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The Vlasov-Maxwell-Chern-Simons system is studied. Global existence of classical
solutions is proved, and then its nonrelativistic limit is investigated. When the speed
of light tends to infinity, it is proved that solutions of the Vlasov-Maxwell-Chern-
Simons system converge to solutions of the Vlasov-Yukawa system in a suitable
sense. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4759129]

I. INTRODUCTION

As one of the simplest gauge theories, one can consider Maxwell’s theory of electromagnetism.
This theory can describe many electromagnetic phenomena very precisely, but a different type
of gauge theory can also be used when electromagnetic phenomena are confined to a three (one
temporal and two spatial) dimensional spacetime. The Chern-Simons theory6 is a gauge theory which
is available in three-dimensional spacetime. This theory can describe many interesting phenomena
such as the quantum Hall effect23, 26 and high-Tc superconductivity.22 The most interesting aspect
of the Chern-Simons theory is that it provides mass for the gauge field without breaking the gauge
symmetry. Hence, when it comes to three-dimensional cases, one may hope to find many interesting
properties intrinsic to its dimensionality by considering the Chern-Simons theory in place of the
Maxwell theory. A lot of mathematical works for the Chern-Simons theory3, 4, 14, 18, 25 have been
found for last many years, and for more information we refer to Ref. 7.

In this paper, a system of partial differential equations which can describe an interaction
between the Maxwell-Chern-Simons electromagnetic fields and the Vlasov matter is studied. The
corresponding system of equations without the Chern-Simons term is known as the Vlasov-Maxwell
system, and this system of equations has been studied for many years. There are many references
(for instance, see Ref. 8 and the references therein), and the global existence problem has been
fully analysed in lower dimensions.9–13 By considering the Chern-Simons term additionally to the
Vlasov-Maxwell system, we will find that an interesting property of the Chern-Simons theory applies
to a kinetic model. The mass generation property will be considered through the nonrelativistic limit
problem in Sec. IV. Concerning this problem, some remarks will be given in Sec. I A.

The Lagrangian for the Maxwell-Chern-Simons electrodynamics is given as follows:

L = −1

4
Fμν Fμν + κ

2
εμνρ Aμ∂ν Aρ − Jμ Aμ, (1.1)

where all the indices run from 0 to 2, and εμνρ is the skew symmetric tensor with ε012 = 1. The
three terms above correspond to the Maxwell term, the Chern-Simons term, and an interaction with
matter coupled, respectively. The coupling constant κ will be assumed to be unity, and Jμ is an
electric current, which will be given by the Vlasov matter in this paper. Equations of fields for (1.1)
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are given as follows:

∂μFμν + 1

2
εναβ Fαβ = J ν .

To get equations for electromagnetic fields E ∈ R2 and B ∈ R1, we write B = F21 and Ej = F0j for
j = 1, 2, and consequently Eqs. (1.3)–(1.5) together with the Bianchi identity (1.6) are obtained. On
the other hand, for given electromagnetic fields the Vlasov equation can be written by (1.2) as in the
two-dimensional Vlasov-Maxwell case.12, 13 A system of equations is now obtained:

∂t f + v̂ · ∇x f + (E1 + c−1v̂2 B, E2 − c−1v̂1 B) · ∇v f = 0, (1.2)

∂x1 E1 + ∂x2 E2 − B = ρ, (1.3)

c−1∂t E1 − ∂x2 B + E2 = −c−1 j1, (1.4)

c−1∂t E2 + ∂x1 B − E1 = −c−1 j2, (1.5)

c−1∂t B = ∂x2 E1−∂x1 E2. (1.6)

The electric current has been written in the usual notation ρ = J0 and ji = Ji for i = 1, 2, which are
called the charge and current densities, respectively. The charge and current densities ρ and j are
then induced from the distribution function f in the following ways:

ρ = 4π

∫
R2

f (v) dv, ji = 4π

∫
R2

v̂i f (v) dv. (1.7)

Note that since f is a function of t ≥ 0, x ∈ R2, and v ∈ R2, ρ and j, like the field components E and
B, are functions of t and x. In the above equations v̂ denotes a relativistic velocity corresponding to
a momentum v:

v̂ = v√
1 + |v|2/c2

.

In this paper, we will study the system of Eqs. (1.2)–(1.7), and let us call this system of equations
the Vlasov-Maxwell-Chern-Simons (VMCS) system.

A. Some remarks

In this part, we briefly review the equations of the fields (1.3)–(1.6). When ρ and j are given,
Eqs. (1.3)–(1.6) constitute an inhomogeneous linear system of equations, hence explicit formulae
of solutions can be obtained. We first take summation of t derivative of (1.4) multiplied by c− 1 and
x2 derivative of (1.6), and then subtract Eq. (1.5) and x1 derivative of (1.3) from it. Then we obtain
a Klein-Gordon type equation for E1 field:

c−2∂2
t E1 − 
E1 + E1 = −∂x1ρ − c−2∂t j1 + c−1 j2. (1.8)

By similar calculations, we obtain Klein-Gordon type equations for E2 and B fields:

c−2∂2
t E2 − 
E2 + E2 = −∂x2ρ − c−2∂t j2 − c−1 j1, (1.9)

c−2∂2
t B − 
B + B = −c−1∂x2 j1 + c−1∂x1 j2 − ρ. (1.10)

In other words, the VMCS system can be considered as a system of the Vlasov equation and Klein-
Gordon type equations. We can find some references on these types of equations,17, 19, 20 but there
were three-dimensional cases considered. Unlike three-dimensional cases, the fundamental solution
of the two-dimensional Klein-Gordon equation is much similar to that of the linear wave equation.
The fundamental solution of the Klein-Gordon equation has the following form:

1

2πc

cos
√

c2t2 − |x |2√
c2t2 − |x |2

χBct (x). (1.11)
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On the other hand, as for the Vlasov equation the most well-known equation is the Vlasov-
Maxwell (VM) system. The Maxwell equations in the VM system are written as linear wave equations
instead of (1.8)–(1.10):

c−2∂2
t E − 
E = −∇xρ − c−2∂t j, (1.12)

c−2∂2
t B − 
B = −c−1∂x2 j1 + c−1∂x1 j2, (1.13)

and it is well-known that the fundamental solution of two-dimensional wave equation has the
following form:

1

2πc

1√
c2t2 − |x |2

χBct (x). (1.14)

By comparing (1.11) with (1.14) with the fact that the additional inhomogeneous terms in
(1.8)–(1.10), which do not appear in (1.12) and (1.13), have no derivatives, we can expect that
behaviors of solutions to the VMCS system are similar to those of the two-dimensional VM system.

The similarity between (1.11) and (1.14) helps to prove global existence of solutions to the
VMCS system by applying some known results on the VM system. However, we will see that the
VMCS system behaves in a different way when the speed of light c tends to infinity, hence its
nonrelativistic limit problem will be considerably nontrivial. On a formal level, it can be observed
that Eqs. (1.8)–(1.10) converge to the following Yukawa type equations in nonrelativistic limit:

−
E + E = −∇xρ, −
B + B = −ρ,

while Eqs. (1.12) and (1.13) converge to the following Poisson equations:

−
E = −∇xρ, −
B = 0.

We can see that solutions of the former equations have fast decaying properties due to the Chern-
Simons term. Moreover, the magnetic field does not disappear in nonrelativistic limit, but it plays a
role as a potential of the electric field, i.e., E = ∇xB. This is the main difference between the VMCS
and the VM cases, and detailed proof for this interesting property will be given in Sec. IV.

B. Notations and preliminaries

1. Notations

In the VMCS system (1.2)–(1.7), mass and charge of particles are assumed to be unity, while
the speed of light c is not, because the constant c will be used as a parameter in nonrelativistic
limit of the VMCS system in Sec. IV. Without loss of generality, we assume that c ≥ 1. Generic
positive constants are denoted by D, which may vary line to line. Similarly, C(t) denotes a continuous
nondecreasing function, which may also vary from line to line.

A function g = g(t, y) is said to be g = h + O(ε) on a time interval I, if g satisfies

|g(t, y) − h(t, y)| ≤ Dε,

for any t ∈ I and y ∈ R2 (or y ∈ R2 × R2). Here the constant D does not depend on ε.
In two-dimensional cases, the Lorentz force is written as in (1.2). For simplicity, a two-

dimensional vector field F = F(t, x, v) will denote the Lorentz force in some places.

F = (E1 + c−1v̂2 B, E2 − c−1v̂1 B).

2. Preliminaries

In this part, we collect some theorems and formulae without proofs. The proofs can be found in
references quoted below.
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As for the Vlasov equation (1.2), we can define characteristic curves:

∂s X (s; t, x, v) = V (s; t, x, v)/
√

1 + |V (s)|2/c2, X (t ; t, x, v) = x,

∂s V (s; t, x, v) = F(s, X (s), V (s)), V (t ; t, x, v) = v,
(1.15)

where X(s) and V (s) denote X (s; t, x, v) and V (s; t, x, v), respectively. Along the characteristic
curves, the Vlasov equation is written as follows:

∂s

[
f (s, X (s), V (s))

]
= 0,

which implies that

f (t, x, v) = f (0, X (0), V (0)) and f (t, x, v) ≤ ‖ f (0)‖L∞
x,v

.

Throughout the paper, it will be assumed that initial data f(0) is nonnegative and has compact support
both in x and v, say {|x |, |v| ≤ R} for some R. If (f, E, B) is a classical solution to the VMCS system,
then the characteristic curves are well defined and have a unique classical solution. Moreover, the
following quantity is also well defined:

P(t) = sup{|v| : f (s, x, v) �= 0, s ∈ [0, t], x ∈ R2, v ∈ R2},
which is a nondecreasing continuous function, and we obtain the following properties:

f (t, x, v) = 0, if |x | ≥ R + t P(t) or |v| ≥ P(t).

In other words, f(t) for each t has compact support both in x and v. This property will be repeatedly
used throughout the paper. We refer to Refs. 8,12,13, and 21, and the references therein for detailed
discussions on the Vlasov equation.

We will show that solutions to the VMCS system converge to solutions to the Vlasov-Yukawa
(VY) system, where force is given by the Yukawa potential:

F = ∇xφ, −
φ + φ = −ρ,

where ρ is a charge density given by the Vlasov equation. The VY system has been recently studied
in Refs. 2, 15, and 16, and its two-dimensional case in Ref. 5. In the present paper, we have to deal
with the Yukawa type equation, so we need some preliminaries. In two dimensions, the Yukawa
equation above has the following fundamental solution:

1

2π
K0(|x |),

where K0 is the modified Bessel function of the second kind of order zero. We refer to Ref. 24 for
various theorems and formulae concerning the Bessel functions. In this paper, we need the following
properties of the modified Bessel functions of the second kind.

The following properties are found in Ref. 1 (see p. 375 and p. 378, Chapter 9). When n is fixed
and z → 0, we have

K0(z) ∼ − log z, Kn(z) ∼ �(n)

2

(
2

z

)n

for n > 0, (1.16)

where � is the gamma function, which is defined as �(n) = (n − 1)! for integer n > 0. On the other
hand, when n is fixed, |z| is large, and μ = 4n2, we have

Kn(z) ∼
√

π

2z
e−z

(
1 + μ − 1

8z
+ (μ − 1)(μ − 9)

2!(8z)2
+ (μ − 1)(μ − 9)(μ − 25)

3!(8z)3
+ · · ·

)
for | arg z| < 3

2π . In this paper, we encounter only n = 0, 1 cases with real numbers z > 0. Then, in
the above expansion, the remainder after k terms does not exceed absolute value of the (k + 1)th
term for k ≥ 1 (see p. 378, Chapter 9 of Ref. 1). In other words, the above expansion can be written
as

Kn(z) ∼
√

π

2z
e−z

(
1 + O(z−1)

)
for z � 1. (1.17)
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With the asymptotic behaviors near the origin (1.16) and at infinity (1.17), we obtain the following
lemma.

Lemma 1.1: Let g be a continuous function with compact support {x ∈ R2 : |x | ≤ R}, and
consider the following quantity:

G(x) =
∫
R2

Kn(|x − y|)g(y) dy for n = 0, 1.

Then, G satisfies |G(x)| ≤ De− 1
2 |x | for some positive constant D.

Proof: Note that K0 and K1 are integrable on R2 thanks to (1.16) and (1.17). Hence, it is easy to
show that |G(x)| ≤ D‖g‖L∞

x
for some D. When x is large, say |x| ≥ 2R, Kn satisfies

Kn(|x − y|) ≤ De−|x |+R ≤ De− 1
2 |x |.

Since g is also integrable, we obtain the desired result. �
The following formula, which is called Basset’s integral, will be crucially used to obtain

nonrelativistic limit of the VMCS system. Detailed discussions on Basset’s integral are found in
Ref. 24 (see p. 172, Chapter 6):

Kn(mx) = �
(
n + 1

2

)
(2m)n

xn�
(

1
2

) ∫ ∞

0

cos(xu)

(m2 + u2)n+1/2
du,

which is valid for �(n + 1
2 ) ≥ 0, x > 0, and | arg m| < 1

2π . In this paper, we only consider n = 0, 1
cases with m = 1:

K0(x) =
∫ ∞

0

cos(xu)√
1 + u2

du, (1.18)

and

K1(x) = 1

x

∫ ∞

0

cos(xu)

(1 + u2)3/2
du. (1.19)

We also need a different form of (1.18). In order to derive it, we need the following properties, which
are found in Ref. 24 (see p. 79, Chapter 3):(

d

x dx

)m [
xn Kn(x)

]
= (−1)m xn−m Kn−m(x) and

d

dx
K0(x) = −K1(x).

In this paper, we use only n = m = 1 case in the formula above left:

d

dx

[
x K1(x)

]
= −x K0(x) and

d

dx
K0(x) = −K1(x). (1.20)

We now use the above formulae (1.18)–(1.20) to obtain the following lemma.

Lemma 1.2: The modified Bessel function of the second kind of order zero can be written as

K0(x) =
∫ ∞

0

u sin(xu)

x(1 + u2)3/2
du.

Proof: This is a direct consequence of the formula (1.19) with the left one in (1.20):

−x K0(x) = d

dx

[
x K1(x)

]
= d

dx

[∫ ∞

0

cos(xu)

(1 + u2)3/2
du

]
= −

∫ ∞

0

u sin(xu)

(1 + u2)3/2
du,

and this completes the proof. �
Remark 1.1: In most estimations, we take absolute values on integrals considered. If we simply

take the absolute value on (1.18), we encounter an integration which does not converge, i.e.,
integration of 1√

1+u2 . However, this problem is overcome by the above lemma. When we use the
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formula for K0 given in the above lemma instead of (1.18), we get an integration of u
(1+u2)3/2 , which

does converge. This lemma will be crucially used in estimations of the magnetic field of the VMCS
system.

Lemma 1.3: Let g be a C2
c function with compact support {x ∈ R2 : |x | ≤ R}, and consider the

Yukawa equation:

−
φ + φ = g.

Then, φ satisfies |∇α
x φ(x)| ≤ De− 1

2 |x | for multi-indices |α| ≤ 3 and some positive constant D.

Proof: The proof is a direct consequence of Lemma 1.1 with the second formula of (1.20). We
first note that φ is written as

φ(x) = 1

2π

∫
R2

K0(|x − y|)g(y) dy.

Since g is twice continuously differentiable, we have for |α| = 3:

∂i∂ j∂kφ(x) = − 1

2π

∫
R2

K1(|x − y|) (xi − yi )

|x − y| ∂ j∂k g(y) dy,

where we used (1.20), and Lemma 1.1 gives the desired result. The other cases, |α| < 3, are also
clear, and this completes the proof. �
3. Organization of the paper

This paper is organized as follows. We first derive representations of the fields in Sec. II. This
representation formulae will be used throughout this paper. With these formulae we obtain global
existence of classical solutions to the VMCS system in Sec. III. Due to the similarity between (1.11)
and (1.14), the argument of global existence is much similar to that of Refs. 12 and 13, where global
existence of the VM system was proved in two dimensions. In Sec. IV, we study nonrelativistic limit
of the VMCS system. In Ref. 21, it was proved that the two-dimensional VM system converges to the
two-dimensional Vlasov-Poisson system. We apply a part of the argument of Ref. 21 to the VMCS
system, then we will see that the VMCS system converges to a different type of Vlasov equation,
rather than the VP system, which is called the Vlasov-Yukawa system.

II. REPRESENTATIONS OF THE FIELDS

In this section, we apply the main idea of Ref. 9 to the VMCS case in order to obtain represen-
tations of the fields. The usual t and x derivatives are decomposed into linear combinations of two
types of differential operators S and T:

S = ∂t + v̂ · ∇x and Tk = 1√
1 − |ξ |2

(∂xk − c−1ξk∂t ), k = 1, 2,

where a two-dimensional vector ξ is defined by

ξ = y − x

c(t − τ )
.

We follow the calculations of Refs. 12, 13, and 21, where the representations of the Maxwell fields
were recovered to the case of arbitrary c in Ref. 21, and we obtain the following lemma.

Lemma 2.1: Suppose that (f, E, B) is a continuously differentiable solution of the VMCS system
(1.2)–(1.7), where f has compact support in x and v for each t. Then, they are represented as follows:

Ek = Ẽ F
k + Ẽ T1

k + Ẽ T2
k + E S

k + E T
k + E N

k , k = 1, 2,

B = B̃ F + B̃T1 + B̃T2 + BS + BT + B N ,

Downloaded 18 Feb 2013 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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which are defined by

E S
k =

∫ ∫ ∫
cos

√
c2(t − τ )2 − |x − y|2

c
√

c2(t − τ )2 − |x − y|2
(F f )(τ, y, v) · ∇v

[−2(cξk + v̂k)

1 + c−1v̂ · ξ

]
dv dy dτ,

ET
k =

∫ ∫ ∫
cos

√
c2(t − τ )2 − |x − y|2

c3(t − τ )
√

c2(t − τ )2 − |x − y|2
f (τ, y, v)

(−2(c2 − |v̂|2)(cξk + v̂k)

(1 + c−1v̂ · ξ )2

)
dv dy dτ,

E N
1 =

∫ ∫ ∫
cos

√
c2(t − τ )2 − |x − y|2√

c2(t − τ )2 − |x − y|2
(2v̂2 f )(τ, y, v) dv dy dτ,

E N
2 =

∫ ∫ ∫
cos

√
c2(t − τ )2 − |x − y|2√

c2(t − τ )2 − |x − y|2
(−2v̂1 f )(τ, y, v) dv dy dτ,

BS =
∫ ∫ ∫

cos
√

c2(t − τ )2 − |x − y|2
c
√

c2(t − τ )2 − |x − y|2
(F f )(τ, y, v) · ∇v

[
2(ξ1v̂2 − ξ2v̂1)

1 + c−1ξ · v̂

]
dv dy dτ,

BT =
∫ ∫ ∫

cos
√

c2(t − τ )2 − |x − y|2
c3(t − τ )

√
c2(t − τ )2 − |x − y|2

f (τ, y, v)

(
2(ξ1v̂2 − ξ2v̂1)(c2 − |v̂|2)

(1 + c−1v̂ · ξ )2

)
dv dy dτ,

B N =
∫ ∫ ∫

cos
√

c2(t − τ )2 − |x − y|2√
c2(t − τ )2 − |x − y|2

(−2c f )(τ, y, v) dv dy dτ,

where all the integration domains are {(τ, y, v) ∈ [0, t] × R2 × R2 : |x − y| ≤ c(t − τ )}, and F
denotes

F = (E1 + c−1v̂2 B, E2 − c−1v̂1 B).

The other terms Ẽ F
k and B̃ F depend only on initial data of E and B, while Ẽ T1

k , Ẽ T2
k , B̃T1 , and B̃T2

depend only on initial data of f. They are defined by

Ẽ F
k = 1

2πc

(∫
cos

√
c2t2 − |x − y|2√

c2t2 − |x − y|2
∂t Ek(0, y) dy + ∂

∂t

[∫
cos

√
c2t2 − |x − y|2√

c2t2 − |x − y|2
Ek(0, y) dy

])
,

B̃ F = 1

2πc

(∫
cos

√
c2t2 − |x − y|2√

c2t2 − |x − y|2
∂t B(0, y) dy + ∂

∂t

[∫
cos

√
c2t2 − |x − y|2√

c2t2 − |x − y|2
B(0, y) dy

])
,

where the integration domains are {y : |x − y| ≤ ct}, and

ẼT1
1 =

∫∫ −c2 − cξ2v̂2 + v̂2
1

c2(t − τ )(1 + c−1ξ · v̂)
cos

√
c2(t − τ )2 − |x − y|2 2c−1ξ1 f (0, y, v)√

1 − |ξ |2

∣∣∣∣∣
τ=0

dy dv,

Ẽ T2
1 =

∫∫
cξ1v̂2 + v̂1v̂2

c2(t − τ )(1 + c−1ξ · v̂)
cos

√
c2(t − τ )2 − |x − y|2 2c−1ξ2 f (0, y, v)√

1 − |ξ |2

∣∣∣∣∣
τ=0

dy dv,

Ẽ T1
2 =

∫∫
cξ2v̂1 + v̂1v̂2

c2(t − τ )(1 + c−1ξ · v̂)
cos

√
c2(t − τ )2 − |x − y|2 2c−1ξ1 f (0, y, v)√

1 − |ξ |2

∣∣∣∣∣
τ=0

dy dv,
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Ẽ T2
2 =

∫∫ −c2 − cξ1v̂1 + v̂2
2

c2(t − τ )(1 + c−1ξ · v̂)
cos

√
c2(t − τ )2 − |x − y|2 2c−1ξ2 f (0, y, v)√

1 − |ξ |2

∣∣∣∣∣
τ=0

dy dv,

B̃T1 =
∫∫

v̂2 + c−1ξ2|v̂|2
c(t − τ )(1 + c−1ξ · v̂)

cos
√

c2(t − τ )2 − |x − y|2 2c−1ξ1 f (0, y, v)√
1 − |ξ |2

∣∣∣∣∣
τ=0

dy dv,

B̃T2 =
∫∫ −v̂1 − c−1ξ1|v̂|2

c(t − τ )(1 + c−1ξ · v̂)
cos

√
c2(t − τ )2 − |x − y|2 2c−1ξ2 f (0, y, v)√

1 − |ξ |2

∣∣∣∣∣
τ=0

dy dv,

where all the integration domains are {y : |x − y| ≤ ct} × R2.

Proof: The calculations are almost same as in Refs. 12 and 21, so we only present a sketch of it.
We first note that Ẽ F

k and B̃ F are apparently the homogeneous parts of the solutions. In order to use
the fundamental solution (1.11), we multiply Eqs. (1.8)–(1.10) by c2, and then obtain the formula
for the fields. For instance, the B field is written as follows:

B = B̃ F + 1

2πc

∫ t

0

∫
|x−y|≤c(t−τ )

cos
√

c2(t − τ )2 − |x − y|2√
c2(t − τ )2 − |x − y|2

(c∂x1 j2 − c∂x2 j1 − c2ρ)(τ, y) dy dτ.

We remind that the charge density ρ is defined by (1.7), and then the BN term appears from the
last term, − c2ρ, in the above integral. All the other terms come out from c∂x1 j2 − c∂x2 j1 when we
decompose the partial derivatives into linear combinations of S and T. More explicitly, time, and
spatial derivatives are decomposed as follows:

∂t = 1

1 + c−1ξ · v̂
(

S −
√

1 − |ξ |2(v̂ · T )
)
,

∂x1 = 1

1 + c−1ξ · v̂
(

c−1ξ1S +
√

1 − |ξ |2((1 + c−1ξ2v̂2)T1 − c−1ξ1v̂2T2)
)
,

∂x2 = 1

1 + c−1ξ · v̂
(

c−1ξ2S +
√

1 − |ξ |2((1 + c−1ξ1v̂1)T2 − c−1ξ2v̂1T1)
)
.

(2.1)

Note that since S f = −F · ∇v f = −∇v · (F f ), we can use integration by parts with respect to v.
However, there is no v variable inside the cosine function, so the integration by parts with respect to
v does not affect the cosine function, and then we obtain E S

k and BS terms.
As for the T terms, we note that

T1g(τ, y) = ∇τ,y ·
[

(−c−1ξ1, 1, 0)√
1 − |ξ |2

g(τ, y)

]
, T2g(τ, y) = ∇τ,y ·

[
(−c−1ξ2, 0, 1)√

1 − |ξ |2
g(τ, y)

]
(2.2)

for any differentiable function g. Hence, we can take integration by parts with respect to (τ , y). By
integration by parts on the domain {(τ, y) ∈ [0, t] × R2 : |x − y| ≤ c(t − τ )}, we obtain BT together
with two kinds of boundary terms; one from the boundary {|x − y| = c(t − τ )} and the other one
from the other boundary {τ = 0}. Then, we obtain B̃T1 and B̃T2 from the second boundary term. We
can see that the first boundary term vanishes by the same argument as in Ref. 21, because the cosine
function, which is the only difference of (1.11) from (1.14), satisfies the following calculation:

∇τ,y

[
cos

√
c2(t − τ )2 − |x − y|2

]
· (−c−1ξ1, 1, 0)

= − sin
√

c2(t − τ )2 − |x − y|2
(

−c−1ξ1
c2(τ − t)√

c2(t − τ )2 − |x − y|2
− y1 − x1√

c2(t − τ )2 − |x − y|2

)

= 0, (2.3)

Downloaded 18 Feb 2013 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



103306-9 H. Huh and H. Lee J. Math. Phys. 53, 103306 (2012)

and similarly the cosine function does not play a role in the calculation for T2 term. After lengthy
calculations we then obtain the desired representation formulae for E and B. �

Remark 2.1: The representations for E and B fields in Lemma 2.1 are almost same with the
results of Refs. 12 and 21 in the Maxwell cases (see Appendix A of Ref. 21 for arbitrary c cases).
Note that we have only two different points from the results of Refs. 12 and 21. The first one is
that cosine functions appear in the integrals of the representations. This is due to the fundamental
solution (1.11) for the Klein-Gordon equation. However, the cosine functions are clearly bounded
and do not make serious problems thanks to (2.3). The second point of difference is that we have
additional inhomogeneous terms, from which EN and BN are obtained. However, these additional
terms do not have derivatives, hence which can be controlled by suitable estimations in Secs. III and
IV.

III. EXISTENCE OF CLASSICAL SOLUTIONS

In this section, we show that classical solutions to the VMCS system exist globally in time.
Global existence of solutions for the two-dimensional VM case was proved in Refs. 12 and 13.
Basically the same arguments are applied to the VMCS case to obtain global existence of solutions.
In this section, the speed of light will be assumed to be unity. We denote nondecreasing functions
by C(t), which may vary line to line.

We first prove that if there exists a nondecreasing function C(t) such that the momentum support
of f is bounded by C(t), then the fields can be controlled.

Lemma 3.1: Let (f, E, B) be a continuously differentiable solution of the VMCS system
(1.2)–(1.7), where f has compact support in x and v for each t. Suppose that initial data are
finite, i.e.,

‖∇α
x,v f (0)‖L∞

x,v
+ ‖∇β

x E(0)‖L∞
x

+ ‖∇β
x B(0)‖L∞

x
< ∞ f or |α| ≤ 1 and |β| ≤ 2,

and there exists a nondecreasing function C(t) such that

f (t, x, v) = 0 for |v| ≥ C(t).

Then, we have the following estimations:

sup
0≤τ≤t

{
‖E(τ )‖L∞

x
+ ‖B(τ )‖L∞

x

}
≤ C(t),

and

sup
0≤τ≤t

{
‖∇x E(τ )‖L∞

x
+ ‖∇x B(τ )‖L∞

x

}
≤ C(t)

(
1 + ln∗

(
t sup

0≤τ≤t
‖∇x,v f (τ )‖L∞

x,v

))
,

where the function ln * is defined by

ln∗(x) = max{0, ln(x)} f or x > 0.

Proof: The lemma is proved by following the calculations of Ref. 12 and using the representations
given in Lemma 2.1. We consider the BN term in Lemma 2.1:

|B N | =
∣∣∣∣∣
∫ ∫ ∫

cos
√

(t − τ )2 − |x − y|2√
(t − τ )2 − |x − y|2

(2 f )(τ, y, v) dv dy dτ

∣∣∣∣∣
≤ C(t)

∫ ∫ ∫
|v|≤C(t)

1√
(t − τ )2 − |x − y|2

dv dy dτ,
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since f (t, x, v) = 0 for |v| ≥ C(t). We proceed the estimation as follows:

|B N | ≤ C(t)
∫ ∫ ∫

|v|≤C(t)

1√
(t − τ )2 − |x − y|2

dv dy dτ

≤ C(t)
∫ t

0

∫
|x−y|≤t−τ

1√
(t − τ )2 − |x − y|2

dy dτ

≤ C(t)
∫ t

0
t − τ dτ

≤ C(t).

Then, E N
1 and E N

2 terms are similarly estimated. The other terms are estimated by the same calcu-
lations as in Ref. 12 because the cosine functions are bounded as

∣∣∣cos
√

(t − τ )2 − |x − y|2
∣∣∣ ≤ 1,

and we obtain the first estimation for E and B.
In order to obtain the second estimation for ∇xE and ∇xB, we should take x derivatives on the

representations in Lemma 2.1. We first consider BN term:

∂x1 B N =
∫ ∫ ∫

cos
√

(t − τ )2 − |x − y|2√
(t − τ )2 − |x − y|2

(−2∂x1 f )(τ, y, v) dv dy dτ

=
∫ ∫ ∫

cos
√

(t − τ )2 − |x − y|2√
(t − τ )2 − |x − y|2

−2ξ1

1 + ξ · v̂
S f dv dy dτ

+
∫ ∫ ∫

cos
√

(t − τ )2 − |x − y|2
(t − τ )(1 + ξ · v̂)

(
− 2(1 + ξ2v̂2)T1 f + 2ξ1v̂2T2 f

)
dv dy dτ

= B N S + B N T ,

where we used (2.1) for the x derivative. Then, BNS and BNT are estimated separately:

|B N S| =
∣∣∣∣∣
∫ ∫ ∫

cos
√

(t − τ )2 − |x − y|2√
(t − τ )2 − |x − y|2

∇v

[ −2ξ1

1 + ξ · v̂
]

· F f dv dy dτ

∣∣∣∣∣
≤ C(t)

∫ ∫ ∫
1√

(t − τ )2 − |x − y|2
∣∣∣∣∇v

[
ξ1

1 + ξ · v̂
]∣∣∣∣ f dv dy dτ,

where we used the first estimation of the lemma for F. Since f (t, x, v) = 0 for |v| ≥ C(t), we can
proceed the estimation as follows:

|B N S| ≤ C(t)
∫ ∫ ∫

|v|≤C(t)

1√
(t − τ )2 − |x − y|2

dv dy dτ

≤ C(t)
∫ t

0

∫
|x−y|≤t−τ

1√
(t − τ )2 − |x − y|2

dy dτ

≤ C(t).
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As for the B N T1 term, we use (2.2) and (2.3) to take integration by parts:

B N T1 =
∫ ∫ ∫

cos
√

(t − τ )2 − |x − y|2
(t − τ )(1 + ξ · v̂)

(
− 2(1 + ξ2v̂2)T1 f

)
dv dy dτ

=
∫ ∫ ∫

cos
√

(t − τ )2 − |x − y|2
(t − τ )(1 + ξ · v̂)

(−2(1 + ξ2v̂2))∇(τ,y) ·
[

(−ξ1, 1, 0)√
1 − |ξ |2

f

]
dv dy dτ

= (boundary terms)

−
∫ ∫ ∫

cos
√

(t − τ )2 − |x − y|2√
1 − |ξ |2

(−ξ1, 1, 0) · ∇(τ,y)

[ −2(1 + ξ2v̂2)

(t − τ )(1 + ξ · v̂)

]
︸ ︷︷ ︸

A

f dv dy dτ,

where the boundaries are |x − y| = t − τ and τ = 0. The second boundary term is easily estimated
because f depends only on initial data. On the first boundary, the integrand becomes singular, but
which can be estimated by the same argument as in Ref. 12, for instance (2.10) at p. 337 of Ref. 12.
The A term in the integral above is estimated by a direct calculation as follows:

|A| ≤ C(t)(t − τ )−2 for |v| ≤ C(t).

Hence, we obtain

|B N T1 | ≤ C(t)
∫ ∫ ∫

f

(t − τ )
√

(t − τ )2 − |x − y|2
dv dy dτ

≤ C(t)
∫ t

0

∫
|x−y|≤t−τ

1

(t − τ )
√

(t − τ )2 − |x − y|2
dy dτ

≤ C(t)
∫ t

0
dτ

≤ C(t).

By similar calculations, the B N T2 term is also estimated as |B N T2 | ≤ C(t). For the other terms, i.e.,

∂x1 B̃ F + ∂x1 B̃T1 + ∂x1 B̃T2 + ∂x1 BS + ∂x1 BT ,

we can use the same argument as in Ref. 12 thanks to (2.3) and boundedness of the cosine functions.
Hence, the calculations turn out to be much similar to those in Ref. 12, and we obtain the following
inequality:

|∂x1 B| ≤ C(t)

(
1 + ln∗

(
t sup

0≤τ≤t
‖∇x,v f (τ )‖L∞

x,v

)
+

∫ t

0
‖∇x E(τ )‖L∞

x
+ ‖∇x B(τ )‖L∞

x
dτ

)
.

By the same way, ∂x2 B and ∇xE terms are similarly estimated, and we obtain a Grönwall type
inequality. The proof of the lemma is completed by Grönwall’s lemma. �

We then estimate ∇x,v f (t), and obtain the following lemma.

Lemma 3.2: Let (f, E, B) be a continuously differentiable solution of the VMCS system
(1.2)–(1.7), where f has compact support for each t. Suppose that initial data are finite, i.e.,

‖∇α
x,v f (0)‖L∞

x,v
+ ‖∇β

x E(0)‖L∞
x

+ ‖∇β
x B(0)‖L∞

x
< ∞ f or |α| ≤ 1 and |β| ≤ 2,

and there exists a nondecreasing function C(t) such that

f (t, x, v) = 0 f or |v| ≥ C(t).

Then, we have the following estimations:

‖∇α
t,x,v f (t)‖L∞

x,v
+ ‖∇α

t,x E(t)‖L∞
x

+ ‖∇α
t,x B(t)‖L∞

x
≤ C(t) f or |α| ≤ 1.
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Proof: Note that the Vlasov equation (1.2) and the time evolution equation for the magnetic
field (1.6) are the same ones as in the VM case. Hence, ∂ tf and ∂ tB are similarly estimated. On the
other hand, the time derivative of E should be estimated as

‖∂t E(t)‖L∞
x

≤ ‖∇x B(t)‖L∞
x

+ ‖E(t)‖L∞
x

+ ‖ j(t)‖L∞
x

≤ C(t),

where we used (1.4) and (1.5), and this completes the proof. �
A well-known iteration scheme is applied to get an existence theorem under the initial conditions

given in Lemma 3.2 with the assumption of existence of a nondecreasing function C(t). The 0th
iteration functions are defined as initial data. If the (m − 1)th iteration functions are given, then we
get the mth iteration function f(m) from the following linear Vlasov equation:

∂t f (m) + v̂ · ∇x f (m) + F (m−1) · ∇v f (m) = 0.

From f(m), we obtain ρ(m) and j(m) by (1.7), and again from ρ(m) and j(m), we obtain E(m) and B(m) by
solving linear inhomogeneous Klein-Gordon equations:

∂2
t E (m) − 
E (m) + E (m) = −∇xρ

(m) − ∂t j (m) + ( j (m)
2 ,− j (m)

1 ),

∂2
t B(m) − 
B(m) + B(m) = ∂x1 j (m)

2 − ∂x2 j (m)
1 − ρ(m),

and this completes the iteration scheme. Lemma 3.2 is well applied to each iteration step, and its
convergence to a continuously differentiable function is then proved (see Ref. 8 for details). We
obtain the following conditional existence theorem.

Proposition 3.1: Suppose that initial data of the VMCS system satisfy the following conditions:

1. f (0) = f (0, x, v) is nonnegative, compactly supported, and C1.
2. E(0) = E(0, x) and B(0) = B(0, x) are C2 and satisfy

∂x1 E1(0) + ∂x2 E2(0) − B(0) = 4π

∫
f (0, v) dv.

3. The following quantities are bounded:

‖∇α
x,v f (0)‖L∞

x,v
+ ‖∇β

x E(0)‖L∞
x

+ ‖∇β
x B(0)‖L∞

x
< ∞ for |α| ≤ 1 and |β| ≤ 2.

If there exists a nondecreasing function C(t) such that

f (t, x, v) = 0 f or |v| ≥ C(t), (3.1)

then there exists a unique C1 solution to the VMCS system.

A. Global existence

Proposition 3.1 shows that a solution exists when a nondecreasing function C(t) satisfying (3.1)
exists. In this part, we show that such a nondecreasing function exists on [0, ∞), hence global
existence is obtained. We first state a lemma for the energy identity.

Lemma 3.3: Let (f, E, B) be the solution given in Proposition 3.1. Then the following energy
identity holds:

∂t

(
4π

∫ √
1 + |v|2 f dv + 1

2
|E |2 + 1

2
B2

)
+ ∇x ·

(
4π

∫
v f dv + B(E2,−E1)

)
= 0.

Proof. We first multiply
√

1 + |v|2 to the Vlasov equation (1.2),√
1 + |v|2 ×

(
∂t f + v̂ · ∇x f + F · ∇v f = 0

)
⇐⇒ ∂t

[√
1 + |v|2 f

]
+ v̂ · ∇x

[√
1 + |v|2 f

]
+ F · ∇v

[√
1 + |v|2 f

]
− F · v̂ f = 0,
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and then integrate it over v ∈ R2,

∂t

∫ √
1 + |v|2 f dv + ∇x ·

∫
v f dv −

∫
F · v̂ f dv = 0.

The last term is calculated as follows:

−4π

∫
F · v̂ f dv = −4π

∫
E · v̂ f dv = −E · j = −E1 j1 − E2 j2

= E1

(
∂t E1 − ∂x2 B + E2

)
+ E2

(
∂t E2 + ∂x1 B − E1

)
= 1

2
∂t |E |2 − E1∂x2 B + E2∂x1 B

= 1

2
∂t |E |2 + ∇x ·

[
(E2 B,−E1 B)

]
− B(∂x1 E2 − ∂x2 E1)

= 1

2
∂t |E |2 + 1

2
∂t B2 + ∇x ·

[
(E2 B,−E1 B)

]
.

Therefore, we obtain the energy identity:

∂t

(
4π

∫ √
1 + |v|2 f dv + 1

2
|E |2 + 1

2
B2

)
+ ∇x ·

(
4π

∫
v f dv + B(E2,−E1)

)
= 0. �

The above lemma shows that the energy identity is identical to the VM case.12 Under suitable
initial conditions, the energy identity can be integrated over x ∈ R2: since ẋ = v̂ and |v̂| < 1, it is
easy to see that f (t, x, v) = 0 if |x| ≥ C + t for some constant C. Hence, we obtain a well-known
identity for total energy:

4π

∫∫ √
1 + |v|2 f dv dx + 1

2

∫
|E |2 + B2 dx = const.

The fact that the energy identities for the VMCS and the VM cases are same is basically due to
the symmetry property of (1.1). In other words, the symmetry of the Maxwell case still holds in
the Maxwell-Chern-Simons case. On the other hand, since each field component satisfies the Klein-
Gordon equation, we can compare the above energy identity with that of the Vlasov-Klein-Gordon
case.19 The energy identity for the Vlasov-Klein-Gordon system is as follows:∫∫ √

1 + |v|2 f dv dx + 1

2

∫
|∂t u|2 + |∇x u|2 + |u|2 dx +

∫
ρu dx = const.,

where u is the scalar Klein-Gordon field, which does not need to be nonnegative, hence which makes
a difficulty in controlling the third integral above. This problem does not appear in the VMCS case
due to its symmetry.

Since the energy identity for the VMCS system is identical to that for the VM system, all the
arguments from the VM case, which are based on the energy identity, can be applied to the VMCS
case. For instance, Lemma 1 of Ref. 13 still holds in the VMCS case. Hence, we follow the arguments
with the same energy identity, and then Proposition 3.1 is extended to the following global existence
theorem for the VMCS system.

Theorem 3.1: Let initial data f(0), E(0), and B(0) satisfy the following conditions:

1. f (0) = f (0, x, v) is nonnegative, compactly supported, and C1.
2. E(0) = E(0, x) and B(0) = B(0, x) are C2 and satisfy

∂x1 E1(0) + ∂x2 E2(0) − B(0) = 4π

∫
f (0, v) dv.

3. The following quantities are bounded:

‖∇α
x,v f (0)‖L∞

x,v
+ ‖∇β

x E(0)‖L∞
x

+ ‖∇β
x B(0)‖L∞

x
< ∞ f or |α| ≤ 1 and |β| ≤ 2.
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Then, there exists a unique global C1 solution to the VMCS system such that there exists a
nondecreasing function C(t) satisfying

f (t, x, v) = 0 f or |v| ≥ C(t),

‖∇α
t,x,v f (t)‖L∞

x,v
+ ‖∇α

t,x E(t)‖L∞
x

+ ‖∇α
t,x B(t)‖L∞

x
≤ C(t) f or |α| ≤ 1.

IV. NONRELATIVISTIC LIMIT OF THE VMCS SYSTEM

In this section, we study nonrelativistic limit of the VMCS system. The speed of light c is used
as a parameter, and it is proved that solutions to the VMCS system converge to solutions to the
Vlasov-Yukawa system as c tends to infinity.

The VY system reads as follows in two dimensions:

∂t f ∞ + v · ∇x f ∞ + E∞ · ∇v f ∞ = 0, (4.1)

E∞ = 1

2π

∫
R2

K1(|x − y|) (x − y)

|x − y| ρ
∞(t, y) dy, (4.2)

ρ∞(t, x) = 4π

∫
R2

f ∞(t, x, v) dv, (4.3)

where K1 is the Bessel function of the second kind of order one. Note that E∞ can be written as
E∞ = ∇xφ, where φ is defined by

φ(t, x) = − 1

2π

∫
R2

K0(|x − y|)ρ∞(t, y) dy, (4.4)

where we used the second formula of (1.20), and φ satisfies

−
φ + φ = −ρ∞.

Global existence of classical solutions to the VY system (4.1)–(4.3) is easily proved by applying
well known arguments for the Vlasov-Poisson case, for instance see Appendix A of Ref. 5.

On the other hand, we need global existence theorems for the VMCS system for arbitrary c
cases, but we obtain those existence theorems by scaling. When (f, E, B) is the solution given in
Theorem 3.1, we can find a solution (fc, Ec, Bc) of the VMCS system for arbitrary c as follows:

f (t, x, v) = f c(c−1t, x, cv), E(t, x) = c−2 Ec(c−1t, x), B(t, x) = c−2 Bc(c−1t, x).

The above scaling insures global existence for any c. Estimations of (fc, Ec, Bc) may depend on c,
but we obtain the following estimations, Lemma 4.1, which guarantees a uniform boundedness with
respect to c on a finite time interval. Below, we omit the superscript c, and (f, E, B) will denote
solutions of the VMCS system for arbitrary c cases.

Lemma 4.1: Let (f, E, B) be the solution to the VMCS system given in Theorem 3.1 for arbitrary
c cases. Then, there exists T > 0 independent of c such that there exists a nondecreasing function
C(t) on [0, T ] such that the following estimations hold:

f (t, x, v) = 0 for |v| ≥ C(t),

‖E(t)‖L∞
x

+ ‖B(t)‖L∞
x

+ ‖∇t,x,v f (t)‖L∞
x,v

≤ C(t).

Proof: This lemma is proved by the same arguments given in Ref. 21, hence we skip the
proof. �
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We first state the theorem, and its proof will be given in Subsections IV A–IV C.

Theorem 4.1: Let (f, E, B) be a C1 solution to the VMCS system (1.2)–(1.7) with the following
initial data.

f (0), E(0) = ∇x B(0), B(0, x) = −2
∫∫

R2×R2
K0(|x − y|) f (0, y, v) dv dy,

where f(0) is a C2 function with compact support. Let (f∞, E∞) be a C1 solution to the VY system
(4.1)–(4.3) with the same initial data f∞(0) = f(0). Then, the following estimations hold:

| f (t, x, v) − f ∞(t, x, v)| ≤ Dc− 1
2 on [0, T ],

|E(t, x) − E∞(t, x)| + |B(t, x) − φ(t, x)| + |E(t, x) − ∇x B(t, x)| ≤ Dc− 1
2 on [c− 1

2 , T ],

for any x ∈ R2 and v ∈ R2. Here, φ is the quantity given by (4.4) satisfying E∞ = ∇xφ, and T is the
number given in Lemma 4.1.

Remark 4.1: The initial conditions on E(0) and B(0) are consistent with the constraint equation
(1.3). Due to the first condition, E(0) = ∇xB(0), Eq. (1.3) gives


B − B = ρ,

and the condition on B(0) satisfies the above equation. Note that ∇α
x E(0) decays exponentially fast

at infinity for |α| ≤ 2 by Lemma 1.3. This property will be used in Lemma 4.4.
In Ref. 21, a stronger result was obtained. Solutions of the VM system converge to the Vlasov-

Poisson system uniformly on [0, T], while the estimations for the field components in Theorem 4.1
hold on [c− 1

2 , T ]. This seems to be a technical problem in controlling Ẽ F and B̃ F . However, the
result on the magnetic field B is new. The B field was shown to vanish in the nonrelativistic limit in
the VM case in Ref. 21. In the VMCS case, it is proved that the B field does not vanish but converges
to a Yukawa potential φ. Moreover, it is interesting that the electric field E converges to ∇xB.

A. Calculations for E and B

In this part, we study asymptotic behavior of E and B as the speed of light c tends to infinity.
Below, T denotes the number given in Lemma 4.1 and t0 a small number such that

0 < t0 < min{1, T },
which will be determined later.

Lemma 4.2: Consider the representations of E and B given in Lemma 2.1. Then, we have the
following estimations:

E S
k = BS = BT = Ẽ T2

1 = Ẽ T1
2 = B̃Tk = O(c−1) on [0, T ] f or k = 1, 2.

Proof: The above estimations are proved by the same calculations given in Ref. 21, hence we
skip the proof. �

Lemma 4.3: Consider the representations of E and B given in Lemma 2.1. Then, we have the
following estimations:

Ẽ Tk
k = O((ct0)−1) on [t0, T ] f or k = 1, 2.

Proof: We first follow the calculations of Ref. 21 and obtain the following estimation:

Ẽ Tk
k =

∫∫ −2 cos
√

c2t2 − |x − y|2(yk − xk)

ct
√

c2t2 − |x − y|2
f (0, y, v) dv dy + O(c−1) on [0, T ],
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where the integration domain is {(y, v) ∈ R2 × R2 : |x − y| ≤ ct}. It is enough to show that the
integral above is O((ct0)− 1) on [t0, T]. For k = 1, we proceed the estimation as follows:∫∫

|x−y|≤ct

−2 cos
√

c2t2 − |x − y|2
ct

√
c2t2 − |x − y|2

(y1 − x1) f (0, y, v) dv dy

= − 2

ct

∫ ct

0

∫∫
|ω|=1

cos
√

c2t2 − r2

√
c2t2 − r2

rω1 f (0, x + rω, v)r dv dω dr

= 2

ct

∫ ct

0

∫∫
|ω|=1

∂r

[
sin

√
c2t2 − r2

]
ω1 f (0, x + rω, v)r dv dω dr,

and we take integration by parts.

2

ct

∫ ct

0

∫∫
|ω|=1

∂r

[
sin

√
c2t2 − r2

]
ω1 f (0, x + rω, v)r dv dω dr

= − 2

ct

∫ ct

0

∫∫
|ω|=1

sin
√

c2t2 − r2ω1ω · ∇x f (0, x + rω, v)r dv dω dr

− 2

ct

∫ ct

0

∫∫
|ω|=1

sin
√

c2t2 − r2ω1 f (0, x + rω, v) dv dω dr

= − 2

ct

∫∫
|x−y|≤ct

sin
√

c2t2 − |x − y|2 (y1 − x1)

|x − y|
(y − x)

|x − y| · ∇x f (0, y, v) dv dy

− 2

ct

∫∫
|x−y|≤ct

sin
√

c2t2 − |x − y|2 (y1 − x1)

|x − y| f (0, y, v)
1

|x − y| dv dy.

We denote the first and the second integrals by I1 and I2, respectively. They are estimated as follows:

|I1| ≤ D
1

ct

∫∫
|x−y|≤ct

|∇x f (0, y, v)| dv dy

≤ D
1

ct

∫∫
R2×R2

χ{|y|≤R,|v|≤R} dv dy

≤ D
1

ct

≤ D
1

ct0
,

where we used t ≥ t0 in the last inequality. Similarly, we have the following estimation:

|I2| ≤ D
1

ct

∫∫
|x−y|≤ct

| f (0, y, v)| 1

|x − y| dv dy

≤ D
1

ct0

∫
|y|≤R

∫
|v|≤R

1

|x − y| dv dy

≤ D
1

ct0
.

Hence, both I1 and I2 are O((ct0)− 1) on [t0, T]. The calculation for Ẽ T2
2 is exactly same, and this

completes the proof. �
Lemma 4.4: Consider the representations of E and B given in Lemma 2.1. Then, we have the

following estimations:

Ẽ F
k = B̃ F = O((ct0)−1) on [t0, T ] f or k = 1, 2.
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Proof: Initial conditions on ∂ tE and ∂ tB are determined by E(0), B(0), and f(0) through
Eqs. (1.4)–(1.6). Due to the additional condition on E(0) and B(0), i.e., E(0) = ∇xB(0), given
in Theorem 4.1, initial conditions on ∂ tE and ∂ tB are given as follows:

∂t E(0) = − j, ∂t B(0) = 0.

We apply the above conditions to Ẽ F
k and B̃ F as follows:

Ẽ F
k = 1

2πc

(∫
cos

√
c2t2 − |x − y|2√

c2t2 − |x − y|2
(− jk)(0, y) dy + ∂

∂t

[∫
cos

√
c2t2 − |x − y|2√

c2t2 − |x − y|2
Ek(0, y) dy

])
,

B̃ F = 1

2πc

∂

∂t

[∫
cos

√
c2t2 − |x − y|2√

c2t2 − |x − y|2
B(0, y) dy

]
,

where the integration domains are {y: |x − y| ≤ ct}. The first integral of Ẽ F
k above is O(c− 1) on

[0, T ] by the same calculations in Ref. 21. For simplicity, let G = G(x) denote Ek(0, x) or B(0, x),
and consider the following quantity:

∂

∂t

[∫
|x−y|≤ct

cos
√

c2t2 − |x − y|2√
c2t2 − |x − y|2

G(y) dy

]
. (4.5)

Then, it suffices to show that the above quantity is bounded uniformly on c.
We first apply the additional condition, E(0) = ∇xB(0), to the constraint equation (1.3) to obtain

the following equations:


B(0) − B(0) = ρ(0).

Since f(0) is C2, so is ρ(0), we can apply Lemma 1.3. Consequently, ∇α
x E(0, x) and ∇β

x B(0, x) have
the exponentially decaying property for |α| ≤ 2 and |β| ≤ 3, i.e., bounded by De− 1

2 |x | for some
positive constant D. Hence, we obtain

|∇α
x G(x)| ≤ De− 1

2 |x | for |α| ≤ 2. (4.6)

We proceed the calculation of (4.5) as follows. By a change of variables,

∂

∂t

∫
|x−y|≤ct

cos
√

c2t2 − |x − y|2√
c2t2 − |x − y|2

G(y) dy = ∂

∂t

∫
|ω|≤1

cos(ct
√

1 − |ω|2)√
1 − |ω|2

G(x + ctω)ct dω,

and then we can take the differentiation directly. Consequently, we obtain

− 1

t

∫
|x−y|≤ct

sin
√

c2t2 − |x − y|2G(y) dy + 1

t

∫
|x−y|≤ct

cos
√

c2t2 − |x − y|2√
c2t2 − |x − y|2

G(y) dy

+ 1

t

∫
|x−y|≤ct

cos
√

c2t2 − |x − y|2√
c2t2 − |x − y|2

(y − x) · ∇x G(y) dy,

and denote them by I1 + I2 + I3, respectively. I1 is easily estimated as follows:

|I1| ≤ D
1

t

∫
R2

e− 1
2 |y| dy ≤ D

1

t0
,

where we used (4.6). Estimations for I2 and I3 are almost same. We only consider I3 term. By a
change of variables,

I3 = 1

t

∫ ct

0

∫
|ω|=1

cos
√

c2t2 − r2

√
c2t2 − r2

r2ω · ∇x G(y) dω dr

= 1

t

∫ ct

0

∫
|ω|=1

∂r

[
− sin

√
c2t2 − r2

]
rω · ∇x G(x + rω) dω dr.
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We now take integration by parts with respect to r. Then, boundary terms, r = ct and r = 0, vanish,
and we have the following quantities:

I3 = 1

t

∫ ct

0

∫
|ω|=1

sin
√

c2t2 − r2 ω · ∇x G(x + rω) dω dr

+ 1

t

∫ ct

0

∫
|ω|=1

sin
√

c2t2 − r2 r
∑
i, j

ωiω j∂i∂ j G(x + rω) dω dr

= 1

t

∫
|x−y|≤ct

sin
√

c2t2 − |x − y|2 ω · ∇x G(y)
1

r
dy

+ 1

t

∫
|x−y|≤ct

sin
√

c2t2 − |x − y|2
∑
i, j

ωiω j∂i∂ j G(y) dy.

It is easy to see that by (4.6),

|I3| ≤ D
1

t

∫
R2

1

r
e− 1

2 |y| dy + D
1

t

∫
R2

e− 1
2 |y| dy ≤ D

1

t0
.

Together with a similar estimation of I2, it is shown that the quantity (4.5) is uniformly bounded
with respect to c on [t0, T ]. This completes the proof. �

Lemma 4.5: Consider the representations of E and B given in Lemma 2.1. Then, we have the
following estimations:

ET
k (t, x) = 2

∫∫
R2×R2

K1(|x − y|) (xk − yk)

|x − y| f (t, y, v) dv dy + O((ct0)−1)

on [t0, T ] f or k = 1, 2.

Proof: We first follow the calculations of Ref. 21 and obtain the following estimation:

ET
k (t, x) = −2

∫ ∫ ∫
cos

√
c2(t − τ )2 − |x − y|2

(t − τ )
√

c2(t − τ )2 − |x − y|2
ξk f (t, y, v) dv dy dτ + O(c−1) on [0, T ],

(4.7)
where the integration domain is {(τ, y, v) : |x − y| ≤ c(t − τ )}. The above integral is rewritten as
follows:

−2
∫ ∫ ∫

cos
√

c2(t − τ )2 − |x − y|2
(t − τ )

√
c2(t − τ )2 − |x − y|2

ξk f (t, y, v) dv dy dτ

= −2
∫ t

0

∫ c(t−τ )

0

∫∫
|ω|=1

cos
√

c2(t − τ )2 − r2

(t − τ )
√

c2(t − τ )2 − r2

rωk

c(t − τ )
f (t, x + rω, v)r dv dω dr dτ

= −2
∫ ct

0

∫ t− r
c

0

∫∫
|ω|=1

cos
√

c2(t − τ )2 − r2

(t − τ )2
√

c2(t − τ )2 − r2

r2ωk

c
f (t, x + rω, v) dv dω dτ dr. (4.8)

Let us consider τ integration above for each r. It is rewritten as follows:

r2

c

∫ t− r
c

0

cos
√

c2(t − τ )2 − r2

(t − τ )2
√

c2(t − τ )2 − r2
dτ =

∫ √
c2 t2

r2 −1

0

cos(ru)

(1 + u2)3/2
du,

where we used change of variables τ ↔ u defined as follows:√
c2(t − τ )2

r2
− 1 = u, (t − τ )2 = r2

c2
(1 + u2), dτ = ru

c
√

1 + u2
du. (4.9)
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We now use Basset’s integral (1.19):

r2

c

∫ t− r
c

0

cos
√

c2(t − τ )2 − r2

(t − τ )2
√

c2(t − τ )2 − r2
dτ = r K1(r ) −

∫ ∞
√

c2 t2

r2 −1

cos(ru)

(1 + u2)3/2
du,

where K1 is the modified Bessel function of the second kind. We apply the above formula to (4.8) to
obtain the followings:

−2
∫ ∫ ∫

cos
√

c2(t − τ )2 − |x − y|2
(t − τ )

√
c2(t − τ )2 − |x − y|2

ξk f (t, y, v) dv dy dτ

= −2
∫ ct

0

∫∫
|ω|=1

r K1(r )ωk f (t, x + rω, v) dv dω dr

+2
∫ ct

0

∫ ∞
√

c2 t2

r2 −1

∫∫
|ω|=1

cos(ru)

(1 + u2)3/2
ωk f (t, x + rω, v) dv dω du dr

= 2
∫∫

|x−y|≤ct
K1(|x − y|) (xk − yk)

|x − y| f (t, y, v) dv dy

+2
∫∫

|x−y|≤ct

∫ ∞√
c2 t2

|x−y|2 −1

cos(|x − y|u)

(1 + u2)3/2

(yk − xk)

|x − y|2 f (t, y, v) du dv dy.

Therefore, it suffices to show that the second integral above is O((ct0)− 1) on [t0, T ]. Let us consider u
integration in the second integral. We use the change of variables (4.9) again to obtain τ integration.
Below, r denotes |x − y| for simplicity:

2
∫∫

|x−y|≤ct

∫ ∞
√

c2 t2

r2 −1

cos(ru)

(1 + u2)3/2

(yk − xk)

|x − y|2 f (t, y, v) du dv dy

= 2
∫∫

|x−y|≤ct

∫ 0

−∞

cos
√

c2(t − τ )2 − r2

c(t − τ )2
√

c2(t − τ )2 − r2
(yk − xk) f (t, y, v) dτ dv dy. (4.10)

For each r ≤ ct, the above τ integration is written as follows:∫ 0

−∞

cos
√

c2(t − τ )2 − r2

c(t − τ )2
√

c2(t − τ )2 − r2
dτ =

∫ ∞

ct

cos
√

s2 − r2

s2
√

s2 − r2
ds.

We estimate the last integration as follows:∣∣∣∣∣
∫ 2ct

ct

cos
√

s2 − r2

s2
√

s2 − r2
ds

∣∣∣∣∣ ≤
∫ 2ct

ct

1

s2
√

s + r
√

s − r
ds

≤ 1

(ct)5/2

∫ 2ct

ct

1√
s − r

ds

≤ D
1

(ct)2
,

and ∣∣∣∣∣
∫ ∞

2ct

cos
√

s2 − r2

s2
√

s2 − r2
ds

∣∣∣∣∣ ≤
∫ ∞

2ct

1

s2
√

s + r
√

s − r
ds

≤ D
1

(ct)3/2

∫ ∞

2ct

1

(s − r )3/2
ds

≤ D
1

(ct)2
,
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where we used r ≤ ct at the last inequality. We plug the above estimation into (4.10) and obtain the
following estimation:∣∣∣∣∣2

∫∫
|x−y|≤ct

∫ 0

−∞

cos
√

c2(t − τ )2 − r2

c(t − τ )2
√

c2(t − τ )2 − r2
(yk − xk) f (t, y, v) dτ dv dy

∣∣∣∣∣
≤ D

∫∫
|x−y|≤ct

1

(ct)2
|x − y| f (t, y, v) dv dy

≤ D
1

ct

∫∫
R2×R2

χ{|y|≤R+tC(t),|v|≤C(t)} dv dy

≤ D
1

ct0
for some constant D. This completes the proof. �

Lemma 4.6: Consider the representations of E and B given in Lemma 2.1. Then, we have the
following estimations:

B N (t, x) = −2
∫∫

R2×R2
K0(|x − y|) f (t, y, v) dv dy + O((ct0)−1)+ O(c−1 log(c/t0)) on [t0, T ].

Proof: We first rewrite BN as follows:

B N =
∫∫

|x−y|≤ct

∫ t− r
c

0

cos
√

c2(t − τ )2 − r2√
c2(t − τ )2 − r2

(−2c f )(τ, y, v) dτ dv dy,

and apply the change of variables defined by (4.9):

B N =
∫∫

|x−y|≤ct

∫ √
c2 t2

r2 −1

0

cos(ru)√
1 + u2

(−2 f )
(

t − r

c

√
1 + u2, y, v

)
du dv dy

=
∫ ct

0

∫∫
|ω|=1

∫ √
c2 t2

r2 −1

0

cos(ru)√
1 + u2

(−2 f )
(

t − r

c

√
1 + u2, x + rω, v

)
r du dv dω dr

=
∫ ct

0

∫∫
|ω|=1

∫ √
c2 t2

r2 −1

0

∂u
[

sin(ru)
]

√
1 + u2

(−2 f )
(

t − r

c

√
1 + u2, x + rω, v

)
du dv dω dr.

Let us consider the integrand above to take integration by parts with respect to u variable. The
integrand can be written as follows:

∂u

[
sin(ru)√

1 + u2
(−2 f )

(
t − r

c

√
1 + u2, x + rω, v

)]

− sin(ru)∂u

[
1√

1 + u2

]
(−2 f )

(
t − r

c

√
1 + u2, x + rω, v

)

− sin(ru)
1√

1 + u2
(−2)∂u

[
f
(

t − r

c

√
1 + u2, x + rω, v

)]
,

and we denote them by I1, I2, and I3, respectively. I1 and I3 terms are easily estimated as follows:∫ ct

0

∫∫
|ω|=1

∫ √
c2 t2

r2 −1

0
I1 du dv dω dr

=
∫ ct

0

∫∫
|ω|=1

sin
√

c2t2 − r2

ct
r (−2 f )(0, x + rω, v) dv dω dr

= 1

ct

∫∫
|x−y|≤ct

sin
√

c2t2 − r2(−2 f )(0, y, v) dv dy.
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Since the sine function is bounded and f(0) has compact support, the last quantity is O((ct0)− 1) on
[t0, T]. Hence, we obtain an estimation for I1 term:∫ ct

0

∫∫
|ω|=1

∫ √
c2 t2

r2 −1

0
I1 du dv dω dr = O((ct0)−1) on [t0, T ]. (4.11)

I3 term is explicitly written as follows:

I3 = −2
sin(ru)√

1 + u2

r

c

u√
1 + u2

(∂t f )
(

t − r

c

√
1 + u2, x + rω, v

)
,

and it is estimated as follows:∣∣∣∣∣∣
∫ ct

0

∫∫
|ω|=1

∫ √
c2 t2

r2 −1

0
−2 sin(ru)

r

c

u

1 + u2
(∂t f )

(
t − r

c

√
1 + u2, x + rω, v

)
du dv dω dr

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫∫

|x−y|≤ct

∫ √
c2 t2

r2 −1

0
−2 sin(ru)

1

c

u

1 + u2
(∂t f )

(
t − r

c

√
1 + u2, y, v

)
du dv dy

∣∣∣∣∣∣
≤ D

1

c

∫∫
|x−y|≤ct

∫ √
c2 t2

r2 −1

0

u

1 + u2
χ{|y|≤R+tC(t),|v|≤C(t)} du dv dy

≤ D
1

c

∫
|y|≤R+tC(t)

∫
|v|≤C(t)

[
log

√
1 + u2

]√
c2 t2

r2 −1

u=0
dv dy

≤ D
1

c

∫
|y|≤R+tC(t)

log

(
ct

r

)
dy

≤ D
1

c
log c − D

1

c
log t0 + D

1

c
,

where we used t0 < 1. Hence, we obtain an estimation for I3 term:∫ ct

0

∫∫
|ω|=1

∫ √
c2 t2

r2 −1

0
I3 du dv dω dr = O(c−1 log(c/t0)). (4.12)

We finally estimate I2 term. It is explicitly written as follows:

I2 = − sin(ru)
u

(1 + u2)3/2
(2 f )

(
t − r

c

√
1 + u2, x + rω, v

)
,

and by the change of variables defined by (4.9) to get again τ integration:∫ ct

0

∫∫
|ω|=1

∫ √
c2 t2

r2 −1

0
I2 du dv dω dr

= −
∫ ct

0

∫∫
|ω|=1

∫ t− r
c

0
sin

√
c2(t − τ )2 − r2

r

c(t − τ )2
(2 f )(τ, x + rω, v) dτ dv dω dr

= −
∫∫

|x−y|≤ct

∫ t− r
c

0
sin

√
c2(t − τ )2 − r2

1

c(t − τ )2
(2 f )(τ, y, v) dτ dv dy.

The last integrand can be rewritten as I21 + I22 defined by

I21 = sin
√

c2(t − τ )2 − r2
2

c(t − τ )2
( f (τ, y, v) − f (t, y, v)),

I22 = sin
√

c2(t − τ )2 − r2
1

c(t − τ )2
(2 f )(t, y, v).
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Note that I21 is estimated as follows:

|I21| ≤ 2

c(t − τ )
|∂t f (σ, y, v)| (for some τ ≤ σ ≤ t)

≤ D

c(t − τ )
χ{|y|≤R+tC(t),|v|≤C(t)}.

Hence, we obtain the following estimation:∣∣∣∣∣
∫∫

|x−y|≤ct

∫ t− r
c

0
I21 dτ dv dy

∣∣∣∣∣
≤ D

1

c

∫
|y|≤R+tC(t)

∫
|v|≤C(t)

[
− log(t − τ )

]t− r
c

τ=0
dv dy

≤ D
1

c

∫
|y|≤R+tC(t)

∫
|v|≤C(t)

log

(
ct

r

)
dv dy

≤ D
1

c
log(c/t0). (4.13)

In order to estimate I22 term, we use again the change of variables defined by (4.9) to get an
integration for u variable. Let us consider τ integration for I22 term:

∫ t− r
c

0
sin

√
c2(t − τ )2 − r2

1

c(t − τ )2
dτ =

∫ √
c2 t2

r2 −1

0

sin(ru)u

r (1 + u2)3/2
du.

We now use Lemma 1.2, and then the above quantity is written as follows:∫ t− r
c

0
sin

√
c2(t − τ )2 − r2

1

c(t − τ )2
dτ = K0(r ) −

∫ ∞
√

c2 t2

r2 −1

sin(ru)u

r (1 + u2)3/2
du.

Together with (4.13), I2 term is estimated as follows:

∫ ct

0

∫∫
|ω|=1

∫ √
c2 t2

r2 −1

0
I2 du dv dω dr

= −
∫∫

|x−y|≤ct

∫ t− r
c

0
I22 dτ dv dy + O(c−1 log c)

= −
∫∫

|x−y|≤ct
K0(r )(2 f )(t, y, v) dv dy

+
∫∫

|x−y|≤ct

∫ ∞
√

c2 t2

r2 −1

sin(ru)u

r (1 + u2)3/2
(2 f )(t, y, v) du dv dy + O(c−1 log(c/t0)). (4.14)

Therefore, it is enough to show that the second integral of the last quantity is O((ct0)− 1) on [t0, T ].
We use again the change of variables defined by (4.9). Then, we have the following estimation:∣∣∣∣∣

∫ ∞
√

c2 t2

r2 −1

sin(ru)u

r (1 + u2)3/2
du

∣∣∣∣∣ =
∣∣∣∣∣1

c

∫ 0

−∞

sin
√

c2(t − τ )2 − r2

(t − τ )2
dτ

∣∣∣∣∣ ≤ 1

c

∫ 0

−∞

1

(t − τ )2
dτ ≤ 1

ct0
.

Since f(t) is supported in {|y| ≤ R + tC(t), |v| ≤ C(t)}, it is easy to show that∫∫
|x−y|≤ct

∫ ∞
√

c2 t2

r2 −1

sin(ru)u

r (1 + u2)3/2
(2 f )(t, y, v) du dv dy = O((ct0)−1) (4.15)

on [t0, T ]. We combine (4.11), (4.12), (4.14), and (4.15) to obtain the desired result. �
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Lemma 4.7: Consider the representations of E and B given in Lemma 2.1. Then, we have the
following estimations:

E N
k = O((ct0)−1) + O(c−1 log(c/t0)) on [t0, T ] f or k = 1, 2.

Proof: Comparing E N
k with BN, we can see that E N

k ≈ c−1 B N . Hence, the lemma is proved by
following the proof of the previous lemma for BN. We skip the proof. �
B. Calculations for ∇xB

In order to estimate ∇xB, we take x derivatives on B given in Lemma 2.1, and then use the
differential operators S and T with (2.1):

∂xk B = ∂xk B̃ F + ∂xk B̃T1 + ∂xk B̃T2 + ∂xk BS + ∂xk BT + ∂xk B N , k = 1, 2.

By the same arguments as in Sec. IV A, it is shown that the following quantity is O((ct0)− 1):

∂xk B̃ F + ∂xk B̃T1 + ∂xk B̃T2 + ∂xk BS + ∂xk BT = O((ct0)−1).

Hence, we only consider ∂xk B N term. It has the following representation:

∂xk B N = B̃ N
k + B N S

k + B N T
k ,

where B̃ N
k is a quantity depending only on initial data, and

B N S
k =

∫ ∫ ∫
cos

√
c2(t − τ )2 − |x − y|2

c
√

c2(t − τ )2 − |x − y|2
(F f )(τ, y, v) · ∇v

[ −2cξk

1 + c−1v̂ · ξ

]
dv dy dτ,

B N T
1 =

∫ ∫ ∫
cos

√
c2(t − τ )2 − |x − y|2

c2(t − τ )
√

c2(t − τ )2 − |x − y|2
(

2(−c(cξ1 + v̂1) − v̂2(v̂1ξ2 − v̂2ξ1))

(1 + c−1v̂ · ξ )2

)
× f (τ, y, v) dv dy dτ,

B N T
2 =

∫ ∫ ∫
cos

√
c2(t − τ )2 − |x − y|2

c2(t − τ )
√

c2(t − τ )2 − |x − y|2
(

2(−c(cξ2 + v̂2) + v̂1(v̂1ξ2 − v̂2ξ1))

(1 + c−1v̂ · ξ )2

)
× f (τ, y, v) dv dy dτ,

where the integration domains are {(τ, y, v) ∈ [0, t] × R2 × R2 : |x − y| ≤ c(t − τ )}. Similarly
again, B̃ N

k and B N S
k terms can be shown to be O((ct0)− 1) on [t0, T ]. Moreover, the following

quantities are O(c− 1) on [0, T]:∫ ∫ ∫
cos

√
c2(t − τ )2 − |x − y|2

c2(t − τ )
√

c2(t − τ )2 − |x − y|2
(

2(−cv̂1 − v̂2(v̂1ξ2 − v̂2ξ1))

(1 + c−1v̂ · ξ )2

)
f (τ, y, v) dv dy dτ

for k = 1, and∫ ∫ ∫
cos

√
c2(t − τ )2 − |x − y|2

c2(t − τ )
√

c2(t − τ )2 − |x − y|2
(

2(−cv̂2 + v̂1(v̂1ξ2 − v̂2ξ1))

(1 + c−1v̂ · ξ )2

)
f (τ, y, v) dv dy dτ

for k = 2, which are a part of B N T
k (see (66) at p. 271 of Ref. 21). Consequently, we only need to

consider the following quantity:∫ ∫ ∫
cos

√
c2(t − τ )2 − |x − y|2

(t − τ )
√

c2(t − τ )2 − |x − y|2
( −2ξk

(1 + c−1v̂ · ξ )2

)
f (τ, y, v) dv dy dτ.

Since the term (1 + c−1v̂ · ξ )−2 is bounded by C(t) (see (17) at p. 256 of Ref. 21), the above
quantity is exactly same with (4.7) for E T

k , and therefore we obtain the following lemma thanks to
Lemma 4.5.
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Lemma 4.8: Consider the representations of E and B given in Lemma 2.1. Then, we have the
following estimations:

ET
k = ∂xk B + O((ct0)−1) on [t0, T ] f or k = 1, 2.

Remark 4.2: By the estimations given in Sec. IV A, E is written as E = ET + O((ct0)− 1) on
[t0, T ]. Hence, Lemma 4.8 shows that E = ∇xB + O((ct0)− 1) on [t0, T ].

C. Proof of Theorem 4.1

We are now ready to prove Theorem 4.1. With the estimations in Secs. IV A and IV B, we follow
the arguments of Ref. 21. Since the remaining arguments for the proof are almost same, we only
present a sketch of it. Combining all the estimates, we obtain the followings:

E(t, x) = 2
∫∫

R2×R2
K1(|x − y|) (x − y)

|x − y| f (t, y, v) dv dy + O((ct0)−1) + O(c−1 log(c/t0)),

(4.16)

B(t, x) = −2
∫∫

R2×R2
K0(|x − y|) f (t, y, v) dv dy + O((ct0)−1) + O(c−1 log(c/t0)), (4.17)

and recall that E∞ and φ are given by (4.2) and (4.4) as follows:

E∞(t, x) = 2
∫∫

R2×R2
K1(|x − y|) (x − y)

|x − y| f ∞(t, y, v) dv dy, (4.18)

φ(t, x) = −2
∫∫

R2×R2
K0(|x − y|) f ∞(t, y, v) dv dy. (4.19)

Define

H (t) = sup
{| f (s, x, v) − f ∞(s, x, v)| : 0 ≤ s ≤ t, (x, v) ∈ R2 × R2

}
.

Subtracting (4.18) and (4.19) from (4.16) and (4.17), we obtain for t0 ≤ t ≤ T,

‖E(t) − E∞(t)‖L∞
x

+ ‖B(t) − φ(t)‖L∞
x

≤ DH (t) + D(ct0)−1 + Dc−1 log(c/t0). (4.20)

To estimate the distribution functions, we subtract (4.1) from (1.2), and obtain the following two
inequalities:∣∣∣∣ d

ds

[
f (s, X (s), V (s) − f ∞(s, X (s), V (s))

]∣∣∣∣ ≤ DH (s) + D(ct0)−1 + Dc−1 log(c/t0), (4.21)

and clearly ∣∣∣∣ d

ds

[
f (s, X (s), V (s) − f ∞(s, X (s), V (s))

]∣∣∣∣ ≤ D, (4.22)

where (X (s), V (s)) is the characteristic curve defined by (1.15). We integrate (4.21) from t0 to t, and
obtain a Grönwall type inequality:

H (t) ≤ H (t0) + D(ct0)−1 + Dc−1 log(c/t0) + D
∫ t

t0

H (s) ds,

which implies

H (t) ≤ DH (t0) + D(ct0)−1 + Dc−1 log(c/t0) on [t0, T ]. (4.23)

On the other hand, we use f(0) = f∞(0) to integrate (4.22) from 0 to t, and obtain H(t) ≤ Dt on [0,
T], in particular H(t0) ≤ Dt0. Consequently, (4.23) implies that

H (t) ≤ Dt0 + D(ct0)−1 + Dc−1 log(c/t0),
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which holds on [0, T], since H is nondecreasing. We now set t0 as follows:

t0 = c− 1
2 .

Hence, we have

H (t) ≤ Dc− 1
2 on [0, T ].

Applying the above result to (4.20), we obtain the desired estimations:

| f (t, x, v) − f ∞(t, x, v)| ≤ Dc− 1
2 on [0, T ],

|E(t, x) − E∞(t, x)| + |B(t, x) − φ(t, x)| ≤ Dc− 1
2 on [c− 1

2 , T ],

for any x ∈ R2 and v ∈ R2. The estimation of E − ∇xB given in Lemma 4.8 and Remark 4.2 is
written as follows:

|E(t, x) − ∇x B(t, x)| ≤ Dc− 1
2 on [c− 1

2 , T ].

Therefore, this completes the proof of Theorem 4.1.
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