4 as an example, but the arguments hold for any group.
In a first step, we directly extend the group by adding new generators which do not commute
with the generators of the flavour group. In the second subsection, we generalize our approach
and look for general (non-split) group extensions. The group theoretical notions we use are
defined in the footnotes of this section.

3.2.2. Semidirect Product Groups

To reproduce the success of A4 models, we search for an extended flavour group

G =
〈
S, T,X1, . . . , Xn|S2 = T 3 = (ST )3 = rXα (X1, . . . , Xn) = rmix

β (S, T, X1, . . . , Xn) = 1
〉

that contains H =
〈
S, T |S2 = T 3 = (ST )3 = 1

〉
' A4 as a subgroup. Here Xi denote the

additional generators of the extended group and rXα , rmix
β with α = 1, . . . , sα and β = 1, . . . , sβ

denote additional relations between the generators, which we do not specify here. Note that
there are no additional relations involving only S and T . As we discussed in the last section,
not all of the additional generators can commute with H as then it would always be possible
to contract the indices such that (φφ) does not transform under the additional generators but
transforms under S and/or T . Therefore there have to be non-trivial relations rmix

β to forbid
the dangerous couplings discussed in scalar potential. Any discrete group that contains H as
subgroup can be written in this way.

We further demand that there should be representations ρi : G→ GL(V ) with

ρi(Xj) = 1 ∀ j = 1, . . . , n (3.26)

where ρi(S) and ρi(T ) corresponding to the usual A4 representations i = 11, 12, 13 and 3,
e.g.

ρ3(S) =




1 0 0
0 −1 0
0 0 −1


 , ρ3(T ) =




0 1 0
0 0 1
1 0 0


 . (3.27)

If the SM fermions are assigned to these representations, the A4 predictions for the mixing
angles remain unchanged. The existence of the representation ρ ≡ ρ3 gives a first constraint
on the flavour group G: the image of the representation ρ is isomorphic to H, i.e. im(ρ) ∼= H,
and its kernel is a normal subgroup of G with the quotient group 6 G/N ∼= im(ρ) ∼= H (by
the first isomorphism theorem). The representation ρ thus essentially defines a surjective
homomorphism from G onto H, which is the identity on H and whose kernel is N. Groups of
this type are known as semidirect product groups G = N oH , which is a generalisation of
the direct product N ×H and has been introduced in Eq. (2.35). Again, as N and H cannot
commute, G can not be trivial, i.e. G 6= N ×H.

Once we have found such a group we can assign the lepton doublets, charged leptons and the
flavon χ that couples to the charged lepton sector in the usual way to representations 3 and 1i,
i = 1, 2, 3, while assigning the flavon φ of the neutrino sector to an irreducible representation

6The quotient group G/N is defined by the set of the left cosets gN with g ∈ G.
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Subgroup H Order of G GAP Structure Description Z(G)

A4

96 204 Q8 oA4

Z2
288 860 T ′ oA4

384 617, 20123 ((Z2 ×Q8) o Z2) oA4

576 8273 (Z2.S4) oA4

768
1083945 (Z4.Z

2
4 ) oA4 Z4

1085279 ((Z2 ×Q16) o Z2) oA4 Z2

S4

192 1494 Q8 o S4 Z2

384
18133, 20092 (Z2 ×Q8) o S4 Z2

20096 ((Z4 × Z2) o Z2) o S4 Z4

576
8282 T ′ o S4 Z2

8480 (Z3 ×Q8) o S4 Z6

768 1086052, 1086053 ((Z2 ×Q8) o Z2) o S4 Z2

960 11114 (Z5 ×Q8) o S4 Z10

T ′
192 1022 Q8 o T ′ Z2

2

648 533 ∆(27) o T ′ Z3

768 1083573, 1085187 ((Z2 ×Q8) o Z2) o T ′ Z2
2

Table 3.2: Candidate groups G up to order 1000 that may be written as non-trivial semidirect products
G = N o H for the groups H = A4, T7, S4, T ′, ∆(27) and that lead to an enhanced symmetry in the
scalar potential making the correct vacuum alignment possible. No such groups were found for H = T7,
∆(27). Details of the groups may be accessed using the computer algebra system GAP by using the command
SmallGroup(Order,GAP). Q8 denotes the quaternion group, which is defined in Section 3.3 and the generalized
quaternion group of order 16, Q16, is defined by Q16 =

〈
x, y|x8 = 1, x2 = y4, y−1xy = y−1

〉
. The expression of

the form N.H is the GAP notation of a central extension, i.e. N is a normal subgroup of G, which is contained
in the centre of G, and H is the quotient group G/N ∼= H. Note that there can be more than one semidirect
product of N by H.

of G, which is faithful 7 on N , and contains 3 in the Kronecker product φn at some order n.
The problematic cross-couplings (χχ)12

(φφ)13
, (χχ)13

(φφ)12
and (χχ)3(φφ)3 can now be

forbidden, provided that the Kronecker product φ× φ does not contain the representations 3
as well as 12,3. Thus, the flavon potential of φ and χ exhibits an ‘accidental’ symmetry G×H
at the renormalizable level. This accidental symmetry is broken to G at higher order in the
flavon potential. We thus systematically search for flavour groups G containing a subgroup H
and a normal subgroup N satisfying G/N ∼= H(∼= A4), which lead to an ‘accidental’ symmetry
G×H in the renormalizable part of the flavon potential. Using the computer algebra system
GAP [129] and its SmallGroups catalogue [128], we perform a scan over all discrete groups G
up to order 1000. As the vacuum alignment problem is not specific to the group A4, we search
for semidirect product groups N oH with the desired properties for the groups H = A4, T7,

7A representation φ is faithful, if the homomorphism φ : G→ GL(V ) is injective. It is faithful on a subgroup
N, if φ|N is faithful. If this representation φ was not faithful on N , it would be possible to restrict to the
smaller group G/ kerφ|N (by the third isomorphism theorem), which leads to the same flavour structure,
and study its predictions.
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S4, T ′ and ∆(27), which are known to be interesting for flavour model building and have been
introduced in Section 2.3.1. We apply the following conditions:

1. G = N oH 6= N ×H with H being one of the groups A4, T7, S4, T ′ or ∆(27);

2. there is an irreducible representation φ, which is faithful on N ;

3. φn contains 3 for some n;

4. there is an ‘accidental’ symmetry G×H in the renormalizable part of the flavon potential,
i.e. there are only couplings via the trivial singlet between χ and φ at the renormalizable
level, e.g. only (χ2)11

(φ2)11
exists for real representations χ, φ;

It turns out that there are only candidates for A4, T ′ or S4 up to order 1000, which are
presented in Tab. 3.2. Although there are semidirect product groups which fulfil the first
three criteria for H = T7, or H = ∆(27), none of them leads to the desired accidental
symmetry in the scalar potential. This might be related to the fact that these groups have
complex three-dimensional representations, and there are more couplings that would have to
be forbidden by the additional symmetries than in the case of H = A4, T ′ and S4, which have
real three dimensional representations. Additionally, there are simply less groups up to order
1000 that can be considered as an extension of T7 or ∆(27) compared to the other groups.

Looking at the list of candidate groups, we further note that the normal subgroup N is
non-abelian for all of our candidate groups. In addition, the defining homomorphism of
Eq. (2.35) of each semidirect product is injective for H = A4, S4

8 and in case of H = T ′,
each group N o T ′ allows for a defining homomorphism with image A4 or T ′. The quaternion
group Q8, which frequently appears in Tab. 3.2, is the smallest non-abelian group allowing for
a defining homomorphism with these properties. Furthermore we observe that all candidate
groups have a non-trivial centre 9 Z(G) C N . Representations can be classified according
to their way of representing the elements in the centre, i.e. whether (a subgroup of) the
centre is represented trivially (mapped to the identity) or not. In particular, the unfaithful
representations χ of G, which are directly related to irreducible representations χH of H
with χ|H ≡ χH map the centre to the identity. They are single valued (in analogy to the
representations of SU(2) with integer spin). However, groups that fulfil these conditions do
not necessarily have to have a non-trivial centre. For example the wreath product S4

3 oA4,
introduced by Babu and Gabriel [153], has a trivial centre.

3.2.3. General Group Extensions

Let us have a closer look at the construction in the last section. In order to obtain the same
flavour structure within G as within H, we demanded the existence of representations ρi,
which are directly related to the representations ρHi of H. The representations ρi can be
explicitly constructed using the surjective homomorphism from G to H, which we will denote
by ξ : G→ H:

ρi ≡ ρHi ◦ ξ .
Hence, as soon as there is a surjective homomorphism ξ : G→ H, there are representations
ρi with the desired property. Therefore, it is enough to look for groups G and a surjective

8The same applies for the wreath product S4
3 oA4 introduced by Babu and Gabriel [153].

9The centre of a group, Z(G), is the set of elements that commute with all elements of the group G,
i.e. Z(G) ≡ {x ∈ G | gx = xg ∀g ∈ G}. It forms a normal subgroup of G, i.e. Z(G) CG.
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Quotient Group H Order of G GAP Structure Description

A4

96 201 Z2.(Z
2
2 ×A4)

144 127 Z2.(A4 × S3)

192 1017 Z2.(D8 ×A4)

S4

96 67, 192 Z4.S4

144 121, 122 Z6.S4

192

187, 963 Z8.S4

987, 988 Z2.((Z
2
2 ×A4) o Z2)

1483,1484 Z2.(Z
2
2 × S4)

1492 Z2.((Z
4
2 o Z3) o Z2)

T ′ 192 1007 Z2
2 .(Z

2
2 ×A4)

Table 3.3: Candidate groups G up to order 200 that cannot be written as semidirect product. The expression
of the form N.H in the last column is the GAP notation of a central extension, i.e. N is a normal subgroup
of G, which is contained in the centre of G, and H is the quotient group G/N ∼= H. Here, we explicitly
choose N = Z(G) and therefore N.H = Z(G).G/Z(G). The candidate groups of order 200-500 can be found in
Table A.1.

homomorphism ξ : G→ H. This automatically implies the existence of a normal subgroup
N = ker ξ and a quotient group G/N ∼= H. Thus, we are only dropping the condition that
H is a subgroup of G. Actually, this type of extension is a general problem in group theory,
which aims to find all possible groups G given two groups N and H, such that G/N ∼= H. In
the mathematical literature, this is denoted by short exact sequence. One example of such
an extension is T ′. A4 is not a subgroup of T ′, but A4

∼= T ′/Z2. In T ′ models [97–104], the
flavour structure of the lepton sector is essentially described by the quotient group T ′/Z2

∼= A4

and the additional group structure, i.e. the two dimensional representations 2i, are used to
describe the quark sector. Hence, group extensions of the kind we described are not limited to
the VEV alignment, but can be used more generally to lift properties of one group H to a
larger group G, which addresses additional questions in flavour physics. Therefore, we propose
to use these kind of constructions more systematically.

However, in our case we are mainly interested in a solution to the vacuum alignment
problem, and therefore do not consider these other possibilities further. We perform another
scan looking for groups solving the vacuum alignment problem with the first condition of the
previous scan relaxed to

1. G/N ∼= H with H being one of the groups A4, T7, T ′ 10, S4, ∆(27),

while keeping the other conditions. It turns out that there are only candidates for A4, T ′ and
S4 up to order 1000. We collect all candidates up to order 200, which are not contained in the
previous search for semidirect product groups, in Tab. 3.3 and present the candidates of order
200− 500 in Tab. A.1.

10We included T ′ in this scan, although T ′ is an extension of A4 via T ′/Z2
∼= A4. However, the second condition

excludes several candidates for T ′, because the Z2 in T ′/Z2
∼= A4 is a subgroup of the N in the second

condition.
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Chapter 3. The Vacuum Alignment Problem in Flavour Models

3.3. Some Small Candidate Groups

In this section, we discuss the smallest group extensions of A4, S4 and T ′ we found in our
scan. We go into more detail for the semidirect product group Q8 oA4, since we will use this
group in the next chapter.

3.3.1. The Smallest Group Q8 oA4

While the A4 subgroup is presented by

〈
S, T |S2 = T 3 = (ST )3 = 1

〉
, (3.28)

the quaternionic subgroup Q8 (also known as D′4, the double group of the dihedral group of
order 4) is defined by

〈
X,Y |X4 = 1, X2 = Y 2, Y −1XY = X−1

〉
, (3.29)

and its Cayley graph is depicted in Fig. 3.5. The semidirect product Q8oA4 we are considering
here is defined by the additional relations between the generators of Q8 (X, Y ) and A4 (S, T )

SXS−1 = X, SY S−1 = Y −1, TXT−1 = Y X, TY T−1 = X , (3.30)

and its Cayley graph is shown in Fig. 3.6. Note that the last relation allows one to replace
the generator Y = T 2XT , leading to the presentation

〈
S, T,X|S2 = T 3 = X4 = SXSX3 = (ST )3 = T 2XT 2X3T 2X3 = STX3T 2STX3T 2 = E

〉
.

One can further see that the group element X2 commutes with all other elements. This
generates the centre Z(Q8 oA4) = {E,X2} and representations can be classified according to
ρ(X2) = ±1.

The defining representation matrices for the representations are given in Table 3.4. Notice
that there is a 3-dimensional representation

ρ31
(S) = S3 ≡




1 0 0
0 −1 0
0 0 −1


 , ρ31

(T ) = T3 ≡




0 1 0
0 0 1
1 0 0


 , ρ31

(X) = 13,

which is exactly the representation we were looking for in Eq. (3.26) to solve the vacuum
alignment problem. Obviously, this representation only knows about the A4 subgroup generated
by S and T and it is therefore not faithful. The other crucial ingredient we needed was a
faithful representation of G that did not contain any A4 representation in its symmetric
product. This representation can be easily identified to be 41:

ρ41
(S) = S4 ≡σ3 ⊗ σ1, ρ41

(T ) = T4 ≡




0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


 , ρ41

(X) = X4 ≡− iσ2 ⊗ σ3.
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3.3. Some Small Candidate Groups

11 12 13 31 32 33 34 35 41 42 43

S 1 1 1 S3 T3S3T
2
3 T3S3T

2
3 13 T 2

3 S3T3 S4 S4 S4

T 1 ω ω2 T3 T3 T3 T3 T3 T4 ω2T4 ωT4

X 1 1 1 13 S3 T 2
3 S3T3 T3S3T

2
3 T 2

3 S3T3 X4 X4 X4

Table 3.4: Representations of Q8 o A4 in the chosen basis. The first 4 representations are the unfaithful
A4 = 〈S, T 〉 representations to which the leptons are assigned (with ρ(X) = 1). Note that the representations
4i are double valued, i.e. ρ(Z(G) = X2) = −1, whereas the other representations are single valued (ρ(X2) = 1).
12,3 and 42,3 are complex, the other representations are real.

An explicit matrix representation of these generators for the remaining representations is given
in Table 3.4 and the character table is presented in Table 6.3, and will be discussed there in
more detail in Section 6.3.5. The Kronecker products

3i × 3i = 11 + 12 + 13 + 3iS + 3iA (3.31a)

3i × 3j =

5∑

k=1
k 6=i,j

3k (i 6= j) (3.31b)

3i × 4j = 41 + 42 + 43 (3.31c)

41 × 41 = 11S + 31A + 32S + 33S + 34S + 35A (3.31d)

41 × 42 = 12S + 31A + 32S + 33S + 34S + 35A (3.31e)

X

X2

YX

X3Y3 XY

Y

1

Figure 3.5: Cayley graph of Q8. The gen-
erator X is depicted by red arrows and the
generator Y is depicted by blue arrows.

show that if one uses the unfaithful triplet χ ∼ 31 to
break A4 in the charged lepton sector and the four di-
mensional faithful representation φ ∼ 41 in the neutrino
sector, there are no dangerous cross-coupling terms of
the form (φφ)31

(χχ)31
etc. allowed by the symmetry

that would forbid the required VEV alignment. This
will be the crucial property used to solve the vacuum
alignment problem in the model of the next chapter.

3.3.2. Other Small Groups

For concreteness, we also briefly describe the groups
that form the smallest extensions of S4 and T ′.
Z4.S4

∼= SG(96, 67): This group (in the GAP nota-

tion SG(96, 67)11) is the smallest extension of S4 that
allows for a solution of the vacuum alignment problem. It is generated by 2 generators A and
B that fulfil the relations:

A4 = B4 = AB−1A−1BA−1B−1 = E, (3.32)

11In order to uniquely specify each group, we denote it by SG(O,N) where O is its order and N is the number
in the GAP4 [129] SmallGroups catalogue [128].
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Chapter 3. The Vacuum Alignment Problem in Flavour Models

Figure 3.6: Cayley graph of Q8 oA4. One can clearly distinguish the 12 normal Q8 subgroups generated by
X(red) and Y (green) that are conjugated by the generators S(turquoise ) and T (violet) of A4 .

and the faithful representation that solves the VEV alignment problem is given by

A =
1√
2




0 0 z13 z19

0 0 z13 z7

z11 z23 0 0
z5 z5 0 0


 and B =

1√
2




0 0 z5 z5

0 0 z23 z11

z19 z 0 0
z7 z 0 0


 , (3.33)

with z = eiπ/12.

Q8 o T ′ ∼= SG(192, 1022): The group T ′ =
〈
s, t, r|s2 = r, t3 = (st)3 = r2 = E

〉
may be

extended by a semi-direct product in the same way as A4. For the generators s and t the
defining homomorphism is the same as for Q8 oA4 given in Eq. (3.30) and for r we have:

rXr−1 = X rY r−1 = Y.

The generator r therefore commutes with all group elements and the centre is therefore enlarged
to Z(Q8 o T ′) = {E, r, rX2, X2} ∼= Z2 × Z2. The relevant representations can be constructed
from the homomorphism g : Q8 o T ′ → Q8 o A4 defined by g : {r, s, t} → {E,S, T}. To
solve the vacuum alignment problem, the leptons should be assigned to L ∼ ρ31 ◦ g and the

neutrino sector flavon φ ∼ ρ41 ◦ g. The additional representations may be used to describe

the quark sector [103].
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Chapter 4.

A Concrete Model based on Q8 oA4

In this chapter, we present a model based on the discrete flavour symmetry group Q8 oA4,
which is the smallest symmetry group that allows for a natural vacuum alignment. We start
by an introduction, which motivates the choice of representations and the model building
setup and then in Section 4.2 present the model and its predictions in the lepton sector.
In Section 4.3 it is shown that the model naturally leads to the correct vacuum alignment,
without fine-tuning couplings in the scalar potential. In Section 4.4 we go on to show how the
recent large value of θ13 may be accommodated within the model. We close the chapter by
discussing a seesaw UV completion of the model and a possibility to supersymmetrise it.

4.1. Introduction

Having developed the machinery to solve the vacuum alignment problem in the last chapter,
we are now in a position to put the mechanism to use in a concrete model. The strategy is
clear and has been outlined in Section 3.2:

• we want to reproduce the ‘success’ of A4 models, therefore the leptons should transform
only under the representation 11, 12, 13 and 31 and thus transform trivially under
the additional group generator X. Clearly, the lepton doublets have to transform as a
three-dimensional representation (see Section 2.2), L ∼ 31, and we assign the leptonic
singlets ec, µc and τ c to the one dimensional representations 11, 12 and 13, the same
way as in the prototype model of Section 2.4.

• to couple the lepton doublets and singlets in a Yukawa-type operator, L`cH̃ ∼ 31, we
need to introduce an (effective) flavon that transforms as 31. As we want to create this
operator at dimension five (otherwise the τ Yukawa coupling would become too large)
we thus have to introduce a scalar field χ ∼ 31 that couples to leptons as Lχ`cH̃.

• to generate neutrino masses we need another (effective) flavon that can couple to the
Weinberg operator LHLH ∼ 31. Two obvious points are in order: as the symmetry has
to be broken to a different subgroup in the neutrino sector than in the charged lepton
sector the flavon cannot be identified with χ, but it has to be a different (effective) field.
Furthermore it is clear that some symmetry should be present that makes sure that only
χ couples to the charged lepton operator at leading order.

• the most minimal option would now be to assign a real scalar singlet φ ∼ 41 and since
φ4 contains a representation 31 a coupling LHLHφ4 exists.

However, a model of this type cannot be made to work for a couple of reasons. Analysing
the scalar potential, we see that the most general VEV configurations φ ∼ (a, a, b,−b) that
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Chapter 4. A Concrete Model based on Q8 oA4

break the group to the Z2 subgroup generated by S cannot be realised in the flavon potential1

Vφ(φ) = µ2
1(φφ)11

+ α1(φφ)2
11

+
∑

i=2,3

αi(φφ)3i
· (φφ)3i

, (4.1)

due to the relation

0 = b
∂Vφ
∂φ1

∣∣∣∣
〈φ〉
− a ∂Vφ

∂φ3

∣∣∣∣
〈φ〉

=
4√
3
ab(a2 − b2)(α2 + α3) . (4.2)

The achievable VEV configurations with a2 = b2 or ab = 0 lead to a restoration of symmetry
in the operator (LL)31

(
φ4
)
31

that generates the (LL)31
entry in the mass matrix and

consequently it vanishes in the vacuum, 〈
(
φ4
)
31
〉 ∼ ab(a2 − b2)2.

This type of model is also not so interesting from a general point of view, as it shares a
couple of unpleasant features with the model of Babu and Gabriel [153] when viewed as an
effective field theory:

• the off-diagonal entries in the neutrino mass matrix, generated by (LHLHφ4), would be
of very different order than the diagonal ones generated by the operator (LHLH). To
satisfy neutrino data, however, the two entries have to be of almost the same size.

• as (LHLHχ2) is allowed and of smaller dimension than (LHLHφ4), tri-bimaximal
mixing is not a leading-order prediction of the model.

All of these issues can of course be cured by introducing a UV completion that does not
confirm the effective field theory prejudices.

Here we restrict ourselves to natural solutions within effective field theory. To solve all
of these problems, we will discuss a model with two flavons in the neutrino sector, φ1 ∼ 41
and φ2 ∼ 41, where an additional symmetry forbids the allowed term χ · (φ1φ2)31

that could

disturb the VEV alignment between the two sectors. We identify this symmetry with the
one that separates the charged lepton from the neutral lepton sector, i.e. we postulate the
additional Z4 symmetry L → iL, `c → −i`c and φ2 → −φ2. This is the same symmetry we
have encountered in Section 2.4 and one can think of this Z4 symmetry as a discrete version
of lepton number with φ2 being doubly charged under this (discrete) lepton number.

4.2. Lepton Masses

After all the preparative considerations of the last chapters, we are now finally in the position to
present a model based on the symmetry group Q8 oA4 augmented by the auxiliary symmetry
Z4 introduced at the end of the last section. The leptonic and scalar particle content is given in
Tab. 4.1. As advertised, for the standard model leptons we use the unfaithful representations
11,2,3 and 31 that transform as irreducible representations under the subgroup A4. In the
charged lepton sector we use the unfaithful representation χ ∼ 31 and the charged lepton

1The operator (φφ)34
· (φφ)34

, which one would naively expect, can be expressed as a linear combination of

the other operators.
2If one introduces a soft-breaking term that conserves the Z2 subgroup generated by S, VS = α (φ1φ2 + φ3φ4)

in the potential, the minimum with a 6= b can then be realised. We do not pursue this option further here,
as we are interested in genuine spontaneous symmetry breaking.
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4.2. Lepton Masses

sector is thus analogous to the usual construction in an A4 model. In the neutrino sector, we
introduce the real flavons φ1,2 ∼ 41.

To keep the discussion simple, we use an effective field theory description. To lowest order,
the charged lepton masses arise from the operators

− L(5)
e = ye(Lχ)11

ecH̃/Λ + yµ(Lχ)13
µcH̃/Λ + yτ (Lχ)12

τ cH̃/Λ + h.c. , (4.3)

with H̃ = iσ2H
∗, and the neutrino masses are generated from the effective interactions

L(7)
ν = xa(LHLH)11

(φ1φ2)11
/Λ3 + xd(LHLH)31

· (φ1φ2)31
/Λ3 + h.c. (4.4)

The notation should be self-explanatory and the relevant Kronecker products are given in
App. A.2. We will show in the next section that the vacuum configuration

〈χ〉 = (v′, v′, v′)T , 〈φ1〉 =
1√
2

(a, a, b,−b)T , 〈φ2〉 =
1√
2

(c, c, d,−d)T , (4.5)

with v′, a, b, c, d ∈ R, can be obtained as the global minimum of the most general scalar
potential. This configuration gives

〈(φ1φ2)31
〉 =

1

2
(bc− ad, 0, 0)T and 〈(φ1φ2)11

〉 =
1

2
(ac+ bd)

and it breaks the flavour symmetry to the Z2 subgroup generated by S. There are also
physically inequivalent minima of the potential that break to the Z2 subgroups generated by
SY and SY X which lead to the same structure 〈(φ1φ2)31

〉 ∝ (1, 0, 0)T . We will discuss these

issues in more detail the next section.
As the leptons only transform under the subgroup 〈S, T 〉 ∼= A4, the structure of the mass

matrices exactly mirrors the discussion of the prototype model in Section 2.4. The leading
order mass matrices are given by

ME =
vv′

Λ
√

2
Ω∗Tdiag(ye, yµ, yτ ), Mν =

v2

2
√

3Λ2




ã 0 0

0 ã d̃

0 d̃ ã


 (4.6)

with ã = xa
1
2(ac + bd) and d̃ = xd

1
2(bc − ad). Again, the matrix Mν is invariant under the

accidental symmetry U and thus the mixing matrix is of the tri-bimaximal form and the mass
spectrum is thus given by3

ΩT
TME =

vv′√
2

diag(ye, yµ, yτ ), ΩT
UMνΩU = diag(ã+ d̃, ã, d̃− ã). (4.7)

Note that in this model both ã and d̃ are generated by the the same VEVs of the same flavons.
This is quite different from the usual A4 models reviewed in Section 2.4 where an additional
flavon ξ has to be introduced to generate ã. The two entries ã and d̃ in the mass matrix have
to be quite close to each other in magnitude [122, 154] to account for the small ratio of solar
to atmospheric mass squared difference. Here, both contributions stem from VEVs of the
same fields, and a similar order of magnitude might therefore be considered more natural.

3The charged lepton mass hierarchy can be explained by a Froggatt-Nielsen U(1) symmetry in the usual way.
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Chapter 4. A Concrete Model based on Q8 oA4

L ec µc τ c χ φ1 φ2

Q8 oA4 31 11 12 13 31 41 41
Z4 i −i −i −i 1 1 −1

Table 4.1: Particle content of the minimal model with the correct spontaneous symmetry breaking. The
flavons χ, φ1 and φ2 do not transform under the SM. The leptons transform in the usual way given in Table 2.1.

Indeed, in the numerical minimisation of the potential, we found a tendency for a similar size
of the two φ contractions.

Since in this model there is no need for a singlet flavon ξ, the number of degrees of freedom
exactly matches the numbers of degrees of freedom of one complex A4 triplet and one complex
singlet, which is commonly used [9, 69]. The difference here is that we do not have to introduce
additional degrees of freedom to obtain the correct vacuum alignment and we thus think it is
an attractive and economical model.

The mass matrices we have presented here are the leading order mass matrices and they will
undergo small changes due to higher dimensional operators that contribute at next-to-leading
order. These will be studied in Section 4.4.1.

4.3. Vacuum Alignment

In this section we demonstrate that the pattern of vacuum expectation values we used in the
last section can be obtained as the global minimum of the scalar potential. The most general
scalar potential invariant under the flavour symmetry is given by

V (χ, φ1, φ2) = Vχ(χ) + Vφ(φ1, φ2) + Vmix(χ, φ1, φ2), (4.8)

with

Vφ(φ1, φ2) =µ2
1(φ1φ1)11

+ α1(φ1φ1)2
11

+
∑

i=2,3

αi(φ1φ1)3i
· (φ1φ1)3i

+µ2
2(φ2φ2)11

+ β1(φ2φ2)2
11

+
∑

i=2,3

βi(φ2φ2)3i
· (φ2φ2)3i

+γ1(φ1φ1)11
(φ2φ2)11

+
∑

i=2,3,4

γi(φ1φ1)3i
· (φ2φ2)3i

,

Vχ(χ) = µ2
3(χχ)11

+ ρ1(χχχ)11
+ λ1(χχ)2

11
+ λ2(χχ)12

(χχ)13
,

Vmix(χ, φ1, φ2) = ζ13(φ1φ1)11
(χχ)11

+ ζ23(φ2φ2)11
(χχ)11

. (4.9)

Note that, by construction, there are no non-trivial couplings between the χ and φ breaking
sectors that would disturb the vacuum alignment. The potential thus has an ‘accidental’
(Q8 o A4)× A4 × Z4 symmetry under which the flavons transform as χ ∼ (11,31, 1), φ1 ∼
(41,11, 1) and φ2 ∼ (41,11,−1). This symmetry is explicitly broken to (Q8 o A4) × Z4

by the couplings to leptons and by higher dimensional operators in the potential. As the
accidental symmetry is discrete, there is no pseudo-Goldstone boson, as can easily happen in
constructions of this type [153].
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4.3. Vacuum Alignment

Let us now demonstrate that this model does not suffer from a vacuum alignment problem.
At first, we discuss the possible minima of the potential focusing on the little group in the
neutrino sector, i.e. the subgroup that leaves the VEV invariant. If there is a minimum in which
the symmetry generator Q ∈ G is left unbroken, i.e. Q 〈φ1,2〉 = 〈φ1,2〉, there obviously are

degenerate minima
〈
φ̃1,2

〉
= g 〈φ1,2〉 that leave gQg−1 unbroken, with g ∈ G4. The physically

distinct minima are therefore characterised by the conjugacy class(es) G ·Qi = {gQig−1|g ∈ G}
of the group element(s) Qi. Obviously, only conjugacy classes with an eigenvalue +1 can lead
to a non-trivial little group. For the four dimensional representation 41, there are five such
classes which are represented by 1, S, SY , SY X, T as well as T 2, where the groups generated
by T and T 2 are identical. For the three dimensional representation 31, where X and Y are
represented trivially, all conjugacy classes have an eigenvalue +1 and can lead to a non-trivial

little group. The relevant little group in the neutrino sector is the one of
〈

(φ1φ2)31

〉
.

In the following, we will firstly discuss the possible little groups of 〈φi〉 and then its

implications for the little group of
〈

(φ1φ2)31

〉
. There are three physically distinct minima of

φ1 that preserve a Z2 subgroup:

• 〈φ1〉 = 1√
2
(a, a, b,−b)T results in the little group 〈S〉,

• 〈φ1〉 = (0, a, b, 0)T in 〈SY 〉 and

• 〈φ1〉 = 1√
2
(−a, b,−a, b)T in 〈SY X〉 .

In addition, there is one preserving a Z3 subgroup:

• 〈φ1〉 = 1√
2
(a, a, a, b)T preserves 〈T 〉 =

〈
T 2
〉

.

Obviously, there are also minima leading to little groups, which are generated by more than
one generator. For example 〈φ1〉 ∝ (1, 1, 1,−1)T preserves 〈S, T 〉 ∼= A4. The same discussion

applies to φ2. The little group of
〈

(φ1φ2)31

〉
contains the intersection of the little groups of

〈φ1〉 and 〈φ2〉.
In the following, we will concentrate on the three little groups 〈S〉, 〈SY 〉 and 〈SY X〉,

which we listed above. If both 〈φ1〉 and 〈φ2〉 preserve the same Z2 subgroup, we obtain
〈(φ1φ2)31

〉 = 1
2(bc−ad, 0, 0)T and 〈(φ1φ2)11

〉 = 1
2(ac+bd) due to the fact that X = Y = 1 for

the SM representations (1i and 31) with a, b being the VEVs of φ1 and c, d, the corresponding
ones of φ2. Thus, it is impossible to distinguish these minima from low-energy neutrino
phenomenology at the leading order. They are, however, physically distinct, since 〈φ1φ1〉 as
well as 〈φ2φ2〉 are different and they lead to different mass spectra in the scalar sector, which
we discuss to in Chapter 5.

First let us discuss the minimization of the potential. There are 11 real scalar fields and
thus eleven minimization conditions. Due to the symmetry, these eleven conditions reduce to

4Strictly speaking g should be in ρ(G), where ρ is the representation in question. For faithful representations
ρ(G) ∼= G.
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Figure 4.1: Distribution of the opening angle spanned by the flavon field χ and the effective operator (φ1φ2)31
for random values of potential parameters for the most general scalar potential given in Eq. (4.8). The
tri-bimaximal vacuum configuration depicted in the inlay corresponds to an opening angle of 54.7◦. We see
that this vacuum configuration is obtained for a finite portion of parameter space, i.e. there is a phase with the
TBM vacuum. This is to be contrasted with the potential without the alignment mechanism in Fig. 3.2.

only five independent ones:

a
(
α+

(
a2 + b2

)
+ α−

(
a2 − b2

)
+ γ+

(
c2 + d2

)
+ γ−

(
c2 − d2

)
+ U1

)
+ Γbcd = 0 (4.10a)

b
(
α+

(
a2 + b2

)
− α−

(
a2 − b2

)
+ γ+

(
c2 + d2

)
− γ−

(
c2 − d2

)
+ U1

)
+ Γacd = 0 (4.10b)

c
(
β+

(
c2 + d2

)
+ β−

(
c2 − d2

)
+ γ+

(
a2 + b2

)
+ γ−

(
a2 − b2

)
+ U2

)
+ Γabd = 0 (4.10c)

d
(
β+

(
c2 + d2

)
− β−

(
c2 − d2

)
+ γ+

(
a2 + b2

)
− γ−

(
a2 − b2

)
+ U2

)
+ Γabc = 0 (4.10d)

v′
(

4
√

3λ1v
′2 + 3ρ1v

′ + U3

)
= 0, (4.10e)

where the equations have been rescaled to eliminate overall constant factors and with the
shorthand notations

Ui =
1

2

(
µ2
i +
√

3ζi3 v
′2
)

for i = 1, 2 , U3 = 2µ2
3 + ζ13(a2 + b2) + ζ23(c2 + d2)

and
{

ξ+ = ξ1
2 , ξ− = ξ2+ξ3

2
√

3
for ξ = α, β

γ+ =
√

3γ1+γ4

4
√

3
, γ− = γ2+γ3

4
√

3
and Γ = γ4√

3

}
for 〈S〉





ξ+ =
√

3ξ1+ξ2+ξ3
2
√

3
, ξ− = 2ξ3−ξ2

2
√

3
for ξ = α, β,

γ+ =
√

3γ1+γ3

4
√

3
, γ− = γ3

2
√

3
and Γ = γ2+γ4

2
√

3



 for 〈SY 〉





ξ+ = ξ1+
√

3ξ2
2 , ξ− = ξ3−2ξ2

2
√

3
for ξ = α, β,

γ+ =
√

3γ1+γ2

4
√

3
, γ− = γ3+γ4

4
√

3
and Γ = γ2√

3



 for 〈SY X〉 .

The first four equations result from the derivatives taken with respect to the components of
φ1 and φ2 and the last one comes from the three-components of χ. Note that the equations
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4.3. Vacuum Alignment

for v′ and a, b, c, d essentially decouple and their contributions to the other sector can be
reabsorbed in the respective mass terms. Note further that they are invariant under symmetries
(a, c)↔ (b, d), (a, b)→ −(a, b), (c, d)→ −(c, d) as well as (a, b, αi, U1)↔ (c, d, βi, U2), which
are inherited from the symmetries of the potential.

The number of free VEVs thus exactly matches the number of algebraically independent
minimization conditions, which shows that there generally is a range of parameter values of the
scalar couplings, for which this solution is a local minima. To be able to determine the global
minimum a numerical study is needed. We have varied all parameters in the range [−4, 4] and
only found minima corresponding to the ones given above, and minima where all symmetries
are broken; i.e. we have found global minima where the VEVs of φ1 and φ2 both conserve the
subgroups 〈S〉, 〈SY 〉, 〈SY X〉 or 〈T 〉 or no subgroup. In particular, we have not found any min-
ima that leave a larger symmetry group intact (except for the minimum with vanishing VEVs,
which does not break the group). Each of these minima can be realised as global minimum of the
potential, which we checked in the random number scan we performed. However, it was imprac-
tical to determine the parameter regions where each solution is realized as a global minimum.

λi

λj

Z3

〈χ〉 ∝ (1, 1, 1)

〈φ1φ2〉 ∝ (1, 1, 1)

〈χ〉 ∝ (1, 0, 0)

〈φ1φ2〉 ∝ (1, 1, 1)

TBM

〈χ〉 ∝ (1, 1, 1)

〈φ1φ2〉 ∝ (1, 0, 0)

Z2

〈χ〉 ∝ (1, 0, 0)

〈φ1φ2〉 ∝ (1, 0, 0)

Figure 4.2: Cartoon phase diagram.

It is, however, instructive to re-perform the analysis we
reported on in Section 3.1. There we had performed
a random scan over order one parameters of the most
general renormalizable scalar potential of A4 and had
found the distribution shown in Fig. 3.2 for the opening
angle between the two flavons φ and χ. It was found
that there are two phases: one where both flavons break
to the same subgroup and the opening angle is zero and
another one where there is no conserved subgroup. The
vacuum configuration 〈χ〉 ∼ (1, 1, 1) and 〈φ〉 ∼ (1, 0, 0)
corresponds to an opening angle of 54.7◦ and the dis-
tribution of opening angles presented in Fig. 3.2 clearly
shows that this VEV configuration corresponds to a fine-
tuned situation within the phase of complete symmetry
breakdown. The corresponding scan for global minima
of the potential given in Eq. (4.8) is shown in Fig. 4.1.
Here we plot the opening angle between χ and (φ1φ2)31

,

as this is the effective operator that couples to neutrinos in Eq. (4.4) and plays the role of φ.
Clearly the distribution of opening angles is very different in this case and we can identify
one phase with opening angle equal to zero where both fields break to the same subgroup
and another phase where the opening angle corresponds to the desired mismatched VEV
configuration5. A cartoon of the resulting phase diagram is shown in Fig. 4.2. In conclusion,
we have unambiguously shown that there is a finite portion of parameter space where the
desired VEV configuration can be realized and that there is no fine-tuning associated with
this configuration. Furthermore it should be stressed that there are no loose ends here: there
are no flat directions that have to be lifted and no Goldstone modes that have to be made
heavy. In the next section we will show that this finding is stable under the inclusion of

5The third bump at 70.53◦ in Fig. 4.1 corresponds to situations where χ ∼ (1, 1,−1) and φ ∼ (1, 1, 1) and
equivalent configurations. The VEV χ ∼ (1, 1,−1) is degenerate with χ ∼ −(1, 1, 1), which on the level of
neutrino masses is equivalent to χ ∼ (1, 1, 1), and we therefore do not count these solutions as a separate
phase.
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Chapter 4. A Concrete Model based on Q8 oA4

higher-dimensional operators and in Section 4.6 we will present a supersymmetrisation of the
model that addresses the hierarchy problem that is always present in models with scalar fields
in 4 dimensions.

4.4. Deviations from TBM

In light of the recent measurement of θ13, we discuss various possibilities to obtain non-vanishing
θ13 in our setup. First we will see what can be obtained when one includes next-to-leading
order corrections to the model and then we will discuss a minimal extension of the model that
realizes the trimaximal mixing configuration introduced in Section 2.5.2 and which can be
considered the natural deformation of A4 models.

4.4.1. Higher Order Corrections

The results presented above are corrected by higher order operators. Here we discuss the
next-to-leading order corrections. Let us briefly comment on the magnitude of the scale Λ
under the assumption that all operators are suppressed by the same scale.6 If we require a
perturbative value for the τ Yukawa coupling, yτ < 4π, this translates into [9]

v′

Λ
> 0.002.

Furthermore taking mν ∼ 0.05 eV and assuming couplings of order one, xa,d ∼ O(1), we find

Λ ≈ 6 · 1014
(u

Λ

)2
GeV with u = a, b, c, d

so that the natural cutoff values are 2 · 109 GeV < Λ < 6 · 1014 GeV assuming all VEVs to be
of a similar size v′ ∼ a ∼ b ∼ . . .. However Λ can easily be in the TeV region for moderately
small couplings in the UV completion, as will be shown in Section 5. Note that the ratio of
v′
Λ > 0.002 does not pose a severe hierarchy problem and thus does not necessarily require a
solution e.g. in the form of supersymmetry.

Corrections to the charged lepton mass matrix: The next-to-leading order correction
to the charged lepton mass matrix takes the form:

−L(6)
e = y′e(L(χχ)31

)11
ecH̃/Λ2 + y′µ(L(χχ)31

)13
µcH̃/Λ2 + y′τ (L(χχ)31

)12
τ cH̃/Λ2 + h.c. .

As these operators can be obtained by replacing χ by (χχ)31
in Eq. (4.3) and

〈(χχ)31
〉 = v′〈χ〉,

they do not introduce a new structure in the charged lepton mass matrix [114], but merely
renormalise the leading contribution. Note that there are no other contributions at this level,
since φiφi does not contain 31 by construction. Operators with new structures are suppressed
by 1/Λ3.

6Of course, this assumption does not have to be true for e.g. a UV completion where the charged lepton mass
operators are generated by vector-like fermions and the neutrino mass operators are generated by a seesaw .
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4.4. Deviations from TBM

Corrections to the neutrino mass matrix: The next-to-leading order operators con-
tributing to the neutrino mass matrix are given by

Λ4L(8)
ν = xc(LHLH)12

(φ1φ2χ)13
+xb(LHLH)13

(φ1φ2χ)12
+xh(LHLH)11

(φ1φ2χ)11
+

+ (LHLH)31
·
[
xeχ(φ1φ2)11

+ xf (χ · (φ1φ2)31
)S + xg(χ · (φ1φ2)31

)A

]
+ h.c. , (4.11)

where (. . .)S denotes the symmetric contraction and (. . .)A the antisymmetric one. These
operators perturb the mixing matrix and their effect will be discussed in Section 4.4.1.

Corrections to the Scalar Potential: Corrections to the potential arise at dimension
five:

V (5) =
2∑

L,M=1

4∑

i,j=2

δ
(LM)
ij

Λ
χ ·
{

(φLφL)3i
· (φMφM )3j

}

31

+

+
χ3

Λ

(
δ

(3)
1 χ2 + δ

(3)
2 (φ1φ1)11

+ δ
(3)
3 (φ2φ2)11

)
(4.12)

where all parameters are real and δ
(LM)
ij = 0 for i ≥ j. Upon minimisation, these interactions

lead to a shift in the vacuum expectation values of the form:

〈χ〉 = (v′ + δv′1, v
′ + δv′2, v

′ + δv′2)T , (4.13a)

〈φ1〉 =
1√
2

(a+ δa1, a+ δa2, b+ δa3,−b+ δa4)T , (4.13b)

〈φ2〉 =
1√
2

(c+ δb1, c+ δb2, d+ δb3,−d+ δb4)T (4.13c)

Generically, the magnitude of these shifts will be suppressed by one power of Λ,

δu

u
∼ u

Λ
, (4.14)

where u denotes a generic vacuum expectation value. The VEVs of χ2 and χ3 stay equal at
next-to-leading order, i.e. 〈χ2〉 − 〈χ3〉 = O(1/Λ2) and 〈χ3〉 ≈ 〈χ2〉 = δv′2. To calculate the
correction to neutrino masses, the following shorthand notations for the shifts in the vacuum
expectation values are useful:

δ〈(φ1φ2)31
〉 =

1

4




a (δb4 − δb3) + c (δa3 − δa4)− d (δa1 + δa2) + b (δb1 + δb2)
a (δb3 + δb4)− c (δa3 + δa4) + d (δa1 − δa2) + b (δb2 − δb1)
a (δb1 − δb2) + c (δa2 − δa1)− d (δa3 + δa4) + b (δb3 + δb4)


 ≡




δΦ1

δΦ2

δΦ3




and

δ〈(φ1φ2)11
〉 =

1

4
(a (δb1 + δb2) + c (δa1 + δa2) + d (δa3 − δa4) + b (δb3 − δb4)) ≡ δΦ0 .

To get a feeling for the size of the deviations from the leading order vacuum alignment,
we have performed a numerical minimisation of the potential for a number of random val-
ues for the potential parameters. We found it instructive to plot maxi δui

maxi ui
against maxi ui

Λ ,
where ui denotes any of the leading-order VEVs and δui any of the deviations. Fig. 4.3 shows
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Figure 4.3: Vacuum shifts maxi |δui|
maxk |uk| induced by higher dimensional operators as a function of maxk |uk|

Λ
for

randomly chosen potential parameters of order unity. All points correspond to phenomenologically viable data
points.

the VEV deviation scales plotted against the ratio u/Λ. The corrections are small for small u/Λ.

Corrections to Masses and Mixings: To next-to-leading order, the charged lepton matrix

ME is modified from Eq. (4.6) by

δME =
v

Λ
√

2




δv′1 0 0
0 δv′2 0
0 0 δv′2


U0




ye 0 0
0 yµ 0
0 0 yτ


+

vv′2

Λ2
√

2
U0




y′e 0 0
0 y′µ 0

0 0 y′τ


 .

(4.15)

In the neutrino sector there are also new structures. The corrections to the neutrino mass
matrix can be parametrised as

δMν =




δã+ b̃+ c̃ f̃ ẽ

f̃ δã+ ωb̃+ ω2c̃ δd̃

ẽ δd̃ δã+ ω2b̃+ ωc̃


 v2

2
(4.16)

with

δã =
v′xh(bc− ad)

6Λ4
+
xaδΦ0√

3Λ3
, δd̃ =

−xdδΦ1

2
√

3Λ3
+
v′xe(ac+ bd)

4
√

3Λ4
, (4.17a)

b̃ =
v′xb(bc− ad)

6Λ4
, ẽ =

−xdδΦ2

2
√

3Λ3
+
v′xe(ac+ bd)

4
√

3Λ4
+

(xf + xg)v
′(bc− ad)

8
√

3Λ4
, (4.17b)

c̃ =
v′xc(bc− ad)

6Λ4
, f̃ =

−xdδΦ3

2
√

3Λ3
+
v′xe(ac+ bd)

4
√

3Λ4
+

(xf − xg)v′(bc− ad)

8
√

3Λ4
. (4.17c)

Since the leptons only transform under the A4 subgroup of the model, the neutrino phe-
nomenology runs exactly parallel to the A4 case. The effects of the operators ã, ..., f̃ have
been studied in [120] where it has been shown that a sizeable deviation from sin2 θ13 = 0 is
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Figure 4.4: Scatter Plot of Mixing Angles. To illustrate the typical size of corrections to the mixing
angles, we have performed a scatter plot. We took all dimensionless scalar potential couplings to be of order
one and varied the ratio of the mass parameters in the potential such that the ratio of the VEVs and cutoff-
scale is smaller than one. All dimensionless parameters that modify the neutrino and charged lepton mass
matrices are taken to be of the same order as the leading order parameters. All points lie within the 3 σ range
of the mass and mixing parameters (as of Nov. 2011). The mixing angle sin2 θ12 is varied more than the other
two mixing angles. We have used the MixingParameterTools [156] package to extract the mixing angles.

possible without introducing large corrections to the other mixing angles. Recently it has been
shown that sin2 θ13 & 0.1 is possible for c̃/ã & 0.25 in the case of normal mass ordering [155].

We performed a random scan in order to get an idea of the size of the corrections from
higher dimensional operators. For a collection of tree-level parameters of order unity, we have
varied the higher dimensional parameters (4.12) of the potential in the range [0.5, 1.5] and
the dimensionless parameters in the corrections to the lepton masses in Eq. (4.11) have been
taken to be of the same order as the leading order contributions. The suppression scale Λ has
been varied in a wide range.

In Fig. 4.4, the resulting scatter plots are shown, where all data points lie within the 3σ
limits of the global fits cited in the introduction. As can be seen from Fig. 4.4d, for u/Λ & 0.05
there are points that deviate from tri-bimaximal mixing in the right way to be compatible
with the recent measurements of θ13.

Allowing for couplings considerably smaller than order one in Vφ
7, the VEV corrections δΦi

become dominant and ẽ and f̃ are the main corrections to the neutrino mass matrix. This is
shown in Fig. 4.5 and is in agreement with the result [120]. Note that the values are roughly

7For details, please consult the Mathematica notebook published as a supplement together with the Mathe-
matica package Discrete described in Section A.5
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Figure 4.5: The matrix entries ẽ and f̃ are the dominant corrections to the neutrino mixing matrix in the
case where the corrections from the VEVs of φ1 and φ2 dominate. Here we show the correlation between
the two quantities. The blue, violet, yellow and green points correspond to values of sin θ2

13 in the ranges
[0, 0.005], [0.005, 0.01], [0.01, 0.02], and [0.02, 0.03], respectively. The imaginary parts are much smaller∣∣∣im(ẽ/d̃)∣∣∣ , ∣∣∣im(f̃/d̃)∣∣∣ . 0.003.

along a diagonal line, i.e. ẽ and f̃ are similar in size, but have a different relative sign.

In conclusion one has to say that while NLO corrections can account for the measured
deviation of TBM, the large number of parameters makes it impossible to make predictions
regarding the other lepton mixing angles. There are, for example, no correlations between the
deviations from TBM if one assumes the most general structure of NLO corrections.

4.4.2. Trimaximal Mixing

Another possibility to generate deviations from TBM is the introduction of an additional
flavon ξ̃ ∼ (12, i) that breaks the accidental symmetry U in the neutrino sector by the VEV〈
ξ̃
〉

= w̃. This scalar can couple to neutrinos via the effective operator

δL(7)
ν = xc(LHLH)12

ξ̃2/Λ3 + h.c. . (4.18)

that contributes to the neutrino mass matrix as

δMν =
v2

2
√

3Λ3
c̃




1 0 0
0 ω 0
0 0 ω2


 (4.19)

with c̃ = xcw̃
2. In Section 2.5.2 it has been shown that a correction of this type leads to the

so-called trimaximal mixing pattern, which gives a good fit to the neutrino mixing data and
predicts a testable correlation (2.59) between the deviation from TBM in the various mixing
angles. The purpose of this section is to demonstrate that the TMM VEV configuration
can also be naturally obtained in the Q8 oA4 model. At the renormalizable level the scalar
potential for ξ̃ is given by

Vξ̃(ξ̃) = µ2
4ξ̃
∗ξ̃ + λξ̃(ξ̃

∗ξ̃)2 (4.20)
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and the cross-coupling terms

Vcross = ξ̃∗ξ̃
(
ζ14(φ1φ1)11

+ ζ24(φ2φ2)11
+ ζ34(χχ)11

)
. (4.21)

Note that there are no non-trivial contractions between ξ̃ and the other flavons at the
renormalizable level. Note further that this is a direct consequence of the model and that no
additional symmetries have been required. The minimization conditions for the fields are now
a trivial extension of (4.10). Indeed the first 5 conditions can be brought in the exact same
form with the replacement Ui → Ui + 1

2ζi4w̃
2 for i = 1, 2, 3. The remaining equation is

0 =

〈
∂

∂ξ̃
V

〉
= w̃∗

[(
µ2
ξ̃

+
1

2
ζ14

(
a2 + b2

)
+

1

2
ζ24

(
c2 + d2

)
+ ζ34

v2

√
3

)
+ 2λξ̃w̃

∗w̃
]
. (4.22)

Again we see that the minimization conditions reduce to the same number as the number
of VEVs. There is therefore no problem to obtain the TMM VEV configuration. All of
this is very trivial and almost embarrassing to write down. It should be noted that this a
major feature of this approach to the vacuum alignment problem. If one wants to change the
model based on R-symmetries presented in Section 3.1.1 by introducing a non-trivial singlet
scalar one also has to change the driving field particle content, auxiliary symmetries and other
details [63].

4.4.3. Cosmological Implications of Accidental Symmetries

Let us briefly comment on possible cosmological implications of the unbroken remnant sym-
metries of the scalar potential. After symmetry breaking, there are 3 symmetries remaining.
There are the obvious symmetries

Z3 : χ→ T3χ, φi → φi and (4.23)

Z2 : φi → S4φi, χ→ χ (4.24)

but there is another accidental symmetry of the potential8Vφ not part of Q8 oA4:

Z2 : φi → O4φi, χ→ χ with O4 = diag(σ1,12). (4.25)

In the scalar potential, these symmetries are only broken through higher dimensional operators.
All of these symmetries are explicitly broken by the interactions with leptons. Let us discuss
the situation where J is the lightest scalar odd under the unbroken Z2 symmetry generated
by S, e.g. J = 1√

2
((φ1)3 + (φ1)4). It can then decay into neutrinos through the effective

interaction

L = −1

2
gJνiνjJνiνj + h.c., (4.26)

with a lifetime roughly given by

τ(J → νν) ∼ 16π

mJ

u2

m2
ν

∼ 4 · 108 s

(
u

mJ

)( u

1010 GeV

)
, (4.27)

8In Chapter 6 will encounter this symmetry as the outer automorphism h4 of Eq. (6.30).
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for mν = 0.05 eV and u a generic flavon VEV . Depending on the model parameters, this decay
time can be problematic. If the lifetime is larger than the age of the Universe, J becomes a dark
matter candidate. A large lifetime naturally occurs, if J is a pseudo-Goldstone boson [157],
which leads to mJ/u� 1. Pseudo-Goldstone bosons often appear in these constructions. For
example, the tree-level scalar potential of the next-larger group in Tab. 3.2, T ′ oA4, has the
large continuous accidental symmetry Sp(4).

However, in general, there is also the decay channel via higher dimensional operators in the
scalar potential, which couple J to the 〈S〉-breaking VEV of χ, e.g. by operators of the type
φ4

1 · χH†H. It will generically be the dominant decay process in the model outlined above and
result in much shorter lifetimes of

τ ∼ 16π
mJΛ6

u8
∼ 3.3 · 10−21

(mJ

u

)(u/Λ
0.01

)−7(1012 GeV

Λ

)
s,

ensuring that any potential abundance of J will decay before big bang nucleosynthesis. In the
model by Babu and Gabriel [153], these higher dimensional operators are absent and therefore
this decay through neutrinos is the only decay channel, which poses a potential problem for
such models.

For any model with discrete symmetries there is the potential problem of the formation
of domain walls. We do not go into details here but point out that the problem may be
solved (i) through low-scale inflation or (ii) through explicit symmetry breaking contributions
that can come either from quantum effects (anomalies) or from Planck-suppressed operators.
These contributions break the degeneracies between the vacua and lead to a decay of domain
walls [145].

4.5. Seesaw UV Completion

The neutrino sector of the effective theory outlined above may be UV completed by introducing
the left-handed Weyl spinors N , S2 and S3 that transform under (Q8oA4)×Z4 as N ∼ (31,−i),
S2 ∼ (42, i) and S3 ∼ (43,−i), where S2 and S3 can be combined in a Dirac spinor.

This leads to the following new interactions in the Lagrangian

L = xLNLHN + xN2NS2φ1 + xN3NS3φ2 +mS2S3 + x23S2S3χ+ h.c. , (4.28)

where the contraction of each operator is uniquely determined by the group theory of Q8 oA4.
The neutral fermion mass matrix is then schematically given by

1

2




0 xLN 〈H〉 0 0
. . . 0 xN2 〈φ1〉 xN3 〈φ2〉
. . . . . . 0 m+ x23 〈χ〉
. . . . . . . . . 0


 (4.29)

in the basis (ν, N, S2, S3). In the following, we assume that the direct mass term is larger
than the mass terms generated by VEVs. Therefore, we are in the seesaw regime, which was
first studied for gauge singlets in [26–30] and in more generality in [158, 159]. Hence, the
masses of the singlets N are generated as

mN =
xN2xN3

m




A 0 0
0 A B
0 B A


 with A = −2(ac+ bd) and B = i

√
3(bc− ad) . (4.30)
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Figure 4.6: Neutrino masses in the UV completion.

This particular form has been denoted linear seesaw [160]. The light neutrino masses are
generated via a standard seesaw [26–30]. Hence, the operator x23S2S3χ only enters at next-to
leading order. Alternatively, it is possible to forbid it together with all next-to leading order
corrections, which have been discussed in the previous section, by introducing an additional
Z2 symmetry χ→ −χ and `c → −`c. The neutrino mass matrix is then given by

Mν = x2
LNv

2m−1
N (4.31)

This can also be seen from Fig. 4.6. This matrix is diagonalized by Vν = ΩU : ΩT
UMνΩU =

diag( 1
B+A ,

1
A ,

1
B−A). However, there are two degenerate eigenvalues as the relative phase of A

and B is given by π/2. This can be solved by adding another copy of S2 or S3, for example,
lifting the degeneracy. Another possibility will be presented in Section 5, where the neutrino
mass is generated radiatively.

The charged lepton mass operators can be generated in the same way as in [153] by
introducing additional states that have masses allowed by EW symmetry and mix with the
SM states after EW symmetry breaking.

4.6. Supersymmetrisation

Supersymmetrisation of the model is rather straightforward, indeed if one allows for non-
renormalizable couplings in the scalar potential, the discussion of Section 4.3 can be adopted
in a one-to-one fashion by replacing the fields of the non-SUSY model given in Table 4.1 by
superfields. Here we briefly report the modifications needed if one sticks to the renormalizable
level in the superpotental of the flavons. Since this implies that there should not be terms
involving more than 3 fields in the superpotential and as there is no cubic invariant containing
the φ1,2 fields only, only the quadratic terms φ2

1,2 =
∑

i φ
i
1,2

2
can be written in the superpotential

of the φs. These terms are invariant under a much larger symmetry SO(4)2 given by the
individual rotations of φ1 and φ2. To get rid of this unwanted continuous accidental symmetry,
we have to add the singlet ξ ∼ 11 and the triplet χ̃ ∼ 32 which transform as singlets under
the SM gauge group, given in Table 4.2.

The resulting schematic superpotential

W = S(φ2
1 + φ2

2 + χ2 + χ̃2)11
+ ξ3 + ξ2 + ξ + φ2

1 + φ2
2 + χ2 + χ3 + χ̃(φ2

1 + φ2
2)32

+ χ̃2 + χ̃3.

leads to a scalar potential of the form

V = VSUSY + Vsoft

where

VSUSY =
∑

i

∣∣∣∣
∂W

∂ϕi

∣∣∣∣
2
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L ec µc τ c χ φ1 φ2 χ̃ ξ

Q8 oA4 31 11 12 13 31 41 41 32 11
Z4 i −i −i −i 1 1 −1 1 1

Table 4.2: Chiral superfield particle content of SUSY Q8 oA4 model. All other fields of the MSSM are not
charged under the flavour symmetry. The fields χ̃ and ξ are needed if one insists on the renormalizability of the
flavon superpotential, otherwise they can be dispensed with.

and ϕi is any of the fields in the theory. Vsoft contains all supersymmetry-breaking soft terms
invariant under the flavour symmetry.

We have studied the potential resulting from this superpotential and the most general
soft-breaking terms and we have found a portion of parameter space with the right vacuum
alignment, with non-vanishing VEVs for both the singlet and triplet contractions of the
product φ1φ2. The neutrino mass operators are again given by

W ⊃ xa(LHuLHu)11
(φ1φ2)11

/Λ3 + xd(LHuLHu)31
(φ1φ2)31

/Λ3. (4.32)

As in the non-SUSY model before, the on-and off-diagonal terms of the neutrino mass matrix,
which have to be quite close to each other in magnitude, are generated by VEVs of the same
fields. The additional scalar field χ̃ couples to leptons only at next-to next-to leading order
and it is thus not problematic.

Details can be found in the Mathematica notebook accompanying [16], which can be down-
loaded from the webpage of the Mathematica package Discrete introduced in Section A.5. We
have checked that there exist a phase of parameter values for which the global minimum of the
potential has the correct vacuum alignment for the most general softly broken supersymmetric
potential. The symmetry breaking is also complete, i.e. there are no flat directions left as is
the case in the type of models reviewed in Section 3.1.1 based on R-symmetries. Note that
here the inclusion of soft-breaking terms does not pose a problem and the flavour symmetry
breaking scale therefore does not have to be much smaller than the SUSY breaking scale.
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Chapter 5.

Flavour Symmetry Breaking at the
Electroweak Scale

In Section 2.5 we have seen that the recent observation of a rather larger value of θ13 prompts
one to consider two different directions in model building based on discrete flavour symmetry
groups. One option is to have new starting points, but our comprehensive scan of flavour
groups has shown that smallish groups of order smaller than 100 do not admit leading-order
mixing patterns that fit the experimental data exceptionally well. If one goes to larger groups
there are solutions that seem more favourable.

Here we pursue another strategy, namely we want to build models that deviate from tri-
bimaximal mixing in a controlled way such that a certain predictivity in mixing angles is
preserved, as reviewed in Section 2.5.2. Furthermore we want the symmetry breaking sector
of the models to be testable, which is why we aim to implement the models at the electroweak
scale. This is motivated by the fact that one should try to search for ways to test the paradigm
of discrete flavour symmetries. All discrete symmetries need to be spontaneously broken and
if the symmetry breaking scale is located e.g. at the GUT or seesaw scale there is scant hope
of finding any remnants of this symmetry in low energy observables, as mentioned before
in Section 2.5. Indeed the wisdom of effective field theories tells us that any such link will
be highly dependent on assumptions about the detailed implementation of the symmetry
and physics between the two scales. So far it has been very difficult to realize a complete
model of flavour at the electroweak scale, because the only known mechanisms to achieve the
correct vacuum alignment, which breaks the flavour symmetry into different non-commuting
subgroups, rely on R-symmetries in supersymmetry or extra dimensions and need very high
energy scales, as reviewed in Section 3.1.

With the vacuum alignment mechanism based on group theory developed in Chapter 3 and
fleshed out into a concrete model in Chapter 4, it is now possible to build such a complete
model. As we want to explain the lepton flavour structure at a low energy scale, it is desirable
to find a rationale for the smallness of neutrino masses. The most well-travelled and easiest
route to get small neutrino masses from TeV scale physics is to generate the effective neutrino
mass operator either at higher dimensional level or at higher loop order. In Section 5.1, we
will show that both ideas can be economically implemented in the electroweak version of the
model given in Chapter 4, without introducing new symmetries apart from the ones introduced
there. In Section 5.2 we discuss the predicted lepton structure and Section 5.3, we show how
the model fares against lepton flavour violating observables, usually the most stringent test
of such models. In Section 5.4.1, we show that the model naturally includes a dark matter
candidate and discuss its phenomenology in Section 5.4.2. We then briefly discuss various
possible extensions to the quark sector in Section 5.5 and in Section 5.6 we discuss direct
constraints from colliders.
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Chapter 5. Flavour Symmetry Breaking at the Electroweak Scale

5.1. Model and Symmetry Breaking

We utilize the symmetry Q8 oA4 introduced in Chapter 3, which allows for natural vacuum
alignment, and implement the model discussed in Chapter 4 at the electroweak scale. To
this end, we promote the flavon field χ ∼ (31, 1) of that model, which couples to the charged
lepton sector, to EW Higgs doublets. The particle content of the lepton sector is given in
Tab. 4.1. The vacuum configuration

〈χi〉 =

(
0
v√
6

)
, 〈φ1〉 =

1√
2

(a, a, b,−b)T , 〈φ2〉 =
1√
2

(c, c, d,−d)T (5.1)

can be naturally obtained from the most general scalar potential following the discussion
in Section 4.3. As the discussion is very similar to the one given there, we relegate it to
App. A.4.1, where also the scalar mass spectrum is discussed. However, let us briefly recall
the salient features of the VEV configuration (5.1): the scalar singlets φ1 and φ2 break the
symmetry group to the subgroup

〈
S|S2 = E

〉 ∼= Z2 and the EW doublets χ break the discrete
symmetry group down to the subgroup

〈
T |T 3 = E

〉 ∼= Z3, while simultaneously breaking
the electroweak gauge group SU(2)L × U(1)Y down to the electromagnetic U(1)em. The
normalization is chosen such that

∑
i v

2
i = v2 = (

√
2GF )−1 = (246 GeV)2, in accordance with

our earlier definition. Because of the unbroken Z3 symmetry in the charged lepton sector, it is
useful to go to a basis [161–164]

(
H,ϕ′, ϕ′′

)T
= Ω†Tχ ∼ (1, ω2, ω), (Le, Lµ, Lτ )T = Ω†TL ∼ (1, ω2, ω), (5.2)

where this symmetry is represented diagonally. We have indicated the transformation properties
under the unbroken subgroup 〈T 〉 ∼= Z3 under which (ec, µc, τ c) transform as (1, ω, ω2). This
has been denoted flavour triality in [162]. In this basis the vacuum configuration (5.1) implies

that only the field H acquires a VEV 〈H〉 =
(
0, v/
√

2
)T
, while ϕ′ and ϕ′′ are inert doublets

(and thus do not obtain a VEV). The potential for the electroweak doublets χ is given by

Vχ(χ) = µ2
3χ
†χ+

∑

r=11,2,31S,1A

λχr(χ
†χ)r(χ

†χ)r∗ + λχAIm
[
(χ†χ)31S

(χ†χ)31A

]
, (5.3)

and after symmetry breaking the nine-physical scalars contained in χ arrange themselves in
the following multiplets under the remnant U(1) × Z3 symmetry. There is one real scalar
h =
√

2ReH0 with mass

m2
h =

2

9

(
3λχ 11 +

√
3λχ 31,S

)
v2 (5.4)

that plays the role of the Standard Model Higgs. Note that since this scalar is a complete
singlet under all remnant symmetries, it can in principle mix with components of φ1 and φ2

that transform in the same way. This is discussed in Eq. (A.23) in the appendix and in the
following we will for the most part assume the mixing to be small enough to treat h as a mass
eigenstate.

The next four degrees of freedom arrange themselves in the charged scalars ϕ′+ and ϕ′′+

that transform as (1, ω2) and (1, ω) under U(1)× Z3, respectively, and have the masses

m2
ϕ′+ =

v2

12

(
−2
√

3λχ 31,S − λχA
)
, mϕ′′+ =

v2

12

(
−2
√

3λχ 31,S + λχA

)
. (5.5)
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5.2. Lepton Flavour Structure

L ec µc τ c χ φ1 φ2 S η1 η2 η3

Q8 oA4 31 11 12 13 31 41 41 32 35 34 35
Z4 i −i −i −i 1 1 −1 −1 i i −i

SU(2)L 2 1 1 1 2 1 1 1 2 2 2

U(1)Y −1/2 1 1 1 1/2 0 0 0 1/2 1/2 1/2

Table 5.1: Particle content of the minimal model that realizes flavour symmetry breaking at the electroweak
scale. The flavon χ contains the Higgs field and ties the electroweak to the flavour breaking scale. The scalars
ηi and fermionic multiplet S are needed for one-loop generation of neutrino masses.

The final four real scalars sit in the two complex neutral scalars ϕ′0 and ϕ′′0∗, that both
transform as (0, ω2) and the mass eigenstates are given by the neutral scalars

(
Φ1

Φ2

)
=

(
cosα sinα
− sinα cosα

)(
ϕ′0

ϕ′′0∗

)
, with tan 2α =

6λχ 12 +
√

3
(
3λχ 31,A + λχ 31,S

)

6λχA;

their masses may be succinctly written as

m2
Φ1

+m2
Φ2

= −2 tan(2α)
(
m2
ϕ′′+ −m2

ϕ′+

)
+m2

ϕ′′+ +m2
ϕ′+ −

v2λχ 31,A√
3

; (5.6)

m2
Φ1
−m2

Φ2
= 2 |sec(2α)|

∣∣∣m2
ϕ′′+ −m2

ϕ′+

∣∣∣ . (5.7)

The mass spectra for the other scalars can be found in App. A.4.2. Two comments are in order
here: (i) in the potential (5.3) there is only one mass term for the three doublets. Using the
minimization conditions, the mass term can be swapped for the Higgs VEV v and therefore
(ii) all of the squared scalar masses are given as a product of dimensionless scalar couplings
times v2. The additional scalar masses may therefore not be arbitrarily large. Note that in
usual multi-Higgs doublet models each doublet has its own mass term and therefore there is
always a decoupling limit where all non-SM particles are unobservably heavy. Such a setup
is therefore directly testable at colliders, as we will study in Section 5.6. However, before
discussing this, we show that the model accomplishes (i) the description of the (lepton) flavour
structure in terms of a small number of parameters and (ii) the protection against bounds on
new physics from flavour observables such as lepton flavour violating processes.

5.2. Lepton Flavour Structure

In this section we discuss the one-loop generation of neutrino masses and phenomenological
implications of the predicted flavour structure.

5.2.1. Lepton Masses

The charged lepton sector is described by

− Le = yeLχ̃e
c + yµLχ̃µ

c + yτLχ̃τ
c + h.c. , (5.8)
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Chapter 5. Flavour Symmetry Breaking at the Electroweak Scale

where χ̃ = iσ2χ and here and in the following we do not specifically indicate the contractions
if there is only one invariant that can be formed out of the particle content of the operator. In
the physical basis of Eq. (5.2) this term reads

−Le =H̃ (yeLee
c + yµLµµ

c + yτLττ
c) + ϕ̃′ (yeLµec + yµLτµ

c + yτLeτ
c)

+ ϕ̃′′ (yeLτec + yµLeµ
c + yτLµτ

c) + h.c. (5.9)

and we thus see that H couples diagonally to leptons while ϕ′ and ϕ′′ do not. Note that here
the mass terms are of dimension four and there is therefore no need for a complicated UV
completion, in contrast to the mass terms in Eq. (4.3). The mass matrix is thus given by

ME =
v√
2

Ω∗Tdiag(ye, yµ, yτ ), (5.10)

with ΩT given in Eq. (2.26). Neutrino masses are generated at one loop level, through the
interactions with the fermionic singlets S and the scalar doublets η, as shown in Fig. 5.1. The
couplings of S are given by

Lν = h1Lη1S + h2Lη2S +
√

3MSSS + h.c. . (5.11)

The factor of
√

3 cancels a factor coming from the normalization of Clebsch-Gordon coefficients.
In order to calculate the neutrino mass matrix, we have to determine the mass matrix of the
neutral components of η1, η2 and η3. To shorten the notation we define the doublet η̂J to be
the J-th component of the 9 component vector η̂ = (η1, η2, η3) and real scalar field η̂0

k to be
the k-th component of (

√
2Reη̂0,

√
2Imη̂0). Besides the direct mass terms

(
M2
η0

)
ij

=
∂2V

(2)
ηi

∂η̂0
i ∂η̂

0
j

with V (2)
ηi =

∑

i=1,2,3

√
3M2

i η
†
i ηi , (5.12)

there are couplings which give off-diagonal contributions

(
δM2

η0

)
ij

=

〈
∂2δV

(2)
ηi

∂η̂0
i ∂η̂

0
j

〉
(5.13)

to the mass matrix. Such interactions are needed to generate neutrino masses and the relevant
ones can determined from symmetry considerations1. Any contribution to neutrino mass has
to be proportional to

• MS , which breaks the generalized lepton number L→ eiαL, S → e−iαS

• either of the couplings λ1 or λ2, defined by2

Vη,χ =λ1(χTσ2~σχ)11
(ηT1 σ2~ση3)∗11

+ λ2e
iαλ(χTσ2~σχ)31

(ηT2 σ2~ση3)∗31
+ h.c. , (5.14)

which break the generalized lepton number L→ eiαL, ηi → e−iαηi,

1The complete expression for δV
(2)
ηi can be found in the appendix in Eq. (A.24). Only the parts presented

here are relevant for neutrino masses.
2We can set a number of complex parameters real by phase redefinitions. We set y`, h1, h2,MS , λ1, λ3, λ4 real

by rotating `c, L, η2, S, χ, η1, η3, respectively, and display the phase of λ2 explicitly.
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⌫↵ ⌫�
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Figure 1: Neutrino mass generation at one loop.

where �̃ = i⌧2� and the contractions are uniquely defined by the particle content. The mass

matrix is thus given by

ME =
vp
2
⌦⇤

T diag(ye, yµ, y⌧ ) with ⌦T ⌘ 1p
3

0
B@

1 1 1

1 !2 !

1 ! !2

1
CA , (2.3)

Neutrino masses are generated at one loop, through the interactions with the fermionic singlets

S and the scalar doublets ⌘, as it is shown in Fig. 1. The couplings of S are given by2

L⌫ = h1L⌘1S + h2L⌘2S +
p

3 MSSS + h.c. . (2.4)

In order to calculate the neutrino mass matrix, we have to determine the mass matrix of the

⌘i. Besides the direct mass terms

V (2)
⌘i

=
X

i=1,2,3

p
3 M2

i ⌘
†
i ⌘i , (2.5)

there are couplings, which lead to a mixing between the di↵erent ⌘i. Those relevant for

neutrino mass generation can be determined from symmetry considerations. Any contribution

to neutrino mass has to be proportional to MS , which breaks the generalized lepton number

L ! ei↵L, S ! e�i↵S, to �1,2 defined by3

V⌘,� =�1(�
t⌧2~⌧�)11

(⌘t
1⌧2~⌧⌘3)

⇤
11

+ �2e
i↵�(�t⌧2~⌧�)31

(⌘t
2⌧2~⌧⌘3)

⇤
31

+ h.c. , (2.6)

which break the generalized lepton number L ! ei↵L, ⌘i ! e�i↵⌘i, and to �3,4 defined by

V⌘,� =�3(�1�2)11
(⌘†

3⌘1)11
+ �4(�1�2)31

(⌘†
3⌘2)31

+ h.c. , (2.7)

which couples to the Z4-breaking VEV of �2. The contractions (�t⌧2~⌧�)12,3
vanish in the

vacuum given in Eq. (2.1) because the Z3 symmetry generated by T is conserved by h�i. For

2The factor of
p

3 in front of MS cancels the Clebsch-Gordan coe�cient of the coupling of two triplets to

a singlet, such that MS corresponds to the physical mass of the singlets S.
3We can set a number of complex parameters real by phase redefinitions. We set ye, h1, h2, MS , �1, �3, �4

real by rotating ec, L, ⌘2, S, �, ⌘1, ⌘3, respectively, and display the phase of �2 explicitly.

5

Figure 5.1: Neutrino mass generation at one loop.

• and λ3 or λ4 defined by3

Vη,φ =λ3(φ1φ2)11
(η†3η1)11

+ λ4(φ1φ2)31
(η†3η2)31

+ h.c. , (5.15)

which couples to the Z4-breaking VEV of φ2.

The built-in multiple protection of the neutrino mass operator thus necessitates the large
number of couplings involved in neutrino mass generation, and thus a large potential for
suppression beyond the naive factor of 1/(16π2) from the loop integral. For simplicity, we
assume that the direct mass terms Mi dominate over all other contributions; this is in fact a
necessary condition to have a predictive theory of flavour, akin to the condition u/Λ ≤ 1 of
Section 4.4.1. Hence, we can approximate the propagator as

[
k2 − (M2

η0 + δM2
η0)
]−1

= (k2 −M2
η0)−1 + (k2 −M2

η0)−1δM2
η0(k2 −M2

η0)−1, (5.16)

where M2
η0 is diagonal, and treat the mixing between the different components of ηi by mass

insertions δM2
η0 . The evaluation of the one loop diagram leads to

(Mν)αβ =
−i

(2π)4

3∑

i=1

18∑

I,J,M=1

hαiIhβiJI
((
M2
η0

)
II
,
(
M2
η0

)
JJ
,
(
M2
η0

)
MM

,MS

)
(5.17)

where the Yukawa couplings hikJ depend on the two couplings h1,2 given in Eq. (5.11) via
hαkJ = ∂Lν

∂Lα∂Sk∂η̂J
and the dimensionless loop integral is given by4

I(m1,m2,m3,m4) = − 1

16π2

∑

i

mi
2 log

(
mi

2

µ2

)

Πk 6=i (mi
2 −mk

2)
. (5.18)

3The contractions (χTσ2~σχ)12,3
vanish in the vacuum given in Eq. (5.1) and thus do not contribute to the

masses here, because the Z3 symmetry generated by T is conserved by 〈χ〉.
4Note that µ drops out of the sum; it is displayed here to make the symmetric structure of the expression

explicit, while keeping the argument of the logarithm dimensionless.
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Chapter 5. Flavour Symmetry Breaking at the Electroweak Scale

Evaluation of the sums leads to the following flavour structure of the neutrino mass matrix:

Mν =




â ê eiαλ ê eiαλ

. â+ b̂ eiαλ d̂+ ê eiαλ

. . â


 , (5.19)

where the four real coefficients are given by

â =
1

36
√

3
h2

1 λ3 λ1v
2 (ac+ bd)MS I (M1,M1,M3,MS) , (5.20a)

d̂ =
1

72
√

3
h1h2 λ4 λ1v

2 (bc− ad)MS I(M1,M2,M3,MS), (5.20b)

b̂ =
1

108
h2

2 λ4 λ2v
2 (bc− ad)MS I(M2,M2,M3,MS), (5.20c)

ê =
1

216
h1h2 λ3 λ2v

2 (ac+ bd)MS I(M1,M2,M3,MS). (5.20d)

Hence, neutrino masses are suppressed by one insertion of the EW breaking VEV λ1

〈
χ2
〉
/M2

0 ,
with M0 being the largest mass of the particles in the loop M0 ∼ maxi=1,2,3,SMi, and one
mass insertion of the flavour breaking VEV λ2 〈φ1φ2〉 /M2

0 . A phenomenologically viable
neutrino mass scale is obtained for e.g. M0 ∼ O( TeV), 〈χ〉 , 〈φi〉 ∼ O(100 GeV) and hi, λi ∼
O(0.01 − 0.1). The next-to-leading order corrections are suppressed by λ1

〈
χ2
〉
/M2

0 or
λ2 〈φ1φ2〉 /M2

0 , which amounts to an O(0.0001− 0.001) correction for our typical values and
can to a good approximation be neglected.

5.2.2. Phenomenological Implications

As the neutrino mass matrix is described by five physical real parameters, there are four
predictions in the lepton sector at leading order. They can easily be read off from Eq. (5.19)
in terms of matrix elements, but the expressions in terms of mixing parameters are non-trivial.
In the flavour basis, where the charged lepton mass matrix is diagonal, the neutrino mass
matrix is given by

Mν
fl =




â+ 2d̂
3 +

(
2ê+ b̂

3

)
eiαλ − d̂

3 + b̂
3e

iαλω2 − d̂
3 + b̂

3e
iαλω

. 2d̂
3 + b̂

3e
iαλω â− d̂

3 +
(
b̂
3 − ê

)
eiαλ

. . 2d̂
3 + b̂

3e
iαλω2


 . (5.21)

and it is instructive to look at the neutrino mass matrix in the tri-bimaximal basis Mν
tbm =

UTHPSMν
flUHPS , i.e.,

Mν
tbm =




â+ d̂+
(
b̂
2 + ê

)
eiαλ −

√
2 ê eiαλ −i b̂2 e

iαλ

. â 0

. . −â+ d̂+
(
ê− b̂

2

)
eiαλ


 . (5.22)

We will first discuss limiting cases analytically and then perform a numerical analysis of
the general neutrino mass matrix. In the limit of |λ2|v2 → 0, both b̂ and ê vanish and the
mass matrix is of the form given in Eq. (2.48) that we studied in our prototype model of
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Figure 5.2: The deviations from tri-bimaximal mixing of the form U = UHPSU12 and U = UHPSU13 generated
by the angle θ defined in Eq. 5.23. The yellow point represents TBM, the continuous lines give the deviations
from TBM with the angle θ given by the colour codes in the top right corner for δ = n

5
π
2

for n = 0, . . . , 5,
where n = 0 is the outermost parabola etc. The one, two and three sigma regions of a recent global fit [39] are
indicated by dotted, dashed and continuous contours, respectively.

tri-bimaximal mixing in Section 2.4, so that the phenomenology is the same as discussed there.
From Eq. (5.22) we can read off that switching on ê 6= 0 while keeping b̂ = 0 results in a
correction to the PMNS matrix of the form U = UHPSU12(θ̃12)P with U12(θ̃12) denoting the
unitary matrix

U12(θ̃) =




c12 −s12e
−iδ12

s12e
iδ12 c12

1


 , (5.23)

with c12 = cos θ̃12, s12 = sin θ̃12 and P being an arbitrary phase matrix. Due to the way the
PMNS matrix is parametrized (2.15) with the 1-2 rotation to the right, this 1-2 correction
only affects the solar angle, while maintaining the predictions of a maximal atmospheric
and vanishing reactor angle. Since large corrections to this angle are not allowed, in the
phenomenologically acceptable parameter space the relations ê� b̂, â, d̂ should hold.

On the other hand, if we take b̂ 6= 0 while ê = 0, we see from Eq. (5.22) that this requires a
1-3 correction U = UHPSU13(θ̃13)P , where U13(θ̃13), analogous to U12(θ̃12), denotes a complex
rotation in the 1–3 plane. This correction is of the trimaximal mixing [56–63] form discussed
in Section 2.5, which can perturb TBM back into agreement with experiment. The effect of
the various deviations from TBM is illustrated in Fig. 5.2.

To gain an analytical understanding of how the additional parameters affect the mixing
angles, we can perform a perturbative analysis in the limit of small ê and therefore small
| sin2 θ12− 1

3 |. The PMNS matrix can be described by UHPSU13(θ̃13)U12(θ̃12)P , where θ̃12 and

θ̃13 are small in the phenomenologically interesting region and the Majorana phases are given
by P = diag(eiα1/2, 1, eiα3/2). Hence, we can permute the matrices U12 and U13 and we define
r1i = sin θ̃1i cos δ̃1i and t1i = tan δ̃1i, which evaluate to

r13 =
b̂ sinαλ

4â+ 2b̂ cosαλ
, t13 =

2â cosαλ + b̂

2d̂ sinαλ
, (5.24a)
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r12 =

√
2d̂ê sinαλ
∆m2

21,0

, t12 =
2(2â+ d̂) cosαλ + b̂

2d̂ sinαλ
, (5.24b)

where ∆m2
21,0 is the leading order solar mass squared difference, i.e. neglecting the small

corrections of r13 and ê. The phases of the matrix P are given by

tanα1 =
2b̂ r13 cosαλ − sinαλ(2b̂ r13t13 + b̂+ 2ê)

2(â+ b̂ r13 sinαλ + d̂) + cosαλ(2b̂ r13t13 + b̂+ 2ê)
, (5.25a)

tanα2 =
sinαλ(b̂(2r13t13 − 1) + 2ê) + 2b̂ r13 cosαλ

2(â+ b̂ r13 sinαλ − d̂) + cosαλ(−2b̂ r13t13 + b̂− 2ê)
. (5.25b)

Similar to [131], we can parameterize the leptonic mixing matrix in terms of deviations from
the tri-bimaximal mixing angles

sin θ13 =
r√
2
, sin θ12 =

1√
3

(1 + s) , sin θ23 =
1√
2

(1 + a) . (5.26)

The Dirac CP phase δCP is undefined in the tri-bimaximal mixing limit and we leave it free
and do not expand in it. Besides the contributions of α1,3 to the Majorana phases ϕ1,2 of
Eq. (2.15), there are also small corrections δϕ1,2 from the matrices U12(θ̃12) and U13(θ̃13)

ϕ1 = α1 − α3 + δϕ1, and ϕ2 = π − α3 + δϕ2 . (5.27)

This expansion leads to the following form of the leptonic mixing matrix

UPMNS =




s+iδϕ1−2√
6

2i(s+1)+δϕ2

2
√

3
− e−iδr√

2
2(−a+eiδr+s+1)−iδϕ1

2
√

6

δϕ2−i(2a+eiδr+s−2)
2
√

3
−a+1√

2
2(a−eiδr+s+1)−iδϕ1

2
√

6

i(2a+eiδr−s+2)+δϕ2

2
√

3
−a−1√

2


 P . (5.28)

Equating the expanded form of UPMNS to UHPSU13(θ̃13)U12(θ̃12)P determines all free para-
meters s, r, a, δ, δϕ1, δϕ2 as well as some corrections to unphysical phases, which we suppressed
for simplicity. The first order deviations from the mixing angles are

s = −
√

2r12t12, r cos δ = −2r13√
3
, a =

r13√
3
. (5.29)

and the CP phases are given by

tan δCP = tan δ̃13 ϕ1 = α1 − α3 − 2
√

2r12 ϕ2 = π − α3 − 2
√

2r12 . (5.30)

Following [131], we can derive a sum rule, which relates the deviations of the atmospheric
mixing angle with the ones of the reactor mixing angle

a = −1

2
r cos δCP . (5.31)

The masses are determined by

m2
1 = â2 + b̂ (â+ d̂) cosαλ + 2âd̂+

b̂2

4
+ d̂2 , m2

2 = â2 , (5.32)

m2
3 = â2 + b̂ (â− d̂) cosαλ − 2âd̂+

b̂2

4
+ d̂2,
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Figure 5.3: Dependence of the reactor angle θ13 on the atmospheric mixing angle θ23. The various colour
codings are given under each subfigure. Top left: For sin2 θ23 < 1/2( sin2 θ23 > 1/2 ) the model predicts
δCP = 0, 2π(δCP = π). Top right: The scatterplot shows a band structure in sin2 θ12. Bottom left: For the
points in the experimentally allowed region, b̂ has to be of similar size as â, d̂. Bottom right: For the points in
the experimentally allowed region, ê has to be of approximately one order of magnitude smaller than â, d̂.

to leading order in the small mixings r13, r12, and the leading order ratio of mass squared
differences is given by

∆m2
21

∆m2
32

=
4â (2d̂+ b̂ cosαλ) + 4d̂ (d̂+ b̂ cosαλ) + b̂2

4â (2d̂− b̂ cosαλ)− 4d̂ (d̂− b̂ cosαλ)− b̂2
. (5.33)

At next-to leading order, m1 and m3 receive corrections

δm2
1 = b̂(2r13(â+ d̂) sinαλ + b̂ r13t13 + ê) + 2(â+ d̂), cosαλ(b̂ r13t13 + ê) (5.34a)

δm2
3 = −b̂(−2r13(â− d̂) sinαλ + b̂ r13t13 + ê)− 2(â− d̂) cosαλ(b̂ r13t13 + ê) . (5.34b)

To illustrate our findings numerically, we have performed a numerical scan over the model’s
parameter space. We have randomly drawn values for the model parameters of order unity,
assuming an Gaussian distribution with an expectation value of one and a variance of 0.5. The
plots in Fig. 5.3 show the relation between the atmospheric mixing angle θ23 and the reactor
angle θ13. From the bottom two plots one can read off that b̂ is of the same order as â and d̂ for
the experimentally measured θ13 while ê has to be about one order of magnitude smaller. The
colour codings of the two top panels show the mixing parameters δCP and sin2 θ12. Clearly,
the model is predictive: if sin2 θ23 is found to be to be close to the best fit point in the octant
with sin2 θ23 < 1/2, the prediction for the CP phase is δCP = 0, 2π while for sin2 θ23 > 1/2
it is predicted to be δCP = π. To establish the correlation with sin2 θ12 shown in the top
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Figure 5.5: Expectation for the effective mass of
neutrinoless double beta decay. The pink points
lie within the 3 sigma region for all oscillation
parameters. The points with colour coding lie
within the 3 sigma range for all observables except
θ13.

right panel, a precision determination of all the mixing angles is needed. In Fig. 5.4, as a
consistency check of our analytical expressions, the atmospheric sum rule (5.31) is shown
for the points obtained in the numerical scan. The colour coding gives an indication of the
magnitude of deviations from TBM and for small values the approximate relation is fulfilled
to good accuracy.

Finally, let us comment on the predictions for neutrinoless double beta decay. As can be
read off from Eq. (5.21), the effective Majorana mass of the electron neutrino is given by

|mee| =
∣∣∣∣∣â+

2d̂

3
+

(
2ê+

b̂

3

)
eiαλ

∣∣∣∣∣ , (5.35)

which can be expressed in terms of physical parameters as

|mee| =
∣∣∣∣∣
∑

i

U2
eimi

∣∣∣∣∣ ≈
2m1 −m2

3

∣∣∣∣1−
2m1 + 2m2

2m1 −m2
s− i

2δϕ1m1 − δϕ2m2

2m1 −m2

∣∣∣∣ . (5.36)

As the additional neutral fermions S do not mix with neutrinos, there is no additional
contribution due to the heavy singlet, like in Ma’s scotogenic model [165, 166]. In Fig. 5.5
we show the predicted range for the effective Majorana mass of the electron neutrino. As
can be seen, the scan of parameters prefers moderately large values of the absolute mass
scale, however, the effective Majorana mass of the electron neutrino can become small or even
vanish.

5.3. Lepton Flavour Violation

In models with radiative neutrino mass generation, generally the particles in the loop can also
mediate flavour changing processes, in particular lepton flavour violating rare decays. Before
we enter into a detailed discussion of the various processes, we want to remind the reader
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about the remnant Z3 symmetry in the charged lepton sector

(
H,ϕ′, ϕ′′

)
∼ (1, ω2, ω), (Le, Lµ, Lτ ) ∼ (1, ω2, ω), (ec, µc, τ c) ∼ (1, ω, ω2), (5.37)

which suppresses several LFV rare decays. If the remnant Z3 would be a symmetry of the
whole Lagrangian, only the following LFV rare decays

τ+ → µ+µ+e− and τ+ → e+e+µ−

and their charged conjugates would be allowed. All other decays can only proceed through
a coupling to the Z3 breaking VEVs of the neutrino sector. Those decays are naturally
suppressed and the symmetry thus protects the model from large constraints. At first, we will
discuss the radiative LFV rare decays li → ljγ in Section 5.3.1, focusing on the experimentally
most well studied process, namely the process µ→ eγ. In Section 5.3.2, we discuss the LFV
rare decays with purely leptonic final states, which are allowed at tree level, but suppressed by
a three-body final state. Finally, we calculate the anomalous magnetic moment of the muon
and compare it to experiment in Section 5.3.3.

5.3.1. Radiative LFV Decays li → ljγ

Let us first discuss the process of type li → ljγ using an effective field theory approach. Such
processes are described by effective operators of the form [167, 168]

LσµνF
µν`cH̃/M2 ∼ (31, 1) , (5.38)

which transforms in the same way as the mass term under the flavour symmetry. It thus
has to be multiplied by flavons to form an invariant. As we already mentioned, the remnant
Z3 symmetry in the charged lepton sector forbids all radiative LFV rare decays. Hence, the
effective operator in Eq. (5.38) has to involve VEVs of the neutrino sector in order to lead to
non-vanishing decay rates. The lowest order operators that can multiply the mentioned LFV
operator in the flavour basis read

Ω†T

〈(
φ4

1

)
31

〉
=

1

6

(
ab(b2 − a2)

)
(1, 1, 1)T , (5.39a)

Ω†T

〈(
φ4

2

)
31

〉
=

1

6

(
cd(d2 − c2)

)
(1, 1, 1)T , (5.39b)

Ω†T

〈(
φ2

1φ
2
2

)
31

〉
=

1

3

(
ab(c2 − d2)

)
(1, 1, 1)T , (5.39c)

Ω†T

〈(
φ2

1φ
2
2

)
31

〉
=

1

3

(
cd(a2 − b2)

)
(1, 1, 1)T . (5.39d)

There can be more than one contraction, but in the vacuum they all result in these expressions.
The lowest order effective operators thus all give contributions that can be written as

Leff = i
e

M2
`cTH†σµνFµνML+ h.c. with M =




α1 α1 α1

α2 α2 α2

α3 α3 α3



〈
φ4

1

〉

M4
(5.40)

where αi are dimensionless couplings that should (naturally) be of order one and the mass
scale M is the suppression scale of the higher dimensional operators. Note that the structure
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Figure 5.6: Lowest order µ→ eγ processes mediated by ηi (left) and ϕ′(′) (right). There has to a coupling to
the VEVs 〈φ1φ2〉 of the neutrino sector, which suppresses the amplitudes.

of flavour symmetry breaking in the neutrino sector is encoded in M. The symmetry thus
automatically leads to a large suppression. From this matrix the LFV transition amplitudes
can be determined as [167]

Br(li → ljγ)

Br(li → ljνiνj)
=

12
√

2π3α

G3
Fm

2
iM

4

(
|Mij |2 + |Mij |2

)2
(5.41)

and the magnetic dipole moments ai and electric dipole moments di of the charged leptons
are given by [167]

ai = 2mi
v√

2M2
ReMii, di = e

v√
2M2

ImMii. (5.42)

Note that the matrix M has additional dominant contributions to the diagonal entries
stemming from operators that involve χ instead of (φi)

4. Using only the observables µ→ eγ,
τ → µγ and τ → eγ as well as charged lepton electric and dipole moments, it is therefore
very hard to test the underlying symmetry patter, but it can give important indications
distinguishing different models. For example in this model one would expect – barring the
possibility of fine-tuned cancellations among the αi – similar branching ratios for the LFV
decays µ→ eγ, τ → µγ and τ → eγ, as was also found in SUSY A4 models [167, 169].

In the following, we will focus on µ→ eγ, which is the most tightly constrained LFV rare
decay. The leading contribution to µ→ eγ is given by the diagrams depicted in Fig. 5.6a. It
is similar to the neutrino mass diagram Fig. 5.1 in the last section. LFV rare decays mediated
by the flavour violating EW doublets ϕ′(′) are suppressed by one more loop order because of
the necessity to couple to the neutrino sector VEVs. Hence, they only show up at two loop
order, as shown in Fig. 5.6b. We will therefore not consider this diagram further.

Without any mass insertion along the η line, a one-loop diagram of this type evaluates
to [166, 170, 171]

Br(µ→ eγ) =
3α

64π(GFm2
0)2

C4, (5.43)

where m2
0 = 1

3

(
M2

1 +M2
2 +M2

3

)
and, using xJ = (M2

η+)JJ/m
2
0 and hαkJ = ∂Lν

∂Lα∂Sk∂η̂J
,

C2 =

∣∣∣∣∣
3∑

i=1

9∑

J=1

hµiJh
∗
eiJx

−2
J F2(M2

S/(M
2
η+)JJ)

∣∣∣∣∣ and F2(t) =
1− 6t+ 3t2 + 2t3 − 6t2 ln t

6(1− t)4
.
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In our model, we have C2 = 0 for the symmetry reasons given above and there have to be
mass insertions to generate flavour violating interactions. Note that this is a welcome feature
since LFV processes of this type severely constrain models that generate neutrino masses
radiatively [166]. This can be seen as the experimental constraint Br(µ→ eγ) < 2.4 ·10−12 [49]
requires C4 ∼ 1.5 ·10−8 for MS = m0 = 100 GeV. The flavour symmetry automatically reduces

C2 by a factor

(
δM2

η+

M2
η+

)2

. In the limit

(
δM2

η+

M2
η+

)2

� 1, the diagram 5.6a can be computed

explicitly and we find

Br(µ→ eγ) =
α

16π(GFm2
0)2

C̃4 (5.44)

where

C̃2 =
1

m4
0

∣∣∣∣∣∣

3∑

i=1

9∑

J,K,L=1

hµiJ

(
δM2

η+

)
JK

(
δM2

η+

)
KL

h∗eiLF4(MS ,MJ ,MK ,ML)

∣∣∣∣∣∣
(5.45)

and F4 is a dimensionless loop integral, which we only give in the limit of degenerate η masses

G2(t) ≡ F4(MS = tm0,MJ = m0,MK = m0,ML = m0)

=
1

48(t2 − 1)12

[
1− 12t2 − 36t4 + 44t6 + 3t8 − 24(2t2 + 3)t4 ln t

]
. (5.46)

The dimensionless functions F2 and G2 are plotted in Fig. 5.7. The explicit form of the sum
in the expression (5.45) for C̃2 is quite involved and will not be shown here, but it can be
easily obtained using Eq. (A.24) from the appendix. Here, we only comment on the generic
size of the branching ratio. In general, the processes µ→ eγ and the radiative neutrino mass
diagram break different approximate symmetries and it is therefore not necessarily the case
that the smallness of neutrino masses implies a small branching ratio. This is also the case
here. For example from Eq. (5.20), one can read off that the smallness of neutrino mass could
be due to very small values for λ1 ≈ λ2 ≈ 10−9, with all other couplings being order one.
Then the dominant contributions to C̃2 would be of the type

C̃2 ⊃ G2(t)

m4
0

1

432
h2λ4(bc− ad)

[
−h1λ3(ac+ bd) + ω2 h2λ4(bc− ad)

]
, (5.47)

where we have again used the limit of degenerate masses Mi = m0,

0.01 0.1 1 10 100
t
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0.001

0.01

0.1

8F2, G2<

Figure 5.7: The functions F2(red) and
G2(blue).

and could in principle be of order one. However, if we
stick to the parts of parameter space where the small-
ness of neutrino mass is due to many moderately small
couplings hi, λi ∼ O(0.01 − 0.1) and m0 ∼ O( TeV),
〈χ〉 , 〈φi〉 ∼ O(100 GeV) (as discussed below (5.20)) in-
stead of one very small coupling, the branching ratio
is heavily suppressed by C̃4 ∼ (10−9 − 10−13)2. These
natural parameter values thus give an appealing expla-
nation of both the smallness of neutrino masses and the
suppression of LFV decays.
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Figure 5.8: Lepton Flavour Violating rare decays.

5.3.2. LFV Decays li → lll

Another class of processes that are of interest for our model are rare flavour violating decays
of the type µ→ eee. As in the case of the processes fi → fjγ the allowed decay channels are
restricted by the flavour symmetry. If we do not consider the heavily suppressed diagrams
that couple to VEVs in the neutrino sector, it is clear that the process µ→ eee is not allowed
by the Z3 symmetry of the charged lepton sector and the most constraining process is given
by τ− → µ−µ−e+ .

This process can be mediated at tree-level by the neutral components of ϕ′′ as depicted in
the first diagram of Fig. 5.8 and its branching ratio is given by [162, 164]

Br(τ− → µ−µ−e+) =

(
36m2

τm
2
µ

M4
0

)
Br(τ → µνν) = 2.3 · 10−8

(
55 GeV

M0

)4

(5.48)

where we have used Br(τ → µνν) = .174. Compared to the experimental upper bound of
2.3 · 10−8 [172], the effective mass5

1

M4
0

=

[
sin2 α

m2
Φ1

+
cos2 α

m2
Φ2

]2

(5.49)

is thus only weakly constrained. All other processes mediated by ϕ′(′) are further suppressed by
yeyτ or yµye. Rare LFV processes mediated by these fields are therefore naturally suppressed
by smallish Yukawa couplings and do not put a serious constraint on the model.
Let us also estimate the magnitude of the second diagram in Fig. 5.8 mediating τ → µµe, as
this diagram may in principle be larger because it is not suppressed by Yukawa couplings that
are known to be small.

To get an estimate, we work in the limit of degenerate η masses M1 = M2 = M3 = m0 and
find

Γ(τ− → µ−µ−e+) =

∣∣∣∣∣∣
1

16π2

9∑

j,k=1

3∑

i,l=1

hτijh
∗
µikhelkh

∗
µlj

H(MS/m0)

m2
0

∣∣∣∣∣∣

2

,

where H(MS/m0) is a dimensionless loop integral and Br(τ− → µ−µ−e+) = Br(τ →
µνν)Γ(τ−→µ−µ−e+)

Γ(τ−→µ−νµντ )
. Evaluating the sum, we find

∑9
j,k=1

∑3
i,l=1 hτijh

∗
µikhelkh

∗
µlj = 1

27

(
h4

1 − h2
1h

2
2 + h4

2

)

and the experimental bound

Br(τ− → µ−µ−e+) =

∣∣∣∣∣

(
140 GeV

m0

)2

(h4
1 + h4

2 − h2
1h

2
2)H(MS/m0)

∣∣∣∣∣

2

· 2.3 · 10−8 (5.50)

5In [162] λχA = 0 was assumed, which implies α = π/4.
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can easily be evaded even for small values of m0 ∼ 178 GeV ≈ 308/
√

3 GeV (which would give
the correct dark matter relic abundance of η in the degenerate limit we are considering here,
as will be discussed in Section 5.4.2) and order one Yukawas (assuming H(t) ∼ 1). For the
parameter ranges preferred by one-loop neutrino mass generation, i.e. hi ∼ 0.1, the expected
branching ratio is too small to expect a signal in next-generation experiments. In summary,
we can conclude that the flavour symmetry effectively protects against lepton flavour violating
interactions.

5.3.3. Anomalous Magnetic Moment of Muon

Let us now briefly discuss EDMs. The contribution from the exchange of the neutral component
ϕ′′ should give the largest contributions, as it is proportional to the tau Yukawa coupling
squared. It has been calculated previously [161] and amounts to

∆aµ =
GFm

2
τ

2
√

2π2

(
m2
µ

M2
0

)
= 1.5 · 10−12

(
100 GeV

M0

)2

, (5.51)

which is negligible and cannot account for the reported deviation of (290±90)×10−11 [173, 174],
from the Standard Model. The charged components of η also contribute to the anomalous
magnetic moment of the muon, with a strength given by [170, 174]

∆aµ = −
m2
µ

3(4π2)2

[
h2

1

M2
1

F2

(
MS

M1

)
+

h2
2

M2
2

F2

(
MS

M2

)]

= −1.8× 10−12
∑

i

(
hi
.1

)2(100 GeV

Mi

)2
(
F2(MS

Mi
)

F2(1)

)
. (5.52)

This therefore gives a very mild constraint on the masses and Yukawa couplings of the η’s. In
the preferred parameter space for neutrino mass generation, this contribution is negligible.
Note that the contribution goes in the opposite direction of the reported excess and it can
therefore not be used to explain it [175].

5.4. Dark Matter

In this section we discuss dark matter candidates of the model and their phenomenology.

5.4.1. Dark Matter Candidates and their Stability

To start off the discussion of possible dark matter candidates in our model, let us dwell on
the remnant symmetries left over after symmetry breakdown. While the Q8 oA4 part of the
symmetry group is completely broken, there is a Z2 symmetry given by

R : L→ −L `c → −`c ηi → −ηi , (5.53)

which is the (−1)L
′

remnant of the auxiliary Z4 symmetry iL
′
, where L′ = L + Nη is the

generalized lepton number symmetry that is the sum of the usual SM lepton number with
the η number Nη. At the renormalizable level after symmetry breaking, there is another Z2

symmetry of the model given by

A : S → −S ηi → −ηi . (5.54)
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This is purely an accidental symmetry that emerges due to the particle content and the
requirement of renormalizability and not a remnant of some symmetry we have imposed on
the model. The reason why it emerges can be traced back to the fact that the SM fermions as
well as χ transform only under the generators S and T which form the subgroup A4 and thus
there are no operators of the form ϕOA4 , where ϕ is a field transforming non-trivially under
X (e.g. fields transforming as 3i with i 6= 1 such as S and η) and OA4 an arbitrary operator
formed by fields transforming under A4. These two symmetries in tandem make dark matter
stable. Note that the remnant symmetry R alone would not be sufficient, as e.g. the decay of
the lightest particle contained in ηi to neutrinos and the neutral CP-even component of the
Higgs would be possible. The symmetry A makes the lightest component of S and η stable,
which implies that the dark matter candidate is either fermionic or bosonic. This symmetry,
however, is only an accidental symmetry and there is thus no reason for higher dimensional
operators to respect this symmetry. Such a higher dimensional operator O with A[O] 6= O
would lead to a decay of the dark matter candidate. On the contrary, all higher dimensional
operators have to respect the symmetry R[O] = O, as this symmetry is a remnant of an exact
symmetry and is therefore also exact. We will now show that this requirement pushes up the
dimensionality of the higher dimensional decay operators to a level where the dark matter
candidate is stable for all practical purposes. Since the discussion depends on whether the
dark matter candidate stems from η or from S, we discuss the two possibilities in turn.

Scalar DM: Any effective operator that would mediate a decay of the lightest component
of ηi has to be of the form

O = ηiO∆L=1
SM 〈Oφkφl〉 (5.55)

where 〈Oφkφl〉 is built out of SM-singlet flavon fields and transforms even under R. As η is
odd under R, the operator O∆L=1

SM , which is built up of SM fields, has to be also odd under R
to make the complete operator invariant. Obviously the complete operator O is odd under
the accidental symmetry A and thus mediates DM decay.

Since R acts upon SM particles as the discrete subgroup of lepton number (−1)L, the
operator O∆L=1

SM has to violate lepton number by an odd unit and has to transform as an
electroweak doublet. The lowest dimensional operators in the SM arise at dimension six and
violate L by one unit (See [176] for a recent review of gauge invariant dimension 6 operators.)

Lucdcdc L̄d̄cd̄cd̄c LQ̄Q̄dc ēcQ̄dcdc (5.56a)

χ†LQQQ χ†ecucucdc χ†L̄Q̄ucdc χ†ēcQQūc χ†LQūcd̄c . (5.56b)

All dimension 6 operators in Eq. (5.56a) break baryon number by one unit, B − L by two
units and preserve B + L. The dimension 7 operators in Eq. (5.56b) on the other hand break
baryon number by one unit, preserve B−L and break B+L by two units. They are formed by
adjoining a χ to a dimension 6 proton decay operator. Since baryon number is an accidental
symmetry in our model (in the same way as in the Standard Model), these operators are never
generated6 within the model and thus dark matter is stable within the model. They rather
parametrize some baryon number violating physics, which from proton decay experiments is
pushed to scales of the order of ΛB ≈ 1016 GeV.

To form a singlet under the flavour symmetry, the second operator Oφkφl is needed to make
the total operator O a singlet under the flavour symmetry, as ηi transforms under X while

6Except through instantons and sphalerons, which do not play a role here, in the same way as in the SM.
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O∆L=1
SM does not. It has to be composed of an even number of flavons φk, as under the Z2

subgroup generated by 7 X2 only φk transforms non-trivially.
If we assume the presence of baryon number violating operators at scale ΛB, the dark matter

candidate η decays into quarks and one lepton. Under the assumption that the flavour part
of the operator is related to the breaking of the flavour symmetry ΛF , a DM decay operator
formed by a dimension 6 SM operator O∆L=1

SM is suppressed by Λ3
B:

ηiO∆L=1
SM

Λ3
B

〈φkφl〉
Λ2
F

. (5.57)

Hence, the lifetime of DM can be estimated to be

Γ−1 ∼ 8πΛ6
B

m7
η

(
Λ2
F

〈φkφl〉

)2

= 1.9 · 1045Gyr

(
ΛB

1016 GeV

)6(100 GeV

mη

)7( Λ2
F

〈φkφl〉

)2

(5.58)

and the dark matter candidate is thus stable even on cosmological time-scales, if one assumes
‘traditional’ values of for the scale of baryon number violating physics. However the operators
in Eq. (5.56a) are not those directly tested in proton decay experiments and the physics of
baryon number violation might be such that the operators in Eq. (5.56a) are suppressed by
a smaller energy scale than the one responsible for baryon decay. We will come back to the
issue of induced proton decay at the end of the subsection, but now we want to turn the logic
around and derive bounds on ΛB and ΛF from the fact that dark matter is still around.

Decaying DM models are constrained by WMAP to Γ−1 ≥ 123 Gyr at 68% C.L. [177]
and WMAP+SN Ia to Γ−1 ≥ 700 Gyr at 95.5% C.L. [178]. Furthermore, decaying DM is
constrained by possible neutrino final states [179], which serve as a conservative limit, since
neutrinos are the least detectable SM particles. The exact bound depends on the DM mass
ranging from 1022s = 108Gyr at O(1 GeV) and increasing almost linearly on a log-log plot
to 1028s ≈ 1014Gyr at O(100 TeV). Diffuse gamma ray constraints from Fermi data yield a
limit of Γ−1 & 1026s ≈ 1012Gyr [180] for the decay into a pair of charged leptons. Here, DM
decays into one lepton and quarks, which might lead to further softer leptons in the final state.
Hence, the bounds does not directly apply, but we will use it to obtain an order of magnitude
estimate for the suppression scale of the lowest order DM decay operator in Eq. (5.55). Using
the limit from diffuse gamma rays with Γ−1 & 1026s as a benchmark value, we obtain a limit
on the suppression scale of

(
Λ3
BΛ2

F

)1/5
& 6 · 107 GeV

( mη

1 TeV

)7/10
( 〈φkφl〉

(100 GeV)2

)1/5

. (5.59)

Due to the high dimensionality of the operator, the bound on the suppression scale ΛL,F does
not depend strongly on the bound on the lifetime.

All of the operators in Eq. (5.56) lead to DM induced proton decay 8 into a final state
lepton and final state mesons

ηi +N → L+M . (5.60)

As the proton as well as the DM are non-relativistic and they annihilate at rest, the induced
proton decay leads to similar kinematics as in the ordinary proton decay, but the total rest

7This element generates the centre of the group and thus commutes with all group elements.
8Induced proton decay has been studied in the context of asymmetric DM [181]. However, their analysis does

not apply in our case, because the induced proton decay is mediated via a different operator with different
kinematics, since one of the final state particles has a non-negligible mass of the order of the proton mass.
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energy E ∼ mη + mN ≈ mη is much larger compared to the ordinary proton decay with
E ∼ mN . Hence, the final state particles appear to originate from the decay of a much heavier
particle and the experimental signatures change. Therefore, the existing limits on proton decay
are not directly applicable. However, in generic GUT models, for example, the operators given
in Eqs. (5.56a), (5.56b) and the proton decay operators are generated at the same energy
scale.

Fermionic DM: Similarly to scalar DM consisting of the lightest component of ηi, S can
decay via higher-dimensional operators. They are generally of the form

SOSM 〈Oφkφl〉 , (5.61)

where OSM transforms like a spin 1
2 fermion, which is a singlet under the SM group, but

transform non-trivially under the flavour symmetry9. The lowest dimensional operators OSM
emerge at dimension 9

2

ucdcdc Q̄Q̄dc χQūcd̄c χQQQ. (5.62)

Note that these operators transform trivially under R, as does S. All of these operators
violate baryon number by one unit and therefore, they lead to induced proton decay. However,
the kinematics is quite different compared to ordinary proton decay, because the lowest order
operators do not contain a final state lepton.

Similarly to the scalar case, there are bounds from astrophysical observations. As DM decay
only arises at dimension 8, the bound on the suppression scale does not depend strongly on
the exact bound on the lifetime. Therefore, we again make a rough estimate of the bound on
the suppression scale by using the same lifetime as in the scalar case and we obtain

(
Λ2
BΛ2

F

)1/4
& 9 · 108 GeV

( mη

1 TeV

)5/8
( 〈φkφl〉

(100 GeV)2

)1/4

(5.63)

due to the lower dimensionality of the DM decay operator.

5.4.2. Dark Matter Phenomenology

We now give a brief overview of the phenomenology of the two different dark matter candidates.
We will estimate the DM abundance and detection possibilities for the different scenarios and
show that there is a region of parameter space where the correct abundance can be obtained.
A detailed calculation is beyond the scope of the present work. Again, we discuss the different
dark matter candidates separately.

Scalar DM:

The scalar dark matter candidate is a component of an inert EW doublet. Therefore, we are
going to translate the analysis for scalar multiplet DM done in [182] to our setup. A detailed
analysis would require the precise calculation of the ηi mass matrices. We assume that one
of the triplets ηi is sufficiently lighter than the other two, such that we do not have to take
them into account during freeze-out of DM, i.e. they have to be at least 20% heavier than the

9Note that S transforms under the symmetry generator X, while OSM does not. Therefore the operator
〈Oφkφl〉 is needed to form a singlet.
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DM candidate [183]. In the following, we will denote the triplet containing the DM candidate
by ηDM with direct mass term MηDM . We are going to assume, as we did previously in the
section about the neutrino masses, that the direct mass term MηDM dominates over all mass
terms induced by VEVs. Hence, the DM mass is approximately given by the direct mass term
MηDM . In the limit that the mass splittings are below 1%, we can neglect the annihilations
via other scalars and concentrate on the pure gauge (co)annihilation channels. Following [182],
there is an upper bound on the DM mass of an inert doublet of m∗ = 534± 25 GeV(3σ) from
overclosing the universe in this limit. The correct DM abundance is obtained for m∗. As ηDM
is in a triplet representations of Q8 oA4, there are three almost degenerate doublets, which
all contribute to the DM density equally. Therefore, the upper bound on the DM mass is
lowered by approximately a factor of

√
3 to m∗η ≈ 308 GeV, which is consistent with direct

searches for scalar particles, as discussed in Section 5.6.
Today, the mass splitting between DM and the next-to lightest particles forbids gauge

interactions kinematically due to the small DM velocities, unless it is tuned to be very small
(. O(100) keV), and DM can only be detected via the couplings to scalars, specifically via the
Higgs portal. The spin-independent cross section for scattering of DM off the neutron is given
by [184]

σn ≈
|λL|2
π

µ2

M2
DM

m2
p

m4
H

f2 ≈ 2.7 · 10−48

(
λL

0.01

)2(300 GeV

MηDM

)2(125 GeV

mH

)4( f

0.3

)2

cm2

(5.64)
with λL being the coupling of DM to the Higgs, µ the reduced mass of the DM-neutron system,
mp the mass of the nucleon, mH the mass of the Higgs and f parametrises the nuclear matrix
element, 0.14 < f < 0.66 in [184]. The estimated cross section is well below the current
experimental limits by XENON100 [185], which is the most sensitive DM direct detection
experiment in that mass region.

Note, the discussed parameter point is only an example which proves the possibility to
obtain the correct DM relic density. For larger mass splittings, the annihilation via scalar
interactions cannot be neglected in the calculation of the DM relic abundance and the direct
detection cross section is enhanced.

Fermionic DM: For the discussion of the fermionic DM candidate contained in S, we
follow the discussion in [166] to show that it is possible to obtain the correct relic abundance.
For completeness, we repeat the relevant steps with the necessary changes. At tree-level,
there is only the mass term

√
3MSSS = MS(S2

1 + S2
2 + S2

3) and thus all components of S
are degenerate. At loop-level this degeneracy is lifted and for concreteness we here take
MS̃3

& MS̃2
& MS̃1

, where S̃i are mass eigenstates. The states S̃2,3 can decay into S̃1 and

leptons by the interchange of η and thus at the present time only S̃1 is around. However, due
to the near degeneracy, the freeze-out of all three species runs in parallel. Coannihilation
processes of the type SiSj → SM with i 6= j are suppressed in comparison to annihiliation
processes SiSi → SM, because they require an additional mass insertion along the η line. It is
thus a very good approximation to consider the freeze-out of each component separately and
the total relic abundance is thus just given by the sum of the abundances of S1, S2 and S3.

The annihilation cross section for each Sk into leptons in the limit of vanishing lepton masses
and scalar mass splittings [186] is given by

〈σv〉 = bv2 +O(v4), b =
∑

i=1,2

h4
i r

2
i

(
1− 2ri + 2r2

i

)

24πM2
S

, ri =
M2
S

M2
i +M2

S

. (5.65)
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In the limit of MS �Mi, the expression for the p-wave simplifies to

b =
M2
S

24π

∑

i=1,2

(
hi
mi

)4

, (5.66)

i.e. the cross section scales with (hi/mi)
4. The relic density of the SM singlets S, taking into

account the mass degeneracy of the components of S, can then be obtained from [187]

ΩSh
2 =

n0
SMS

ρc
h2, (5.67)

with n0
S being the number density of S today, which is

(n0
S)−1 = (

∑

k

n0
Sk

)−1 = (3n0
Sk

)−1 =
0.088 g

1/2
∗ MPlMS3b

x2
fs0

, (5.68)

where s0 = 2970/cm3 is today’s entropy density, the critical density is ρc = 3H2/(8πG) =
1.05 · 10−5h2GeV/cm3, the Planck mass MPl = 1.22 · 1019 GeV and the dimensionless Hubble
parameter h. At the freeze-out temperature, the ratio xf = MS/T is determined by

xf = ln
0.0764MPl(6b/xf )c(2 + c)MS

(g∗xf )1/2
(5.69)

with the effective number of degrees of freedom g∗ at freeze-out. After eliminating the cross
section with Eq. (5.68) and Eq. (5.67), we obtain

xf = ln
1.74x

1/2
f s0h

2c(2 + c)MS

g∗(ΩSh2)ρc
. (5.70)

Following the discussion in [166, 187], we rewrite Eq. (5.67) and Eq. (5.70) as
[
MS

GeV

]
= 1.95 · 10−8x

−1/2
f exf

[
Ωdh

2

0.12

]
, (5.71a)

[
b

GeV−2

]
= 7.32 · 10−11x2

f

[
Ωdh

2

0.12

]
, (5.71b)

using g
1/2
∗ = 10 and c = 1/2. We solve these equations numerically for fixed values of h1 = h2

and M1 = M2 and show the resulting contour lines with the correct DM relic abundance in the
plane M1/h1 = M2/h2 vs. MS in Fig. 5.9. Hence, it is possible to obtain the correct DM relic
abundance for fermionic DM, although large Yukawa couplings hi are required. Similarly to
the scalar DM scenario, we expect the cross section to raise with non-vanishing mass splittings
of the scalars ηi, which allows for smaller Yukawa couplings hi.

5.5. Extension to Quark Sector

So far we restricted ourselves to the discussion of the flavour structure in the lepton sector.
Given the different structures in the lepton and quark sector, one might wonder whether and
how this model can be extended to the quark sector. In the following, we will discuss a few
simple possibilities to incorporate the quark sector. It is necessary to specify how quarks
transform under the flavour symmetry as this will to a certain extent determine the collider
signatures of the model. A detailed discussion of quark flavour observables is postponed to
future work.
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Figure 5.9: Contour lines for different values of h1 = h2 with the correct DM abundance ΩSh
2 = 0.12.

Quarks Sector Mirroring the Lepton Sector

We can use the same assignment for the quarks as for the leptons with respect to (Q8oA4)×Z4,
i.e.

Q ∼ (31, 1) , uc + cc + tc ∼ (11 + 12 + 13, 1) , dc + sc + bc ∼ (11 + 12 + 13, 1) . (5.72)

This assignment leads to the following Yukawa couplings in the Lagrangian

− Lq = yuQχu
c + ycQχc

c + ytQχt
c + ydQχ̃d

c + ysQχ̃s
c + ybQχ̃b

c + h.c. , (5.73)

which amount to the mass matrices of the quarks

MU =
v√
2

Ω∗Tdiag(yu, yc, yt) and MD =
v√
2

Ω∗Tdiag(yd, ys, yb) . (5.74)

Hence there is no mixing in the quark sector, i.e. the CKM mixing matrix VCKM = V †d Vu = 1,
which is a good leading order approximation to the CKM mixing. The Cabbibo angle can
be produced by a cross-talk of operators from the neutrino sector [10], e.g. the operator
(Qχ̃dc)12

(φ1φ2)2/M4 leads to a non-vanishing Cabbibo mixing angle. It has to be of the

order (φ1φ2)2/(M4) ∼ 10−4(ms/95 MeV), in order to generate a large enough mixing in the
down-type quark sector to explain the Cabbibo angle. Within the model, the operator can be
generated at one loop with ϕ′(′) running in the loop. However, the contribution turns out to
be too small and a different mechanism is required to generate this operator.

Flavor changing neutral currents (FCNC) are naturally suppressed at the leading order,
since there is a selection rule ∆D∆S∆B = ±2 as well as ∆U∆C∆T = ±2 in the flavour basis
for four Fermi operators similarly to the lepton sector.10

10It has been claimed in [162] that leptonic Kaon decays result in a relatively strong bound of M0 > 510 GeV
on the effective mass M0 defined in Eq. (5.49). However, there seems to be an error in the calculation. The
correct bound is significantly weaker, but we relegate the discussion to [18].
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Quarks Transforming under X

Another interesting possibility that is not possible in A4 models is to assign the quarks to
representations that also transform under the group generator X. Since the top mass is large,
we want it to be generated at the renormalizable level, while all the other quark masses might
well be the result of higher order effects. Looking at the multiplication rule

3i × 3j =
5∑

k=1
k 6=i,j

3k, (i 6= j), (5.75)

it is clear that if one assigns Q ∼ (32, 1) and U c ∼ (33, 1) there is only one Yukawa coupling
at the renormalizable level

− Lt = ytQχU
c + h.c. , (5.76)

which generates the top mass. The charm and up mass, as well as up sector mixing are
generated by operators of the form

− Lu = y
(u,1)
i [QχU c(φ1φ1)]i + y

(u,2)
i [QχU c(φ2φ2)]i h.c. , (5.77)

where the sum goes over all singlet contractions of the fields. There are certainly enough
parameters to fit the quark masses and up-type mixing. Actually, there are no further
predictions besides the large top mass, since there are too many free parameters.

In the down-type sector we can either utilize the same structure as in the up-type sector
or, as the bottom quark mass is closer to the charm mass than to the top mass, we can use
the assignment Dc ∼ (31, 1). With this choice there is no tree-level operator of type (5.76)
allowed and all down type quark masses and mixing arise from

− Lu = y
(d,1)
i [QχDc(φ1φ1)]i + y

(d,2)
i [QχDc(φ2φ2)]i h.c. (5.78)

We will not discuss this possibility further here, as we are primarily focused on the lepton
sector.

Additional EW Higgs Doublet Hq ∼ 11

Another possibility is that the flavour structure in the quark sector could be completely
unrelated to the one in the lepton sector. In particular, the quarks might not transform under
the flavour symmetry in the lepton sector. This can be simply achieved by assigning the quarks
to the singlet representation of the flavour group. In order to generate the quark mass matrices,
we have to introduce an additional EW Higgs Doublet Hq, which does not transform under
the flavour group. Hence, the flavour structure in the quark sector is unchanged compared
to the SM one. Therefore, we do not discuss this possibility further and we will only briefly
comment on its collider phenomenology in Section 5.6.

The only effect11 of the additional Higgs doublet on the discussion in the preceding sections
is to rescale the VEV of H such that

〈H0〉2 + 〈H0
q 〉2 =

1

2
(
√

2GF )−1 =
1

2
(246 GeV)2

is maintained.
11Here we assume that Hq does not give leading order contribution to the Weinberg operator. Symmetries can

always be adjusted in order for this to be the case. If Hq does give such a contribution there will be one
more free physical phase in the neutrino mass matrix that cannot be rotated away.
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5.6. Collider Phenomenology

Our model predicts several new particles with EW charges at the EW scale. In this section,
we will concentrate on the simplest extension to the quark sector given in Section 5.5, where
quark doublets are assigned to the triplet representation 31 of the flavour group and obtain
their masses from a coupling to the flavoured Higgs χ, as discussed in the previous section.
We will briefly comment on the possibility to have a separate Higgs for the quark sector in the
last subsection. Besides the fermionic singlets S, there are several EW doublets, which can
be grouped in three different categories, the Higgs h, which obtains a VEV, the two partners
of the Higgs in the flavour triplet χ, namely ϕ′ and ϕ′′, and the additional inert EW scalar
doublets ηi. In the following, we sketch the different production and decay channels and
discuss their implications for direct searches at colliders as well as the current bounds on the
existence of new particles beyond the SM. However, a detailed study is beyond the scope of
this presentation.

After a short summary of the main experimental results, we will discuss each class of new
particles separately.

5.6.1. Summary of Relevant Experimental Results

Recently, ATLAS [1] as well as CMS [2] announced the discovery of a Higgs-like resonance
at 126.0± 0.4(stat.)± 0.4(sys.) GeV and 125.3± 0.4(stat.)± 0.5(sys.) GeV, respectively. The
discovery is based on an analysis of several channels. The two main channels are the decay
into two photons and h→ ZZ∗ → 4l. While the h→ ZZ∗ → 4l rate seems to agree with the
SM prediction, the h→ γγ rate seems to be enhanced by a factor of 1.5 to 2. This deviation is
somewhat intriguing, as in the SM this decay proceeds via a loop diagram and is thus sensitive
to new physics contributions. However, so far, the deviation is at the 2σ level or even at the
1σ level [188–190], if the uncertainties are taken into account more conservatively. Besides
the discovery of a Higgs-like resonance, the LHC has put strong constraints on any physics
beyond the SM.

Charged Higgs particles are constrained by searches at LEP and LHC. At LEP, charged
Higgs particles H± are produced via a virtual Z∗ in the s-channel, i.e. e+e− → Z∗ → H+H−,
and studied via their decays into τντ as well as c̄s assuming their branching ratios add up to 1,
i.e. Br( H+ → τ+ντ )+Br( H+ → cs̄ )=1. This results in a bound of mH+ > 79.3 GeV [172].
Independent of any assumptions on the branching ratio, the invisible Z decay leads to
mH+ & 45 GeV [172]. CMS searched for charged Higgs particles [191], which are produced in
top decays, t→ H+b and constrains their branching ratio Br(t→ H+b) to less than 2%-4%
for charged Higgs masses between 80 GeV and 160 GeV. Similarly, the search by the ATLAS
experiment [192] yields bounds on the branching ratio Br(t→ H+b) of the order of 1%-5% for
charged Higgs masses in the range between 90 and 160 GeV, assuming Br(H+ → τ+ντ )=1.

5.6.2. EW Higgs Doublet H

We will first consider the limit in which there is no mixing between the Higgs h and the flavons
φi. In the limit of no mixing, the tree-level couplings of the Higgs h contained in the EW
Higgs doublet H to gauge bosons are identical to the SM couplings. In addition, the flavour
conserving tree level couplings of the Higgs h to the fermions also agree with the SM ones.
Note that there might be small corrections, since quark mixing vanishes at leading order and
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the Higgs couplings conserve all flavour numbers separately. As there are no new coloured
particles and the coupling of the Higgs to tt̄ is the same as in the SM, the loop-induced
coupling of the Higgs h to gluons agrees with the SM one. In summary, the production of the
Higgs h as well as all tree-level decay channels and the decay into gluons are exactly like in
the SM. The only decay channel that has been measured so far and which is changed with
respect to the SM, is the decay into two photons, because it is a one-loop effect. If any of the
other new scalars were light enough, there would be additional tree level Higgs decays into
pairs of these scalars and such scenarios are therefore constrained. The decay h → SS̄ , if
kinematically allowed, is loop suppressed.

Mixing of the Higgs h with the flavons φi leads to a suppression of all tree-level couplings
to gauge bosons and fermions. Hence, the production cross section is reduced according to the
admixture of the flavon to the Higgs. As Higgs decays into ZZ∗ are close to SM value, the
admixture of the flavons to the Higgs h is limited.

Finally, let us discuss the diphoton decay channel. The SM contribution is dominated by the
W boson contribution and the smaller top loop contribution, which interfere destructively. In
our model, the decay into two photons receives additional contributions from charged scalars
in the loop, which are contained in the EW doublets ϕ′, ϕ′′ as well as ηi. Any enhancing
contribution has to interfere constructively with the SM W boson loop or dominate over the
W boson contribution. The contribution of additional charged scalars ρi with charge one,
coupled to the Higgs via the Higgs portal

Oρi = cρiH
†H|ρi|2 , (5.79)

has recently been studied in [193]. The ratio of the effective coupling of the Higgs to two
photons vs. the SM prediction is given by

Rγγ =

∣∣∣∣∣1−
∑

i

cρih(mρi)

∣∣∣∣∣

2

, (5.80)

where the function h is depicted in Fig. 5.10. To obtain an enhancement of the factor of 2
(1.5), one thus needs a value of

∑

i

cρih(mρi) =

{
−0.41 (−0.22) for constructive interference
2.41 (2.22) for destructive interference

}
. (5.81)

Hence, a large negative coupling cρ ∼ −2 is necessary to obtain an enhancement factor of 2 for
a single singly charged scalar of mass 100 GeV. Such a large negative coupling destabilizes the
vacuum and leads to charge breaking minima unless |cρ| <

√
λλρ ∼

√
λρ/2 is fulfilled, where

λρ denotes the quartic coupling λρ|ρ|4/2. Note that this requires very large values for λρ.
Let us now use this formula to estimate the deviations from Rγγ = 1 that can be expected

in this model. In total we have 11 charged scalars, 9 from the doublets η1,2,3 and two from the
doublets ϕ′, ϕ′′. The interaction of the last two scalars with the Higgs field can be expressed as

cϕ′ =
m2
h +m2

ϕ′+

v2
, cϕ′′ =

m2
h +m2

ϕ′′+

v2
, (5.82)

with m2
ϕ′(′)+ defined in Eq. (5.5). In the limit of large m2

ϕ′(′) these two fields contribute

cϕ′h(M c
+) + cϕ′′h(M c

−) = 0.1 +

(
22 GeV

M c
+

)2

+

(
22 GeV

M c
−

)2

. (5.83)
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Figure 5.10: Plot of function h of Eq. (5.81).

Figure 5.11: Rγγ in the case where all charged
scalars have the same common mass M as a func-
tion of 1

3

∑3
J=1 cηJ .

The couplings of the charged components of the η fields are given by

Oη =
3∑

i,J=1

cηJH
†H|η(i)

J |2, (5.84)

as dictated by the symmetry. The coefficients cηJ are essentially unconstrained except for
the fact that the combination that couples to the DM particle should not be too large, to
avoid the bound from direct detection. In the limit where all charged scalars have a common
mass M , we see from Fig. 5.11 that M = 200 GeV requires 1

3

∑3
J=1 cηJ = −1.46 (−0.95) for

Rγγ = 2(1.5).

In case the h → γγ anomaly persists, it would be interesting to measure h → γZ, since
it originates from similar diagrams, where one photon is replaced by one Z boson. A cross-
correlation of the two measurements would allow to determine the isospin of these particles.
In our model all charged scalars are part of SU(2) doublets allowing to distinguish it from
other models which have EW multiplets in the loop with different EW charges, like singlets or
triplets.

5.6.3. Further Scalars

Besides the Higgs h, there are several additional scalars, the flavour-violating EW scalar
doublets ϕ′(′) as well as ηi, which do not acquire a VEV, and the flavons φi, which acquire a
VEV. See App. A.4 for the scalar mass spectrum.

Flavour-violating Higgs Doublets ϕ′(′): The neutral components of the flavour-violating
Higgs doublets ϕ′(′) do not have tree-level couplings to tt̄. Hence, they are not produced via
gluon fusion, but only via vector boson fusion or associate production. Consequently, their
production cross section is roughly one order of magnitude suppressed compared to the SM
Higgs production cross section with the same mass, which is dominated by gluon fusion. The
most sensitive Higgs searches for heavy Higgs bosons use the decay channels into EW vector
bosons, h→WW (∗), ZZ(∗) and the strongest bounds reach roughly σSM/5. In addition, there
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are additional decay channels for the heavy Higgs bosons into the lighter Higgs bosons, which
will suppress the branching fraction into EW gauge bosons. Hence, the current searches only
start constraining the neutral components of the flavour-violating Higgs doublets ϕ′(′). The
prospects for searches of flavour-violating decays into leptons have been studied in [194–197].

As the charged Higgs particles contained in ϕ′(′) do not couple to tb̄, the LHC limits do not
apply. Hence, the charged Higgs particles in our model are only constrained by the LEP limits
discussed previously.

Although there are no tight constraints yet, upcoming searches will test the allowed range
of masses, because the flavour-violating Higgs doublets ϕ′(′) stem from the same flavour triplet
as the Higgs doublet H, and therefore their masses are determined to be given by scalar
couplings times the EW VEV. Their masses may therefore not be raised arbitrarily high, as
discussed below Eq. (5.5)12.

EW Scalar Doublets ηi: The neutral components of the EW scalar doublets ηi do not
couple to quarks and particularly not to tt̄. Hence, similarly to the flavour-violating Higgs
doublets, they are not produced via gluon fusion and the current bounds from heavy Higgs
searches do not constrain ηi. Also, the charged components of ηi are not constrained by the
current LHC searches, because they do not couple to quarks directly. Therefore, they are only
constrained by the LEP searches.

Flavons φi: The flavons φi do not have gauge interactions and they do not couple to
fermions directly. However, they mix with the Higgs h, which is constrained by the Higgs
searches to be small, since a large mixing suppresses the production cross section of h and
therefore all rates relative to the SM expectation. In conclusion, the scalar mass eigenstates
which are dominantly composed of the flavons φi are only produced via mixing with the Higgs
h and thus there are no limits from current searches.

Variant with Additional EW Higgs Doublet Hq: As we discussed in Section 5.5,
another simple possibility to incorporate quarks in the model is by assigning all quarks to the
trivial representation of the flavour group and introducing an additional EW Higgs doublet Hq,
which transforms trivially under the flavour group. This leads to different collider signatures
compared to the previously discussed scenario. Soon, these scenarios can be experimentally
distinguished at the LHC. We will highlight the most important differences.

The discussion of the fermions S as well as the scalars ηi remains the same. The main
changes are in the Higgs phenomenology. In contrast to the other scenario, the component
in χ which obtains a VEV does not couple to quarks and therefore it is not produced in
gluon fusion, unless there is mixing between χ and Hq. Instead, the newly introduced Higgs
Hq will be produced in gluon fusion. In this setup, the observed resonance at 126 GeV
would be associated with the mass eigenstate, which is dominantly composed of Higgs Hq.
As Hq has exactly the same couplings to gauge bosons and quarks, but does not couple to
leptons (especially τ ’s), the decays into leptons are suppressed by the mixing between Hq and
H (contained in χ). This leads to a slight enhancement of the remaining branching ratios
(O(10%)). The diphoton branching ratio can be enhanced in the same way as discussed in
Section 5.6.2.

12Note that if one introduces soft-breaking terms that respect the Z3 symmetry, it is possible to adjust the
mass terms arbitrarily [162]. Alternatively one may introduce an EW singlet scalar that transforms as
31 and breaks to the same subgroup as χ. This can be realized without introducing a vacuum alignment
problem.
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5.6.4. Fermionic Singlets S

The additional fermionic states S are SM singlets and only charged under the discrete flavour
group. Furthermore, they only couple to lepton doublets and therefore their production cross
section at the hadron colliders is suppressed compared to coloured particles and there are no
relevant analyses at present. The production depends on the exact mass spectrum of ηi as
well as S. The production via t-channel ηi exchange is always present in a lepton collider,
e.g. e+e− → SS̄. If S is lighter than one of the components of ηi, it is possible to produce S
via EW production of these heavier components of ηi and subsequent decay into S and one
lepton. Unless S is the DM candidate, the fermionic singlet S will decay into a lepton and one
of the lighter components of ηi, which will subsequently cascade down to DM via EW gauge
interactions. The signal is missing transverse energy and leptons (and possibly EW gauge
bosons) in the final state.

If S is lighter than all ηi’s and therefore a DM candidate, there are bounds from mono-photon
searches at LEP [198]. As S only couples to leptons, the searches at hadron colliders are
weaker due to the additional suppression from loops that couple leptons to quarks. The
mono-photon searches at LEP probe the effective DM annihilation operator (ēS)(eS̄)/Λ2

t ,
which are induced by the exchange of a scalar doublet η1,2. The scale Λt of this operator is
determined by Λ−2

t =
∑

k |hk|2/M2
k for Mk � MS . The analysis in [198] quotes a limit of

(200− 340) GeV for MS < 90 GeV. Hence, this does not impose a strong constraint, since the
smallness of neutrino masses points towards larger cutoff scales Λt.

5.7. Summary & Conclusions

We have presented a complete model of lepton flavour structure at the electroweak scale. We
have shown how neutrino masses are generated at one-loop level and discussed phenomenological
consequences of the flavour structure. We have shown how the non-trivial flavour structure
suppresses phenomenologically problematic flavour violating processes in the lepton sector.
The model naturally contains a dark matter candidate and we have studied its phenomenology.
Finally we have presented possibilities to extend the model to the quark sector and discussed
collider constraints.

In conclusion, this work shows that it is possible to explain the lepton flavour structure at
accessible scales without running into immediate problems with flavour observables and other
bounds. It would be interesting to perform a more in depth study of the model’s parameter
space. In particular a careful study of the possibilities to extend the model to the quark sector
would be interesting.
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Chapter 6.

CP and Discrete Flavour Symmetries

In this chapter, we give a consistent definition of CP transformations as outer automorphisms
of the symmetry group. After an introduction, we give general consistency conditions of how
to define CP in the context of discrete symmetry groups. We apply this formalism to define
CP for a number of small groups that have been studied in this context and comment on recent
claims in the literature that complex Clebsch-Gordon coefficients may give an explanation of
CP violation in nature. We further demonstrate that whenever there exists a generalized CP
transformation this implies vanishing CP phases.

6.1. Introduction

After the discovery of a sizeable value of θ13 by the reactor experiments DoubleChooz [35],
DayaBay [36] and RENO [37] the door has been pushed wide open to measure the last
undetermined parameters of the Standard Model, namely the CP phases of the lepton sector.
Of special interest is the Dirac CP-phase δCP as it can be experimentally determined in
neutrino oscillation experiments in the foreseeable future.1

In the lepton sector, there is the proud/infamous tradition to explain the structure of mixing
angles through the introduction of non-abelian discrete symmetries. The relative lack of success
with regard to the reactor angle θ13 has not deterred the field from using the same set of ideas
to try and predict the missing CP phase δCP using discrete symmetries. For example, there
have been attempts to explain CP violation as a result of complex Clebsch-Gordon coefficients
of groups such as T ′ [199, 200] and ∆(27) [201–205] and sometimes inconsistent definitions
of CP have been used in the study of discrete groups. In order to relate CP violation to the
complex Clebsch-Gordan coefficients, a CP symmetry has to be imposed on the Lagrangian to
forbid any CP violating coupling. This CP symmetry is then broken spontaneously [206, 207].

To clarify these issues, we here give a consistent general definition of CP transformations in
the context of non-abelian discrete flavour groups. We will show that in many cases it is not
possible to define CP in the naive way, φ → φ∗, but rather a non-trivial transformation in
flavour space is needed. Indeed there is a one-to-one correspondence between generalised CP
transformations [208–210] and the outer automorphism group of the flavour group. It should
not be surprising that outer automorphisms play a role in the definition of CP as complex
conjugation is an outer automorphism of the field of complex numbers and the definition of
CP transformations as automorphisms in the context of gauge theories has been discussed long
ago by Grimus and Rebelo [211]. Generalised CP transformations in the context of discrete
symmetries have been used before for A4 [212–215].

1 To discern Majorana phases from possible future signals of neutrinoless double beta decay experiments will
always be model dependent and thus seems less promising.
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While the outer automorphism groups of continuous groups is either trivial or a Z2
2, the

outer automorphism group of discrete groups can be very rich. For example the well-known
flavour group ∆(27) has an automorphism group of order 432.

As a result of our investigation of generalised CP transformations, we present consistent
definitions of CP for all groups of order smaller than 30 that contain three dimensional
representations. Highlights are the case of A4, where we show that the one complex phase
in the scalar potential of a single triplet does not break CP, which clears up some confusion
about the recent observation that one can obtain CP conserving solutions from an apparently
explicitly CP-breaking potential [163]. In the case of T ′ we show that the one consistent
CP definition cannot be reconciled with the claimed geometrical origin of CP violation and
therefore the results obtained there have to be considered as unphysical and basis dependent.
For the group ∆(27) we are able to explain the so-called calculable phases as a result of an
accidental generalised CP symmetry that had so far been overlooked in the literature.

Another motivation for this work comes from a technical issue that has to do with an
implementation of the Q8 o A4 model of Chapter 4 if one wants to promote all flavons to
electroweak doublets. In this case we have

φi = (φ
(1)
i , φ

(2)
i , φ

(3)
i , φ

(4)
i )T ∼ 41 with i = 1, 2 and χ = (χ(1), χ(2), χ(3))T ∼ 31,

where each component transforms in the same way as a Higgs doublet under electroweak
symmetry. In Chapter 3, we have seen that to realize the vacuum structure (4.5) it is crucial
that couplings such as

(χ†χ)13
(φ†φ)12

that connect the symmetry transformations in the two sectors be forbidden at the renormaliz-
able level, or in other words there should be an accidental symmetry in A4 × (Q8 oA4) of the
scalar potential under which χ transforms as (3,11) and the φi fields transform as (1,41).
Due to the relation 41 × 41 = 11S + 31A + 32S + 33S + 34S + 35A the above coupling is not
allowed but because of the doublet structure additional couplings are allowed that might be
problematic. The most problematic coupling is3

λ
(
χ†χ

)
31,S

·
(
φ†iφi

)
31

+ h.c., (6.1)

where

(a†b)31
=

1

2



−a†4b1 + a†3b2 − a†2b3 + a†1b4
−a†3b1 − a†4b2 + a†1b3 + a†2b4
a†2b1 − a†1b2 − a†4b3 + a†3b4


 for a, b ∼ 41.

Clearly (φ†1φ1)31
is purely imaginary, while

(
χ†χ

)
31,S

is real and λ therefore has to be purely

imaginary. As all dangerous couplings are of this sort a natural idea is to get rid of these
couplings by imposing a CP symmetry

Φ(t, ~x)→ CP [Φ(t, ~x)] = Φ∗(t,−~x),

where Φ stands for any doublet field and the reference to the space-time coordinates (t, ~x)
will be suppressed in the following. While this symmetry would clearly forbid the dangerous

2With the sole exception of SO(8), whose outer automorphism group is S3.
3The coupling

(
χ†χ

)
31,A

(
φ†iφi

)
31

would not destabilize the symmetry breaking pattern.
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couplings it turns out that it is incompatible with the internal structure of the discrete
symmetry group, as we will now demonstrate.

The outline of the chapter is as follows. In Section 6.2.1, we define a generalised CP
transformation and discuss its connection with the outer automorphism group. The implications
of a generalised CP transformation for the physical phases are discussed in Section 6.2.2.
In Section 6.3, we apply our general considerations to specific examples. In particular, we
will discuss all groups of order less than 30 with a 3-dimensional representation. Finally, we
conclude in Section 6.4.

6.2. Generalized CP Transformations

6.2.1. CP and the Outer Automorphism Group

In order to simplify the discussion, we will focus on finite discrete groups only. We do not
consider the Lorentz group or any continuous group and therefore restrict ourselves to scalar
multiplets unless necessary. The definition of (generalized) CP transformations as outer
automorphisms of continuous groups has been given in [211]. An extension to higher spin
representations of the Lorentz group and continuous groups is straightforward. Let us consider
a scalar multiplet

φ =
(
ϕR, ϕP , ϕ∗P , ϕC , ϕ∗C

)T
(6.2)

that contains real (R), pseudo-real (P) and complex (C) representations of the discrete group
G. The discrete group G acts on φ as

φ
G−→ ρ(g)φ, g ∈ G, (6.3)

where ρ is a representation ρ : G→ GL(N,C), which is generally reducible. In fact ρ(G) ⊂
U(N), since we are only considering unitary representations. A generalized CP transformation
has to leave |∂φ|2 invariant and is thus of the form

φ
CP−→ Uφ∗ (6.4)

with U being a unitary matrix. If the representation is real, i.e. φ = φ∗, there is always the
trivial CP transformation φ→ φ∗, which acts trivially on the group. In the following, we will
take ρ to be complex and faithful, i.e. ρ is injective. If ρ were not faithful then the theory
would only be invariant under the smaller symmetry group isomorphic to G/ ker ρ and the
restricted representation would be faithful.

Comparing first performing a group transformation and then performing a CP transformation
with the inverse order of operations, as shown in Fig. 6.1, one finds the requirement that

Uρ(g)∗U−1 ∈ Imρ ≡ ρ(G) , (6.5)

i.e. the CP transformation maps group elements ρ(g) onto group elements ρ(g′). It preserves
the group multiplication, i.e. Uρ(g1g2)∗U−1 = Uρ(g1)∗U−1Uρ(g2)∗U−1, and therefore is
a homomorphism. Furthermore the CP transformation is bijective, since U is unitary and
therefore invertible. Hence, CP is an automorphism 4 of the group, as is depicted in Fig. 6.2.

4An automorphism µ of a group G is a bijective homomorphism µ : G→ G.
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φ

Uφ∗

Uρ(g)∗φ∗

ρ(g′)φ = Uρ(g)∗U−1φ

CP g

g′ CP−1

Figure 6.1: CP definition.

Indeed, the possible matrices U of Eq. (6.5) form a representation of the automorphism
group 5 Aut(G) of G, which we are showing in the following.

U represents the automorphism u : G→ G given by

u : g ∈ G→ ρ(g)→ Uρ(g)∗U−1 = ρ(g′)→ g′ = ρ−1(Uρ(g)∗U−1) ∈ G

or

Uρ(g)∗U−1 = ρ(u(g)) . (6.6)

It is straightforward to show that this mapping u : G→ G is indeed an automorphism.

Vice versa, if u : G → G is an automorphism, we can explicitly construct a matrix U in
the following way. We first extend G to a group G′ containing G as a normal subgroup and
u(g) = g′gg′−1 ∀g ∈ G with g′ ∈ G′. Taking the order of u 6 to be ord(u) = n, we define the
homomorphism

θ : Zn = ({0, .., n− 1},+)→ Aut(G) : 1→ θ1 ≡ u ,

which has a trivial kernel. This homomorphism thus defines the semidirect product group
G′ = Goθ Zn with the group multiplication

(g1, z1) ? (g2, z2) = (g1θz1(g2), z1 + z2) .

Keeping track of the multiplication rules, we find

(E, 1) ? (g, z) ? (E, 1)−1 = (u(g), z) ,

where E is the identity element of G. The outer automorphism 7 u of G becomes an inner
automorphism of G′ and we can obtain a matrix representation of u by the standard techniques
for finding matrix representations of groups, which are implemented in GAP [129] .

Hence, there is a unitary matrix U ′ with

U ′ρ(g)U ′−1 = ρ(u(g)).

5The automorphism group Aut(G) is the set of all automorphisms ofG with composition as group multiplication.
6The order of a group element u of G is given by the smallest n ∈ N with un = idG.
7An inner automorphism µh of a group G is an automorphism, which is represented by conjugation with an

element h of G, i.e. µh ≡ conj(h) : g → hgh−1. If an automorphism can not be represented by conjugation
with a group element, it is called an outer automorphism.
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g ∈ G

ρ(g)∗ Uρ(g)∗U−1 = ρ(g′)

u(g) = g′ ∈ G

ρ
ρ−1

u : G→ G

Figure 6.2: The matrix U that appears in the definition of CP defines an automorphism u : G → G of the
group G.

Note that Eq. (6.4) in combination with Eq. (6.2) implies the existence of a matrix W with
W 2 = 1 as well as φ∗ = Wφ and consequently ρ(g) = Wρ(g)∗W . This allows to write a CP
transformation as

φ→ Uφ∗ = UWφ

and therefore
Uρ(g)∗U−1 = ρ(u(g))

with U = U ′W .
The automorphisms form a group with composition as group multiplication, i.e. u′ = ũ ◦ u

is again an automorphism represented by

U ′ρ(g)∗U ′−1
= ρ(u′(g))

with
ρ(u′(g)) = ρ(ũ(u(g))) = ŨWρ(u(g))WŨ−1 = ŨWUρ(g)U−1WŨ−1

and thus

U ′ = ŨWU. (6.7)

The trivial automorphism id(g) = g ∀g ∈ G is represented by U = W and the inverse
automorphism u−1 is represented by WU−1W . We thus have a homomorphism from the
automorphism group to the group of matrices U defined in Eq. (6.4) with the conjunction
?: (A,B) → A ? B ≡ AWB. With respect to this conjunction the matrices U form a
representation of the automorphism group.

For any solution U of Eq. (6.5) the matrix ρ(g)U is also a solution for any g ∈ G, which
corresponds to performing a CP transformation followed by a group transformation described
by ρ(g). The group transformation corresponds to an inner homomorphism 8, which does
not pose any new restrictions. It is therefore sufficient to consider autmorphisms with inner
automorphisms modded out. Hence the group of generalized CP transformations is given by
the outer automorphism group, which is defined by

Out(G) ≡ Aut(G)/Inn(G) . (6.8)

8An inner automorphism is an automorphism which can be represented by conjugation, i.e. conj(h) : g → hgh−1

with h ∈ G. The set of all inner automorphisms form the inner automorphism group Inn(G). For every
group G there is a natural group homomorphism G→ Aut(G) whose image is Inn(G) and whose kernel is
the centre of G, Z(G), i.e. the subset of G which commutes with all elements of G. In short

Inn(G) ∼= G/Z(G) .

Thus, if G has trivial centre it can be embedded into its own automorphism group.
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As we will be using the character table in the discussion of the different groups, we will
briefly comment on how automorphisms act on the character table. As automorphisms are
mappings from the group into itself and there is a unique character table for each group up to
reordering rows and columns, automorphisms are symmetries of the character table and can
not change the character table besides exchanging rows and columns. Inner automorphisms
act via conjugation on the group and hence they map group elements to group elements of
the same conjugacy classes. Neither do they exchange representations and therefore they do
not change the character table. Outer automorphisms on the other hand map elements from
one conjugacy class to another as well as one representation to another.

We follow [211] and call a basis where U may be represented by the identity matrix times a
phase, φ→ eiαφ∗, a CP basis. Note that under a change of basis φ′ = V φ we have

φ′ → (V UV T )φ′ (6.9)

and it is thus not always possible to perform a basis change to a CP basis where V UV T is
diagonal [216].

6.2.2. Physical Implications of a Generalized CP Symmetry

The existence of a generalized CP symmetry implies that there is no direct CP violation
and CP violation can only be generated via spontaneous symmetry breaking. This has been
studied in terms of weak basis invariants [217–219]. A necessary and sufficient set of weak
basis invariants, which measure the CP violation in the lepton sector and vanish in the CP
conserving case has been proposed in [219]. In the following, we will explicitly demonstrate
that the weak basis invariant for Dirac CP violation vanishes for our generalized CP symmetry
and refer the reader to [219] for the remaining weak basis invariants.

Let us consider a left-handed lepton doublet L = (ν, e)T with the following mass terms

Lmass = −eTMee
c − 1

2
νTMνν + h.c. .

It was shown in [217–219] that Dirac-type CP violation (sin δCP 6= 0) is equivalent to

0 6= tr [Hν , He]
3 with Hν = (M †νMν)∗ and He = (MeM

†
e )T , .

If L transforms under a generalised CP transformation as

L
CP−→ ULC ≡ U (iσ2L

∗)

where LC denotes charge conjugation with respect to the Lorentz group and U is unitary, the
weak basis invariants Hν,e have to fulfil

Hν = UTHT
ν U
∗ He = UTHT

e U
∗

and therefore (note [A,B]T = −[AT , BT ])

tr [Hν , He]
3 = tr UT

[
HT
ν , H

T
e

]3
U∗ = −tr [Hν , He]

3 = 0 (6.10)

and there is no Dirac-type CP violation.
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6.3. Applications to Questions in the Literature

6.3.1. Z3
∼= SG(3, 1)

Let us start the discussion of examples by taking the cyclic group with three elements
Z3
∼=
〈
T |T 3 = E

〉
, which is the smallest group with complex representations. There is one

non-trivial automorphism u(T ) = T 2, which is outer and since all group elements commute,
the inner automorphisms are all trivial, conj(T ) = conj(T 2) = id. The structure of the
automorphism group is thus:

Z(Z3) ∼= Z3 Aut(Z3) ∼= Z2 (6.11)

Inn(Z3) ∼= Z1 Out(Z3) ∼= Z2. (6.12)

1 T T 2

11 1 1 1
12 1 ω ω2

13 1 ω2 ω

Table 6.1: Character Table of Z3.
The automorphism u(T ) = T 2(blue)
interchanges rows and columns.

Looking at the character table of Z3 displayed in Table 6.1, we
see that the outer automorphism u : T → T 2 indicated in blue
acts on the character table by interchanging the conjugacy
classes represented by T and u(T ) = T 2 and the representa-
tions 12 → 12 ◦ u = 13, i.e. the rows and columns of the
character table such that the table stays invariant, as an outer
automorphism should do. Let us take a theory that contains
the complex representation ϕ ∼ 12. The vector φ = (ϕ,ϕ∗)T

is acted upon by the group generator T as

ρ(T ) =

(
ω 0
0 ω2

)

and we have ρ(T )∗ = ρ(T 2) ∈ Imρ and therefore U = 1 is a representation of the outer
automorphism u(T ) = T 2. The generalized CP transformation of Eq. (6.4) is therefore just
the usual ϕ→ ϕ∗.

Another solution to Eq. (6.4) is the matrix

W =

(
0 1
1 0

)

that gives an inner automorphism (or a trivial map, actually) and also a trivial ‘CP transfor-
mation’ ϕ→ ϕ. This is an example where the trivial automorphism is not represented by the
identity, as discussed below Eq. (6.7). Note that the matrix W represents u2 = id.

6.3.2. A4
∼= (Z2 × Z2) o Z3

∼= SG(12, 3)

The group A4 =
〈
S, T |S2 = T 3 = (ST )3 = E

〉
has been introduced in Section 2.3.1; it is very

important for model building and serves as our first non-trivial example. Only the identity
element commutes with all other elements and the natural homomorphism n : A4 → Aut(A4)
defined by n(g) = conj(g) is therefore injective. There is one non-trivial outer automorphism
u(S, T ) = (S, T 2) and the automorphism structure is thus given as:

Z(A4) ∼= Z1 Aut(A4) ∼= S4 (6.13)

Inn(A4) ∼= A4 Out(A4) ∼= Z2. (6.14)
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The character table of A4 is given in Table 2.4 and it is easy to verify that the automorphism
u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real
representation φ ∼ 31 in the Ma-Rajasekaran [65] basis:

ρ31
(S) = S3 ≡




1 0 0
0 −1 0
0 0 −1


 , ρ31

(T ) = T3 ≡




0 1 0
0 0 1
1 0 0


 . (6.15)

In this basis both group generators are real (ρ(g)∗ = ρ(g) ∈ Imρ) and one might be tempted to
take U = 13 as this fulfils Eq. (6.5). However, A4 is a group with complex representations and
therefore CP has to be an outer automorphism and the map derived from U = 13 via Eq. (6.6)
is the trivial automorphism u(g) = g, which is of course not outer. One also encounters this
problem as soon as one considers contractions such as

(φφ)12
=

1√
3

(
φ1φ1 + ω2φ2φ2 + ωφ3φ3

)

which transform under this ‘CP’ φ→ Uφ∗ = φ as

(φφ)12
→ (φφ)12

∼ 12,

which is in conflict with the expectation that CP should involve complex conjugation such
that

(φφ)12
→ [(φφ)12

]∗ ∼ 13.

Just imagine that the theory contains a real scalar triplet χ and ξ ∼ 13. If one defines CP as
χ→ χ and ξ → ξ∗ then the invariant (χχ)12

ξ under CP is mapped to (χχ)12
ξ∗, which is

not invariant under the group. Clearly this shows that this definition of CP is not consistent if
particles transforming under these representations are present, it has however been (implicitly)
used in a number of works [163, 220, 221].

If we instead use the non-trivial solution of Eq. (6.5)

U = U3 ≡




1 0 0
0 0 1
0 1 0




that corresponds to the outer automorphism u(S, T ) = u(S, T 2) we immediately see that

(φφ)12
→ [(φφ)12

]∗ ∼ 13.

Note that this is the only consistent definition of CP (up to inner automorphisms) in any
theory that involves the complex representations somewhere as the outer automorphism group
is Z2. We have encountered the matrix U3 before in Eq. (2.30), where we have seen that it
extends A4 to S4.

Using Eq. (6.4), we can immediately see that in this case the trivial solution U = 13 does
not exist. Let us consider the vector φ = (ξ, ξ∗, χ)T with ξ ∼ 13 and χ ∼ 31, which transforms
as

ρ(S) = diag(1, 1, S3) ρ(T ) = diag(ω, ω2, T3), (6.16)
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clearly fulfilling ρ(S)∗ = ρ(S) ∈ Imρ and ρ(T )∗ /∈ Imρ. We are therefore forced to use
U = diag(1, 1, U3), which gives Uρ(T )∗U−1 = ρ(T 2) ∈ Imρ and Uρ(S)∗U−1 = ρ(S) ∈ Imρ
and therefore represents the outer automorphism u : (S, T ) → (S, T 2). The only consistent
CP transformation in this theory is therefore ξ → ξ∗ and χ→ U3χ

∗ = U3χ. Since this case is
of some relevance to model building, let us dwell on it a bit more and repeat the discussion
for the basis

S =
1

3



−1 2 2
2 −1 2
2 2 −1


 , T =




1 0 0
0 ω2 0
0 0 ω


 ,

first used by Altarelli and Feruglio [69]. Here the group elements are complex but the
Clebsch-Gordon coefficients are real. The unique result of Eq. (6.4) is U = 13 up to inner
automorphisms. This basis is therefore a CP basis, as defined in Eq. (6.9). Note that in this
basis

(φφ)12
= (φ2φ2 + φ1φ3 + φ3φ1), (φφ)13

= (φ3φ3 + φ1φ2 + φ2φ1)

and thus

(φφ)12
→ [(φφ)12

]∗ ∼ 13,

as it should be.

Let us look at a physical situation where a certain confusion about the definition of CP can
be alleviated by our definition. If one considers the potential for one triplet Higgs doublet
χ = (χ1, χ2, χ3)T in the basis of Eq. (6.15) there is one potentially complex coupling in the
potential [65, 163, 221]

λ5 (χ†χ)31

(
χ†χ

)
31

+ h.c. = λ5

[(
χ†1χ2

)2
+
(
χ†2χ3

)2
+
(
χ†3χ1

)2
]

+ h.c. (6.17)

It can easily be checked that the generalized CP transformation χ→ U3χ
∗ acts as

I ≡
[(
χ†1χ2

)2
+
(
χ†2χ3

)2
+
(
χ†3χ1

)2
]
→
[(
χ†1χ2

)2
+
(
χ†2χ3

)2
+
(
χ†3χ1

)2
]

= I

and thus does not give a restriction on the phase of λ5. Note that the naive CP transformation
χ→ χ∗ transforms the group invariant I into I∗ and therefore restricts λ5 to be real as was e.g.
done in [220]. However, we have seen that this naive CP transformation cannot be consistently
implemented on the Lagrangian level if there are complex representations. Therefore it is
inconsistent to call the phase of λ5 a CP phase. This also explains an observation made
in [163], where it was shown that even for arg λ5 6= 0 the VEV configuration

〈χ〉 = V (1, 1, 1), 〈χ〉 = V ′(1, 0, 0) V, V ′ ∈ R, (6.18)

which of course respects both CP transformations, can be obtained without fine-tuning. This
would have been somewhat surprising, as usually symmetry conserving solutions cannot
be obtained from explicitly symmetry breaking potentials. However, the phase of λ5 does
not break the consistent CP, as does the VEV configuration (6.18), therefore everything is
consistent.
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6.3.3. T ′ ∼= SG(24, 3)

The group T ′ =
〈
S, T |S4 = T 3 = (ST )3 = E

〉
is also an important group in the context of CP

violation [199, 200]. It has two elements Z(T ′) = {E,S2} ∼= Z2 that commute with all group
elements and therefore Inn(T ′) ∼= G/Z(T ′) ∼= A4. There is one non-trivial outer automorphism
(up to inner automorphisms) u(S, T ) = (S3, T 2). Therefore the automorphism structure can
be summarized as:

Z(T ′) ∼= Z2 Aut(T ′) ∼= S4 (6.19)

Inn(T ′) ∼= A4 Out(T ′) ∼= Z2.

A non-trivial CP transformation therefore has to be a representation of u in the sense of
Eq. (6.4). Let us now see how it is represented for the various representations of T ′.

There is a faithful pseudo-real representation

21 : S = A1, T = ωA2

with σ†2Sσ2 = S∗ and σ†2Tσ2 = T ∗ and the two faithful complex representations

22 : S = A1 T = ω2A2; 23 : S = A1, T = A2

with σ†2S2′σ2 = S∗2′′ and σ†2T2′σ2 = T ∗2′′ , where

A1 =
−1√

3

(
i ψ

√
2

−ψ−1
√

2 −i

)
, A2 =

(
ω 0
0 1

)

with ψ = e2πi/24. For all of the two-dimensional representations, we find the matrix

U = U2 ≡ diag(ψ−5, ψ5),

which represents the automorphism u via Uρ(g)∗U−1 = ρ(u(g)). For the three-dimensional
representation

ρ(S) =
1

3



−1 2ω 2ω2

2ω2 −1 2ω
2ω 2ω2 −1


 , ρ(T ) =




1 0 0
0 ω 0
0 0 ω2




the matrix U of Eq. (6.4) is given by U = ρ(T ) with again Uρ(T )∗U−1 = ρ(T 2), Uρ(S)∗U =
ρ(S3); for the one dimensional representations we take U = ρ(T ) as for the three-dimensional
representations.

In summary, we have thus found the one unique non-trivial outer automorphism (up to
inner automorphisms) of T ′ and thus the unique CP transformation

1i → ωi−11∗i 2i → diag(ψ−5, ψ5)2∗i 31 → diag(1, ω, ω2)3∗1. (6.20)

Let us now use this insight to investigate a claim that there is geometrical CP violation
in grand unified models based on T ′ [199, 200]. We follow [199] and introduce (T1, T2) ∼ 2,
which transforms as 10 of SU(5) and includes the first two generations of up-type quarks and
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the flavons φ ∼ 3 and φ′ ∼ 3. Auxiliary Z12 × Z12 symmetries are introduced such that the
one-two sector of the mass matrix is described by

−LTT = ycTTφ
2 + yuTTφ

′3 + h.c. (6.21)

= yc

[(
1

8
+
i

4

)(
T 2

1

(
2φ2

2 − φ1φ3

)
+ (2 + 2i)T1T2φ2φ3 + iT 2

2

(
φ1φ2 − 2φ2

3

))]
+

+ yu

[
1

6

(
2φ′1φ

′
3 + φ′2

2
) (
iT 2

1 φ
′
1 + (1− i)T1T2φ

′
2 + T 2

2 φ
′
3

)]
+ h.c.,

where we have omitted (Higgs-) fields that do not transform under the flavour symmetry and
a suppression by some high-energy scale of a sufficient power to make yi dimensionless is
understood.

It is assumed that the VEVs

〈
φ′
〉

= (1, 1, 1)V ′, 〈φ〉 = (0, 0, 1)V, V, V ′ ∈ R (6.22)

are real, which may be justified by a CP transformation. There is only one CP transformation9

left invariant, namely the one corresponding to the outer automorphism u′ = u ◦ conj(T 2)
represented on the 3 dimensional representation by the identity matrix: φ′ → φ′∗ and φ→ φ∗.

The 1-2 elements of the up type quark mass matrix are given as follows as follows:

Mu ∼ yu
(

i i−1
2

i−1
2 1

)
V ′3 + yc

(
0 0

0 1− i
2

)
V 2.

At this point the parameters yu,s and VEVs are chosen real and it is claimed that the phases
that emerge from the complex Clebsch-Gordon coefficients explain CP violation. The question
that naturally arises here is if this choice of parameters can be justified by a symmetry. The
only candidate symmetry is a generalized CP symmetry of the type (6.5) we are considering
here. As we have shown how the various fields have to transform under the generalized CP
symmetry we can now easily determine how the invariants of Eq. (6.21) transform10:

CP [TTφ2] =
1

5
(4− 3i)(TTφ2)∗ CP [TTφ′3] = −i(TTφ′3)∗. (6.23)

Therefore invariance under CP requires arg(yc) = −1
2 arg(4− 3i) = 1

2 arctan 3
4 and arg yu = π

4 ,
which is in conflict with the claims made in [199, 200]. Note that also the relative phase
between the two couplings does not agree with ‘geometrical’ CP violation. This also shows
that the results obtained there are completely basis dependent and therefore unphysical.

Note that the VEVs of Eq. (6.22) are invariant under the generalised CP trafo Unew =
Uρ(T )2 = diag(1, 1, 1), but in the full model [199] there are additional scalar fields e.g.
ψ ∼ 2′ with 〈ψ′〉 ∼ (1, 1) that are not invariant under the consistent CP transformation
Unew = Uρ(T )2, which in this basis reads diag(eiπ11/2, eiπ5/2). Thus such a VEV configuration
would imply a spontaneous breaking of CP, if one would change the phases of the couplings to
be in accordance with the consistent CP transformation.

9This also determines the phase of U .
10Note that inner automorphisms correspond to group transformations and therefore only outer automorphims

can give non-trivial constraints when acting on group invariants. Here there is only one non-trivial outer
automorphism (up to inner automorphisms).
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E BABA ABA A BAB AB A2 B2 B BA2BAB AB2ABA

11 1 1 1 1 1 1 1 1 1 1 1
12 1 ω ω2 1 ω ω2 1 ω ω2 1 1
13 1 ω2 ω 1 ω2 ω 1 ω2 ω 1 1
14 1 ω ω ω2 ω2 ω2 ω 1 1 1 1
15 1 ω2 1 ω2 1 ω ω ω ω2 1 1
16 1 1 ω2 ω2 ω 1 ω ω2 ω 1 1
17 1 ω2 ω2 ω ω ω ω2 1 1 1 1
18 1 1 ω ω ω2 1 ω2 ω ω2 1 1
19 1 ω 1 ω 1 ω2 ω2 ω2 ω 1 1
3 3 . . . . . . . . 3ω 3ω2

3∗ 3 . . . . . . . . 3ω2 3ω

Table 6.2: Character table of ∆(27). The first line are representatives of the different conjugacy classes. Zeroes
in the character table are denoted by a dot . and ω is the third root of unity ω = e2πi/3. The arrows illustrate
the generators of the outer automorphism group u1(blue) and u2(red).

In [199], no dynamical mechanism to generate the VEV configuration was given but in [200]
it was claimed that it can be done using 23 driving fields, a UR(1) symmetry and shaping
symmetries Z12×Z3

8 ×Z2
6 ×Z4 of the impressive order of 884736. However, they just assumed

that all couplings should be real, which certainly does not coincide with the correct CP
transformation we have given here.

6.3.4. ∆(27) ∼= (Z3 × Z3) o Z3
∼= SG(27, 3)

The group ∆(27) =
〈
A,B|A3 = B3 = (AB)3 = E

〉
is another interesting group from the

standpoint of CP violation. Its automorphism structure is quite involved. The centre of
the group is isomorphic to Z3 and generated by the group element X = A2BAB2 with
conj(X) = id and the inner automorphism group has the structure Z3 × Z3. The outer
automorphism group is generated by

u1 : (A,B)→ (ABA2, B2AB) , u2 : (A,B)→ (ABAB,B2) . (6.24)

It is isomorphic to GL(2, 3), i.e. the general linear group of 2 × 2 matrices over the field
Z3. The multitude of outer automorphisms can be traced back to the various symmetries
of the character table shown in Tab. 6.2 that are due to the fact that there are so many
one-dimensional representations. Together with the inner automorphisms these generators
generate the full automorphism group, which is of order 432. In summary the automorphism
structure presents itself as:

Z(∆(27)) ∼= Z3 Aut(∆(27)) ∼= (((Z3 × Z3) oQ8) o Z3) o Z2 (6.25)

Inn(∆(27)) ∼= Z3 × Z3 Out(∆(27)) ∼= GL(2, 3).

The outer automorphism u1 acts on the representations as

12 ↔ 14, 13 ↔ 17, 16 ↔ 18, 3↔ 3∗,

where e.g. 12 → 14 is to be read as ρ14
= ρ12

◦ u1 etc., and the outer automorphism u2 acts
as

12 → 19 → 18 → 13 → 15 → 16 → 12.

104



6.3. Applications to Questions in the Literature

From this it is trivial to determine the representations of the automorphisms for the one-
dimensional representations. Let us therefore focus on the three dimensional representation 3
generated by

ρ(A) = T3, ρ(B) = diag(1, ω, ω2).

The two generators of the outer automorphism group act on φ ∼ (3,3∗) as

U(u1) =

(
Ũ 0

0 Ũ∗

)
with Ũ =

1√
3




ω2 ω 1
ω ω2 1
1 1 1


 (6.26)

and

U(u2) =

(
0 Ũ

Ũ∗ 0

)
with Ũ =




ω2 0 0
0 0 ω
0 ω2 0


 . (6.27)

All automorphisms can be generated from the generators ui by composition and the repre-
sentation matrices U(aut) may be obtained with the help of Eq. (6.7). We have therefore
found a complete classification of possible CP transformations that may be implemented in a
model based on ∆(27). There are 48 outer automorphisms generated by u1 and u2, that may
in principle give physically distinct CP transformations, with distinct physical implications.
However, since a model that is invariant under CP will also be invariant under the subgroup
generated by CPn, it is sufficient to consider subgroups of the automorphism group.

It is instructive to look at some of these subgroups in detail. Let us for example consider
the CP transformation φ→ φ∗ or U(h1) = 13 that corresponds to the outer automorphism
h1 : (A,B)→ (A,B2), which can be expressed in terms of the generators as h1 = u1 ◦u2

2 ◦u−1
1 ◦

u2 ◦ u−1
1 ◦ u−1

2 ◦ u−1
1 ◦ conj(A)−1 ◦ u−1

1 . This outer automorphism squares to one and therefore
generates a Z2 subgroup of the automorphism group. Contrary to the situation we have
encountered before, where the outer automorphism group was a Z2, this is not the only solution.
As a further example we may consider the Z2 subgroup generated by u1◦u2

2◦u−1
1 ◦u2◦u−1

1 ◦u−2
2

with h2 : (A,B)→ (ABA,B) which according to (6.7) is represented by

U(h2) =




ω 0 0
0 0 1
0 1 0


 . (6.28)

We will use this matrix later on. Let us now use this machinery to tackle a physical question,
namely the so-called geometrical CP violation. ‘Geometrical’ CP-violation [201–204] denotes
the following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ∼ 3 the only
phase dependent term in the scalar potential is given by

I ≡
∑

i 6=j 6=k
(H†iHj)(H

†
iHk).

Let us now investigate how the term transforms under the two generators u1 and u2 of the
outer automorphism group. We find

CPu1 [I] = −1

3
I∗ +

2

3
I +

∑

i

1

3
(H†iHi)

2 +
∑

i 6=j
(H†iHi)(H

†
jHj), CPu2 [I] = ω2I
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and we thus find the invariant combinations

CPu1 [I − I∗] = I − I∗ CPu3
2
[I] = I.

Clearly invariance under u1 requires further non-trivial relations among the other couplings in
the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to the
‘usual’ CP transformation φ → φ∗ and forces the coupling λ4 multiplying I to be real. For
λ4 < 0 one finds the global minimum

〈H〉 =
v√
3

(1, ω, ω2)

and for λ4 > 0 one finds

〈H〉 =
v√
3

(ω2, 1, 1).

Both VEV configurations correspond to generalised CP transformations H → UH∗. For
λ4 < 0 it is for example given by U = ρ(B2), which is clearly part of ∆(27) and therefore
up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply
spontaneous CP violation. For λ4 > 0 the VEV configuration leaves the CP transformation
corresponding to the outer automorphism h2 given in Eq. (6.28) invariant. However, there is
something that is much harder to understand about this VEV configuration: the generalised
CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It
would be a symmetry if the phase of λ4 would be the same as ω, as CPh2 [I] = ωI∗. So here we
are confronted with the puzzling situation in which a VEV configuration is more symmetric
than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by
the VEV and is compatible with λ4 being real. Since we have a complete classification of
all generalised CP transformations we can answer this question and indeed we find the CP
transformation

(
H
H∗

)
= U

(
H∗

H

)
with U =

(
0 Ũ

Ũ∗ 0

)
, Ũ =




0 0 ω2

0 1 0
ω 0 0


 , (6.29)

which represents the outer automorphism u : (A,B)→ (AB2AB,AB2A2) via Eq. (6.6), where
u = u3

2 ◦ conj(A) and that gives

CPu[〈H〉] = 〈H〉 for 〈H〉 =
v√
3

(ω2, 1, 1), CPu[I] = I.

Note that this CP transformation acts as H → ŨH, which is not something you would
naively expect, but it is an outer automorphism and therefore it is justified to call it a
CP transformation. Furthermore, this becomes apparent when one looks at how the outer
automorphism u acts on representations. It interchanges the one-dimensional representations

12 ↔ 13, 15 ↔ 19, 16 → 18,

and thus truly is a CP transformation.
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6.3.5. Q8 oA4
∼= SG(96, 204)

Let us also consider our favourite group, Q8 o A4, the smallest group that may realize the
VEV alignment, and which has been extensively introduced in Section 3.3. Its centre is given
by Z(Q8 oA4) = {E,X2} ∼= Z2 and its outer automorphism group is generated by

h4 :(S, T,X)→ (S, T 2, SX), h5 :(S, T,X)→ (S, T 2, X3),

h6 :(S, T,X)→ (ST 2STX3, T, T 2XT ). (6.30)

These generators act on the character table and representations in the way indicated in
Tab. 6.3. Together with the inner automorphisms, the automorphism group is of order 576
and its structure may be summarised as:

Z(Q8 oA4) ∼= Z2 Aut(Q8 oA4) ∼= ((A4 ×A4) o Z2) o Z2 (6.31)

Inn(Q8 oA4) ∼= Z4
2 o Z3 Out(Q8 oA4) ∼= D12 .

Let us discuss how the generators of the automorphism act on the vector

φ =

(
ϕC
ϕ∗C

)

with ϕC ∼ 42 upon which the group generators act as

ρ(S) =

(
S4 0
0 S4

)
, ρ(T ) =

(
ω2T4 0

0 ωT4

)
, and ρ(X) =

(
X4 0
0 X4

)
,

where S4, T4 and X4 have been given in Section 3.3.1 and ρ(S,X)∗ = ρ(S,X) but ρ(T )∗ /∈ Imρ.
One solution to Eq. (6.5) is the analogue of the A4 case, U = diag(U4, U4) with U4 = diag(Ũ3 ≡
T3U3T

−1
3 , 1). This generator acts on the generators of the group as

Uρ(S)∗U−1 = ρ(S), Uρ(T )∗U−1 = ρ(T 2), Uρ(X)∗U−1 = ρ(SX) (6.32)

and therefore represents the automorphism h4. Before discussing other solutions of Eq. (6.5), let
us demonstrate how this outer automorphism can be represented for the other representations.
For the representation 41 we find U = U4. For the one-dimensional representations we have
U = 1.

Clearly the relation (6.32) cannot be fulfilled by 31 as ρ(X) = 13, so that

1 = Uρ(X)U−1 = ρ(SX) = S3

for any U. The representation 31 is rather part of a larger representation that also includes
35

11:

S = diag(S3, T
2
3 S3T3), T = diag(T3, T

2
3 ), X = diag(13, T

2
3 S3T3), U =

(
0 T3

T 2
3 0

)
.

The real representations 32,3,4 can be extended to representations of the CP-extended group

by U = Ũ3. We have therefore seen that a CP transformation as defined in (6.5) can only be
realised if both 31 and 35 are present in the Lagrangian, i.e. the condition of CP conservation
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E T SY X SY X2 T 2 XT S SX X SXT 2

11 1 1 1 1 1 1 1 1 1 1 1
12 1 ω 1 1 1 ω2 ω 1 1 1 ω2

13 1 ω2 1 1 1 ω ω2 1 1 1 ω
31 3 . -1 -1 3 . . -1 -1 3 .
32 3 . 3 -1 3 . . -1 -1 -1 .
33 3 . -1 3 3 . . -1 -1 -1 .
34 3 . -1 -1 3 . . 3 -1 -1 .
35 3 . -1 -1 3 . . -1 3 -1 .
41 4 1 . . -4 1 -1 . . . -1
42 4 ω2 . . -4 ω -ω2 . . . -ω
43 4 ω . . -4 ω2 -ω . . . -ω2

Table 6.3: Character table of Q8 o A4. The first line are representatives of the different conjugacy classes.
Zeroes in the character table are denoted by a dot . and ω is the third root of unity ω = e2πi/3 and Y = T 2XT .
The arrows illustrate the generators of the outer automorphism group h4(blue), h5(red), h6(green).

requires non-trivial relations among real representations of the group, something one would
not immediately suspect. To summarise: a consistent definition of CP acts as

4i → U44
∗
i 3i → Ũ33

∗
f(i) 1i → 1∗i

with f : {1, 2, 3, 4, 5} → {5, 2, 3, 4, 1}.
The natural question is now whether it is possible to have outer automorphisms of the group

that act as CP in the sense that they interchange the complex representations 12,3 and 42,3
but transform the real representations only within themselves. This question can be answered
using the explicit form of the generators of Eq. (6.30).

An outer automorphism swaps conjugacy classes and representations in such a way as to
leave the character table 6.3 invariant. For illustration look at the automorphism h4 (6.32). It
acts on the conjugacy classes as

G · T ↔ G · T 2, G ·XT ↔ G · SXT 2, G ·X ↔ G · SX,

where G · T ≡ {gTg−1 : g ∈ G}, leaving all other conjugacy classes invariant. To obtain a
symmetry of the character table one therefore needs to interchange the representations

12 ↔ 13, 42 ↔ 43, 31 ↔ 35.

If we want to have a symmetry of the character table without interchanging any real represen-
tations that still acts as CP, we therefore have to have an automorphism that realises

G · T ↔ G · T 2, G ·XT ↔ G · SXT 2

while keeping all other conjugacy classes invariant. No such automorphism exists, as can be
inferred from Eq. (6.30).12

11For 35 we have ρ(S) = ρ(X) and therefore (6.32) would imply ρ(S) = ρ(X) = 13.
12It is convenient to use the computer algebra system GAP [129].
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However, if we relax the condition to the point where we only demand that the representation
31 transforms into itself we have to search for outer automorphisms that realise

G · T ↔ G · T 2, G ·XT ↔ G · SXT 2 G ·X ↔ G ·X.

Indeed there is an automorphism that realises this: h5 : (S, T,X)→ (S, T 2, X3) . An explicit
matrix representation for representation 41 is given by

U4(h5) =
1

2




1 −1 1 −1
−1 1 1 −1
1 1 −1 −1
−1 −1 −1 −1


 (6.33)

and for the representation 31 we find U = U3.
Having found a consistent CP transformation for a theory that contains only the repre-

sentations 31, 41 and 1i we can now ask ourselves the question that led us to this study of
generalized CP transformations, namely can all dangerous coupling terms such as the purely
imaginary one given in Eq. (6.1) be forbidden by a CP transformation. Under CP, the doublets
φ1,2 and χ transform as

φi → U4φ
∗, χ→ U3χ

∗ (6.34)

and thus the coupling (6.1) is invariant under the unique consistent CP transformation, even
though it is purely imaginary. For this reason, and for minimality, actually, in the next chapter
we have taken the fields φi ∼ 41 to transform as EW singlets, not doublets.

For completeness we also give a representation of h6

U(h6) =
1

2




1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
1 1 1 −1


 , (6.35)

from which all the other representation matrices can be derived using the Clebsch-Gordon
coefficients.

6.4. Summary & Conclusions

We have given consistency conditions for the definition of CP in theories with discrete flavour
symmetries that have sometimes been overlooked in the literature. We have shown that every
generalised CP transformation furnishes a representation of an outer automorphism and that
generalised CP invariance implies vanishing CP phases13. We have applied these ideas to
popular flavour groups with three-dimensional representations. In particular, we have shown
that there is one unique non-trivial CP transformation (up to group transformations) for
the group T ′ and the geometric CP-violation that has been claimed in this group can only
be viewed as an arbitrary basis-dependent explicit breaking of CP. In the case of ∆(27) we
have shown that the so-called geometric phases may be viewed as the result of an accidental
generalised CP transformation of the scalar potential.

13A complete study of all groups with three-dimensional representations and group order smaller than 31 will
be given in [19].
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The (outer) automorphism structure of small groups is very rich and it stands to wonder if
not more physics might be hidden in there. This leads us to the following speculation: S4 is the
smallest group that can really give TBM (with all the caveats involved) and it is isomorphic to
the automorphism group of A4. Maybe the accidental symmetry that makes A4 look like S4

on the level of mass matrices is connected to this fact. That would then open an interesting
avenue for model building: interesting mixing patterns can be obtained from ∆(6n2) but since
it is quite unappealing to start from such large groups, it might be nicer to start from smaller
groups and obtain the accidental symmetry from the larger automorphism group in the same
way as in A4 models. As an example how complicated structures can arise from simpler ones,
look at the automorphism group of ∆(27), which is of order 432. The smallest group whose
automorphism group contains ∆(96) is given by (Z4 × Z4) o Z2

∼= SG(32, 34). A systematic
study of this playground is left for future work.
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Chapter 7.

Outlook: Naturalness & Big Desert Scenarios

In this chapter, we take a step back from the (sometimes technical) issues of flavour model
building and discuss physics beyond the Standard Model more broadly. Firstly, we discuss the
naturalness dogma in light of the dearth of any signs of new physics from collider experiments,
then present speculative signs that the Higgs mass might be understood as an imprint of
Planck scale physics on the electroweak scale, with a big desert between the two scales. Thirdly,
we present another big desert scenario where the hierarchy between the two scales is taken to
be stabilized by classical conformal invariance.

7.1. Naturalness and a Big Desert

Much of research in beyond the standard model physics over the last decades has been
motivated by the so-called ‘naturalness’ or ‘hierarchy problem’ of the SM Higgs sector. The
origin of the problem lies in the fact that the SM Higgs mass term µ2H†H, when viewed from
an effective field theory perspective [144], is the only relevant coupling in the Standard Model
and orders of magnitude smaller than its natural value.

In a nutshell, effective field theory is a way to describe physical processes with a characteristic
energy scale E much smaller than some large energy scale Λ, where the theory is replaced by
a more complete description. The modern view of the world is that nature is described by
a series of effective (field) theories, each a UV completion of the next, much like a russian
matryoshka doll. Starting from theories that describe physics over cosmological distances
but have to be replaced at the length scales of superclusters, the succession of effective field
theories features theories with degrees of freedom as varied as sound waves, molecules and
atoms. The experimental discovery of the Higgs particle at 126 GeV, which we accept as fact
throughout this chapter, without the discovery of any other new particles makes the Standard
Model the latest member in the succession of effective field theories that actually describe
reality with a range of validity from E ≈ mh up to at least several hundred GeV. In fact
there are reasons to believe that the Standard Model might be valid up to a much higher
energy scale. Before we discuss these reasons in detail, let us justify the reasoning based on
the higher-dimensional operator analysis that we will use. In effective field theory, an effective
operator O that enters the Lagrangian as λO/Λd of scaling dimension 4 + d grows with energy
as (E/Λ)d and thus –barring fine-tuning– will become strongly coupled for E & Λ so that
the suppression scale of the higher dimensional operator gives an indication of the scale of
new physics. Note that this reasoning has been successful in the case of weak interactions,
where the suppression scale of Fermi’s four-fermion operator has indicated the mass of the
electroweak gauge bosons. In the Standard Model no such indication of new physics exists:

• the SM (on the classical level) conserves baryon number as an accidental symmetry. This
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is a most welcome feature as baryon number violating operators such as QQQL/M2 are
severely constrained by searches for proton decay, which give a bound of M & 1022 GeV.

• another indication of new physics might come from lepton number violating operators.
The lowest dimensional operator is given by the Weinberg operator (LH)2/M and the
observation of neutrino masses might be translated into M ≈ 1014 GeV. Again this
points to a high energy scale.

• another class of higher dimensional operators is given by operators that break flavour
symmetries and e.g. lead to flavour-changing neutral currents in the quark sector. The
non-observation of such processes allows one to constrain e.g. operators of the type
(s†σµd)2/M2, which have to be suppressed by Λ ∼ 103 TeV [222] (or more in the case of
CP violation).

• another bound comes from the precision study of the properties of electroweak gauge

bosons. The operators H†σiHAiµνB
µν and

∣∣H†DµH
∣∣2 [223] give a contribution to

the electroweak precision observables S and T , respectively, and therefore have to be
suppressed by a mass scale larger than at least 5 TeV [224].

• and – of course – no new physics has shown up at the LHC, sth. that would have
rendered the entire discussion moot.

None of the arguments given above is air-tight. For example the first three points can be
adressed by the introduction of a flavour symmetry, as was e.g. done in the electroweak model
of Section 5. In the electroweak precision observables there can always be a cancellation of
two large new physics contributions. However, it is notable and more than a bit depressing
that the SM with a high cut-off scale seems to be a perfect match to the data with a natural
suppression of baryon number violation, lepton number violation, flavour changing neutral
currents and electroweak precision observables. On the other hand, any new physics model at
the TeV scale has to be quite non-generic for it not to have shown up somewhere.

As the SM works so nicely, why not declare victory and go home? The problem is that
the Standard Model with a super-high cut-off doesn’t seem to make much sense when viewed
as an effective field theory. Effective field theory may be viewed as an expansion of physical
quantities such as cross-sections in terms of the ratio of the characteristic energy scale of the
problem E over the scale of new physics Λ. This implies that the coupling λ that multiplies
the operator 1

Λd
O should not be smaller than the expansion parameter, as otherwise the

expansion would not make much sense. The problem with the Standard Model is now that
there is one coupling for which this is manifestly not the case. The Higgs mass term µ2H†H
phenomenologically has to be of the order of 100 GeV and thus if we take the cutoff scale of the
Standard Model to be the Planck scale, Λ ∼MPl ∼ 1019 GeV, the dimensionless coupling has
to be of the order 10−38, which is also called the naturalness or hierarchy problem [225–229].
There have been two main approaches to this question:

• Supersymmetry makes the smallness of the Higgs mass technically natural by tying it to
the Higgsino mass term, which–being a fermion– is protected by a chiral symmetry.

• Composite Higgs models in all its variants (Technicolor, Warped Extra Dimension,...)
banish all fundamental scalars from the theory and thus get rid of the problem.
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• models with large extra dimensions lower the fundamental Planck scale to the TeV scale
and thus get rid of the hierarchy.

The discovery of the Higgs at 126 GeV without indications for new physics can be described
as borderline. The MSSM would have preferred lower Higgs masses and composite models
would have favoured a higher Higgs mass. Another approach is to assume that there are 10500

string vacua and our values for parameters are anthropically selected.

In the following we want to present two scenarios that are not natural from the point of
view of effective field theories. The essential idea is the following: if we view the Standard
Model (or minimal extensions) not as just another effective field theory that is to be replaced
by another more fundamental theory at energy scale Λ, but in itself as a fundamental theory
of nature, then the naturalness problem disappears. Now one might wonder how such a view
may be held in light of the fact that gravity certainly exists and is connected to the very
high energy scale MPl ≈ 1.2 · 1019 GeV. The justification for this view boils down to the fact
that gravity is special as it may not be quantised in the same way as the other interactions
and it therefore stands to question if the traditional view that the large hierarchy between
the Planck and electroweak scales really poses a hierarchy problem. Indeed this point has
been argued in a number of publications [230–236], but there always remains a degree of
uncertainty since here the ‘solution’ of the hierarchy problem always depends on properties
of the quantum gravitational embedding at the Planck scale, which we will remain agnostic
about in the following. In our discussion, we will be guided by the works of Meissner and
Nicolai [231–233], who have argued for an approximate conformal symmetry of the particle
physics action as a consequence of such an embedding.

In the remainder of the chapter we will present a possible scenario of how the Higgs mass
may be interpreted by Planck scale boundary conditions and then discuss a scenario using
classical conformal invariance.

7.2. Planck Scale Boundary Conditions and the Higgs Mass

Let us consider a minimal scenario, where classical conformal symmetry is only softly broken
by an explicit mass term µ2H†H, the only coupling with positive mass dimension in the
Standard Model, and there is no new physics between the electroweak and Planck scales.
This information alone is sufficient to pin down the SM Higgs boson mass m2

h = 2λv2 in
a range between the stability bound of approximately 127 GeV and the triviality bound of
circa 170 GeV. Let us briefly recall where this bound comes from: for small Higgs masses the
dominant coupling to the Higgs particle is given by the top quark, which drives the Higgs
self-coupling to negative values, which would lead to an unstable potential. Therefore the
condition that the Higgs self coupling λ should be positive all the way to the Planck scale
translates into a lower bound of λ at the electroweak scale and therefore mh [237, 238]. For
large Higgs masses on the other hand, the Higgs self-coupling dominates and drives itself to
ever larger values of λ. The requirement that λ should stay perturbative up to the Planck
scale thus translates into an upper bound of the Higgs mass [239]. It should be noted that this
mass range is somewhat complementary to the mass range preferred by theories that solve the
hierarchy problem at the weak scale: in the MSSM at tree level the Higgs mass is bounded
to be smaller than the Z-mass and including loop corrections it is more comfortable with
Higgs masses smaller than 125 GeV, while composite Higgs scenarios would naturally favour
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relatively heavy Higgs masses of more than a few hundred GeV. We will comment later on
the precise value of the stability bound and its experimental and theoretical errors.

Having seen that the requirement of a direct Planck scale embedding alone brings us into
the right ballpark of Higgs masses, we now want to go a step further and ask if more can
be learned about the Planck scale embedding of the Standard Model by imposing boundary
conditions on the Standard Model couplings at the Planck scale. We discuss the following
conditions1:

• the vacuum stability condition λ(Mpl) = 0 [241–247].

• the condition that the Higgs self-coupling should stop to evolve, i.e. a vanishing beta
function of λ: βλ(Mpl) = 0 [241, 242].

• the Veltman condition StrM2 = 0 [248–250], which states that the quadratic divergent
part of the one-loop radiative correction to the Higgs bare mass parameter µ2 should
vanish:

δµ2 =
Λ2

32π2v2
StrM2 =

1

32π2

(
9

4
g2

2 +
3

4
g2

1 + 6λ− 6λ2
t

)
Λ2. (7.1)

Note that even if this condition would be fulfilled one would still expect to have UV
contributions to the Higgs mass parameter, which are not accounted for in the Veltman
condition.

• vanishing anomalous dimension of the Higgs mass parameter γm(Mpl) = 0, m(Mpl) 6= 0.

The various boundary conditions are imposed at the Planck scale on the SM couplings
defined in the MS scheme and are then evolved down to the electroweak scale using two-loop
renormalization group equations (RGEs). At the electroweak scale (or the top mass scale, to
be precise), the MS couplings are expressed in physical parameters using one-loop matching
conditions of the form

λt(Mt) =

√
2Mt

v
(1 + δt(Mt)) , λ(Mt) =

M2
H

2v2
(1 + δH(Mt)), (7.2)

where δi parametrizes the loop contribution. To obtain a more precise result, we have followed
the recent literature and included the higher loop pure QCD corrections to δt. To determine
the stability bound, we have further used the one-loop improved effective potential. We do not
go into much detail here but refer the reader to our publication [15]. The boundary conditions
we are considering here define one-parameter curves in the space of SM parameters at the
Planck scale, which through the RGE are mapped onto one-parameter curves in the space
of SM parameters at the weak scale, which through the matching conditions are expressed
as curves in a space of measurable quantities such as masses etc. As we cannot plot such a
higher-dimensional space we plot the curves projected on a subspace spanned by mt and mh,
as these are the largest Higgs couplings at the weak scale. This plot is displayed in Fig. 7.1,
where the various boundary conditions are represented as bands in the mt −mh- plane. The
width of the bands are an estimate of the theoretical uncertainty, which we estimated as the
difference between using one and two-loop beta functions for all the relevant SM couplings in

1Boundary conditions of this type have also been discussed in the context of anthropic considerations in the
multiverse [240].
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Figure 7.1: Higgs and top (pole) mass determinations for different boundary conditions at the Planck scale.
The coloured bands correspond to the conditions discussed in the text and which are also labelled in the insert,
with the width of the bands giving an indication of the combined theoretical and experimental error. Note that
the Veltman condition is truncated at the point where its Higgs mass prediction violates the vacuum stability
bound (both at two-loops). The black dashed lines show the electroweak precision fit from GFitter [251], which
summarizes the experimental information before the Higgs seminar in Dec. 2011. The present best fit values
are indicated in grey.

the determination of the Higgs pole mass. To be more precise, we define a “RGE error band”
as the difference in determining the Higgs mass for a boundary condition of λ(Mpl) with one
and two-loop beta functions while the matching conditions remain the same for both cases.
We will come back to this critical issue later, but before we do that let us take a look at the
results of the analysis.

We see that all boundary conditions result in Higgs masses closer to the stability bound
than to the triviality bound, which is opposite to the result of a scatter plot of order one
values for λ at the Planck scale [15] and might be taken to be an indication of some structure.
However, this is probably due to the fact that the boundary conditions we took are mostly one
loop-expressions that connect the Higgs coupling to other smaller couplings and therefore give
small starting values for λ. While at the time of publication, there were a couple of interesting
boundary conditions in the experimentally allowed range2 , today this is no longer the case.
The observation of a Higgs-like particle by ATLAS [1] at 126.0 ± 0.4(stat.) ± 0.4(sys.) GeV
and of CMS [2] at 125.3± 0.4(stat.)± 0.5(sys.) GeV clearly selects the boundary condition
λ(MPl) = 0 as the most interesting one. Using our setup we obtain for the stability bound a

2We still show the by now largely historic GFitter bound.
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value of3

mh >

[
127.4 + 2.6

(
mt/GeV − 173.1

1.3

)
− 2.2

(
αs(MZ)− 0.1193

0.0028

)]
GeV ± 5 GeV, (7.3)

where we have shown the dependence on the dominant experimentally uncertainties coming
from αs(MZ) and mt explicitly. As mentioned above, we have estimated the theoretical
uncertainty by comparing LO and NLO calculations and our value of 5 GeV might therefore
be too an conservative estimate, especially in light of the fact that the earlier publication [252]
claims a theory error of 1 GeV while the later publication [255] by partly the same authors
quotes 3 GeV.

Clearly the SM is very close to the stability border region, which has garnered a lot of
attention and sparked a lot of activity, with the main focus on trying to reduce the theoretical
error of the calculation. In the following few paragraphs we will try to give a short summary
of the status of the question.

All the ingredients to perform a next-to-next-to leading order computation of the stability
bound in the Standard Model have recently been provided: the complete three-loop beta
function for the SM gauge couplings has been given in [256], the dominant three-loop terms in
the beta-function of λ and λt have been provided in [257] and the two-loop QCD and Yukawa
contributions to δt have been given in [254, 258]. While the additional contributions to δt push
the stability window downward, with the dominant contribution given by O(α3

s) which we had
already included, the additional contribution to δλ [258] push the stability region upward. The
analysis performed in [258], which seems to contain most corrections except for the O(ααs)
correction calculated in [254], finds mh > 129.4±1.8 GeV and thus disfavours vacuum stability
of the SM up to the Planck scale of up to at the 2σ level iff mh < 126 GeV. The analysis
performed in [254], which does not include the contribution of order O(y6

t ),O(y4
tαs) does not

exclude stability up to the Planck scale for the experimental mass range of the Higgs.

It should be noted that the discussion is highly sensitive to the exact value of the top mass
parameter. This is important as there is no general consensus on what type of top mass is
actually measured via kinematic reconstruction [259]. At the Tevatron, the main method used
for the top mass extraction actually “measures” the Pythia mass, which is a Monte-Carlo
simulated template mass. Strictly speaking the top pole mass is not a well defined quantity,
as the top quark does not exist as free parton. The top mass that the Tevatron has measured
is based on the final state of the decay products. On the other hand the running MS top
mass can be extracted directly from the total cross section in the top pair production. In
this sense, one can obtain a complementary information of the top mass from the production
phase. By converting the MS mass to the pole mass via matching conditions, the top pole
mass value 168.9+3.5

−3.4 GeV extracted with this method by Langenfeld et al. [260] is found to
be lower than the world best average value. This point has also been elaborated on in two
subsequent publications [258, 261].

3The slight discrepancy to the value of 128.6 GeV obtained in [252] is due to the fact that we have here
included the three-loop pure QCD contribution to δt [253]. This relatively large effect was also reproduced
in [254] and casts doubt on their estimate of a theoretical error of 1 GeV.
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7.3. Radiative Symmetry Breaking in the Minimal Left-Right
Symmetric Model

In the introduction, we had mentioned that classical conformal invariance was advocated
in [231–233] as a possible consequence of a Planck scale embedding that addresses the hierarchy
problem. In the previous section, we had considered the SM, which might be considered to have
a softly broken conformal invariance. While it is not possible to have exact conformal invariance
due to the logarithmic scale dependence of dimensionless couplings via beta functions, it is,
however, desirable to conserve conformal invariance on the classical level. This is not possible
within the Standard Model as the large top mass mt > mZ renders the effective potential
unstable [239, 246] and the SM thus has to be extended. As new scalar and vector degrees of
freedom give positive contributions to the effective potential it is not surprising that e.g for
singlet [232, 245, 262–270] and other [271, 272] extensions of the Higgs sector this problem
can be circumvented and a successful phenomenology can be achieved.

Here instead of adding singlets to the SM, we discuss conformal invariance in the context
of the minimal left-right symmetric model based on the gauge group SU(2)L × SU(2)R ×
U(1)B−L × SU(3)C [273, 274] that has been long known as an attractive extension of the
SM as it explains parity violation by spontaneous symmetry breaking, has a natural place
for neutrino masses and gives an explanation of hypercharge assignments Y = T 3

R + 1
2(B − L)

in terms of baryon minus lepton number B − L . For simplicity, we restrict ourselves to the
simplest version of the minimal LR symmetric model which contains, in addition to a pair of
doublets χL ∼ (2, 1,−1), χR ∼ (1, 2,−1) that are used to break LR symmetry, the bidoublet
Φ ∼ (2, 2, 0), which is needed to break electroweak symmetry and provide for fermion masses,
as it is able to connect left- and right-handed fermions, which transform as (2, 1, B − L) and
(1, 2, B − L), respectively.

As in the last section, we here only present the gist of the discussion and relegate technical
details to the publication [20].

7.3.1. Gildener Weinberg Method in the Minimal LR Symmetric Potential

As parity P is a symmetry of the left-right symmetric model, we use the isomorphism
P × SU(2)× SU(2) ∼= Spin(4) to express all fields in terms of representations of Spin(4), which
is described by the Clifford algebra of SO(4). In this simplified notation, the bidoublet degrees

of freedom are arranged in a complex vector representation of SO(4) � =

(
0 Φ

−Φ̃† 0

)
and

the doublets arrange in a Dirac spinor 	 = (χL,−iχR)T , as do the fermions, which we do not
show here as we are primarily concerned with the symmetry breaking aspects.

In the Spin(4) notation, the most general scale- and gauge-invariant scalar potential4 is
given by:

V (�,	) =
κ1

2

(
		
)2

+
κ2

2

(
	Γ	

)2
+ λ1

(
tr�†�

)2
+ λ2

(
tr�� + tr�†�†

)2

+ λ3

(
tr��− tr�†�†

)2
+ β1 		tr�†� + f1 	Γ[�†,�]	 ,

(7.4)

4 Here we only consider a simplified potential invariant under the Z4 symmetry � → i�, 	 → −i	. For a
discussion of the full potential, see [20].
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where Γ = Γ1Γ2Γ3Γ4 denotes the chirality operator of Spin(4) and the ΓA form a representation
of the Clifford algebra of Spin(4). As all couplings are real, the Higgs potential is CP
conserving. The separate Spin(4) transformations of 	 and � are broken to the diagonal
subgroup, unless the coupling f1 vanishes. Note that the operator multiplying β1 can be
rewritten as 		tr�†� = 2	{�†,�}	. Due to the conformal symmetry, the dimension three
term 	�	 is not allowed and thus there is an accidental symmetry A	 : 	→ eiβΓ	.

As we assume the theory to be weakly coupled, quantum corrections can be taken into
account by a loop expansion of the effective potential. We will consider the effective potential
up to one loop. In order to discuss symmetry breaking, we have to minimize the potential.
However, even the minimization of the one-loop effective potential cannot be done analytically
in the case of multiple scalar fields. Instead of resorting to a numerical study, we will use the
analytical approximate method of Gildener and Weinberg (GW) [275] which makes essential
use of the renormalization group.
GW have noted that for a generic scale invariant potential of the form

V0 =
1

24
fijklΦiΦjΦkΦl (7.5)

the renormalization group can be used to enforce a single condition on the scalar couplings of
the theory:

min
NiNi=1

(fijkl(µGW )NiNjNkNl)
∣∣∣
Ni=ni

= 0. (7.6)

This condition entails that at the scale µGW , the scalar potential has a tree level flat direction
Φi = niφ. Barring the possibility of accidental additional flat directions, radiative corrections
dominate in this direction in field space while they can be neglected in all other directions [275].
In the MS scheme, the one-loop effective potential in the flat direction Φ = nφ can be easily
calculated [276] to be

δV (nφ) = Aφ4 +Bφ4 ln
φ2

µ2
GW

(7.7)

with

A =
1

64π2〈φ〉4
∑

i

niM
4
i (n〈φ〉)

(
ln
M2
i (n〈φ〉)
〈φ〉2

− ci
)
, (7.8a)

B =
1

64π2〈φ〉4
∑

i

niM
4
i (n〈φ〉) , (7.8b)

where ni denotes the degrees of freedom, Mi is the mass and ci = 3
2 for scalars and fermions

and ci = 5
6 for gauge bosons. The stationary condition

∂δV1−loop

∂φ

∣∣∣
φ=〈φ〉

= 0 results in

ln
〈φ〉2
µ2
GW

= −1

2
− A

B
(7.9)

and the mass of the excitation in the flat direction – so called scalon s, which is the pseudo-
Nambu Goldstone boson (pNGB) of broken scale invariance – is given by

M2
S = ninj

∂2δV (nφ)

∂φi∂φj

∣∣∣∣
n〈φ〉

=
d2

dφ2
V (nφ)

∣∣∣∣
〈φ〉

= 8B 〈φ〉2

=
1

8π2 〈φ〉2
(
trM4

S + 3trM4
V − 4trM4

D

)
. (7.10)
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From Eq. (7.6), we see that the application of the GW method in the context of the minimal
left-right symmetric potential requires the minimization of this very complicated potential on
a unit sphere in field space. Parameterizing the scalar fields as

	 =
1√
2




N1e
iθ

N5e
iϑ5

N2e
iϑ2

N6e
iϑ6


φ and Φ =

1

2

(
N3e

iϑ3 N7e
iϑ7

N8e
iϑ8 N4e

iα

)
φ , (7.11)

the GW conditions read
∑

i

n2
i = 1, V

∣∣∣
Ni=ni

= 0 and
∂

∂Ni
V
∣∣∣
Ni=ni

= 0, (7.12)

where {ni} parameterizes a flat direction of the left-right symmetric potential. We restrict
ourselves to the case where the electromagnetic gauge group is left unbroken as required by
phenomenology, which implies ni = 0 for i = 5, . . . , 8. We can further use gauge freedom to
set the phases ϑ2 and ϑ3 to zero, and thus have the VEVs vL = n1

〈φ〉√
2
, vR = n2

〈φ〉√
2
, κ = n3

〈φ〉√
2
,

κ′ = n4
〈φ〉√

2
. A complete classification of solutions of the Gildener-Weinberg conditions (7.12)

is given in [20]. In the next section, we first discuss the limit of vanishing vacuum expectation
values for the bidoublet and discuss the RG evolution, and then we briefly discuss the general
case and sketch some phenomenological consequences.

7.3.2. Spontaneous Breaking of Parity

LR Symmetry Breaking in the Limit of Vanishing Bidoublet VEVs: Since phe-
nomenology requires the right-handed VEV vR to be much larger than the electroweak scale,
it is prudent to neglect the bidoublet in a first step and consider the GW mechanism in the
Higgs potential containing only the doublets:

V	 =
κ1

2

(
		
)2

+
κ2

2

(
	Γ	

)2
.

Then, in a second step, we will treat the bidoublet potential in the LR-broken phase. In
unitary gauge, the potential at the minimum reads

V	

∣∣∣
Ni=ni

=
1

8
φ4
(
κ1 + κ2(−1 + 2n2

1)2
)
, (7.13)

where we have used the normalization condition of the VEVs to eliminate n2. Stability of this
potential requires it to be bounded from below. The term multiplying φ4 therefore has to be
positive semi-definite in the entire range of n1. Inserting the minimum and boundary values
n2

1 = 1/2 and n2
1 = 1, respectively, we find the stability conditions κ1 ≥ 0 and κ+ = κ1+κ2 ≥ 0.

The GW conditions, after the insertion of the normalization condition5

0 =
∂

∂N1
V	

∣∣∣∣
Ni=ni

=
1

2
n1

(
κ1 + κ2

(
−1 + 2n2

1

))
(7.14a)

0 =
∂

∂N2
V	

∣∣∣∣
Ni=ni

=
1

2

√
1− n2

1

(
κ1 − κ2

(
−1 + 2n2

1

))
(7.14b)

0 =V	

∣∣∣
Ni=ni

=
1

8

(
κ1 + κ2(−1 + 2n2

1)2
)
, (7.14c)

5We drop the factor φn in the GW conditions.
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allows for three flat directions

(i)n1 = 1, n2 = 0, κ+ = 0, (ii)n1 = 0, n2 = 1, κ+ = 0, (iii)n1 = n2 =
1√
2
, κ1 = 0 .

The first two solutions correspond to parity breaking and are phenomenologically equivalent,
since in the unbroken phase there is no difference between left- and right-handed fields and we
can define the direction which acquires a VEV as the right-handed one. Therefore, we do not
discuss the second flat direction in the following. If κ2 is negative, there are only maximally
left-right symmetry breaking flat directions.

As any GW condition, the conditions (i) and (iii) define a hypersurface in the space of
couplings given by κ+ = 0 and κ1 = 0, respectively. The idea of the radiative symmetry
breaking mechanism in the context of Planck scale embeddings is now that one starts with
some dimensionless couplings at the Planck scale. These couplings then evolve on logarithmic
scales using the renormalization group flow and at some lower energy scale a GW condition is
satisfied. Thus the scalar potential obtains a flat-direction and the symmetry is broken with a
VEV of this scale.

To see if this appealing physical idea can be realized here, it is essential to study the RG
flow of the model to see whether a hypersurface described by a GW condition is reached
and which one is reached first. As we are interested in a parity-breaking minimum (i), i.e.
a solution for which the GW condition κ+ = 0 is fulfilled, we need κ2 < 0 at the symmetry
breaking scale. In Fig. 7.2, the RG flow towards lower energies in the κ+–κ1 plane is depicted.
The gauge boson contributions have the effect of deflecting the couplings away from the point
of vanishing couplings and also of increasing the region of parameter space that leads to a
maximally symmetry breaking solution.

The logarithmic renormalization group running of the couplings naturally creates a large
hierarchy between the LR breaking scale and the Planck scale. In order to illustrate the
hierarchy we show a numerical example. If κ1(MPl) = 1 and κ2(MPl) = −0.68, the GW
condition is fulfilled at µGW ≈ 5.8 TeV with κ1(µGW ) = −κ2(µGW ) = 0.46. From the

minimum condition Eq. (7.9) we can determine 〈φ〉 ≈ 10.4 TeV, and find vR = 〈φ〉√
2
≈ 7.4 TeV.

Symmetry breaking then results in three heavy gauge bosons of SU(2)R, four real components
of χL with mass m2 = 2κ1v

2
R ≈ (7.1 TeV)2 and a scalon with mass

m2
s =

3g4
1 + 6g2

1g
2
2 + 9g4

2 + 64κ2
2

64π2
v2
R ≈ (906 GeV)2 . (7.15)

Note that there is no fermionic contribution, as the fermions do not couple directly to the
doublets.

Combined Left-Right and Electroweak Symmetry Breaking: In the preceding
subsection, we only discussed the breaking of left-right symmetry without taking into account
the electroweak symmetry breaking that occurs once the bidoublet acquires a VEV. In
reference [20], we solved the Gildener-Weinberg conditions (7.6) for the general potential
(7.4) and the complete list of possible vacua can be found there. Here we will focus on one
phenomenologically preferred flat direction vL = 0, κ′ = 0 and

κ2

v2
R

=
f1 − 2β1

4λ1
, (7.16)
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Figure 7.2: The RG flow in the plane κ+ = κ1 + κ2, κ1 is shown in the limit where the bidoublet can be
neglected. The parity breaking (conserving) GW condition is indicated in green (red). In Fig. 7.2a, the RG
evolution towards lower energies including gauge bosons contributions is shown. For simplicity, the gauge
couplings have been fixed to the values at MZ , as they become relevant only at low energy scales. Following
the stream lines, it can be seen that even for positive starting values of κ2, the parity violating minimum might
be reached. This region is depicted in Fig. 7.2b. The gauge boson contributions deflect the RG evolution away
from the vanishing coupling fixed-point.

characterized by the GW condition on the couplings

IIa�P : κ+ =
(f1 − 2β1)2

8λ1
. (7.17)

The relative magnitude of the right-handed breaking scale versus the electroweak breaking
scale, which we call little hierarchy in the following, is therefore set by the relative strength of
the intermediate couplings β1 and f1 to the quartic bidoublet coupling λ1. This is the case
for all flat directions with non-vanishing VEVs for both the bidoublet and the doublet. To
obtain a reasonable hierarchy between these scales therefore requires some fine-tuning, which
is generic in LR-symmetric potentials (see e.g. [277]).

To show that this GW condition can be reached by the renormalization group flow starting
from ‘reasonable’ couplings at the Planck scale, it is necessary to study the multi-dimensional
parameter space of the model. In [20] we have performed an analysis using an exemplary set
of parameters to show that it is indeed possible, but we will not repeat this discussion here
and rather discuss some general features of the model.

First of all, the electroweak scale is tied to the left-right symmetry breaking scale via
Eq. (7.16) so one would want to break left-right symmetry in the multi-TeV region to avoid
introducing a hierarchy problem between the electroweak and right-handed scales. While the
direct collider bounds [278–280] constrain the masses for the right-handed gauge bosons to be
larger than 2.3 TeV, there are bounds from the flavour sector that push the right-handed scale
above 15 TeV [281] . These are due to the fact that the bidoublet contains two Higgs doublets
and while one of them corresponds to the ususal Higgs with flavour diagonal couplings, the
other one has flavour-violating Yukawa couplings and thus mediates FCNCs at tree-level. Here,
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we assume these strict bounds to be absent, which can e.g. be achieved by realizing a different
mass generation mechanism for the first two generations, e.g. by using vector-like quarks as in
the Alternative Left-Right Symmetric Models where the right-handed down quark is not the
SU(2)R partner of the up quark or in other model building setups [282].

Secondly, we want to comment on the implications of the Higgs mass measurement at
126 GeV. In the Standard Model, we had seen that the Higgs mass value, while being
compatible with a survival of the SM up to the Planck scale, is certainly at the lower end
of the stability region. In extended models like the one we are considering here, no strict
stability bound can be defined as there are additional free couplings that affect the Higgs
self-coupling evolution. Here we want to draw attention to the fact that the same model
building ingredients that are needed to make radiative symmetry breaking possible in the SM
also shift the stability window of the Higgs mass downward. To achieve radiative symmetry
breaking, we had mentioned in the introduction that one needs to counteract the negative
loop contribution to the effective Higgs mass term by a positive contribution coming from
boson loops. In our model the bosons are given by the right-handed gauge bosons and scalars,
which are well motivated by other BSM considerations such as neutrino masses, and the same
bosons of course also give a positive contribution to the Higgs self-interaction and thus push
the stability bounds towards smaller values.

Thirdly, let us sketch some phenomenological consequences of the model. The scalar
spectrum is detailed in [20] and assuming a hierarchy vR ∼ 5 TeV� κ = 174 GeV we find the
following structure: most of scalars obtain masses of the order of the largest mass scale of the
problem except for two of them. The Higgs mass is attached to the electroweak scale and is
therefore made lighter if one tunes (7.16) as is to be expected. The only other relatively light
scalar is given by the scalon introduced in Eq. 7.10. This excitation along the flat direction
obtains a mass that is one-loop suppressed and in this setup is given by a mixture of between
the SM Higgs and the neutral CP-even component of χR with a mixing angle of

tanϑ =
κ

vR
≈ 0.02. (7.18)

Note that this mixing angle can be independently obtained by comparing left- and right-handed

gauge bosons tanϑ = κ
vR
≈ m(W±L )

m(W±R )
and would therefore be an indication for this type of

symmetry breaking. Note that this is not possible in singlet extensions of the SM that realize
radiative symmetry breaking. Such extensions, on the other hand, have the advantage that
singlets generally are more weakly constrained and the new physics may generally be lighter,
which is advantageous as we do not have an explanation of vR � κ here. Quite interestingly,
there has been a recent claim [283] by Meissner and Nicolai that an excess of events at 325 GeV
with four charged leptons in the final state reported by CDF [284] could be identified with the
singlet scalon of their model with a mixing angle of ϑ ≈ 0.1.
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Chapter 8.

Summary and Conclusions

In this thesis we have followed a symmetry based approach to the flavour puzzle of the
Standard Model. Starting from the observation that mismatched remnant symmetries of the
lepton mass matrices are able to completely determine the structure of the leptonic mixing
matrix we have performed a comprehensive scan of all possible mixing patterns that may be
derived from non-abelian flavour symmetry groups that contain these symmetries. There are
two observations to be made: first, it is remarkable that there are only a very limited number
of distinct symmetry patterns that may be derived from symmetry groups of order smaller
than 50. Of these, the tri-bimaximal mixing configuration

sin2 θ12 =
1

3
, sin2 θ23 =

1

2
and sin2 θ13 = 0

is the one closest to the experimental data. However, the recent measurement of a non-
vanishing value of θ13 has shown that this symmetric pattern is not exactly realized in nature.
Flavour symmetry models with this starting point can still give consistent values for the mixing
angles e.g. if one breaks the symmetry generator U in the neutrino sector. Such models then
predict sum rules of deviations from this pattern. For this reason, most of the discussion of
this thesis has been concerned with these small flavour groups.

The second observation is that if one widens the scope a bit and also considers larger
flavour groups one can find groups such as ∆(600) and (Z18 × Z6) o S3 that give a very good
description of the experimental data in the lepton sector. Having such new starting points is
especially necessary if one wants to explain flavour at a high energy scale, e.g. a GUT scale,
as in such models these observables are (among) the only measurable results of such setups
and the only way to falsify such models is to measure the mixing angles with higher accuracy.
This demonstrates the need for sharp predictions in such models.

Here we follow a different philosophy. Instead of assuming the flavour breaking scale to be
at some high energy scale, we ask ourselves if it is possible to instead explain flavour at an
accessible energy scale. This approach has its vices and virtues: the biggest virtue certainly
is that such models are testable. Models with non-abelian discrete flavour symmetries are
inherently baroque: to realize the breaking into different non-communting subgroups in the
charged lepton and neutrino sectors many scalar fields have to be introduced and to realize
their VEVs usually further (driving) fields are introduced. While in high-scale models all of
these fields are completely unobservable in low-scale models these particles can pop up in
collider experiments, searches for lepton flavour violating decays and other experiments. This
is of course also in some sense a vice of these models as no new physiscs has shown up so
far and new physics models at the TeV scale become increasingly constrained. However, the
flavour symmetry and its breaking pattern may also protect the model from strong bounds
that apply to new physics models with generic flavour structure. We will come back to this
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point later but let us first mention another not so strong point of low-scale models. Since
Yukawa couplings are dimensionless, flavour can be explained (if at all) at any scale be it high
or low. This is to be contrasted with the hierarchy problem, which (if the SM is viewed as
an effective field theory) has to be solved at the TeV scale. For example the popular lore is
that if no stops are found at the LHC (soon) the supersymmetric solution of the hierarchy
problem is dead. No analogous statement can be made about flavour models since the Yukawa
couplings are only logarithmically scale dependent and thus the flavour scale can always be
pushed upwards. Thus it is impossible to predict, whether there ever will be an answer to the
flavour puzzle.

If one wants to implement models with discrete flavour symmetries at the electroweak
scale one faces an immediate problem having to do with the construction of the theories
themselves. To obtain a predictive model one needs at least two different scalar multiplets
that break the discrete symmetry group down to two non-commuting subgroups. However,
this VEV configuration cannot be obtained without additional model building ingredients.
The two options that have been discussed in the literature either require the existence of
extra dimensions or continuous R-symmetries in supersymmetry and thus force the flavour
symmetry breaking scale to be unobservably high. The essence of these solutions can be
distilled, however, and has nothing to do with the scale of symmetry breaking but rather it
is due to the fact that the particle content and symmetries are engineered such that there
emerges an accidental symmetry in the scalar potential under which the two flavons transform
separately. The minimal way to engineer such a symmetry is to extend the flavour group in a
non-trivial way. General conditions of how to proceed have been given in Chapter 3 and there
a scan was presented for small groups that have these properties and extend popular flavour
groups. For the flavour groups A4, S4 and T ′ solutions of size smaller than 1000 were found,
while no such solutions exist for ∆(27) and T7. Since A4 is the smallest group with three
dimensional representations and it can naturally accomodate predictive deviations from TBM
(in the trimaximal(TM) mixing form), we concentrated on the smallest semidirect product
extension of A4 that we found in our scan, the flavour group Q8 oA4.

In Chapter 4 a complete model based on this symmetry group was presented. It was shown
that this model can lead to tri-bimaximal mixing at leading order and that the required
vacuum configuration can be obtained naturally without the need for fine-tuning of parameters
in the scalar potential. The model is also comparably economical, as no driving fields etc. have
to be introduced. The relatively large mixing angle θ13 can be accounted for by next-to-leading
order corrections but it was shown that this introduces a large number of free parameters to
the model and is thus not very predictive. A more predictive model can be built by introducing
another scalar field that realizes the TM mixing. A tree-level seesaw UV completion was
presented alongside a possibility to supersymmetrise the model.

In Chapter 5 we have shown how to write down a model that realizes flavour symmetry
breaking at the electroweak scale. A complete model of lepton flavour at the electroweak scale
was given. The model is also based on the flavour group Q8 oA4, which allows for natural
vacuum alignment at the EW scale, which was not possible before. The SM Higgs is subsumed
in a flavour triplet that couples to charged leptons (and quarks) at the renormalizable level,
thereby eliminating the need to invoke higher dimensional operators, as is done in models
with flavon singlets. Neutrino masses are generated at the one-loop level and are further
suppressed by the fact that two small mass insertions are needed in the loop. This TeV seesaw
is realized without imposing any new symmetries apart from the flavour symmetries that are
kept from the previous model. In the model there are 8 real parameters in the lepton sector to
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explain the 12 observables, which gives a predictive framework and in particular a correlation
between the atmospheric and reactor angle is predicted, which agrees well with the recent
global fits. Furthermore the model automatically includes a WIMP dark matter candidate
and its stability and phenomenology have been studied. Constraints from LFV experiments
have been shown to be loosened by the flavour symmetry in comparison to flavour generic
multi-Higgs doublet models. Finally an extension to the quark sector and collider bounds
have been studied. The model survives all direct collider searches, mostly due to the fact that
the model has a state that closely mimics the SM Higgs and the bounds coming from LHC for
non-coloured particles are not too stringent at the moment. An enhanced h→ γγ branching
ratio can be explained utilizing the multitude of new charged scalars which were introduced
to generate neutrino masses.

In Chapter 6 we discussed generalized CP transformations in models with discrete flavour
symmetries, a question which we originally stumbled upon motivated by technical necessities
of the vacuum alignment mechanism if one wants to promote the flavons in the neutrino sector
to EW doublets. Since the issue of CP violation in the lepton sector has come to the forefront
of attention due to the large value of θ13 this question is also of more general importance.
We have shown that every generalized CP transformation has to furnish a representation of
the automorphism group of the discrete flavour group. This imposes interesting consistency
conditions that have had been largely overlooked in the literature. In particular, we have
shown that there is no geometrical CP violation in models with the flavour symmetry T ′

and that the geometrical phases in models based on ∆(27) are the result of an accidental
generalized CP transformation.

In the last chapter we have changed perspective and presented speculative attempts to
address the naturalness problem of the Higgs sector. The essential idea is that the naturalness
problem might disappear when viewed from a Planck scale perspective, which requires the
embedding of the SM (or minimal extensions) directly into (quantum) gravity without the
existence of intermediate physics scales such as a GUT scale. We have shown the implications
for the Higgs mass of certain boundary conditions imposed at the Planck scale. In particular
we discussed the vacuum stability of the Higgs potential in light of the recent finding of a
Higgs-like particle at 126 GeV and conclude that the possibility that the Higgs self-coupling
vanishes at the Planck scale cannot be excluded by the current data. As a further example
of a theory that survives up to the Planck scale, we discussed radiative symmetry breaking
in the minimal left-right symmetric model. We showed that classical conformal invariance is
broken by quantum effects and that the large hierarchy between the Planck and electroweak
scales may be explained as a result of the logarithmic running of the dimensionless couplings
in the scalar potential.

Let us close by some general remarks about the two issues of the SM Higgs: the flavour
puzzle and the naturalness problem. Regarding both issues, all eyes are on the LHC. If there
is new physics at the TeV scale, the hope is that it solves the naturalness problem. Precision
measurements using kaons and B mesons indicate that new physics, if it exists, most certainly
has a non-trivial flavour structure. Even though flavour does not have to be explained at
the TeV scale, precision study of the flavour structure of new physics would give important
new insights into possible underlying symmetries. If flavour is indeed generated at the TeV
scale there would be many new particles that could be discovered and it would be an exciting
possibility to sort out which flavour symmetries are realized in nature, if any. If no new physics
is discovered at the LHC, precision experiments looking for rare processes could still give
important insight. However, as we have argued in Chapter 7, in this case it could be time to
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take the possibility more seriously that the hierarchy problem is solved at the Planck scale
and that there is thus a large desert between the electroweak and Planck scales. One then has
to hope that advances in quantum gravity research shed light on the issues discussed in this
thesis.
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Appendix A.

Group Theoretical Details

A.1. Important Series of Subgroups of SU(3)

We here give presentations of important subgroups of SU(3) that are used in this thesis.

• the series ∆(3n2) is given by the semidirect product (Zn×Zn)oZ3 and may be presented
as [88, 89, 111]

a3 = cn = dn = E, cd = dc, aca−1 = c−1d−1, ada−1 = c, (A.1)

with the special cases ∆(3) ∼= Z3 and ∆(12) ∼= A4.

• the series ∆(6n2) is given by the semidirect product (Zn×Zn)oS3 and may be presented
by the generators a, c, d fulfilling (A.1) and an additional generator b fulfilling [88, 96, 111]

b2 = (ab)2 = E, bcb−1 = d−1, bdb−1 = c−1; (A.2)

with the special cases ∆(6) ∼= S3 and ∆(24) ∼= S4.

• the series Tn has the structure Zn o Z3 and may be presented by [111]

An = B3 = E, BAB−1 = Aa

with a3 = 1 mod n.

A.2. Clebsch-Gordon Coefficients

In this section, we present the Clebsch-Gordan coefficients, which are relevant for the discussion.

A.2.1. A4

The only non-trivial Kronecker product of A4 is given by

3× 3 = 11 + 12 + 13 + 3S + 3A , (A.3)

where the indices S and A indicate whether the representation is in the symmetric or antisym-
metric part, respectively. The corresponding Clebsch-Gordan coefficients, which have been
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Figure A.1: Candidate groups G of order 201− 500. |G| denotes the order of G. The groups up to order 200
are listed in Tab. 3.3. Details of the groups may be accessed using the computer algebra system GAP by using
the command SmallGroup(Order,GAP).

computed using [285], are

(ab)11
=

1√
3

(a1b1 + a2b2 + a3b3)

(ab)12
=

1√
3

(
a1b1 + ω2a2b2 + ωa3b3

)
(ab)13

=
1√
3

(
a1b1 + ωa2b2 + ω2a3b3

)
(A.4)

(ab)A,3 =
1

2




a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


 (ab)S,3 =

1

2




a2b3 + a3b2
a3b1 + a1b3
a1b2 + a2b1




where (a1, a2, a3), (b1, b2, b3) ∼ 3.

A.2.2. Q8 oA4

The product of two triplets 3i×3i is described by the same Clebsch-Gordan coefficients as the
one in A4. They are shown in Eq. (A.4). The product of two four dimensional representations
(a1, a2, a3, a4) ∼ 41 and (b1, b2, b3, b4) ∼ 41 contains the singlet

(ab)11
=

1

2
(a1b1 + a2b2 + a3b3 + a4b4) (A.5)

and the triplets:

(ab)31
=

1

2



−a4b1 + a3b2 − a2b3 + a1b4
−a3b1 − a4b2 + a1b3 + a2b4
a2b1 − a1b2 − a4b3 + a3b4


 , (ab)32

=
1

2




a4b1 + a3b2 + a2b3 + a1b4
a3b1 + a4b2 + a1b3 + a2b4
a2b1 + a1b2 + a4b3 + a3b4


 ,

(ab)33
=

1

2




a1b1 − a2b2 − a3b3 + a4b4
−a1b1 + a2b2 − a3b3 + a4b4
−a1b1 − a2b2 + a3b3 + a4b4


 , (ab)34

=
1

2




a4b1 − a3b2 − a2b3 + a1b4
−a3b1 + a4b2 − a1b3 + a2b4
−a2b1 − a1b2 + a4b3 + a3b4


 ,

(A.6)
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(ab)35
=

1

2



−a4b1 − a3b2 + a2b3 + a1b4
a3b1 − a4b2 − a1b3 + a2b4
−a2b1 + a1b2 − a4b3 + a3b4


 .

Another important product is the product of a ∼ 35 and b ∼ 34:

(ab)31
=




a2b3
a3b1
a1b2


 , (ab)32

=




a3b2
a1b3
a2b1


 , (ab)33

=




a3b3
a1b1
a2b2


 . (A.7)

A.3. CP Definition for Small Groups

Here we supply a supplement to the discussion in Chapter 6.

T7
∼= Z7 o Z3

∼= SG(21, 1)

The group T7
∼= Z7oZ3

∼= SG(21, 1) =
〈
A,B|A7 = B3 = BAB−1A5 = E

〉
may be represented

as [94]

ρ(A) = diag(η, η2, η4) ρ(B) = T3

for 31 with η = e2πi/7. T7 has a trivial centre and therefore the inner automorphism group
Inn(T7) is isomorphic to T7 itself. However, since ρ(A)∗ = ρ(A6) ∈ Imρ and ρ(B)∗ = ρ(B) ∈
Imρ, the outer automorphism group is non-trivial. Its generator u : (A,B)→ (A6, B) is thus
represented by the unitary matrix on the three dimensional representation and this basis is
thus a CP basis. In conclusion, the structure of the automorphism group is described by

Z(T7) ∼= Z1 Aut(T7) ∼= SG(42, 2) (A.8)

Inn(T7) ∼= T7 Out(T7) ∼= Z2 .

The outer automorphism exchanges the three-dimensional representations, while leaving the
one-dimensional ones fixed, i.e.

12 → 12, 13 → 13 and 3↔ 3∗ .

Z9 o Z3
∼= SG(27, 4)

Similarly to ∆(27), the group Z9 o Z3 = SG(27, 4) =
〈
A,B|A9 = B3 = BAB2A2 = E

〉
1 has

a more complicated automorphism group structure. The group is the semi-direct product
of Z9 generated by A (with A9 = E) with Z3 generated by B (with B3 = E) defined by
BAB−1 = A7. The centre of the group is isomorphic to Z3 and generated by A3. Hence,
the inner automorphism group has the structure Z3 × Z3. The outer automorphism group is
generated by

u1 :(A,B)→ (AB,B2A6B2A3) (A.9)

u2 :(A,B)→ (AB4AB4A6, B2A6B2A6)

1The possibility of having Z9 o Z3 as a flavour group in the lepton sector has been first mentioned in [95].
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and the structure of the automorphism group may be summarised as

Z(G) ∼= Z3 Aut(G) ∼= ((Z3 × Z3) o Z3) o Z2 (A.10)

Inn(G) ∼= Z3 × Z3 Out(G) ∼= S3 .

There is a faithful three dimensional representation given by

ρ(A) =




0 1 0
0 0 ω2

ω2 0 0


 , ρ(B) =




ω2 0 0
0 1 0
0 0 ω


 .

The generators of the outer automorphisms can be obtained in the same way as before and
act on (3,3∗) as

U(u1) =

(
0 Ũ

Ũ∗ 0

)
with Ũ = diag(1, 1, ω2) (A.11)

and

U(u2) =

(
Ũ 0

0 Ũ∗

)
with Ũ =




0 1 0
1 0 0
0 0 ω2


 . (A.12)

∆(108) ∼= SG(108, 22) (or ∆(216) ∼= SG(216, 95))

Recently [205], CP violation has been discussed in the context of ∆(108) = ∆(3× 62) 2, which
may be represented by a faithful three-dimensional representation as

ρ(S) = S3, ρ(T ) = T3, ρ(T ′) = diag(1, ω, ω2) . (A.13)

The model possesses an accidental µ − τ exchange symmetry, which is generated by U3
3.

Including this generator U = U3, the group becomes ∆(6×62). A generalised CP transformation
was defined on the faithful representation `R as

`R → iU3`
∗
R,

where we have suppressed the Lorentz structure. This is equivalent to the automorphism
u : (S, T , T ′)→ (S, T 2, T ′), which is outer in ∆(3× 62) and inner in ∆(6× 62). In [205] this
has been consistently applied to all unfaithful representations they consider.

Let us comment on the origin of maximal CP violation in their model, which seems to be in
conflict with our general statement that there can be no CP violation. It is related to the
breaking of the flavour symmetry in their model. One of the scalar fields breaking the flavour
symmetry is the scalar φ transforming as

ρ(S) = S3, ρ(T ) = T3 ρ(T ′) = 13 , (A.14)

and thus transforms only under the subgroup 〈S, T 〉 ∼= A4 with the CP transformation
φ→ U3φ

∗. CP conservation would therefore require v2 = v∗3. However, they have to assume
a large hierarchy in the VEVs of φ in order to accommodate the hierarchy in the charged
lepton sector, which is given by me : mµ : mτ = v1 : v2 : v3. Hence, the requirement
|v2| / |v3| = mµ/mτ � 1 is the necessary ingredient for maximal CP violation in the model.

2∆(108) has been first used in the lepton sector in [286].
3The matrices S3, T3 and U3 have been defined in Eqs.(2.27), (2.25) and Eq. (2.30).

130



A.4. Vacuum Alignment and Scalar Spectrum of EW Model

A.4. Vacuum Alignment and Scalar Spectrum of EW Model

A.4.1. Vacuum alignment

The vacuum configuration given in Eq. (5.1) is naturally obtained from the most general
potential 4

V = Vφ(φ1, φ2) + Vχ(χ) + Vmix(χ, φ1, φ2)

compatible with given symmetries, where Vφ(φ1, φ2) is given in (4.8), Vχ(χ) is given in (5.3)
and

Vmix(χ, φ1, φ2) = ζ13(φ1φ1)11
(χ†χ)11

+ ζ23(φ2φ2)11
(χ†χ)11

(A.15)

compatible with given symmetries. The minimization conditions reduce to the equations

a
(
α+

(
a2 + b2

)
+ α−

(
a2 − b2

)
+ γ+

(
c2 + d2

)
+ γ−

(
c2 − d2

)
+ U1

)
+ Γbcd = 0

b
(
α+

(
a2 + b2

)
− α−

(
a2 − b2

)
+ γ+

(
c2 + d2

)
− γ−

(
c2 − d2

)
+ U1

)
+ Γacd = 0

c
(
β+

(
c2 + d2

)
+ β−

(
c2 − d2

)
+ γ+

(
a2 + b2

)
+ γ−

(
a2 − b2

)
+ U2

)
+ Γabd = 0 (A.16)

d
(
β+

(
c2 + d2

)
− β−

(
c2 − d2

)
+ γ+

(
a2 + b2

)
− γ−

(
a2 − b2

)
+ U2

)
+ Γabc = 0

v
(
M2
χ + λχv

2
)

= 0

with

Ui =
1

2
µ2
i +

√
3

12
ζi3 v

2 for i = 1, 2 ,

and

M2
χ = 2µ2

3 + ζ13(a2 + b2) + ζ23(c2 + d2), λχ =
2

3

(√
3λχ11

+ λχ31S

)
,

ξ+ =
ξ1

2
, ξ− =

ξ2 + ξ3

2
√

3
, γ+ =

√
3γ1 + γ4

4
√

3
, γ− =

γ2 + γ3

4
√

3
, and Γ =

γ4√
3
,

with ξ = α, β. Since the number of equations matches the number of VEVs, vacuum alignment
is possible. Corrections to the scalar potential only arise on dimension 6 level. These corrections
furthermore arise on one-loop level and are thus further suppressed. We therefore neglect
VEV shifts arising from these interactions throughout this work.

A.4.2. Scalar Spectrum

Scalar Spectrum – φi, χ: Let us first discuss the visible sector, i.e. the flavons φ1, φ2, χ
that get VEVs and realize the symmetry breaking the η’s are independent and will be discussed
later. The fields can be classified according to remnant symmetries of the potential. There are
the obvious symmetries

Z3 : χ→ T3χ, φi → φi, (A.17)

4We do not have to consider the part involving ηi, because it does not change the minimization conditions of
φi and χ, if it does not acquire a VEV.
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with T3 = ΩTdiag(1, ω2, ω)Ω†T and

Z2 : φi → S4φi, χ→ χ, (A.18)

with S4 = ΩS4diag(1, 1,−1,−1)Ω†S4
but there is another accidental symmetry of the potentiaVφ

not part of Q8 oA4:

Z2 : φi → O4φi, χ→ χ, (A.19)

withl5 O4 = ΩS4diag(1, 1, 1,−1)Ω†S4
, where

ΩS4 ≡
1√
2




0 1 0 −1
0 1 0 1
−1 0 1 0
1 0 1 0


 . (A.20)

It is useful to go to a basis

φ̃i = Ω†S4
φi,

(
H,ϕ′, ϕ′′

)T
= Ω†Tχ, (Le, Lµ, Lτ )T = Ω†TL (A.21)

where these symmetries are represented diagonally. Let us discuss the mass terms in turn:

• the 9 physical scalars contained in χ have been discussed following Eq. (5.5) Here we
only report the expressions of the dimensionless couplings in terms of masses:

λχ11 = M2
− +M2

+ +
3m2

h

2

λχ12 =
1

2

(
3m2

1 − 3

√
m4

1 − 2m2
1m

2
2 +m4

2 − 4
(
M2
− −M2

+

)2
+ 3m2

2 − 2M2
− − 2M2

+

)

λχ31,S = −
√

3
(
M2
− +M2

+

)

λχ31,A = −
√

3

(
m2

1 +

√
m4

1 − 2m2
1m

2
2 +m4

2 − 4
(
M2
− −M2

+

)2
+m2

2 −M2
− −M2

+

)

λχA = 6
(
M2
− −M2

+

)
(A.22)

• (φ̃1)4 and (φ̃2)4 transform as (1,−1,−1) and have a mass matrix given by

(
m11

2(ac(
√

3γM−2γ2)+2bγ2d)√
3

. m11 ((a, b, c, d, α2)↔ (c, d, a, b, β2))

)

with

m11 = −4
√

3a2α2 + a

(
2aγM (c− d)(c+ d)

(b− a)(a+ b)
+
cΓd

b

)
− bcΓd

2a

+
1

12

(
48
√

3α2b
2 − 3Γ

(
c2 + d2

)
+ 8
√

3γ2

(
d2 − c2

))

5The alert reader will recognize this as an outer automorphism h4 of Eq. (6.30).
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• (φ̃1)3 and (φ̃2)3 transform as (1,−1, 1) and have a mass matrix given by

(
m11

2(acγ2−bd(γ2−2
√

3γM))√
3

. m11 ((a, b, c, d, α2)↔ (c, d, a, b, β2))

)

with

m11 = 2
√

3a2α2 +
2b2
(√

3α2(a− b)(a+ b) + 2γM (c− d)(c+ d)
)

b2 − a2
− acΓd

b

+
2bcΓd

a
− 1

2
Γ
(
c2 + d2

)
+
γ2(c− d)(c+ d)√

3

• the real scalars h, (φ̃1)1, (φ̃1)2, (φ̃2)1 and (φ̃2)2 transform as (1, 1, 1) under the remnant
symmetry. Here we don’t give the full mass matrix but only give the mixing with the
Higgs in the limit of small mixings. The mixing matrix with field f is given by

tan 2θf =
2mh,f

m2
f −m2

h

(A.23)

with

mh,(φ̃1)1
= −bvζ13√

3
, mh,(φ̃1)2

=
avζ13√

3
, mh,(φ̃2)1

= −dvζ23√
3
, mh,(φ̃2)2

=
cvζ23√

3
.

Scalar Spectrum – ηi: The relevant part of the scalar potential to calculate the mass
insertions needed to calculate neutrino masses for the mass spectrum of ηi has been given in
Eqs. (5.12-5.15). To calculate the η mass spectrum the complete interactions

δV (2)
ηi =

∑

i=1,2,3

λ1(χTσ2~σχ)11
(ηT1 σ2~ση3)∗11

+ λ2e
iαλ(χTσ2~σχ)31

(ηT2 σ2~ση3)∗31
(A.24)

+ λ3(φ1φ2)11
(η†3η1)11

+ λ4(φ1φ2)31
(η†3η2)31

+ λ5(φ1φ2)32
(η†3η2)32

(A.25)

+ λ6(φ1φ2)33
(η†3η2)33

+ λ7(φ1φ2)35
(η†1η3)35,S

+ λ8(φ1φ2)35
(η†1η3)35,A

(A.26)

+ lij1 (φjφj)11
(η†i ηi)11

+ lj2(φjφj)32,3
(η†1η2)32,3

+ lj3(φjφj)34
(η†2η2)34

(A.27)

+ k1(χ†χ)31
(η†1η2)31

+ k2(χ†τ2~σχ)31
(η†1σ2~ση2)31

(A.28)

+ k
(i)
3 (χ†σ2~σχ)11

(η†iσ2~σηi)11
+ k

(i)
4 (χ†χ)11

(η†i ηi)11
+ h.c. (A.29)

are needed. Let us briefly outline how the various couplings act: The couplings k
(i)
4 and l

(ij)
1

renormalize Mi, k
(i)
3 splits masses of charged and neutral components, λ1 and λ2 mix neutral

scalar and pseudoscalar components of the various fields. Hence, it also splits the masses of

scalar and pseudoscalar of the lightest mass eigenstate, k1, l
(i)
2 , l

(j)
3 mix the components of

the various ηi and adds flavour breaking effects. Since

〈
χ2
12,3

〉
= 0 such couplings do give

contributions to mass terms and are not shown here. λ3, . . . , λ8 break Z4 and therefore mix
components of η3 with components of η1,2.
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A.5. Discrete — Mathematica Package

Discrete is a Mathematica package with several useful model building tools to work with
discrete symmetries. It has been published as part of [16] and can be downloaded from
http://projects.hepforge.org/discrete/. The main features are

• the calculation of arbitrary Kronecker products,

• an interface to the group catalogues within GAP [129], e.g. the SmallGroups [128] library
with all discrete groups up to order 2000 (with the exception of groups of order 1024)
and many more.

• calculation of Clebsch-Gordan coefficients. They are calculated on demand and are
stored internally, in order to improve the performance.

• the possibility to reduce covariants to a smaller set of independent covariants.

• the documentation is integrated in the documentation centre of Mathematica.

It requires a working installation of GAP [129] as well as the GAP package REPSN [287].
GAP including all its packages can be downloaded from http://www.gap-system.org/. On
Debian-based Linux-distributions, it can be directly installed via the package management.

For a tutorial, we refer the interested reader to [16] and to the documentation and the
example notebook within the package.
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Sham Lim, Lisa Michaels, Alexander Merle, Vivianna Niro, Dominik Scala, Daniel
Schmidt and Juri Smirnov. I especially thank Iwona Mochol and Alexander Dück for
exchanging status reports over coffee on how the thesis writing is going.

• all the other members of the group for providing a good research atmosphere: Evgeny
Akhmedov, Mayumi Aoki, Alexander Kartavtsev, Joachim Kopp, Shinta Kasuya, Laura
Lopez Honorez, Pavel Fileviez Perez, Thomas Schwetz-Mangold, Takashi Shimomura,
Yasutaka Takanishi, He Zhang and all the other members of the ”particle & astro-particle”
group at MPIK.

Furthermore, I would like to express my gratitude towards my family, who have supported me
throughout my studies. I especially thank my brother Philipp for proof-reading the thesis,
and my sister Franziska, for taking her time obtaining her Ph.D in medicine. Finally and most
importantly, I thank my girlfriend Jennifer Bröder for her support and encouragement.
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