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Nicht-minimale Varianten des Seesaw-Mechanismus:

Wir untersuchen nicht-minimale Varianten des Seesaw-Mechanismus, insbeson-

dere des Typ I und des doppelten Seesaw-Mechanismus, in Verbindung mit

einem singulären Majorana-Massenterm in der Neutrino-Massenmatrix. Wir

demonstrieren auch, dass die Neutrino-Massenmatrix im invertierten Seesaw-

Mechanism eine �pseudo-singuläre� Struktur annehmen kann. Im Weiteren wird

gezeigt, dass in allen betrachteten Szenarien im Prinzip aktive Neutrinomassen

an der verbindlichen eV-Skala erhalten werden können. Durch das Analysieren

der Eigenwert- und Massenskala-Struktur der Neutrino-Massenmatrix im sin-

gulären doppelten Seesaw �nden wir Szenarien, die eV, keV und MeV bis GeV

sterile Neutrinos beinhalten.

Non-minimal variants of the Seesaw Mechanism:

We study non-minimal variants of the seesaw mechanism, especially of the type I

and the double seesaw mechanism, in correlation with a singular Majorana mass

term in the neutrino mass matrix. Also we demonstrate that in the inverse

seesaw mechanism a �pseudo-singular� structure for the neutrino mass matrix

can be realized. It is further shown that in all scenarios under consideration

active neutrino masses at the compulsory eV scale can be obtained in principle.

By analyzing the eigenvalue and mass scale structure of the neutrino mass matrix

in the singular double seesaw we �nd scenarios that feature eV, keV and MeV

to GeV sterile neutrinos.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a theory of elementary particles
and their interactions. It contains the descriptions of the strong, weak and electro-
magnetic interactions. Predictions made by the SM have been con�rmed by many
experiments. With the latest results concerning the search for the Higgs particle
from the CMS and ATLAS collaboration at CERN, particle physicists may hope
that the last missing piece of the SM has been discovered. There exist, however,
strong evidences for physics beyond the SM. The velocity distribution of galaxies
is interpreted as evidence for Dark Matter (DM). Neutrino oscillations have been
observed that can only occur if neutrinos have non-zero and non-degenerate masses
and mix among each other. On the other side, neutrino masses must be very small
compared to other SM particle's masses. None of the mentioned phenomenona
can be explained by the SM.
Before we begin the discussion of how the SM might be modi�ed to possibly in-

clude these observations, let us see which experimental data any extended or new
model must reproduce. The standard parameters of neutrino oscillation are the
mass-squared di�erences ∆m2

ij ≡ m2
i −m2

j between the massive neutrino states i
and j, and the three mixing angles θij and the Dirac phase δCP of the (Pontecorvo-
Maki-Nakagawa-Sakata) leptonic mixing matrix UPMNS [1, 2], whose elements are
given by the overlap between mass and �avor eigenstates, Uαi = 〈νi|να〉.1 Ob-
servations from solar and atmospheric neutrino oscillations allow for two di�erent
orderings of the three massive neutrino states corresponding to the sign of ∆m2

atm,
the mass-squared di�erence of atmospheric neutrinos. The �rst ordering, called
�normal hierarchy� (NH), corresponds to m1 < m2 < m3, whereas the second,
called �inverted hierarchy� (IH), corresponds to m3 < m1 < m2.

2 The values for
∆m2

sol ≡ ∆m2
21, |∆m2

atm|, θ12 and θ23 have been measured with relatively high

1For a review of neutrino oscillations, see e.g. [3].
2Note that the mass-squared di�erence of atmospheric neutrinos is given by ∆m2

atm(NH) ≡
∆m2

31, if the neutrinos are normal ordered, and by ∆m2
atm(IH) ≡ ∆m2

32, if they are inverse
ordered.



precision. Moreover, it is remarkable that only last year with the help of the
youngest reactor neutrino data from Double Chooz [4], Daya Bay [5] and Reno [6]
and better statistics in the long-baseline experiments T2K [7] and MINOS [8],
the value of θ13 was pinned down with good accuracy. The latest update on con-
straints on the oscillation parameters can be found for example in [9].3 In this
paper a global �t of neutrino data sets is performed, where the reactor �uxes
are taken as open parameters and short-baseline reactor data with L ≤ 100 m
are included. The best-�t-value of the mass-squared di�erence of solar neutrinos
is given by ∆m2

21 = 7.50+0.18
−0.19 × 10−5 eV2 and for the atmospheric neutrinos by

∆m2
31 = +2.473+0.070

−0.069 × 10−3 eV2 for NH or ∆m2
32 = −2.427+0.042

−0.065 × 10−3 eV2 for
IH.

There are further constraints on the absolute mass of neutrinos. From kinematic
mass measurements in the energy spectrum of tritium beta-decay the Mainz Col-
laboration [12] and the Troitsk Collaboration [13] report a limit of mMz

β < 2.2 eV

and mTk
β < 2.05 eV, respectively, both at 95% CL (= con�dence level), where

mβ ≡
√∑3

i=1 |Uei|2m2
i denotes the e�ective mass of the electron neutrino involved

in the decay 3H −→ 3He + e− + ν̂β.
4 Currently the KATRIN experiment [14] is

being built, where a sensitivity limit of 0.02 eV for mβ is pursued.

A limit on the sum of neutrino masses is given by cosmological observations.
Combined WMAP cosmological data restrict the summed mass of neutrinos to
Σ ≡

∑3
i=1mi < 0.44 eV at 95% CL [15].

If neutrinos have a Majorana mass, neutrinoless double beta-decay (0νββ-decay)
is possible. From non-observation of the 0νββ-decay a limit on the e�ective mass
of the 0νββ-decay 〈mββ〉 ≡ |

∑3
i=1 U

2
eimi| for light neutrinos can be deduced. The

KamLAND-Zen Collaboration [16] reports a lower limit on the half-life of 0νββ-
decay from combined results of KamLAND-Zen and EXO-200 of T 0ν

1/2 > 3.4 ×
1025 yr at 90% CL, corresponding to an e�ective Majorana mass limit of 〈mββ〉 <
(120− 250) meV.5

Although neutrino oscillations are usually interpreted as transitions among ac-
tive neutrino states, there could exist other e�ects that in�uence the oscillation
parameters. A popular theory that could modify the parameters of UPMNS is the
hypothesis of the existence of additional particles not present in the SM, namely
of sterile neutrinos [18]. They are commonly introduced as fermions that only in-
teract gravitationally. If sterile neutrinos exist, neutrino oscillations could be the
result of transitions between active and light sterile neutrinos.

3For alternative analyses, see e.g. [10, 11].
4By ν̂ we denote the anti-neutrino. For our nomenclature see also section A.1 of the appendix.
5Note that there has been a claim of observation of 0νββ-decay in 76Ge by a part of the
Heidelberg-Moscow Collaboration [17] that has been ruled out by the results of the analysis
of [16] at more than 97.5% CL.
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A recent reevaluation [19] of reactor neutrino �ux data [20] at short baselines
found that the ratio of observed event rate to predicted rate at baselines < 100 m
is shifted by about 3% (compared to earlier evaluations), leading to a deviation
from unity at 98.6% CL. If con�rmed, this is another hint (apart from the �LSND
anomaly� [21] and MiniBooNE anti-neutrino oscillation results [22]) for transitions
between active and sterile neutrino states with masses at the eV scale [23]. The
suggestion of sterile neutrinos in this mass range is seized by [24] and [25]. In these
papers the compatibility of models with one or two sterile neutrinos (3+ 1 or 3+ 2
models) at the eV scale with experimental data is examined. The former analysis,
considering a 3 + 1 model, reports a value of ∆m2

41 = 5.6 eV2 as the best-�t-value
for the mass-squared di�erence of the sterile state, which is rather large, and three
regions within 1σ at ∆m2

41 = 1.6, 1.2, 0.91 eV2 in good agreement with data. The
latter �nds a value of ∆m2

41 = 1.78 eV2 as best-�t point in the 3 + 1 model and in
the 3 + 2 model ∆m2

41 = 0.46 eV2 and ∆m2
51 = 0.89 eV2. Both analyses, however,

remark that there arise strong tensions when trying to �t the models to the data of
both appearance and disappearance experiments at the same time. Nevertheless,
we record the fact that in the light of these analyses sterile neutrinos in the eV
range can be regarded as a desirable feature of a theory beyond the SM. Note that
there has been also a recent publication [26], which examines the impact of TeV
sterile neutrinos on �ts to the data.
Concerning the chase for DM candidates neutrinos have come to some attention.

Since active neutrinos are too light to explain DM (they only contribute to hot
DM), considerations of sterile neutrinos possibly being warm DM have emerged
(see e.g. [18]. See also [27] for a recent review of keV sterile neutrinos). The anal-
ysis of the DM phase-space distribution in dwarf spheroidal galaxies gives a lower
bound of MDM & O(1) keV for the mass of the lightest DM particle [28] so that
there is existing interest in theories with keV sterile neutrinos.

In this thesis we study the possibilities to generate small neutrino masses in the
spirit of the seesaw mechanism. Apart from common seesaw variants we develop
methods to predict the scale of the active neutrino mass matrix in singular seesaw
scenarios. In our considerations we include the constraints on neutrino oscilla-
tion parameters as well as the motivations for the di�erent neutrino mass scales
described above.
The organization of this thesis is as follows: In chapter 2 the SM and especially

the electroweak theory are presented. Possible extensions of the SM in order to
generate neutrino masses are discussed in chapter 3. This is followed by a review
of the seesaw mechanism in chapter 4. In chapter 5 we present the results of this
thesis in the context of the singular seesaw mechanism and conclude in chapter 6.
Quantum �eld theoretic aspects and mathematical methods used in this thesis can
be found in the apendices A and B, respectively.
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Chapter 2

The Standard Model

2.1 The Standard Model as a gauge theory

The fundamental objects of the SM are quantized �elds in spacetime. Conse-
quently, special relativity (SR) and quantum �eld theory (QFT) are the corner-
stones of the SM. From a �eld theoretical point of view the interactions of the SM
are the result of the transformational behavior of the elementary particles under
the local gauge group of the SM,

G = SU(3)C × SU(2)L × U(1)Y, (2.1)

where the subscripts C, L and Y denote color, left-handedness and hypercharge,
respectively. To each subgroup of G belong gauge bosons, corresponding to the
generators of the subgroups and transmitting the forces. The subgroup SU(3)C
has eight generators and is responsible for strong interactions. The gauge bosons
corresponding to the generators are called gluons. Only particles that carry the
quantum number of SU(3)C, color, participate in strong interactions. The theory
of strong interactions is called quantum chromo dynamics(QCD).1 The subgroup
SU(2)L × U(1)Y, leading to electroweak interactions, is discussed in section 2.2.
The W± and Z bosons of weak interactions and the photon γ, responsible for
electromagnetic interactions are described as superpositions of the gauge bosons
corresponding to the generators of SU(2)L × U(1)Y. This mixing is due to the
spontaneous break down of the symmetry of G to SU(3)C × U(1)Q of strong and
electromagnetic interactions. Since there is no further break down of symmetry,
strong interactions and electroweak interactions can be discussed in separate the-
ories.

Apart from the integer-spin bosons, the SM contains elementary spin-1/2-particles,

1QCD is not discussed here, since it would go beyond this thesis' scope. A good description of
QCD, however, can be found e.g. in [3].



called fermions. They are distinguished in quarks, which participate in all funda-
mental interactions, and charged and uncharged leptons, where the former partic-
ipate in all interactions except for the strong and the latter interact weakly and
gravitationally. The particle content of the SM together with particles' masses
is listed in Table 2.1. Note that the �elds in Table 2.1 are mass eigenstates and,
hence, correspond to the physical particles of the SM. The fermion �elds appearing
in the electroweak theory, however, are by de�nition �avor eigenstates. Whether
particles are given in the mass basis or in the �avor basis, they are organized in
three generations, where two versions of the �same� particle, but from di�erent
generations have the same quantum numbers under the SM gauge group.

Apart from the Higgs boson, all SM particles have been detected already. The
present state of a�airs in the search for the Higgs boson is re�ected by the latest
LHC results of the CMS and the ATLAS collaboration at CERN, which report a
signi�cant signal of a Higgs-like particle with a measured mass of 125.3±0.4(stat)±
0.5(sys) GeV [29] and 126.0±0.4(stat)±0.4(sys) GeV [30], respectively, consistent
with the limits of the Higgs mass in Table 2.1.

2.2 Electroweak theory

We discuss the electroweak theory in the Weinberg-Salam model [32,33] in a similar
way as [34], but only include the leptonic part of the electroweak Lagrangian in our
discussion. A crucial point of electroweak theory is the Higgs mechanism [35�39],
giving masses to the weak gauge bosons, not to be explained here. In this section,
however, we will address some attention to another important aspect of the Higgs
mechanism, namely the generation of fermion masses.

2.2.1 Gauge group and �elds

In the SM the subgroup SU(2)L × U(1)Y ⊂ G is responsible for electroweak in-
teractions. The group SU(2)L is the symmetry group of weak isospin and only
acts (non-trivially) on the left-handed component of a particle. To its generators
correspond three gauge bosons, denoted by Wµ. To the generator of U(1)Y, the
symmetry group of hypercharge, corresponds one gauge boson, denoted by Bµ.
Under the symmetry group SU(2)L × U(1)Y the covariant derivative is given by2

Dµ = ∂µ − igIσ ·W µ − ig′
Y

2
Bµ, (2.2)

2The minus signs in eq. (2.2) come from our convention that e denotes the electric charge of
the positron. If e is taken to denote the electric charge of the electron, the minus signs have
to be replaced by plus signs.
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particle mass

quarks

u 2.3+0.7
−0.5 MeV

d 4.8+0.7
−0.3 MeV

s 95± 5 MeV
c 1.275± 0.025 GeV
b 4.18± 0.03 GeV
t 173.5± 0.6(stat)± 0.8(sys) GeV

leptons

νe < 2.05 eV @ 95% CL
e 0.510998928± 0.000000011 MeV
νµ < 0.19 MeV @ 90% CL
µ 105.6583715± 0.0000035 MeV
ντ < 18.2 MeV @ 95% CL
τ 1776.82± 0.16 MeV

gauge bosons

γ < 10−18 eV
g 0
W± 80.385± 0.015 GeV
Z 91.1876± 0.0021 GeV

Higgs φ0 > 115.5 and none 127− 600 GeV @ 95% CL

Table 2.1: Standard Model particles with masses taken from the PDG [3]. The
charged lepton masses are pole masses. Masses for u-, d-, and s-quark
are �running� masses at renormalization scale µ = 2 GeV in the minimal
subtraction scheme. Masses for c- and b-quark are �running� masses
at µ = m̄c and m̄b, respectively, as well in the minimal subtraction
scheme. The top mass is the PDG's best-�t value of the pole mass
from combination of published measurements. Zero gluon mass is a
theoretical value. For the photon mass PDG refers to [31]. Note that
the photon of the electroweak theory presented in section 2.2 is massless
as a theoretical consequence of the Higgs mechanism.

where the spacetime derivative ∂µ and the Pauli matrices σ are de�ned as in [40],
g and g′ are the coupling constants of SU(2)L and U(1)Y, respectively, and I and
Y denote the weak isospin and hypercharge quantum numbers, respectively, of the
particle �eld Dµ acts on. The electric charge Q of a particle is connected to Y and
the third component of isospin I3 by the Gell-Mann-Nishijima relation [41�43]

Q = I3 +
Y

2
. (2.3)

In the electroweak theory the left-handed fermion �elds of each generation are
arranged in weak isospin doublets, while the right-handed fermion �elds are weak

18



isospin singlets. Since we pay particular attention to leptons, we can leave out
the quark sector here. The left-handed lepton doublets are denoted by LαL and
the right-handed charged lepton singlet by eαR. The index α = e, µ, τ marks
the �avor (or generation) of the corresponding lepton �eld.3 The leptonic �avor
eigenstates with quantum numbers are given in Table 2.2.

Lepton Q [e] I I3 Y

LαL =

(
ναL
eαL

) (
0
−1

)
1/2

(
1/2
−1/2

)
−1

eαR −1 0 0 −2

Table 2.2: Leptonic quantum numbers: Charge Q in units of positron charge e.
Weak isospin I and its third component I3. Hypercharge Y .

From the values of I and Y we recognize that left-handed doublets and right-
handed singlets will have distinct covariant derivatives. Inserting the leptons'
quantum numbers into eq. (2.2) we have for the left-handed doublets LαL, with
I = 1/2 and Y = −1,

DµL = ∂µ −
i

2
gσ ·W µ +

i

2
g′Bµ, (2.4)

and for the right-handed singlets eαR, with I = 0 and Y = −2,

DµR = ∂µ + ig′Bµ. (2.5)

2.2.2 Electroweak Lagrangian

- one generation: Having de�ned the �avor eigenstates (cf. Table 2.2) and the
covariant derivative for the theory eqs. (2.4) and (2.5), we are prepared to turn
our attention towards the electroweak Lagrangian. In one generation we write the
lepton Lagrangian

Llept = Lkin + LYukawa, (2.6)

where the di�erent parts are given by

3We use Greek letters for indices of the �avor basis. Later on, when we change to the mass
basis, we will use Latin letters for mass basis indices. Since �avor and mass basis indices are
carried only by �elds, there should be no confusion between them and Lorentz and spacial
indices.
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Lkin = iLLγ
µDµLLL + ieRγ

µDµReR, (2.7a)

−LYukawa = yLLφeR + h.c. . (2.7b)

In the second equation y denotes the Yukawa coupling strength, and φ denotes
the SM Higgs doublet, to be de�ned later (cf. eq. (2.13)). With LL we denote the
adjoint lepton doublet (cf. eq. (A.3))

LL ≡
(
νL eL

)
. (2.8)

Introducing the �elds4 Wµ, Zµ and Aµ as superpositions of the generatorsWµ and
Bµ given by

Wµ ≡
1√
2

(W 1
µ − iW 2

µ), (2.9a)

Zµ ≡
gW 3

µ − g′Bµ

(g2 + g′2)1/2
= cos θWW

3
µ − sin θWBµ, (2.9b)

Aµ ≡
g′W 3

µ + gBµ

(g2 + g′2)1/2
= sin θWW

3
µ + cos θWBµ, (2.9c)

where we have de�ned the Weinberg angle θW [32, 44] as

cos θW =
g

(g2 + g′2)1/2
, (2.10)

the covariant derivatives become

DµL = ∂µ −
i

2

(
g

cos θW
Zµ

√
2gWµ√

2gW †
µ − g

cos θW
cos 2θWZµ − 2g sin θWAµ

)
, (2.11a)

DµR = ∂µ − ig′(sin θWZµ − cos θWAµ). (2.11b)

Inserting expressions (2.11) in eq. (2.7a) the kinetic part of the electroweak lepton
Lagrangian reads

Lkin = iνLγ
µ∂µνL + ieLγ

µ∂µeL + ieRγ
µ∂µeR

− g sin θW(eLγ
µeL + eRγ

µeR)Aµ

+
g

cos θW
(
1

2
νLγ

µνL −
1

2
cos 2θWeLγ

µeL + sin2 θWeRγ
µeR)Zµ

+
g√
2

(eLγ
µνLW

†
µ + νLγ

µeLWµ), (2.12)

4These �elds are identi�ed with the weak gauge bosons W± and Z, and the electromagnetic
photon �eld Aµ of the SM.
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where we have used eq. (2.10) to replace g′ cos θW = g sin θW. The �rst line of
eq. (2.12) contains the leptons' kinetic terms. The second line describes the elec-
tromagnetic interactions of the leptons with the photon �eld Aµ, where only the
charged lepton participates, as it should be. And �nally the third and fourth lines
contain the (weak) neutral and charged current interactions, respectively. Note
that only left-handed particle states participate in charged current interactions.
Now, let us return to eq. (2.7b), the Yukawa interactions of the leptons with the

SM Higgs doublet. The electroweak Higgs (iso-)doublet is de�ned by

φ ≡
(
φ+

φ0

)
, (2.13)

where the superscripts refer to the electric charge of its components. It is assigned
quantum numbers (I, Y ) = (1/2, 1), leading to electric charges according to
eq. (2.3) consistent with the nomenclature of eq. (2.13).5 Together with the Higgs
doublet comes its charge conjugate

φ̂ ≡ iσ2φ∗, (2.14)

with quantum numbers (I, Y ) = (1/2, −1), to be used when we introduce right-
handed neutrinos. Inserting the expressions for φ, LL and eR into eq. (2.7b) we
get

−LYukawa = y(νLeRφ
+ + eLeRφ

0) + h.c. . (2.15)

After the neutral component of the Higgs doublet has developed a real non-zero
vacuum expectation value (VEV)

〈φ〉 =

(
0
v

)
, (2.16)

the symmetry of the electroweak gauge group SU(2)L × U(1)Y is spontaneously
broken down to the symmetry group of electric charge, U(1)Q. In the Lagrangian
in eq. (2.15) as consequence of the non-vanishing VEV a mass term for the charged
lepton,

−Lmass = yveLeR + h.c. ≡ meLeR + h.c. , (2.17)

is generated with mass m ≡ yv. Due to the fact that in the SM there is no
right-handed neutrino �eld, no such mass term arises for the neutrino.6

5The quantum numbers of the Higgs doublet are chosen in order to form invariant terms in the
Lagrangian involving left- and right-handed fermion states.

6Actually, it is the other way around. Historically, the SM by convention does not contain right-
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- three generations: Next, we consider three generations of leptons. Evoking
the �avor indices of the weak lepton doublet and singlet, eq. (2.7) reads

Llept = iLαLγ
µDLµLαL + ieαRγ

µDRµeαR

− YαβLαLφeβR − Y ∗αβeαRφ†LβL, (2.18)

where now the Yukawa couplings Yαβ are the in general complex-valued coe�-
cients of a 3× 3 matrix Y . Inserting the expressions for the covariant derivatives
eqs. (2.11), the �rst line of eq. (2.18), i.e. the kinetic part of the Lagrangian, takes
on the same form as eq. (2.12) - one simply has to put a �avor index α on each
lepton �eld, to get its correct version in three generations.

Now, we take a look at the second line in eq. (2.18). After the Higgs develops a
VEV as in eq. (2.16), the Yukawa couplings read

−LYukawa = Yαβ
(
ναL eαL

)(0
v

)
eβR + Y ∗αβeαR

(
0 v

)(νβL
eβL

)
= vYαβeαLeβR + h.c., (2.19)

or in matrix notation

−LYukawa = veLY eR + h.c. . (2.20)

The matrix Y can be diagonalized by a bi-unitary transformation7

V †LY VR = Y ′, (2.21)

where VL and VR are unitary matrices and the diagonalized form of Y is given by8

Y ′ab = yaδab. (2.22)

Note that here we used Latin letters for the indices, since the transformation
eq. (2.21) leads us to the mass basis, which is de�ned as the basis where Y is
diagonal. De�ning the lepton states in the mass basis

eaL ≡ V †aαLeαL, eaR ≡ V †aαReαR, (2.23)

handed neutrinos, because otherwise they would get a mass like all the other SM fermions
resulting from the spontaneous symmetry breaking by the Higgs doublet's VEV.

7For a proof, see [34], chapter 4.1.
8No summation over a.
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eq. (2.19) reads

−LYukawa = v(eLVL)V †LY VR(V †ReR) + h.c.

= vyaeaLδabebR + h.c.

= maeaLeaR + h.c. , (2.24)

where in the last line we have de�ned the charged lepton masses ma = vya with
a = 1, 2, 3.9 Note that for quark masses one can �nd equal expressions mq

a = vyqa,
with a = 1, 2, 3, where yqa denotes an entry of the quarks' Yukawa coupling matrix
Y q in the mass basis. For up-type quarks we have Y u

ab = yuaδab, and similarly Y d
ab

for down-type quarks.

9Writing this, we strictly stick to our notation for the mass basis. The unitary transformation
matrices, which diagonalize Y , however, can be absorbed into the �eld de�nitions of the
charged leptons so that �avor and mass eigenstates coincide. Hence, one is free to identify
m1 = me, and so on.
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Chapter 3

Neutrino related extensions of the

Standard Model

In this chapter general extensions of the SM that can generate neutrino masses are
presented. The main actor of our discussion will be the neutrino mass matrix M
in the Majorana basis introduced in eq. (A.16). Note that the diagonal elements
of the mass matrix, Maa, represent Majorana mass terms, while the o�-diagonal
elements, Mab = Mba, are Dirac mass terms. We begin by simply adding right-
handed neutrino �elds to the particle content of the SM and then we discuss the
results. Afterwards, we explain how the Higgs sector may be manipulated to show
alternative ways for generating neutrino masses.

3.1 Generation of neutrino masses

An obvious way to generate neutrino masses is to extend the SM by three right-
handed neutrino �elds NαR in parallel to the other SM fermion �elds. Since they
are introduced as right-handed particles they are weak isospin singlets (I = 0).
From eq. (2.3) we derive that they consequently must have hypercharge Y = 0, too,
making them singlets of the whole electroweak gauge group. Since the neutrinos
NR only interact gravitationally they are often called sterile neutrinos, whereas
the SM neutrinos νL are referred to as active neutrinos. Note, however, that the
mass eigenstates of the neutrinos in general can be a combination of active and
sterile states (cf. section 3.3).
Let us see how we can form mass terms for the neutrinos invariant under the SM

gauge group. First, we can only couple left-handed �elds to right-handed �elds.1

To our disposal are the active neutrinos νL with quantum numbers (I3, Y ) =
(1/2, −1) and their charge conjugate ν̂R with opposite quantum numbers and also

1A mass term of two �elds with the same chirality vanishes because of the properties of the
chiral projection operators, PLPR = PRPL = 0.



the sterile neutrinos NR and their charge conjugate N̂L, both with (I3, Y ) = (0, 0).
The mass terms that can theoretically be formed with this setup together with the

respective net quantum numbers are listed in Table 3.1. The term νLNR = N̂Lν̂R
(cf. eq. (A.7)) responsible for Dirac masses can be rendered invariant by means of
the neutral component of the charge conjugate of the SM Higgs doublet. The term

N̂LNR leads to a Majorana mass for the sterile neutrinos. It can either be a bare
Majorana mass term with some dimension-1 coupling constant, or theoretically it
could be coupled to a singlet scalar �eld with (I3, Y ) = (0, 0). The Majorana
mass term for the active neutrinos coming from νLν̂R can only be made invariant
if coupled to a triplet scalar �eld with (I3, Y ) = (1,−2). Both scalar �elds, the
singlet and the triplet do not exist in the SM and would have to be introduced as
new �elds (cf. section 3.4).

mass term ∆(I3, Y )
νLNR (1/2,−1)

N̂Lν̂R (1/2,−1)

N̂LNR (0, 0)
νLν̂R (1,−2)

Table 3.1: Possible mass terms for neutrinos and their net quantum numbers.

In the following, we will elaborate the consequences of including a Dirac mass
term for neutrinos in our theory. Then we will additionally consider a bare Majo-
rana mass term for the sterile neutrinos. At the end we will discuss the possible
extensions of the Higgs sector, enabling us to write down any neutrino mass term.

3.2 Dirac mass terms for neutrinos

In order to form an invariant term in the Lagrangian, containing the newly intro-
duced �elds, we can couple the NR to the left-handed doublets LL and the charge
conjugate of the Higgs doublet φ̂, de�ned in eq. (2.14). This leads to Yukawa cou-
plings that we will denote by the 3× 3 matrix Y ν . Then neutrino masses are the
result of symmetry breaking by the Higgs as explained for charged lepton masses
in section 2.2.2, coming from the Yukawa Lagrangian

−L ν
Yukawa = LLY

νφ̂NR + h.c.

=
φ→〈φ〉

vνLY
νNR + h.c. . (3.1)
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Changing from �avor basis to mass basis as in eq. (2.21) and de�ning the neutrino
�elds in the mass basis by

νaL ≡ V ν†
aαLναL, (3.2)

νaR ≡ V N†
aαRNαR, (3.3)

where V ν
L and V N

R are unitary matrices, eq. (3.1) becomes

−LYukawa = v(νLV
ν
L )V ν†

L Y νV N
R (V N†

R NR) + h.c.

= vyνaνaLδabνbR + h.c.

= mν
aνaLνaR + h.c. , (3.4)

where we de�ned the neutrino masses mν
a ≡ vyνa , with a = 1, 2, 3. De�ning the

Dirac mass matrix

MD ≡ vY ν , (3.5)

the Yukawa couplings eq. (3.1) can be rewritten in the notation of eq. (A.16) as

−LYukawa = ναLMDαβNβR + h.c.

=
1

2
(ναLMDαβNβR + N̂αLMDβαν̂βR) + h.c.

=
1

2

(
νL N̂L

)( 0 MD

MT
D 0

)(
ν̂R
NR

)
+ h.c. . (3.6)

Thus a neutrino mass matrix

M =

(
0 MD

MT
D 0

)
(3.7)

as in eq. (3.6) results in Dirac neutrinos with mass MD.
Since the mass of a SM fermion fa is given by mf

a = vyfa , the ratio of Yukawa
couplings of two fermions f and g of the same generation is equal to the ratio of
masses

Rfg =
yfa
yga

=
mf
a

mg
a
, (3.8)

with a �xed. Inserting the masses (or in the case of neutrinos the upper bounds
for the mass) of Table 2.1 into eq. (3.8), for the generations in the SM we have
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Rdu ∼ 1, Rsc ∼ 10−1, Rbt ∼ 10−2,

Red ∼ 1, Rµs ∼ 1, Rτb ∼ 1,

Rνee < 10−5, Rνµµ < 10−3, Rντ τ < 10−2. (3.9)

This shows that, if masses are generated by Dirac mass terms, the neutrinos'
Yukawa couplings would have to be very small in comparison to the ones of the
other SM fermions. In the rest of this chapter we will present the theoretically pos-
sible ways to explain the smallness of neutrino masses in the context of Majorana
mass terms.

3.3 Majorana mass terms for neutrinos

Among all SM fermions the neutrinos are the only ones which are uncharged so
that they can possibly be Majorana particles. If they really are, Majorana mass
terms in the Lagrangian can be written for them. In section A.2 of the appendix
we point out that one can get mass eigenvalues suppressed by some scale, if one
allows for Majorana mass terms in the theory (cf. eqs. (A.20) and (A.22)). We had
there a set of two Majorana spinors. In this section we are going to explain how
this is done for three left- and three right-handed neutrinos. The diagonalization
of the neutrino mass matrix will result in the suppression of active neutrino masses
known as the type I seesaw mechanism (cf. section 4.1).

We begin with the Lagrangian given in eq. (3.6). In addition, we permit a bare
Majorana mass term for the sterile neutrinos and their charge conjugate. The
mass Lagrangian for the neutrinos then reads

−Lmass = ναLMDαβNβR +
1

2
N̂αLMRαβNβR + h.c. , (3.10)

where MR denotes the Majorana mass matrix for the sterile neutrinos. In the
matrix notation eq. (3.10) reads

−Lmass =
1

2

(
νL N̂L

)( 0 MD

MT
D MR

)(
ν̂R
NR

)
+ h.c. . (3.11)

Under the assumption MR � MD we can diagonalize the mass matrix, as ex-
plained in section B.2 of the appendix, to �nd its mass eigenvalues.2 Performing

2Note the approximate nature of this diagonalization. In this subsection, we will emphasize this
with approximately signs, but later on we will mostly give the expressions to leading order
with equality signs.
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a transformation with

V ≈
(

1 M−1
R MD

−MT
DM

−1
R 1

)
(3.12)

eq. (3.11) becomes

−Lmass =
1

2

(
νL N̂L

)
V V T

(
0 MD

MT
D MR

)
V TV

(
ν̂R
NR

)
+ h.c.

= nLM
′nR + h.c. , (3.13)

where we have de�ned the diagonalized mass matrix

M ′ ≡ V T

(
0 MD

MT
D MR

)
V ≈

(
−MDM

−1
R MT

D 0
0 MR

)
(3.14)

and the chiral neutrino states

nL ≡
(
νL N̂L

)
V ≈

(
νL −MT

DM
−1
R N̂L, N̂L +M−1

R MDνL

)
, (3.15)

nR ≡ V T

(
ν̂R
NR

)
≈
(
ν̂R −MT

DM
−1
R NR

NR +M−1
R MDν̂R

)
. (3.16)

The states with mass M1 ≈ −MDM
−1
R MT

D and, respectively, M2 ≈ MR, then, are
given by

n1 ≡ n1L + n1R ≈ (νL + ν̂R)−MT
DM

−1
R (NR + N̂L) (3.17)

n2 ≡ n2L + n2R ≈ (NR + N̂L) +M−1
R MD(νL + ν̂R). (3.18)

Working in one generation only, where the matrices in eq. (3.17) and (3.18) are
ordinary numbers, it is obvious that both equations describe a Majorana particle.

3.4 Extended Higgs sector

In this section we discuss possible extensions of the Higgs sector. We introduce new
scalar �elds, which have Yukawa couplings with the neutrinos leading to neutrino
mass terms that are absent in the SM. The Higgs potential has to be minimized
with respect to the VEVs of all scalar �elds. This includes the potential of the
SM Higgs, which will be altered by the introduction of additional scalars. In this
thesis we always assume that the VEVs we choose correspond to the minimum
of the Higgs potential. Note that to guarantee electric charge conservation, only
neutral components of a Higgs multiplet can develop non-zero VEVs.
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Depending on the transformation properties of a scalar �eld with respect to the
gauge group of the theory, a �eld can a�ect the gauge sector. We will brie�y
comment on this when discussing the left-right symmetric model in section 3.4.3.

3.4.1 Scalar singlet

In the previous section, we introduced a bare Majorana mass term N̂LMRNR for
the sterile neutrinos. If the theory is extended by a singlet scalar �eld φS with
quantum numbers (I3, Y ) = (0, 0), this Majorana mass term can be thought of as
being the result of a Yukawa coupling of the sterile neutrinos with φS, which then
develops a VEV. Obviously, the scalar singlet is electrically uncharged, allowing
us to assume that it takes on a non-zero VEV 〈φS〉 = vS. Denoting the matrix of
Yukawa couplings by YS, the Lagrangian contains a term

−L φS
Yukawa =

1

2
N̂LYSNRφS + h.c.

=
φS→〈φS〉

1

2
vSN̂LYSNR + h.c. . (3.19)

Identifying MR = vSYS, we see that the bare Majorana mass term in eq. (3.10)
and the Yukawa term in eq. (3.19) are mathematically equivalent. The di�erence
between both terms is that the mass scale of the bare Majorana mass term in
eq. (3.10) is inserted arti�cially, while the mass scale of the Majorana mass term
in eq. (3.19) comes from the VEV of the scalar �eld.

3.4.2 Triplet

From the net quantum numbers in Table 3.1 we have seen that in order to get a
Majorana mass term for the active neutrinos, we need a scalar �eld with (I3, Y ) =
(1,−2). Such a �eld can be introduced as the neutral component ∆0 of a scalar
triplet ∆ with I = 1.3 The Yukawa coupling of the neutral component of the
triplet with the active neutrinos reads

−L ∆
Yukawa =

1

2
νLY∆∆0ν̂R + h.c. . (3.20)

When ∆0 develops a non-zero VEV 〈∆0〉 = v∆ eq. (3.20) becomes

−L ∆
Yukawa =

1

2
νLMLν̂R + h.c. , (3.21)

3For a detailed introduction of a Higgs triplet see e.g. [45].
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where we have de�ned the Majorana mass matrix ML ≡ v∆Y∆ for the active
neutrinos. Including eq. (3.21) in eq. (3.10) leads to the mass Lagrangian

−L ∆
mass = ναLMDαβNβR +

1

2
N̂αLMRαβNβR +

1

2
ναLMLαβ ν̂βR + h.c.

=
1

2

(
νL N̂L

)(ML MD

MT
D MR

)(
ν̂R
NR

)
+ h.c. . (3.22)

Hence the neutrino mass matrix is given by

M =

(
ML MD

MT
D MR

)
, (3.23)

which corresponds to the form of the neutrino mass matrix in the type II seesaw
mechanism (cf. section 4.2).

3.4.3 Left-right symmetric models

Another promising theory for generating neutrino masses is the left-right symmet-
ric model [46�49], where the gauge group of the SM is extended by the gauge group
SU(2)R of right-handed isospin, technically analogous to the symmetry group of
weak (left-handed) isospin SU(2)L. The quantum number hypercharge is rede�ned
as

Y = B − L, (3.24)

whereB and L denote baryon and lepton number, respectively. With this extension
the Gell-Mann-Nishijima relation, eq. (2.3), is changed to

Q = I3L + I3R +
B − L

2
, (3.25)

where the subscripts L and R serve to distinguish between the isospin quantum
numbers of SU(2)L and SU(2)R, respectively. Now right-handed leptons can be
grouped in right-handed iso-doublets RR ≡ (NR, eR)T with quantum numbers
(IL, IR, B − L) = (0, 1/2, −1), while the left-handed lepton doublet is a singlet
with respect to SU(2)R with quantum numbers (IL, IR, B − L) = (1/2, 0, −1).
The new gauge group has additional gauge bosons W±

R and ZR analogous to the
weak gauge bosons de�ned in section 2.2.

The left-right symmetric model brings up new possibilities of forming invariant
terms in the Lagrangian. From Table 3.2 we see that Dirac mass terms for neutrinos
can be formed using a scalar bi-doublet, denoted by Φ, with quantum numbers
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mass term ∆(I3L, I3R, B − L)
νLNR (1/2,−1/2, 0)

N̂Lν̂R (1/2,−1/2, 0)

N̂LNR (0,−1, 2)
νLν̂R (1, 0,−2)

Table 3.2: Possible mass terms for neutrinos and their net quantum numbers in
left-right symmetric models.

(IL, IR, B − L) = (1/2, 1/2, 0) and with a charge decomposition given by

Φ ≡
(
φ0

1 φ+
1

φ−2 φ0
2

)
. (3.26)

Its Yukawa couplings with the left- and right-handed doublet read

−LYukawa = LL(FΦ +GΦ̂)RR + h.c. , (3.27)

where the charge conjugate bi-doublet is de�ned as Φ̂ ≡ σ2Φ∗σ2 and F and G
denote the Yukawa couplings of Φ and Φ̂, respectively. For simplicity we assume
that only the component φ0

1 of bi-doublet develops a real non-zero VEV,

〈Φ〉 =

(
v 0
0 0

)
, (3.28)

so that eq. (3.27) becomes

−LYukawa = νLFNRφ
0
1 + eLGeR(φ0

1)∗ + h.c.

=
Φ→〈Φ〉

vνLFNR + veLGeR + h.c. . (3.29)

Comparing with eq. (2.19) and (3.1) and identifying F = Y ν and G = Y we see

that the component φ0
1 of the bi-doublet corresponds to the component φ̂ 0 of the

(charge conjugate) SM Higgs doublet. Hence, the VEV of Φ must be the VEV of
the SM Higgs introduced in eq. (2.16).4

The active neutrinos get a Majorana mass term by coupling to the neutral com-
ponent ∆0

L of a left-iso-triplet scalar ∆L that corresponds to the triplet introduced
in section 3.4. Analogously one can generate a Majorana mass term for the sterile
neutrinos using the neutral component ∆0

R of a right-iso-triplet scalar ∆R. Note

4If one generally assumes that φ02 takes on a non-zero VEV, too, the VEV of the neutral
component of the SM Higgs will be a superposition of 〈φ01〉 and 〈φ02〉.
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that ∆0
R may be identi�ed with the singlet φS, if the latter is assigned the quantum

numbers (I3L, I3R, B − L) = (0,−1, 2).5

Now we want to write a Yukawa Lagrangian including all possible mass terms.
Let us assume that the scalar �elds develop the VEVs 〈φ0

1〉 = v, 〈∆0
L〉 = vL,

〈∆0
R〉 = vR and the other VEVs vanish. Then the general Lagrangian of neutrino

Yukawa couplings in the left-right symmetric model can be written as

−LYukawa = vνLY
νNR +

1

2
vLνLYLν̂R +

1

2
vRN̂LYRNR + h.c.

=
1

2

(
νL N̂L

)(ML MD

MT
D MR

)(
ν̂R
NR

)
+ h.c. , (3.30)

where we de�ned MD ≡ vY ν , ML ≡ vLYL and MR ≡ vRYR. Note that the mass
matrix in eq. (3.30)

M ≡
(
ML MD

MT
D MR

)
(3.31)

is mathematically the same as the mass matrix in eq. (3.23), but comes from
di�erent physics in the Higgs sector.
Finally, we want to point out that the structure of the neutrino mass matrix

can easily be extended e.g. by introducing a di�erent type of neutrinos S. The
additional neutrinos can possibly form both Dirac mass terms with the active and
sterile neutrinos and Majorana mass terms among themselves. This results in a
mass matrix with the general form

M =

ML MD MT
LS

MT
D MR MT

RS

MLS MRS MS

 (3.32)

in the Majorana basis (ν̂R, NR, S)T . Matrices of this type appear in the context
of the extended seesaw mechanisms that will be discussed in section 4.4.

5In the context of left-right symmetry, obviously, φS is no longer a singlet.

32



Chapter 4

Variants of the seesaw mechanism

In the last chapter we have shown how to obtain neutrino mass terms of di�erent
types leading to a neutrino mass matrix in the general form of

M =

(
ML MD

MT
D MR

)
. (4.1)

In the Lagrangian and hence in the mass matrix one always has to include all the-
oretically allowed terms. Now that we know how to form mass terms for di�erent
types of neutrinos, we can write the mass matrix according to the model we wish
to discuss. As long as we use the matrix notation, we do not need to specify the
number of neutrinos we consider. For example in a model with sterile neutrinos
and a Higgs triplet coupled to active neutrinos, eq. (4.1) is valid for na active
and ns sterile neutrinos. In a model without an SU(2)-triplet Higgs the Majorana
mass term ML is forbidden and neither appears in the Lagrangian nor in the mass
matrix.

To �nd the (active) neutrino masses, the matrix M needs to be diagonalized by
a unitary transformation matrix V obeying

Md ≡ V TMV =

(
Mν 0
0 Mst

)
, (4.2)

whereMν andMst denote the active and sterile neutrino mass matrix, respectively.
By means of the seesaw mechanism, predictions of neutrino masses (or mass scales)
according to a certain model can be made. Implications in correlation with the
neutrino mass matrix such as neutrino mixing and the smallness of neutrino masses
or the possibility of Majorana and DM neutrinos might �nd an explanation in the
seesaw mechanism.

In this chapter we will present analyses of di�erent models that realize a seesaw
scenario together with the respective predictions of neutrino masses.



4.1 Type I seesaw

The canonical or type I seesaw mechanism was already presented in section 3.3.
For completeness, we recapitulate the major facts. We extend the SM by ns sterile
neutrinos in order to generate a Dirac mass term and permit a Majorana mass
term for the sterile neutrinos. The Lagrangian for this setup can be found in
eq. (3.10). This scenario corresponds to a mass matrix of the form

MI =

(
0 MD

MT
D MR

)
. (4.3)

Note that one can always take MR to be diagonal. Indeed, since MR = MT
R it can

be diagonalized by a unitary transformation. Consider a mass matrix

M ′
I =

(
0 M ′

D

(M ′
D)T M ′

R

)
, (4.4)

with an arbitrary symmetric ns × ns matrix M ′
R in place of MR. Assuming that

M ′
R can be diagonalized by the unitary matrix V , we transform the total mass

matrix M ′
I like

MI ≡
(
1 0
0 V T

)(
0 MD

MT
D MR

)(
1 0
0 V

)
=

(
0 M ′

DV
V T (M ′

D)T V TM ′
RV

)
. (4.5)

Relabeling M ′
DV → MD and V TM ′

RV → MR we are back to eq. (4.3), but now
with diagonal MR.

Let us return to eq. (4.3). If we assume MR � MD ∼ mew ∼ 102 GeV, we can
perform a seesaw-type transformation (see section B.2.1 of the appendix) leading
to the diagonal form of the mass matrix

Md
I =

(
MDM

−1
R MT

D 0
0 MR

)
. (4.6)

In order to get neutrino masses mν . 1 eV we need the Majorana mass term to
be at least at about 1013 GeV.

For completeness we emphasize that the matrix form given in eq. (4.6) is a
leading order approximation. In the cases we considered this approximation is
well justi�ed.1 There are, however, scenarios, where next to leading order (NLO)
e�ects get in the percent regime ( - a detailed examination of consequences of NLO
terms can be found in [50]). In section 4.4.4 we give an example for this.

1For example in eq. (4.6) we neglected terms of relative order m2
D
/m2

R
. 10−22 and smaller.
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4.2 Type II seesaw

In the type II seesaw mechanism the mass Lagrangian in eq. (3.10) is extended by
a triplet Majorana mass term for the active neutrinos that �lls the zero-block of
the mass matrix in eq. (4.3). The resulting mass matrix

MII =

(
ML MD

MT
D MR

)
(4.7)

is exactly in the form of eq. (B.9) in section B.2.1 of the appendix. This means
that under the assumption MR �MD and MR �ML it can be diagonalized by a
seesaw-type transformation leading to the diagonal form

Md
II =

(
ML −MDM

−1
R MT

D 0
0 MR

)
. (4.8)

Obviously, the type II seesaw mechanism can be understood as a generalization
of the type I seesaw mechanism. Note that the triplet Majorana mass term ML

needs to be su�ciently small, since it contributes to the active neutrino masses
without suppression by high scale physics.

For the type III seesaw mechanism, where a SU(2)L-triplet fermion is introduced,
we refer to [51].

4.3 Minimal seesaw

In minimal seesaw models (for analyses of 3 + 1 and 3 + 2 models see e.g. [52,53])
it is examined, which minimal set of extensions to the SM is needed to make the
model compatible with experimental data. Since this thesis concerns itself with
non-minimal variants we only mention that according to the �seesaw fair play rule�
in the unbalanced seesaw [54] a seesaw scenario with p active and q < p sterile
neutrinos, leads to q non-zero active neutrino masses. Hence, to explain the two
observed mass di�erences in active neutrino masses, one needs at least two sterile
neutrinos. Note that this does not rule out 3 + 1 models. Although within these
models one sterile neutrino at the eV scale is considered that does not mean that
there cannot be more.

4.4 Extended seesaw

As mentioned at the end of chapter 3, the seesaw mass matrix can be upgraded to
an extended seesaw scenario (cf. eq. (3.32)). In addition to the canonical seesaw
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setup, let us introduce nb uncharged fermion singlets S that have a Majorana
mass term. Furthermore we introduce new scalars σLS and σRS, with VEVs vLS
and vRS that couple singlets to active and sterile neutrinos, respectively. Including
a possible triplet Majorana mass term for the active neutrinos the total neutrino
mass matrix is given by eq. (3.32),

M =

ML MD MT
LS

MT
D MR MT

RS

MLS MRS MS

 ∈M 2[(na + ns + nb)], (4.9)

where we write the Dirac mass terms in an obvious way as

MD ≡ YD〈φSM〉 = vYD, (4.10a)

MLS ≡ YLS〈σLS〉 = vLSYLS, (4.10b)

MRS ≡ YRS〈σRS〉 = vRSYRS. (4.10c)

As one can imagine, there are many ways to specify the neutrino mass matrix in
the extended seesaw scenario. In this thesis we only considered cases with na = 3
active neutrinos. In the following we will single out instructive examples and later
on in chapter 5 we will discuss the singular extended seesaw mechanism.

4.4.1 Double seesaw

In the double seesaw mechanism [55, 56], the canonical seesaw is extended by in-
troducing fermion singlets S that couple to sterile but not to active neutrinos.
Moreover they shall have a Majorana mass term. Other Majorana mass terms
are forbidden. Under these assumptions the neutrino mass matrix in the ba-
sis (ν̂R, NR, S)T reads

M =

 0 MD 0
MT

D 0 MT
RS

0 MRS MS

 . (4.11)

If MS � MRS � MD, this matrix can be diagonalized by two successive seesaw-
type transformations. Using the formulas developed in section B.2 we �nd the
diagonal form

Md =

Mν 0 0
0 Md

R 0
0 0 MS



36



≡

MDM
−1
RSMS(M

T
RS)
−1MT

D 0 0
0 MT

RSM
−1
S MRS 0

0 0 MS

 (4.12)

with mass scale structure

Md ∼


m2
D

m2
RS

mS 0 0

0
m2
RS

mS
0

0 0 mS

 . (4.13)

The double seesaw scenario is interesting, since if one inserts the characteristic
values MD ∼ mew ∼ 100 GeV, MRS ∼ mGUT ∼ 1016 GeV and MRS ∼ mPlanck ∼
1019 GeV, one gets active neutrino masses around 1 eV.

4.4.2 Screening of Dirac �avor structure

In [57] it is proposed to assume that the Yukawa couplings ofMD andMRS are pro-
portional to each other, i.e. YD = rYRS.

2 The consequence for the active neutrino
mass matrix in eq. (4.12)

Mν = MDM
−1
RSMS(M

T
RS)
−1MT

D = r2 〈φSM〉2

〈σRS〉2
MS (4.14)

is that its structure now only depends on the structure of the Majorana mass term
for the singlets, MS, and hence the �avor structure of the Dirac mass terms that
describe mixing among the di�erent types of neutrinos, is screened.

4.4.3 Linear seesaw

The linear seesaw mechanism (see e.g. [58]) follows an idea similar to the one just
presented. Imagine an extended seesaw scenario without Majorana mass terms so
that the mass matrix in eq. (4.9) takes on the form

M =

 0 MD MT
LS

MT
D 0 MT

RS

MLS MRS 0

 . (4.15)

2This proportionality might be the result of e.g. lepton number and/or gauge symmetry [57].
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Assume that the VEVs of σLS and σRS are related by vLS = rvRS. Then the active
neutrino mass matrix after diagonalization becomes

Mν = −
(
MD MT

LS

)( 0 M−1
RS

(MT
RS)
−1 0

)(
MT

D

MLS

)
= −r(MDY

−1
RS YLS + Y T

LS(Y
T
RS)
−1MT

D ), (4.16)

where we have used the proportionality between vLS and vRS. Note that the scale
vRS has completely dropped out of the formula for the active neutrino masses. Now
assuming that the Yukawa couplings are of order 1 and MD ∼ 102 GeV, we see
that the proportionality factor r needs to be rather small at O(10−11) or below.

4.4.4 Inverse seesaw

Consider a mass matrix of the form

M =

 0 MD 0
MT

D MR MT
RS

0 MRS MS

 . (4.17)

The inverse seesaw scenario [55,56] is obtained by MR → 0 and assuming MRS �
MD �MS. The inverse of the sub-matrix

MX ≡
(

0 MT
RS

MRS MS

)
(4.18)

is given by3

M−1
X =

(
−M−1

RSMS(M
T
RS)
−1 M−1

RS

(MT
RS)
−1 0

)
. (4.19)

Since in the limit MS → 0 the eigenvalues of MRS � MD dominate the scale of
MX, one can apply the seesaw formula to eq. (4.17) to get

Md =

(
Mν 0
0 MX

)
, (4.20)

where the active neutrino mass matrix is given by

Mν = −
(
MD 0

)(−M−1
RSMS(M

T
RS)
−1 M−1

RS

(MT
RS)
−1 0

)(
MT

D

0

)
= MDM

−1
RSMS(M

T
RS)
−1MT

D , (4.21)

3Here we assume that MX is invertible. For the singular case see section 5.2.2.
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which is the same expression for Mν as in eq. (4.12). Putting in the suggestive
values MS ∼ 0.1 keV, MD ∼ 100 GeV and MRS ∼ 1 TeV brings the active neutrino
masses to the scale of 1 eV. Interestingly, in this scenario the �rst order correction
term to Mν is of order MSM

4
D/M

4
RS ∼ 10−2 eV, which is about few percent of Mν .

These corrections become important for example, if leading order terms vanish [50].

4.4.5 Minimal radiative inverse seesaw

The minimal radiative inverse seesaw model (MRISM) [59,60] can be regarded as
a modi�cation of the inverse seesaw, where in eq. (4.17) the Majorana mass term
for the fermionic singlets is set equal to zero and instead a Majorana mass term
for the sterile neutrinos is assumed. Let us consider a model with three neutrinos
of each species. The 9× 9 mass matrix, then, is given by

M =

 0 MD 0
MT

D MR MT
RS

0 MRS 0

 . (4.22)

Let us assumeMR �MRS andMR �MD and realignM in the basis (ν̂R, S, NR).
Now M has the form

M =

 0 0 MD

0 0 MRS

MT
D MT

RS MR

 , (4.23)

from which we see that it has rank 6. Also, it is clear that M can be transformed
by a seesaw-type transformation yielding

M ′ =

(
M6×6

ν 0
0 MR

)
, (4.24)

where the 6× 6 matrix M6×6
ν is given by

M6×6
ν ≡ −

(
MD

MRS

)
M−1

R

(
MT

D MT
RS

)
= −

(
MDM

−1
R MT

D MDM
−1
R MT

RS

MRSM
−1
R MT

D MRSM
−1
R MT

RS

)
≡ −

(
Ma Mb

MT
b Mc

)
. (4.25)

Under the assumption MR � MD the matrix M6×6
ν can be diagonalized by yet

another seesaw-type transformation leading to

M ′6×6
ν = −

(
Ma −MbM

−1
c MT

b 0
0 Mc

)
=

(
0 0
0 −MRSM

−1
R MT

RS

)
, (4.26)
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where both terms in the �rst diagonal entry have canceled exactly. The matrix
M ′6×6

ν is of rank 3 as expected. Note that in this scenario the active neutrino
masses vanish at tree level. Their masses only receive radiative corrections at
loop level. To quantify the corrections we give the expression for the one-loop
contribution to M ′6×6

ν [60],

M1−loop
ν ≈

(
MD

0

)
αW

16πm2
W

MR

[
m2

H

M2
R −m2

H1
ln

(
M2

R

m2
H

)
+

3m2
Z

M2
R −m2

Z1
ln

(
M2

R

m2
Z

)] (
MT

D 0
)

=

(
MDM

−1
R xRf(xR)MT

D 0
0 0

)
≡
(

∆M 0
0 0

)
, (4.27)

where αW ≡ g2/4π denotes the weak �ne-structure constant, and mW, mZ and
mH denote respectively, the W , Z and Higgs boson masses. The one-loop function
f(xR) is de�ned by

f(xR) ≡ αW
16π

[
xH

xR − xH
ln

(
xR
xH

)
+

3xZ
xR − xZ

ln

(
xR
xZ

)]
, (4.28)

with xR ≡ m2
R/m

2
W, xH ≡ m2

H/m
2
W, xZ ≡ m2

Z/m
2
W and for simplicity it was

assumed that MR = mR1. Then, at one-loop level we have the e�ective mass
matrix

M6×6
e� ≡M6×6

ν +M1−loop
ν

= −
(
MDM

−1
R (1− xRf(xR))MT

D MDM
−1
R MT

RS

MRSM
−1
R MT

D MRSM
−1
R MT

RS

)
= −

(
MDM

−1
R MT

D −∆M MDM
−1
R MT

RS

MRSM
−1
R MT

D MRSM
−1
R MT

RS

)
. (4.29)

In consequence of the one-loop corrections the active neutrino masses are non-
vanishing after diagonalization.

4.4.6 Minimal extended seesaw

The minimal extended seesaw mechanism (MES) presented in [61] is based on
the type I seesaw mechanism. As the name indicates it extends the model by a
minimal set of particles. Assuming a scenario as in the MRISM, but introducing
only one singlet fermion instead of three, we have the same mass matrix structure
and rank as the mass matrix in eq. (4.22), only now M is a 7 × 7 matrix. Its
diagonalization can be carried out as before leading to the 4 × 4 matrix in the

40



(νL, S)-sector

M4×4
ν = −

(
MDM

−1
R MT

D MDM
−1
R MT

RS

MRSM
−1
R MT

D MRSM
−1
R MT

RS

)
, (4.30)

after integrating out the heavy states NR. The four neutrino masses corresponding
to M4×4

ν are light, since all of them are suppressed by the scale of MR. Note
especially that at least one light neutrino is massless at tree level, since M does
not have full rank [61]. By the way, this is in direct agreement with the seesaw fair
play rule mentioned earlier. Under the assumption MD < MRS the matrix M4×4

ν

can further be diagonalized by a second seesaw-type transformation. This leads to

Md4×4
ν =

(
Mν 0
0 mS

)
, (4.31)

where the diagonal entries are given by

Mν ≡MDM
−1
R MT

RS(MRSM
−1
R MT

RS)
−1MRSM

−1
R MT

D

−MDM
−1
R MT

D ∈M [3× 3], (4.32)

mS ≡−MRSM
−1
R MT

RS ∈M [1× 1]. (4.33)

Note that the expressions in eq. (4.32) do not cancel (like they did in eq. (4.26)),
since MRS ∈M [1× 3] is a vector. Note as well that both terms in eq. (4.32) have
the same order of magnitude. Inserting the naively chosen values MD ∼ 100 GeV,
MRS ∼ 500 GeV and MR ∼ 2 × 1014 GeV the matrices in eqs. (4.32) and (4.33)
are of order Mν ∼ 0.05 eV and mS ∼ 1.3 eV, respectively. Thus the MES is an
example for generating one sterile neutrino mass at the eV scale.

4.4.7 Schizophrenic neutrinos

Another interesting theory is the �schizophrenic neutrino� alternative [62]. In
this theory the possibility is pointed out that at tree level some neutrino mass
eigenstates could have a Dirac mass, while others have a Majorana type mass.
In this case the mass matrix in the �avor basis would have a large admixture of
both Dirac and Majorana mass terms. To generate active neutrino masses in the
eV range the �avor eigenstates forming the Dirac mass neutrinos would need to
have small Yukawa couplings of about O(10−12), while su�ciently small Majorana
type masses could be obtained by high mass scale suppression as in the seesaw
mechanism. Let us illustrate this consideration by an example. Imagine a scenario
with three active neutrinos ναL and three sterile neutrinos NαR, where the states
with α = 1 form a Dirac neutrino, while the other states have mass terms as in the
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type I seesaw. The neutrino mass matrix corresponding to this scenario written
in the basis (ν̂1R, ν̂2R, ν̂3R, N1R, N2R, N3R) would be given by

M =


0 0 0 m11 0 0
0 0 0 0 m22 m23

0 0 0 0 m32 m33

m11 0 0 0 0 0
0 m22 m32 0 µ2 0
0 m23 m33 0 0 µ3

 , (4.34)

where for simplicity we have assumed that the Majorana mass term for the sterile
neutrinos is diagonal. The structure of the mass matrix in eq. (4.34) could for
instance be the result of a �avor symmetry. Indeed, if in our example we identify
ν1L with the electron-neutrino, electron lepton number is conserved.
This scheme can be generalized in an obvious way to a case with p Dirac and q

Majorana masses. Note that we need 2p states to generate p Dirac masses as well
as 2q states, of which q have large Majorana mass terms, to obtain q suppressed
Majorana masses. Now, consider a scenario with respectively n = p+ q active and
sterile neutrinos. We work in the basis

(ν̂1R, . . . , ν̂pR, ν̂(p+1)R, . . . , ν̂(p+q)R, N1R, . . . , NpR, N(p+1)R, . . . , N(p+q)R),

where the states with α = 1, . . . , p, will form Dirac neutrinos and the remaining
states bring forth the Majorana neutrinos. Then the mass matrix is written as

M =


0 0 MDp 0
0 0 0 MDq

MT
Dp 0 0 0
0 MT

Dq 0 MRq

 ∈M 2[((p+ q) + (p+ q))], (4.35)

where MDp is responsible for the Dirac masses, while MDq and MRq generate the
Majorana masses. For later we record that, if a Dirac mass term can be put in
such a �schizophrenic� form

MD =

(
MDp 0

0 MDq

)
(4.36)

with su�ciently small MDp, it can give rise to p neutrinos with Dirac masses and
q Majorana type neutrinos with seesaw suppressed masses.
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Chapter 5

Singular seesaw mechanism

Since till now nothing about the possible Majorana nature of neutrinos is known,
the Majorana mass terms can in principle be arbitrary. This includes cases where
they are singular. The two examples below in eq. (5.4) and (5.5) demonstrate
how easily singular mass terms can be constructed e.g. under the assumption of
a certain (�avor) symmetry. The possibility of having zero eigenvalues in the
Majarona mass matrix so far has not been studied very much. The scenarios we
are going to discuss in this chapter, however, will show that it is worthwhile to
consider singular cases, since they can lead to di�erent mass scales as well as to
a di�erent partition of the eigenstates among the mass scales compared to the
non-singular seesaw.

5.1 Canonical singular seesaw

Consider a type I seesaw model as in section 4.1 with three active and three sterile
neutrinos. In this context the mass matrix reads

M =

(
0 MD

MT
D MR

)
∈M 2[(3 + 3)]. (5.1)

We work in the basis, where MR is diagonal (cf. chapter 4),

MR =

m1 0 0
0 m2 0
0 0 m3

 . (5.2)

Now let us assume that MR is singular, i.e. det(MR) = 0, with 0 ≤ n < 3 non-zero
eigenvalues. If n = 0, MR is the zero-matrix and we have the simple Dirac case
explained in section 3.2. In the case n > 0 we will parametrize the Majorana mass



term as

MR =

(
0 0
0 Mn

)
∈M 2[((3− n) + n)], (5.3)

where Mn contains the non-zero eigenvalues of MR and thus is by construction
non-singular.1 An example for a symmetric matrix with one non-zero eigenvalue
is

M ′
1 = mR

1 1 1
1 1 1
1 1 1

 −→M1 =

0 0 0
0 0 0
0 0 3mR

 , (5.4)

and for two non-zero eigenvalues

M ′
2 = mR

1 1 0
1 1 0
0 0 1

 −→M2 =

0 0 0
0 mR 0
0 0 2mR

 . (5.5)

With the parametrization as in eq. (5.3) the whole mass matrix takes on the form

M =

 0 MD1 MD2

MT
D1 0 0

MT
D2 0 Mn

 ∈M 2[(3 + (3− n) + n)]. (5.6)

Assuming Mn � MD, this matrix can be transformed with a seesaw-type trans-
formation (cf. section B.2.1) with the result

M ′ =

MX MD1 0
MT

D1 0 0
0 0 Mn

 , (5.7)

where we have abbreviatedMX ≡ −MD2M
−1
n MT

D2 ∈M [3×3]. Note that according
to the seesaw fair play rule MX will in general have 3− n zero eigenvalues.

In the case that Rk(MD1) = 0 ⇒ MD1 = 0, the mass matrix in the form of
eq. (5.7) already has diagonal form

Md = M ′ =

MX 0 0
0 0 0
0 0 Mn

 ∈M 2[(3 + (n− 3) + n)] (5.8)

1Hence, Mn can be inverted.
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with mass scale structure

Md ∼

m2
D

mR
0 0

0 0 0
0 0 mR

 . (5.9)

The case MD1 = 0, however, corresponds to a scenario, where the sterile neutrinos
with zero Majorana mass have no couplings, either. These neutrinos, then, would
be massless particles without interactions, which is not really meaningful. We will
not discuss such possibilities any further.

In the case n = 1 the matrix MX has one non-vanishing eigenvalue and MD1 ∈
M [3× 2]. Then in eq. (5.7) the sub-matrix of M ′,

Ma ≡
(
MX MD1

MT
D1 0

)
, (5.10)

can be written in the form

Ma =


a 0 0 b1 c1

0 0 0 b2 c2

0 0 0 b3 c3

b1 b2 b3 0 0
c1 c2 c3 0 0

 . (5.11)

Among the eigenvalues of this matrix there are in general four eigenvalues pro-
portional to mD, which is not consistent with the smallness of active neutrino
masses.

In the case n = 2 the matrix MX has two non-vanishing eigenvalues and MD1 ∈
M [3× 1]. In a similar way as in the case n = 1 we write the sub-matrix Ma as

Ma =


a1 0 0 b1

0 a2 0 b2

0 0 0 b3

b1 b2 b3 0

 . (5.12)

To �nd its eigenvalues we compute the determinant

det(λ · 1−Ma) =λ4 − (a1 + a2)λ3 + (a1a2 − b2
1 − b2

2 − b2
3)λ2

+
[
a1(b2

2 + b2
3) + a2(b2

1 + b2
3)
]
λ− a1a2b

2
3. (5.13)

This clearly gives a vanishing eigenvalue, if one puts b3 = 0. On the other hand,
if for example one sets b1 = b2 = 0, it is obvious that Ma has the eigenvalues
a1, a2, b3,−b3, where a1 and a2 are proportional to m

2
D/mR and b3 ∼ mD. Hence,

45



the eigenvalues of Ma strongly depend on the concrete form of MX and MD1.
Neither of the cases (b3 = 0 or b1 = b2 = 0), however, contain enough suppressed
eigenvalues to be consistent with the light active neutrino masses.

Here we mention that the introduction of more than three sterile neutrinos does
not overcome the problem of active neutrino masses being too large. Even with
more sterile states the three active neutrino states would still receive a contribu-
tion from the Dirac mass terms.

Regarding the singular type I seesaw in the light of the schizophrenic neutrino
alternative (cf. section 4.4.7) reveals a di�erent opportunity to us. Imagine that
in eq. (5.6) the Dirac mass term MD =

(
MD1 MD2

)
∈ M [3 × ((3 − n) + n)] is

responsible for p := (3 − n) Dirac and q := n Majorana neutrinos. Then we can
write MD in a �schizophrenic� form as

(
MD1 MD2

)
≡
(
Mp 0
0 Mq

)
∈M 2[((3− n) + n)]. (5.14)

According to the schizophrenic neutrino alternative we assume Mp to be small.
In the case n = 1 we would have two Dirac neutrinos with mass of order mp and
one Majorana type mass neutrino with mass proportional to m2

q/mR. The case
of n = 2 corresponds to one Dirac mass neutrino and two neutrinos with seesaw
suppressed mass. In both cases, of course, there will additionally be the n large
scale Majorana type mass neutrinos that were initially assumed.

5.2 Extended singular seesaw

In the following we will examine, which structures are present in two extended
singular variants, namely in the double seesaw and the inverse seesaw (cf. sections
4.4.1 and 4.4.4). We begin our discussion with the case of a vanishing Majorana
mass term in the double seesaw and go on to the non-vanishing (but still singular)
case. Afterward we will reconsider the inverse seesaw scenario from another point
of view to demonstrate its pseudo-singular structure.

5.2.1 Singular double seesaw

Under the assumptions described in section 4.4.1 the total neutrino mass matrix
has the form

M =

 0 MD 0
MT

D 0 MT
RS

0 MRS MS

 ∈M 2[(3 + ns + nb)] (5.15)
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with MS � MRS and MRS � MD. To make this scenario singular, we assume
additionally det(MS = 0), which means that MS has at least one zero eigenvalue.

The case, where MS = 0 and the neutrino mass matrix takes on the form

M =

 0 MD 0
MT

D 0 MT
RS

0 MRS 0

 , (5.16)

leads to Dirac neutrinos, just as the case with vanishing Majorana mass term in
the type I seesaw. In addition, as can be seen from eq. (5.16), the mass matrix has
vanishing eigenvalues. For instance in a (3+3+3) framework the diagonal form of
M contains three vanishing eigenvalues and (in the limitMRS �MD) six eigenval-
ues of order mRS. Since in scenarios with vanishing Majorana mass term no seesaw
suppressed masses arise, we will not follow this possibility anymore. Instead, we
consider the case where MS possesses n < nb zero eigenvalues. Parametrizing the
Majorana mass term as

MS ≡
(

0 0
0 Mn

)
∈M 2[((nb − n) + n)] (5.17)

the whole mass matrix reads

M =


0 MD 0 0
MT

D 0 MT
RS1 MT

RS2

0 MRS1 0 0
0 MRS2 0 Mn

 ∈M 2[(3 + ns + (nb − n) + n)], (5.18)

where we have split up MT
RS ≡

(
MT

RS1 MT
RS2

)
∈M [ns × ((nb − n) + n)] in corre-

spondence with MS. A seesaw-type transformation of M according to the split-up
indicated in eq. (5.18) leads to

M ′ =


0 MD 0 0
MT

D MY MT
RS1 0

0 MRS1 0 0
0 0 0 Mn

 (5.19)

where we have abbreviated MY ≡ −MT
RS2M

−1
n MRS2. Note that MY has ns − n

vanishing eigenvalues according to the seesaw fair play rule. The sub-matrix

Ma ≡

 0 MD 0
MT

D MY MT
RS1

0 MRS1 0

 ∈M 2[(3 + ns + (nb − n))] (5.20)
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has the same form as M3 in section B.2.3 of the appendix and can be diagonalized
as explained there. The eigenvalues of Ma, however, are hard to predict. From
the form of Ma we can tell that, if ns < 3 + nb − n, this matrix will in general
have 3 + nb − n − ns vanishing eigenvalues.2 At which position they will appear
in the block diagonal form we cannot predict. Keeping this in mind, we proceed
applying the diagonalization techniques.

If MRS1 is not quadratic or does not have full rank, the diagonal form of Ma is
given by

Md
a =

K3×3 0 0
0 Jk×k 0
0 0 Dl×l

 ∈M 2[(3 + k + l)], (5.21)

where l = 2Rk(MRS1) and k = ns + (nb − n)− l. Its mass scale structure reads

Md
a ∼


m2
D

m2
RS

mS 0 0

0
m2
RS

mS
0

0 0 mRS

 , (5.22)

where in the �rst diagonal entry we omitted a term of relative order mRS/mS. The
full diagonal mass matrix, hence, is given by

Md =


K3×3 0 0 0

0 Jk×k 0 0
0 0 Dl×l 0
0 0 0 Mn

 ∈M 2[(3 + k + l + n)], (5.23)

with mass scale structure

Md ∼


m2
D

m2
RS

mS 0 0 0

0
m2
RS

mS
0 0

0 0 mRS 0
0 0 0 mS

 . (5.24)

As explained before, somewhere in K3×3, Jk×k and/or Dl×l must be 3+nb−n−ns
zero eigenvalues. To interpret this we imagine a scenario with three sterile neu-
trinos and three singlets (ns = nb = 3) and with n = 1 non-vanishing eigenvalues
in the Majorana mass term. Clearly the condition ns < 3 + nb − n holds here.
Thus the neutrino mass matrix will have 2 zero eigenvalues. This can have con-
sequences for the practicability of this model, if for example there are vanishing

2Note that the condition ns < 3 + nb − n holds in the scenarios we consider.
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eigenvalues in K3×3.

Now, putting the problem with the vanishing eigenvalues aside for the moment,
we will discuss the diagonal form of Md given in eq. (5.23) and (5.24). Comparing
the structure ofMd with eq. (4.12) and (4.13) of the non-singular double seesaw we
see that in the singular context a new mass scale appears in the diagonal form of
the mass matrix, namely mRS. Additionally, the eigenvalue structure (3 +ns +nb)
of the non-singular case is replaced by the structure (3 + k + l + n).

Let us examine, which values we can choose for the three di�erent mass scales.
Putting mD ∼ 10x GeV, mRS ∼ 10y GeV and mS ∼ 10z GeV with x < y < z
in accordance with our assumption MD � MRS � MS, the condition to generate
active neutrino masses at about 1 eV reads

102x−2y+z GeV ≈ 10−9 GeV. (5.25)

First, note that inserting the typical double seesaw scalesmew ∼ 102 GeV, mGUT ∼
1016 GeV and mPlanck ∼ 1019 GeV for mD, mRS and mS, respectively, leads to eV
active neutrinos. But apart from the additional scale at mR ∼ 1016 GeV, we have
found nothing that is new compared to the non-singular double seesaw mechanism.
More interesting cases arise, if one puts mD at the eV scale, i.e. x = −9. With this
choice of x the condition eq. (5.25) reads

−2y + z = 9. (5.26)

Under these circumstances the mass scale of Jk×k, m
2
RS/mS = 102y−z GeV, is �xed

at the eV scale. Now if, for example, we want a scenario with keV sterile neutrinos,
we could choose −6 ≤ y ≤ −4. Then, according to eq. (5.26), we would have a
mass scale structure

M ∼


1 eV 0 0 0

0 1 eV 0 0
0 0 1− 100 keV 0
0 0 0 1 MeV− 10 GeV

 , (5.27)

with eV active neutrinos and eV, keV and MeV to GeV sterile neutrinos, respec-
tively. There are other valid values for y and z. If we, however, take the Planck
scale as a limit on mS (z = 19), the maximal value for mRS is at about 105 GeV
(y = 5).

To study the eigenvalue structure of eq. (5.23) we choose the common scenario
with three sterile neutrinos and three singlets (ns = nb = 3). Then the number
of non-zero eigenvalues of MS, n, can take on the values 1 or 2. In both cases the
matrix MRS1 ∈ M [3 × (3 − n)] determining l = 2Rk(MRS1) and k = 6 − n − l
is not quadratic and thus may have full rank. In Table 5.1 we have listed the
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scenarios, which can emerge in this constellation. First note that all scenarios

n = 1 n = 2
k l structure k l structure
1 4 (3 + 1 + 4 + 1) 2 2 (3 + 2 + 2 + 2)
3 2 (3 + 3 + 2 + 1)

Table 5.1: Possible eigenvalue structure of the neutrino mass matrix in the singular
double seesaw with non-vanishing Majorana mass term. The notation
(3 + k + l + n) indicates that the corresponding scenario contains 3
masses of order (mD/mRS)

2mS, k masses of order m2
RS/mS, l masses of

order mRS and n masses of order mS.

feature three active neutrinos, since the initial number of eigenvalues in the active
neutrino sector is not a�ected by the diagonalization procedure. If we assume a
concrete mass scale structure as in eq. (5.27), the scenarios (3 + 1 + 4 + 1) and
(3 + 2 + 2 + 2) could represent the hidden eigenvalue structure of a low-energy
e�ective 3+1 and 3+2 model with eV sterile neutrinos, respectively. Moreover all
scenarios in Table 5.1 provide us with keV sterile neutrinos. In the light of possibly
vanishing eigenvalues (cf. the comments after eq. (5.24)), however, the prediction
of the mass scales must be taken with a grain of salt.

5.2.2 Inverse seesaw revisited

On closer inspection the inverse seesaw presented in section 4.4.4 emerges as kind of
pseudo singular seesaw mechanism, in the sense that the mass matrix in eq. (4.11),
with MRS � MD � MS, under certain assumptions realizes a singular structure.
This becomes obvious, when realigning the mass matrix in the basis (ν̂R, S, NR)
with the form

M =

 0 0 MD

0 MS MRS

MT
D MT

RS 0

 ≡ ( 0 M ′
D

M ′T
D MX

)
∈M 2[(3 + (nb + ns))]. (5.28)

This mass matrix is a variant of the matrix in eq. (B.34) in section B.2.3, so we can
follow the steps there to diagonalize it. We see that the sub-matrix MX de�ned in
eq. (4.18) in the new basis reads

MX =

(
MS MRS

MT
RS 0

)
∈M 2[(nb + ns)]. (5.29)

Now the diagonalization performed in section 4.4.4 was based on the assumption
that MX has eigenvalues proportional to the scale of MRS. But this is only true, if
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MRS is assumed to be quadratic and to have full rank. If not, however, MX will in
general have a di�erent eigenvalue structure. So let us examine the diagonalization
of the neutrino mass matrix M given in eq. (5.28) under the assumption that MRS

is not quadratic or does not have full rank.

Obviously, the matrix MX written as the sum

MX =

(
0 MRS

MT
RS 0

)
+

(
MS 0
0 0

)
≡ D′ + A′ (5.30)

is a second-type matrix and, hence, can be quasi-diagonalized by a second-type
transformation matrix S2. After the transformation the matrix MX has the form

M ′
X ≡ ST2 MXS2 =

(
Sk×k Sk×l
STk×l Dl×l

)
, (5.31)

where the de�nitions of the block-matrices can be found in section B.2.2 of the
appendix and S ∼ MS and D ∼ MRS. Remember that l = 2Rk(MRS) and
k = nb + ns − l. De�ning M ′′

D ≡ M ′
DS2 =

(
M ′′

D1 M ′′
D2

)
∈M [3× (k + l)] the

whole neutrino mass matrix now reads

M ′ ≡
(
1 0
0 ST2

)(
0 M ′

D

M ′T
D MX

)(
1 0
0 S2

)

=

 0 M ′′
D1 M ′′

D2

M ′′T
D1 Sk×k Sk×l

M ′′T
D2 STk×l Dl×l

 . (5.32)

A subsequent seesaw-type transformation in accordance with the indicated split-up
leads to

M ′′ =

(
Ma 0
0 Dl×l

)
(5.33)

with

Ma =

(
0 M ′′

D1

M ′′T
D1 Sk×k

)
−
(
M ′′

D2D
−1
l×lM

′′T
D2 M ′′

D2D
−1
l×lS

T
k×k

Sk×lD
−1
l×lM

′′T
D2 Sk×lD

−1
l×lS

T
k×l

)
≈
(
−M ′′

D2D
−1
l×lM

′′T
D2 M ′′

D1

M ′′T
D1 Sk×k

)
, (5.34)

where in the last step we estimated that the non-zero blocks of the �rst term in
the upper line of eq. (5.34) are much larger, than the blocks of the second term.
Since Dl×l ∼MRS, M

′′
D ∼MD, Sk×k ∼MS and MRS �MD �MS, the matrix Ma

is a second-type matrix, whose eigenvalue structure depends on the rank of M ′′
D1.
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Under the assumption that M ′′
D1 is not quadratic or does not have full rank the

diagonalized form of Ma has the structure

Md
a =

(
Kp×p 0

0 Jq×q

)
, (5.35)

where q = 2Rk(M ′′
D1) and p = 3 + k − q.3 The matrix Jq×q is proportional to mD,

while Kp×p is proportional to (m2
D/mRS + mS)

2/mD. Finally, putting everything
together, the diagonalized form of M reads

Md =

Kp×p 0 0
0 Jq×q 0
0 0 Dl×l

 ∈M 2[(p+ q + l)] (5.36)

and its mass scale structure is given by

Md ∼

 1
mD
· [max(

m2
D

mRS
, mS)]

2 0 0

0 mD 0
0 0 mRS

 , (5.37)

where the two possibilities in the �rst diagonal entry come from the di�erent scales
of Kp×p.

To discuss the mass scale structure of Md let us play with some numbers. We
put mS ∼ 10x GeV, mD ∼ 10y GeV and mRS ∼ 10z GeV and insert these values
into eq. (5.37). Thus we are led to the condition

max(103y−2z, 102x−y) GeV . 10−9 GeV = 1 eV (5.38)

to get active neutrino masses of the correct order, where we have to demand
x < y < z to keep up the initial assumption MS �MD �MRS. The naive choice
y = 2 to have the Dirac mass term MD at the electroweak scale of 100 GeV leads
to x ≤ −4, i.e. mS . 100 keV and z ≥ 8 so that MRS & 108 GeV.

Another consideration, however, is to put y ≈ −4 to bring the sterile neutrino
states belonging to Jq×q down to the keV scale. In order to generate active neutrino
masses of about 1 eV we need to choose x ≤ −7 and z ≥ −1, corresponding to
mS . 100 eV and mRS & 0, 1 GeV.

If we wish to have eV sterile neutrinos, we can put y = −9. Then from the
constraints on the scale of mS or mRS to be smaller or, respectively, larger than
mD, one can derive that the active neutrino masses would be at 10−2 eV or smaller.

3The assumption that M ′′
D1 is quadratic and has full rank leads to a poorer and less interesting

mass scale structure and is not followed here.
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(nb, ns) q l scenario
(1, 3) 2 2 (3 + 2 + 2)

(3, 3)
2 4 (3 + 2 + 4)
4 2 (3 + 4 + 2)

Table 5.2: Possible eigenvalue structure of the neutrino mass matrix in the inverse
seesaw under the assumption that MRS is not quadratic or does not
have full rank. The notation (3+q+ l) indicates that the corresponding
scenario contains 3 masses of order max(m2

D/mRS, mS)/mD, q masses
of order mD and l masses of order mRS.

Finally, we comment on the number of neutrino states present in the di�erent
scales. Remember that we assumed to have three active neutrinos, nb singlet neu-
trinos and ns sterile neutrinos. The eigenvalue structure ofM depends on the rank
of MRS ∈M [nb × ns], determining the numbers

l = 2Rk(MRS) ≤ 2min(nb, ns), (5.39)

k = nb + ns − l, (5.40)

and on the rank of M ′′
D1 ∈M [3× k], responsible for the numbers

q = 2Rk(M ′′
D1) ≤ 2min(3, k), (5.41)

p = 3 + k − q. (5.42)

Note that the formulae for l and k are not a�ected by the interchange (nb ←→ ns)
so that the eigenvalue structure ofMd only depends on the unsorted pair (nb, ns) =
(ns, nb). To get three active neutrinos, we hold the value p = 3 �xed. With this
condition it follows directly from eq. (5.42) that q = k. Since q and l are even
numbers, we see that we can only get three active neutrinos, if nb and ns are both
either even or odd numbers. In Table 5.2 we listed the possible scenarios for the
common choice (nb, ns) = (3, 3) as well as (nb, ns) = (1, 3) in the style of the
MES. As in the singular double seesaw mechanism we have found scenarios that
can provide eV or keV sterile neutrinos.
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Chapter 6

Conclusion

In this thesis we analyzed the consequences of a singular Majorana mass term
in di�erent seesaw scenarios. We considered the type I seesaw mechanism in a
scenario with three active and three sterile neutrinos ((3 + 3) framework) and two
versions of the extended seesaw mechanism in a more general scneario with three
active neutrinos, ns sterile neutrinos and nb fermionic singlets ((3+ns+nb) frame-
work). We showed that in every scenario under consideration there are cases with
three active neutrinos at the compulsory eV scale.

We considered a type I seesaw scenario in the standard (3 + 3) framework. In
this scenario we examined, which eigenvalues of the neutrino mass matrix are
obtained in the cases of a vanishing and a non-vanishing singular Majorana mass
term. The former represents the simple Dirac case and in this sense is not singular.
In the latter we found that the eigenvalues strongly depend on the concrete form
of the involved sub-matrices of the total neutrino mass matrix. We showed that
the cases of one and two non-vanishing eigenvalues of the Majorana mass term in
general do not lead to realistic active neutrino masses. Additionally we mentioned
that the introduction of more than three sterile neutrinos does not resolve this
problem in the singular type I seesaw mechanism.
We gave, however, an example in the context of the schizophrenic neutrino alter-

native, which leads to the generation of su�ciently small active neutrino masses.
There, under the assumption of a concrete �schizophrenic� form of the Dirac mass
term, we obtained two(one) Dirac neutrino(s) and one(two) Majorana neutrino(s)
within the correct mass range in the active neutrino sector in the case of one(two)
non-vanishing eigenvalue(s) of the Majorana mass term.

By means of the inverse seesaw we demonstrated that the diagonalization tech-
niques developed in the course of this thesis can be applied to non-singular sce-
narios, too, if they realize a certain �pseudo-singular� structure.



Also we studied a double seesaw scenario with a Dirac mass term of order mD

between active and sterile neutrinos and another Dirac mass term of order mRS

between sterile neutrinos and fermionic singlets. Additionally we assumed a Ma-
jorana mass term for the fermionic singlets, only, of order mS. In this scenario
we analyzed the consequences of a singular Majorana mass term especially in a
(3 + 3 + 3) framework.

We pointed out that in the case of a vanishing Majorana mass term no seesaw
suppressed masses are generated, but instead Dirac masses are formed. Since this
simply represents a more complicated way to generate Dirac masses than with only
three additional sterile neutrinos and no Majorana mass term, we did not follow
this possibility any further.

In the case of a non-vanishing singular Majorana mass term we carried out the
diagonalization of the neutrino mass matrix under general considerations. The
result was a diagonal structure with (3+k+l+n) eigenvalues corresponding to four
di�erent mass scales of order mS(m

2
D/m

2
RS), m

2
RS/mS, mRS and mS, respectively.

Compared to the non-singular double seesaw the structure of the resulting neutrino
mass matrix in the singular case contains an additional mass scale, namely the one
proportional to mRS. Note that the partition of the number of eigenvalues to the
di�erent scales was in�uenced. This, however, applies not to the active neutrino
sector so that in any case three active neutrinos are obtained.

In a (3 + 3 + 3) framework with one or two non-vanishng eigenvalues in the
Majorana mass term we evaluated the possible numbers of eigenvalues (3+k+l+n)
corresponding to the four di�erent mass scales. In the case of one non-vanishing
eigenvalue we found a (3 + 1 + 4 + 1) as well as a (3 + 3 + 2 + 1) scenario as
possible partitions of eigenvalues to the scalesmS(m

2
D/m

2
RS),m

2
RS/mS,mRS andmS

respectively. In the case of two non-vanishing eigenvalues we found a (3+2+2+2)
scenario corresponding to the same scales as just described.

When analyzing the mass scale structure of the neutrino mass matrix we �rst
noted that choosing the scales to be mD ∼ 102 GeV, mRS ∼ 1016 GeV and mS ∼
1019 GeV, as commonly used in the double seesaw, also in the singular context is
consistent with the limits on active neutrino masses. A di�erent choice of mD ∼
1 eV leads to the condition that the orders of magnitude of mRS and mS must
be related by mS ∼ 109 × (mRS/GeV)2 GeV to generate active neutrino masses
at mS(m

2
D/m

2
RS) ∼ 1 eV. By this condition the three remaining mass scales in

the neutrino mass matrix were set to m2
RS/mS ∼ 1 eV, mRS ∼ 1 − 100 keV and

mS ∼ 0.001−10 GeV, respectively. With this choice for the scales the (3+1+4+1)
and the (3 + 2 + 2 + 2) scenarios mentioned above contain one and two sterile
neutrinos, respectively, at the eV scale. Hence, these scenarios could represent the
hidden eigenvalue structures of an e�ective low energy 3 + 1 and 3 + 2 model with
eV sterile neutrinos. Moreover all scenarios that we found in the singular double
seesaw feature keV sterile neutrinos that could possibly be DM particles. Also, all
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of the three mass scales m2
RS/mS, mRS and mS are within the sensitivity reach of

near future collider experiments.
Having said this we must emphasize two important shortcomings of our predic-

tion of the eigenvalue and the mass scale structure of the neutrino mass matrix in
the singular double seesaw. First, in our derivation of the diagonal structure of the
neutrino mass matrix we did not take into account that there could be vanishing
eigenvalues in the involved sub-matrices in the process of diagonalizing it (we only
mentioned that they would appear). If such vanishing eigenvalues are present they
could a�ect the outcome of the diagonalization, leading to an eigenvalue and mass
scale structure di�erent from our predictions. A thorough study of these e�ects,
however, would require an exact knowledge of the involved sub-matrices, which
are highly model dependent. We refrain from commenting any further on this.
The second shortcoming is that the (total) neutrino mixing matrix directly linked

to the diagonalization of the neutrino mass matrix has not been studied in the
course of this thesis. To obtain a neutrino mixing matrix in agreement with data,
however, for a theory of neutrinos is as important as to generate active neutrino
masses in the correct mass range. The diagonalization presented here may lead
to a mixing of active and sterile neutrino states too large to be consistent with
known constraints of the mixing parameters. In any realistic model one has to
analyze the neutrino mixing that accompanies the diagonalization of the neutrino
mass matrix corresponding to the individual scenarios.

In future studies on the singular seesaw mechanism one could consider a con-
crete form of the Dirac mass terms to improve the estimation of the diagonal form
of the neutrino mass matrix. Under these circumstances it would be less compli-
cated to make predictions on the neutrino mixing matrix, too. Like this the mixing
between active and sterile neutrinos could be quanti�ed to assess the quality of
the considered singular seesaw model.

56







Acknowledgments

At �rst I wish to thank my parents, Karin and Gerhard, for all the support they
gave me during my studies. I always could rely on you when I needed some help.
Thanks a lot!
I thank Manfred for supervising me and for giving me the opportunity to write

my thesis at the MPIK in the �rst place. I am also very grateful to Michael and
He who spent a lot of their time in reading and rereading my thesis, answering
questions and giving helpful advises. Thank you, guys, you were a great support.
I want to thank the rest of the team, too, for useful conversation and good times.

A special thanks goes to Lisa and Dominik who helped me improve my thesis with
detailed suggestions and discussion.
Finally, I would like to thank all of my friends who supported me while writing

this thesis. Even though they probably could not understand much of what I
was telling them, when they asked me what I was doing the whole day, they still
listened to what I was saying. Also they supplied me with happiness and food.
Thank you for that.





Appendix A

Spinor �elds

In this thesis the same notations and conventions as in [34] are used, unless noted
otherwise. In this part of the appendix important properties of spinor �elds, espe-
cially in correlation with Majorana particles on the basis of [34,63] are presented.
Some useful formulae are also taken from [40]. At �rst general properties of 4-
component spinors are gathered in section A.1. Afterwards di�erences on one side
and correlations on the other between the physical nature of Dirac and Majorana
spinors are elaborated in section A.2.

A.1 Properties of spinor �elds

Any 4-component spinor �eld ψ can be decomposed as

ψ = (PL + PR)ψ = ψL + ψR, (A.1)

with the left- and right-handed projection ψL ≡ PLψ and ψR ≡ PRψ, respectively.
1

In the chiral basis, the projections can be written as

ψL ≡
(

0
χL

)
(A.2a)

ψR ≡
(
χR
0

)
, (A.2b)

where χL and χR denote two-component spinors. The spinor �eld belonging to the
adjoint representation of ψ is de�ned by

ψ ≡ ψ†γ0. (A.3)

1Often the projections ψL and ψR are called chiral projections or chiral �elds as well.



The charge conjugate of a spinor �eld is de�ned by2 [63]

ψ̂(x) ≡ γ0Cψ∗(x) = −CψT (x). (A.4)

Note that by this de�nition it follows that

̂̂
ψ = ψ, (A.5)

as it should be. Using the properties of the chiral projection operators and the
charge conjugation operator and their commutation relations it is easy to verify
that the charge conjugate of a left-handed �eld is right-handed and vice versa,

(̂ψL) = γ0Cψ∗L = PRψ̂ ≡ ψ̂R, (A.6a)

(̂ψR) = γ0Cψ∗R = PLψ̂ ≡ ψ̂L. (A.6b)

Here, it is important to point out that in this notation charge conjugation comes
before chiral projection, i.e. that for example the notation ψ̂R advises us to �rst
charge conjugate the �eld ψ and only afterward act on it with the chiral projection
operator (in this case PR).

Eqs. (A.6) and the anti-commutation property of spinor �elds, can be used to
prove that

ψLχR = χ̂Lψ̂R , (A.7)

for two spinor �elds ψ and χ. Note that eq. (A.7) especially applies if χ = ψ. We
keep this in mind for later.

A �eld is called Majorana �eld if it obeys the Majorana condition

ψ(x) = ξψ̂, (A.8)

where ξ denotes a phase factor with |ξ|2 = 1 that we commonly set equal to unity,
if not otherwise noted. A �eld whose chiral components are related by

ψR = ψ̂R = γ0Cψ∗L (A.9)

is a Majorana �eld by construction, since

ψ = ψL + ψ̂R = (̂ψ̂R) + (̂ψL) = ψ̂, (A.10)

clearly satis�es the Majorana condition eq. (A.10). The important distinction

2Here we stick to the notation of [63] instead of ψC for the charge conjugate �eld.
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between Dirac and Majorana particles is that for a Majorana �eld the left- and
right-handed projection are dependent on each other, i.e. they are related descrip-
tions of the same �eld. On the other hand, the chiral projections of a Dirac �eld
can be regarded as describing two di�erent particles that together form the Dirac
�eld.

A.2 Dirac �elds and Majorana �elds

The Lagrangian of a 4-component Dirac spinor �eld ψ(x) is given by3

LDirac = ψ(x)(iγµ∂µ −m)ψ(x). (A.11)

With the decomposition eq. (A.1), the Dirac Lagrangian eq. (A.11) reads

LDirac = iψLγ
µ∂µψL + iψRγ

µ∂µψR −m(ψLψR + ψRψL), (A.12)

where we have used the properties of the chiral projection operators to eliminate
vanishing terms like iψLγ

µ∂µψR and mψLψL. The �coupling� between the left- and
right-handed component, mψLψR + h.c., represents a Dirac mass term.4

Using the Euler-Lagrange-formalism with respect to ψL and ψR, we �nd the
equations of motion

iγµ∂µψL = mψR, (A.13a)

iγµ∂µψR = mψL, (A.13b)

respectively. The chiral components ψL and ψR are in general independent of each
other. The question, if it is possible to satisfy eqs. (A.13) using only one chiral
�eld, historically led to the hypothesis of the existence of Majorana �elds. In [34]
it is shown that, if one chooses

ψR = γ0Cψ∗L, (A.14)

eqs. (A.13) are satis�ed.5 Note that eq. (A.14) is the same as eq. (A.9). But,
according to our earlier argument eq. (A.10), this makes ψ a Majorana �eld. Hence,
to satisfy the equations of motion for the chiral components of a spinor �eld, one
can either take a conventional Dirac spinor with independent chiral components,
or a Majorana spinor, where the chiral components depend on each other.

3In eq. (A.11) we deviate from the form of LDirac given in [34] and instead use the simpli�ed
form found in many books as [40]. The Dirac Lagrangian written as in eq. (A.11) still gives
the correct equations of motion for the spinor �eld [34].

4By �h.c.� we denote the Hermitian conjugate of all prior expressions.
5We can do this in principle, since γ0Cψ∗

L
= PR(γ0Cψ∗) is right-handed.
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This result naturally raises the question, if a Dirac spinor is needed to describe
a massive particle [34]. In the following we will show similarly to [63], how a
Dirac spinor can be described using two Majorana spinors. To do so, we take a
spinor ψ1L. Together with its charge conjugate ψ̂1R it can form a Majorana spinor
ψ1 = ψ1L + ψ̂1R. Take another Majorana spinor ψ2 built of ψ2L and ψ̂2R. If we
forbid couplings between ψ1L and ψ̂1R as well as couplings between ψ2L and ψ̂2R,
but on the other hand assume couplings like mψ1Lψ̂2R and m′ψ2Lψ̂1R, we get mass
terms6

−Lmass =
m

2
ψ1Lψ̂2R +

m′

2
ψ2Lψ̂1R + h.c.

=
1

2

(
ψ1L ψ2L

)( 0 m
m′ 0

)(
ψ̂1R

ψ̂2R

)
+ h.c. . (A.15)

A general mass term constructed from a set of chiral �elds ψαL and ψ̂αR can be
written [63] as

−Lmass =
1

2
ψαLMαβψ̂βR + h.c. , (A.16)

where M denotes the mass matrix in the Majorana basis. In [63] it is shown
that M is symmetric. We will call the diagonal elements Mαα of the mass matrix
Majorana mass terms and refer to the o�-diagonal elements Mαβ = Mβα as Dirac
mass terms.7 From the symmetry of M it follows that m = m′ and the mass term
eq. (A.15) becomes

−Lmass =
m

2
(ψ1Lψ̂2R + ψ2Lψ̂1R) + h.c. . (A.17)

Now, identify the Majorana spinors ψ1 and ψ2 with the left- and right-handed
projection ψL and ψR of a Dirac spinor ψ in the following way:

ψ1L → ψL, ψ̂2R → ψR, ψ2L → ψ̂L, ψ̂1R → ψ̂R. (A.18)

With these replacements the mass term eq. (A.17) reads

−Lmass =
m

2
(ψLψR + ψ̂Lψ̂R) + h.c.

= mψLψR + h.c. , (A.19)

6The factor of 1/2 is inserted arti�cially, in order to obtain a conventional Dirac mass of m,
where without this factor one would obtain 2m.

7This nomenclature applies as well, if the elements are actually block-matrices.
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where in the last step we used eq. (A.7). Comparing this result with eq. (A.12),
we see that we have constructed a Dirac spinor with proper Dirac mass term from
two Majorana spinors degenerate in mass. If instead of 2 we consider 2n Majorana
�elds (i.e. respectively n �elds ψ1 and ψ2) the entry m in the mass matrix in the
second line of eq. (A.15) would be an n × n matrix and m′ becomes mT . Such a
mass matrix, after diagonalization, leads to n Dirac �elds in general [63].
Now let us return to eq. (A.16). For simplicity we consider, again, a system

of two Majorana spinors ψ1 and ψ2 with couplings mψ1Lψ̂2R and mψ2Lψ̂1R. This

time, however, we permit a Majorana mass term bψ2Lψ̂2R for the �eld ψ2, where
b is assumed to be much larger than m. In the matrix notation eq. (A.16) then
becomes

−Lmass =
1

2
ψαLMαβψ̂βR + h.c.

=
1

2

(
ψ1L ψ2L

)( 0 m
m b

)(
ψ̂1R

ψ̂2R

)
+ h.c. . (A.20)

The mass matrix

M =

(
0 m
m b

)
(A.21)

has eigenvalues λ1, λ2 = b
2
(1 ±

√
1 + 4m2/b2). Remember b � m. With the

approximation
√

1 + x = 1 + x/2 for small x, the eigenvalues are

λ1 = b, λ2 = −m2/b. (A.22)

We see that the introduction of the large scale b strongly suppresses one of the
masses.

65



Appendix B

Matrix manipulations

In this part of the appendix the reader is equipped with the mathematical tools
needed to execute the remodeling of matrices performed in this thesis. After
specifying our notations and conventions in section B.1, we begin in section B.2
with the easiest case and work our way through to more complicated ones. In
section B.3 we summarize the results for convenience.

B.1 Notations and conventions

When a matrix A is introduced we will use the notation A ∈ M [K,m × n] to
indicate that A is an m × n matrix with entries aij ∈ K, where K denotes an
arbitrary �eld and (i; j) = (1, . . . , m; 1, . . . , n). Since we will almost always
consider aij ∈ C, we will just write A ∈M [m×n], in the case ofK = C. Quadratic
m×m matrices are denoted by A ∈M 2[m]. Then, for A ∈M [K,m×n] we de�ne
the function

dim(A) = (m, n), (B.1)

giving the (maximal) dimension of the row and column space of A. Note that by
the de�nition of dim(·), it follows that dim(AT ) = (n, m).

If not noted otherwise, we will parametrize a matrix A ∈M [K,m× n] as

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 . (B.2)

If A ∈M 2[m] and we choose m = k+ l, with k > 0 and l > 0, we can split up the



matrix into blocks

A =

(
A1 A2

A3 A4

)

≡



a11 . . . a1k a1(k+1) . . . a1(k+l)
...

. . .
...

...
. . .

...
ak1 . . . akk ak(k+1) . . . ak(k+l)

a(k+1)1 . . . a(k+1)k a(k+1)(k+1) . . . a(k+1)(k+l)
...

. . .
...

...
. . .

...
a(k+l)1 . . . a(k+l)k a(k+l)(k+1) . . . a(k+l)(k+l)


, (B.3)

where the lines indicate, how we de�ne A1, A2, A3 and A4. Note that by this
de�nition of the split-up, we have dim(A2) = (k, l) = dim(AT3 ). When the notation
�A ∈ M 2[(k + l)]� is used, we imply a split-up of the matrix A according to
eq. (B.3). Sometimes, we will use the alternative notation

A =

(
A1 A2

A3 A4

)
≡
(
Ak×k Ak×l
Al×k Al×l

)
, (B.4)

where dim(Ai×j) = (i, j), to emphasize the size of the blocks of A. The principle of
splitting up a matrix into blocks can obviously be generalized in choosing numbers
k1, k2, . . . , kx with k1 + k2 + . . .+ kx = m and ki > 0 ∀i ∈ {1, . . . , x}.
When performing a matrix-multiplication or an addition of two block-matrices

A =

(
A1 A2

A3 A4

)
, B =

(
B1 B2

B3 B4

)
, (B.5)

when writing

AB =

(
A1 A2

A3 A4

)(
B1 B2

B3 B4

)
or (B.6)

A+B =

(
A1 A2

A3 A4

)
+

(
B1 B2

B3 B4

)
, (B.7)

we always imply that the split-up of A and B is the same, i.e. that dim(Ai) =
dim(Bi) ∀i ∈ {1, 2, 3, 4}, without mention. This especially applies, when multi-
plying matrices to perform a transformation, e.g.

BTAB =

(
BT

1 BT
3

BT
2 BT

4

)(
A1 A2

A3 A4

)(
B1 B2

B3 B4

)
. (B.8)

When handling di�erent matrices, we will often want to compare the scales of
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their elements or, respectively, their eigenvalues. So we will in general assume that
any matrix X has elements/eigenvalues proportional to the scale mX.

1 To indicate
this, we will sometimes just write �X ∼ mX�. Then, if for two matrices X and Y ,
for example it holds that mX � mY, we will imply this by the short-hand notation
�X � Y �.

B.2 Block-diagonalization of matrices

In this section of the appendix, we will explain how to block-diagonalize symmetric
matrices with a certain structure, which we encounter in this thesis. The expla-
nation of the diagonalization technique in section B.2.1 is taken from the detailed
discussion in [64]. The following sections are applications of this diagonalization
technique in more complicated cases that are considered in this thesis.

B.2.1 First-type transformation

Imagine a matrix with the structure

M1 =

(
G HT

H J

)
∈M 2[(b+ c)]. (B.9)

Remember that in section B.1 we introduced the convention X ∼ mX for any
matrix X. The matrix J is assumed to be non-singular, i.e. that none of the
eigenvalues of J are equal to zero (det(J) 6= 0). Additionally, we assume �J � G�,
�J � H�.2 Matrices of this type can be diagonalized by the transformation with
a (by construction) unitary matrix

S1 =

(
C B
−B† D

)
, (B.10)

where

C ≡
√
1−BB† = 1− 1

2
BB† − 1

8
BB†BB† − . . . (B.11a)

D ≡
√
1−B†B, de�ned analogously to C. (B.11b)

The matrix B depends on the blocks of M1. We will call matrices of the type of
S1 �rst-type or seesaw-type transformation matrices.

1The proportionality, of course, only applies to non-zero eigenvalues.
2If G is set equal to zero, this structure ofM1 corresponds to the structure of the neutrino mass
matrix in the type I seesaw mechanism.
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After the transformation of M1 with S1, the matrix reads

Md
1 ≡ ST1 M1S1 =

(
CT −B∗
BT DT

)(
G HT

H J

)(
C B
−B† D

)
=

(
Ma XT

X Mb

)
, (B.12)

where the blocks of Md
1 are given by

Ma = CTGC − CTHTB† −B∗HC +B∗JB†, (B.13a)

Mb = BTGB +BTHTD +DTHB +DTJD, (B.13b)

X = BTGC −BTHTB† +DTHC −DTJB†. (B.13c)

In order to get Md
1 to block-diagonal form, we demand X

!
= 0 and solve this

equation for B. To do so, we expand B as a power series in m−1
J ,

B = B1 +B2 +B3 + . . . , (B.14)

where Bi ∼ m−iJ . Note that by the expansion B the matrix C is expanded as

C ≡
√
1−BB† = 1− 1

2
BB† − 1

8
BB†BB† − . . . (B.15)

= 1− 1

2
B1B

†
1 −

1

2
(B1B

†
2 +B2B

†
1)

− 1

2
(B2B

†
2 +B1B

†
3 +B3B

†
1)− 1

8
B1B

†
1B1B

†
1 − . . . , (B.16)

and D is expanded analogously. The equation X = 0 can then be solved for B to
arbitrary order. The �rst three elements of the expansion that solve X = 0 up to
third order in m−1

J in terms of the blocks of M1 are given by

B†1 = J−1H, (B.17a)

B†2 = J−1(J−1)∗H∗G, (B.17b)

B†3 = J−1(J−1)∗J−1HG∗G

− J−1(J−1)∗H∗HTJ−1H

− 1

2
J−1HH†(J−1)∗J−1H. (B.17c)

Inserting the expansion of B into eq. (B.13a) and (B.13b), the �rst four orders of
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Ma are given by

Ma0 = G (B.18a)

Ma1 = −HTB†1 −B∗1H +B∗1JB
†
1 (B.18b)

Ma2 = −1

2
(B∗1B

T
1 G+GB1B

†
1)−HTB†2 −B∗2H +B∗1JB

†
2 +B∗2JB

†
1 (B.18c)

Ma3 =
1

2
(B∗1B

T
1 H

TB†1 +B∗1HB1B
†
1)−HTB†3 −B∗3HT

+B∗1JB
†
3 +B∗3JB

†
1 +B∗2JB

†
2, (B.18d)

while Mb is approximately

Mb ≈ J. (B.19)

With the condition X = 0 satis�ed and inserting the expressions for the Bi's, the
matrix Md

1 has the block-diagonal form

Md
1 ≡ ST1 M1S1 ≈

(
G−HTJ−1H 0

0 J

)
, (B.20)

where the diagonal entries are the corresponding expressions for Ma and Mb to
leading order. The o�-diagonal zero-blocks, however, are zero to arbitrary order.

B.2.2 Second-type transformation

The second type of matrices we encounter has the form

M2 =

(
G HT

H 0

)
∈M 2[(b+ c)]. (B.21)

We assume �H � G�.3 Matrices of the second type naturally appear, when a
singular seesaw mechanism is considered.

These matrices can be written as the sum

M2 = D′ + A′ =

(
0 HT

H 0

)
+

(
G 0
0 0

)
. (B.22)

Now, we will explain how to quasi-diagonalize them. First, assume that we know
the unitary transformation matrix that diagonalizes D′. We will denote this trans-

3Note that this implies H 6= 0. Otherwise H = 0 together with H � G would imply G = 0,
and hence M2 = 0.
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formation matrix by S2 and the diagonalized form of D′ by

D = diag(d1, . . . , db+c) ≡ ST2 D
′S2, (B.23)

which is the de�ning condition for S2. Note that the rank of any matrix X ∈
M [m× n] is given by

Rk(X) ≤ min(m, n). (B.24)

A matrix X ∈M [m× n] is said to have full rank, if Rk(X) = min(m, n). Since
Rk(D) = 2Rk(H), we know that D can have

l := Rk(D) = 2Rk(H) ≤ 2min(b, c) (B.25)

non-zero eigenvalues. Note that we excluded the case l = 0 from our discussion,
since l = 0 ⇒ Rk(H) = 0 ⇒ H = 0. The only possibility for D ∈ M 2[(b + c)]
to have full rank (l = b + c) is, when H is quadratic and has full rank. Indeed, if
H ∈M [b × b](⇒ b = c), and if Rk(H) = b, then l = Rk(D) = 2Rk(H) = 2b. To
make the proof complete we have to show that D does not have full rank, if one of
the conditions H ∈M [b× b] or Rk(H) = min(b, c) is not satis�ed. First assume
that H is not quadratic: H ∈M [b×c] with b 6= c (b < c without loss of generality).
Then it follows that Rk(D) = 2Rk(H) ≤ 2b < b + c, and D does not have full
rank. And secondly assume that H does not have full rank: Rk(H) < min(b, c)
(b ≤ c without loss of generality). Then clearly l = Rk(D) = 2Rk(H) < 2b ≤ b+c.
Again, D does not have full rank, which completes the proof. Summarizing, b = c
is the necessary and l = 2b the su�cient condition forD to have full rank. We write
D ≡ D2b in the case b = c and l = 2b, where D has full rank. Otherwise, if the
conditions b = c and l = 2b are not satis�ed, the matrixD will have k := b+c−l > 0
zero eigenvalues. In these cases, denoting the (diagonal) matrix that carries the l
non-zero eigenvalues of D by Dl×l, we will parametrize D according to

D =

(
0 0
0 Dl×l

)
∈M 2[(k + l)], (B.26)

with k+ l = b+ c in agreement with the de�nitions of k and l. After the transfor-
mation of M2 with S2, the matrix reads

Mqd
2 ≡ ST2 M2S2 = ST2 D

′S2 + ST2 A
′S2 ≡ D + A. (B.27)
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The elements of A, aij, are given by

aij =
b+c∑
p=1

b+c∑
q=1

(S2)pi(A
′)pq(S2)qj =

b∑
p=1

b∑
q=1

(S2)pi(G)pq(S2)qj, (B.28)

with i ∈ {1, . . . , (b + c)} and j ∈ {1, . . . , (b + c)}. Since the elements of S2

are of order 1, the elements of A are proportional to mG, the scale of G. On the
other hand the eigenvalues of D are of order mH � mG. In the case D = D2b, this
means that

Mqd ≈ D2b (B.29)

and we are done with the diagonalization. Otherwise, we split up A in blocks with
the same size as the blocks of D in eq. (B.26) according to

A =

(
Ak×k ATl×k
Al×k Al×l

)
∈M 2[(k + l)]. (B.30)

This parametrization follows the convention in eq. (B.3) of section B.1. Note that,
since A is symmetric, there was no need to introduce the matrix Ak×l = ATl×k as
independent block of A. Inserting the parametrizations of D and A into eq. (B.27)
yields

Mqd
2 =

(
Ak×k ATl×k
Al×k Al×l

)
+

(
0 0
0 Dl×l

)
≈
(
Ak×k ATl×k
Al×k Dl×l

)
. (B.31)

Later on, we will consider a case, where G = 0 and eq. (B.31) becomes

Mqd
2 =

(
0 0
0 Dl×l

)
. (B.32)

Note that in the case of D = D2b, no matter whether G = 0 or not, we have
Mqd

2 ≈ D2b.

Since the eigenvalues of the matrixDl×l were assumed to be much larger than the
elements of Ak×k and Al×k, the matrixMqd

2 is quasi-diagonal. We will call transfor-
mation matrices of the type of S2 that led to eq. (B.31), second-type transformation
matrices.

With Mqd
2 in the form of eq. (B.31), it is an easy task to block-diagonalize the

matrix by means of a seesaw-type transformation S1. Introducing the short-hand
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notation Jk×k ≡ Ak×k − ATl×kD−1
l×lAl×k, we have

Md
2 ≡ ST1 M

qd
2 S1 = (S2S1)TM2(S2S1) ≈

(
Jk×k 0

0 Dl×l

)
. (B.33)

The same result can be obtained, of course, by transforming M2 with a combined
transformation matrix Vc ≡ S2S1, as indicated in eq.(B.33). In this thesis we
encounter second-type matrices as being part of a bigger matrix that needs to be
diagonalized. We will show how this can be done in the next subsection.

B.2.3 Combined transformation

The structure of the matrix discussed in this section appears in scenarios of the
singular double seesaw mechanism.

Imagine a matrix with the structure

M3 =

 0 E 0
ET G HT

0 H 0

 ∈M 2[(a+ b+ c)]. (B.34)

We assume �H � G� and �G� E�. To diagonalize M3, �rst, we choose a split-up
of M3 according to

M3 =

 0 E 0
ET G HT

0 H 0

 =

(
0 E ′

E ′T M2

)
∈M 2[(a+ (b+ c))]. (B.35)

Then, M2 is a second-type matrix by construction. Writing

M2 =

(
0 HT

H 0

)
+

(
G 0
0 0

)
= D′ + A′, (B.36)

we recognize the structure of eq. (B.22). Hence M2 can be quasi-diagonalized
by a second-type transformation matrix. Introducing the matrix S2 that diago-
nalizes D′, as explained in the previous section, we can perform the second-type
transformation of the complete matrix M3 using

U ≡
(
1 0
0 S2

)
. (B.37)
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After the transformation of M3 with U , we have

M ′
3 ≡ UTM3U =

(
0 F

F T Mqd
2

)
, (B.38)

introducing the short-hand notation F ≡ E ′S2. The components of F are given
by

fij =
b+c∑
p=1

(E ′)ip(S2)pj,=
b∑

p=1

(E)ip(S2)pj (B.39)

where i ∈ {1, . . . , a} and j ∈ {1, . . . , (b + c)}. Since the elements of S2 are of
order 1, we have F ∼ E � H.

In the case that H is quadratic and has full rank, it follows that Mqd
2 = D2b,

and hence

M ′
3 =

(
0 F
F T D2b

)
. (B.40)

Then, because of F � H ∼ D2b, we can diagonalizeM
′
3 with a seesaw-type trans-

formation, denoted by V2b. Introducing the short-hand notation Ja×a ≡ −FD−1
2b F

T

the diagonalized form of M3 reads

Md
3 ≡ V T

2bM
′
3V2b ≈

(
Ja×a 0

0 D2b

)
∈M 2[(a+ 2b)]. (B.41)

Note that this form of Md
3 is unaltered if G is set equal to zero.

If H is not quadratic or if the rank of H is not full, Mqd
2 is given by eq. (B.31).

Remember that, under these circumstances, Mqd
2 has l = 2Rk(H) non-zero and

k = b+ c− l zero eigenvalues (cf. section B.2.2). Splitting up F ∈M [a× (k + l)]
in accordance with our convention in eq. (B.3) as

F =

f11 . . . f1k f1(k+1) . . . f1(k+l)
...

. . .
...

...
. . .

...
fa1 . . . fak fa(k+1) . . . fa(k+l)

 ≡ (Fk Fl
)
, (B.42)

where Fk ∈M [a× k] and Fl ∈M [a× l], we can write M ′
3 from eq. (B.38) as

M ′
3 =

 0 Fk Fl
F T
k Ak×k ATl×k
F T
l Al×k Dl×l

 , (B.43)
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where Fk and Fl are of order E, the matrices Ak×k and Al×k are of order G, and
Dl×l is of order H. Remembering that we have assumed �H � G� and �G� E�,
we see that M ′

3 is a �rst-type matrix. To make this clearer consider the split-up

M ′
3 =

 0 Fk Fl
F T
k Ak×k ATl×k
F T
l Al×k Dl×l

 ≡ (G1 HT
1

H1 Dl×l

)
. (B.44)

This means, performing a seesaw-type transformation of M ′
3, labeled by V , leads

to

M ′′
3 ≡ V TM ′

3V ≈
(
Ma 0
0 Dl×l

)
, (B.45)

where we have introduced Ma ≡ G1 −HT
1 D

−1
l×lH1.

Let us compute Ma,

Ma ≡ G1 −HT
1 D

−1
l×lH1 =

(
0 Fk
F T
k Ak×k

)
−
(
Fl
ATl×k

)
D−1
l×l
(
F T
l Al×k

)
=

(
0 Fk
F T
k Ak×k

)
−
(
FlD

−1
l×lF

T
l FlD

−1
l×lAl×k

ATl×kD
−1
l×lF

T
l ATl×kD

−1
l×lAl×k

)
. (B.46)

To get M3 to block-diagonal form, we still need to diagonalize eq. (B.46). To do
so, we introduce the short-hand notation4

Ma =

(
0 Fk
F T
k Ak×k

)
−
(
FlD

−1
l×lF

T
l FlD

−1
l×lAl×k

ATl×kD
−1
l×lF

T
l ATl×kD

−1
l×lAl×k

)
≡
(
Ja×a JTk×a
Jk×a Jk×k

)
. (B.47)

Then, de�ning the transformation matrix

W ≡
(
W1 0
0 1

)
, (B.48)

where W1 is the seesaw-type transformation matrix that diagonalizes Ma, it is
by now an easy task for us to perform the seesaw-type transformation of M ′′

3 .
Introducing the short-hand notation Ka×a ≡ Ja×a − JTk×aJ−1

k×kJk×a, the resultant

4We choose this notation to emphasize the dimensions of the blocks of Ma.
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matrix reads

Md
3 ≡ W TM ′′

3W =

Ka×a 0 0
0 Jk×k 0
0 0 Dl×l

 . (B.49)

Now, computing all the elements of Md
3 is quite cumbersome, but technically

possible with the equations given in this section. We will not do this here. Instead,
we want to emphasize that a matrix as in eq. (B.34), where we started o� with an
(a+ b+ c) structure for the di�erent blocks, ends up with a block-diagonal form as
in eq. (B.49), where we have an (a+ k + l) structure. From our discussion we can
derive the scales of the blocks of Md

3 . They are Dl×l ∼ mH, Jk×k ∼ mG and the
two terms of Ka×a are proportional to m2

E/mH and m2
E/mG, respectively. Hence

Md
3 ∈M 2[(a+ k + l)] has the mass scale structure

Md
3 ∼

m2
E

mH
+

m2
E

mG
0 0

0 mG 0
0 0 mH

 . (B.50)

Remember that l = 2Rk(H) and k = b + c − l so that the rank of the matrix
H determines the scale structure of Md

3 . Note that, if b = c and l = 2b ⇒ k = 0,
the diagonalized form of M3 was given in eq. (B.41) with a eigenvalues of order
m2

E/mH and 2b eigenvalues of order mH.
Summing up the transformations that led to the diagonal form ofM3, eq.(B.49),

we de�ne

S3 = UVW, (B.51)

where U , V and W are de�ned in eq. (B.37), (B.10) and (B.48), respectively. M3,
then, is block-diagonalized by the transformation with S3,

Md
3 = ST3 M3S3. (B.52)

And in the case of Md
3 as in eq. (B.41), the combined transformation is given by

S
(2b)
3 ≡ UV2b. (B.53)

B.3 Summary

In this section we simply sum up the results from our discussion for better overview
of the di�erent matrix structures and scales.
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In section B.2 we have shown that a �rst-type matrix

M1 =

(
G HT

H J

)
∈M 2[(b+ c)] (B.54)

can be block-diagonalized by a seesaw-type transformation matrix parametrized
like

S1 =

(
C B
−B† D

)
∈M 2[(b+ c)]. (B.55)

To leading order, the transformation of M1 with S1 leads to

Md
1 =

(
G−HTJ−1H 0

0 J

)
, (B.56)

where the zero-matrices are exact.

In section B.2.2 we explained that a second-type matrix

M2 = D′ + A′ =

(
0 HT

H 0

)
+

(
G 0
0 0

)
=

(
G HT

H 0

)
∈M 2[(b+ c)] (B.57)

can be brought into quasi-diagonal form by performing a second-type transforma-
tion. The de�ning condition for the second-type transformation matrix S2 was
given in eq. (B.23). If H is quadratic and has full rank (⇒ b = c), the diagonal
form of M2 is

Md
2 = ST2 M2S2 = D2b ∈M [2b× 2b]. (B.58)

If H is not quadratic or does not have full rank, it is given by

Md
2 = STc M2Sc =

(
Jk×k 0

0 Dl×l

)
∈M 2[(k + l)], (B.59)

where Sc denotes a combined transformation consisting of S2 and a suitable seesaw-
type transformation matrix. In eq. (B.59), l = 2Rk(H) is de�ned as the number
of non-zero eigenvalues of D′, and k = b+ c− l. Note that setting G equal to zero
does not a�ect eq. (B.58), but in eq. (B.59) leads to Jk×k = 0.
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Finally, in section B.2.3, we showed how to diagonalize a third-type matrix

M3 =

 0 E 0
ET G HT

0 H 0

 ∈M 2[(a+ b+ c)]. (B.60)

If H is quadratic and has full rank (⇒ b = c), we use the combined transformation

S
(2b)
3 de�ned in eq. (B.53) to diagonalize M3 resulting in the structure

Md
3 =

(
Ja×a 0

0 D2b

)
∈M 2[(a+ 2b)] (B.61)

with scales Ja×a ∼
m2
E

mH
and D2b ∼ mH. This structure is not changed if G = 0.

If H is not quadratic or does not have full rank, we can diagonalize M3 using
the combined transformation S3 de�ned in eq. (B.51), according to

Md
3 = ST3 M3S3 =

Ka×a 0 0
0 Jk×k 0
0 0 Dl×l

 , (B.62)

where l = 2Rk(H) and k = b+ c− l. The scales of the blocks of Md
3 are

Md
3 ∼

m2
E

mH
+

m2
E

mG
0 0

0 mG 0
0 0 mH

 . (B.63)

We admit that eq. (B.62) seems to tell us not much about the diagonal entries
of M3. We want to point out, however, that in our discussion, we are only inter-
ested in the structure of the diagonalized matrix, which can be seen from these
equations. Still, we could calculate the elements of the blocks in these equations,
using the de�nitions given in section B.2.3.
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