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ABSTRACT

We investigate the instability of purely poloidal magnetic fields in nonrotating neutron stars (NSs) by means of
three-dimensional general-relativistic magnetohydrodynamics simulations, extending the work presented by Ciolfi
et al. in 2011. Our aim is to draw a clear picture of the dynamics associated with the instability and to study
the final configuration reached by the system, thus obtaining indications on possible equilibria in a magnetized
NS. Furthermore, since the internal rearrangement of magnetic fields is a highly dynamical process and has been
suggested to be behind magnetar giant flares, our simulations can provide a realistic estimate of the electromagnetic
and gravitational-wave (GW) emission that should accompany the flare event. Our main findings are the following:
(1) the initial development of the instability meets all the expectations of perturbative studies in terms of the location
of the seed of the instability, the timescale for its growth, and the generation of a toroidal component; (2) in the
subsequent nonlinear reorganization of the system, ∼90% of magnetic energy is lost in few Alfvén timescales
mainly through electromagnetic emission, and further decreases on a much longer timescale; (3) all stellar models
tend to achieve a significant amount of magnetic helicity and the equipartition of energy between poloidal and
toroidal magnetic fields and evolve to a new configuration that does not show a subsequent instability on dynamical
or Alfvén timescales; (4) the electromagnetic emission matches the duration of the initial burst in luminosity
observed in giant flares, giving support to the internal rearrangement scenario; and (5) only a small fraction of the
energy released during the process is converted into f-mode oscillations and in the consequent GW emission, thus
resulting in very low chances of detecting this signal with present and near-future ground-based detectors.
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1. INTRODUCTION

Neutron stars (NSs) are endowed with very intense, long-
lived, large-scale magnetic fields, reaching strengths that are
estimated to be of the order of 1013 G at the magnetic pole for
ordinary NSs, and around 1015 G in the case of magnetars. Such
extreme magnetic fields play a crucial role in the physics of
NSs, affecting their structure and evolution. They are involved
in the processes through which NSs are observed, like the pulsar
magnetic dipole radiation and the magnetically powered burst
activity of magnetars, and they have recently been recognized as
essential in explaining the quasi-periodic oscillations detected
in the aftermath of magnetar giant flares (see, e.g., Gabler et al.
2012 and references therein). Moreover, they are responsible
for deformations that may cause a significant emission of grav-
itational waves (GWs; Bonazzola & Gourgoulhon 1996; Cutler
2002) and precession (Wasserman 2003), and they influence the
thermal evolution of the star (Pons et al. 2009), to list a few.

All of these processes depend on the magnetic-field config-
uration inside the NSs, whose geometry is basically unknown.
From observations of the spindown in pulsars the exterior mag-
netic field appears to be purely poloidal and mainly dipolar, but
substantially different internal geometries can reproduce this
external appearance. The importance of obtaining such infor-
mation has motivated a significant effort in studying possible
equilibrium models of magnetized NSs, at first with simple
geometries, e.g., purely poloidal or purely toroidal fields, and
recently with mixed poloidal–toroidal fields. The latest models,
built in Newtonian and general-relativistic frameworks, include
Tomimura & Eriguchi (2005), Lander & Jones (2009, 2012),
Ciolfi et al. (2009, 2010), and Fujisawa et al. (2012), where the

so-called twisted-torus configuration is considered. This par-
ticular geometry has been found as a result of the evolution
of initial random fields in Newtonian magnetohydrodynamic
(MHD) simulations by Braithwaite & Nordlund (2006).

Once a magnetic-field geometry is chosen, building a cor-
responding equilibrium configuration is not sufficient to assess
whether this represents a good description of the NS interior.
The magnetic field, in fact, should also be long-lived and thus
stable on timescales that are much longer than the dynami-
cal timescale. Assessing the stability of a given magnetic-field
configuration is not trivial and most of the work done on the
subject concerns simple field geometries and nonrotating stars.
Until very recently, the problem has been addressed only with
a perturbative analytic approach. These calculations established
that both a purely poloidal field and a purely toroidal field
are unstable in nonrotating stars, giving important predictions
about the onset of the instability, but they could not predict the
subsequent evolution of the system. Only recently, due to the
progress in numerical simulations, it has become possible to
study these hydromagnetic instabilities by performing the fully
three-dimensional (3D) MHD evolutions of magnetized rela-
tivistic stars. These simulations represent a very powerful tool,
allowing us to confirm the predicted features of the instability
and to obtain information about the nonlinear dynamics of the
process. In addition, the end state of simulations can provide im-
portant hints about the preferred magnetic-field configuration in
magnetized stars.

There is an additional and important motivation for studying
hydromagnetic instabilities in NSs. The induced global rear-
rangement of magnetic fields is a violent, strongly dynami-
cal process, and soon after the magnetar model was proposed
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(Duncan & Thompson 1992) this kind of process was suggested
as a trigger mechanism of giant flares (Thompson & Duncan
1995, 2001). Nowadays, this internal rearrangement scenario
represents one of the leading models used to explain the phe-
nomenology observed in magnetars, the other one involving a
large-scale rearrangement of magnetic fields in the magneto-
sphere surrounding the star (Lyutikov 2003, 2006; Gill & Heyl
2010). Since both mechanisms can be present in a giant flare, the
main question becomes whether most of the magnetic energy
powering the flare is stored inside the star or in its exterior mag-
netosphere. The basic tests on these models rely on the compar-
ison of the predicted timescales and energies involved with the
giant flare observations. Hence, determining self-consistently
the dynamics associated with this kind of instability can pro-
vide important hints on the underlying mechanism.

Moreover, magnetar flares (and in particular giant flares) are
likely to be accompanied by a significant excitation of NS
oscillations, particularly in the f-mode, which can then lead
to a strong emission of GWs. This possibility has motivated
recent searches for GWs in connection to magnetar flares,
published by the LIGO and Virgo collaborations (see, e.g.,
Abadie et al. 2011). Semianalytic efforts have been devoted to
establishing the maximum amount of magnetic energy released
in a magnetar flare, which, in turn, provides an upper limit
on the energy emitted in GWs (Ioka 2001; Corsi & Owen
2011). These upper limits are based on analytical calculations
and simplified models, and can only provide rough order-of-
magnitude estimates. The assumption that all the available
energy (which is at most of the order of the total magnetic
energy) is converted into GWs leads to the optimistic conclusion
that the signal would be detectable with the next-generation
ground-based detectors (Corsi & Owen 2011). This result has
been questioned in Levin & van Hoven (2011), where a simple
perturbative analysis is employed to show that only a small
fraction of the magnetic energy involved in a giant flare event
can actually be converted into f-mode oscillations and that the
consequent GW emission is expected to be very weak. Again,
referring to the internal magnetic-field rearrangement scenario
of giant flares, MHD simulations of hydromagnetic instabilities
can provide a realistic picture of the GW signal produced,
together with estimates of the fraction of energy which can
be pumped into the f-mode and of the signal detectability.

In this work we focus on the instability of purely poloidal
fields, with the goal of shedding some light on all of the
points made above.3 Two parallel works done in the 1970s
(Markey & Tayler 1973; Wright 1973) found that poloidal
fields suffer from the so-called Tayler or kink instability, which
manifests itself first in the neighborhood of the neutral line.
This instability was recently studied with Newtonian numerical
simulations in the linear regime (Lander & Jones 2011), or
with nonlinear evolutions for a simplified model of newly
born NSs (Geppert & Rheinhardt 2006), and in the case of
main-sequence stars (Braithwaite 2007). The first 3D general-
relativistic MHD simulations of the poloidal-field instability in
NSs were presented only last year in two parallel works (Lasky
et al. 2011; Ciolfi et al. 2011). These studies reported similar
results, despite some substantial differences in the approach
(in particular in the evolution of magnetic fields outside the
star), essentially confirming all of the analytic predictions
on the instability and providing some first hints about the

3 The instability of purely toroidal fields has several analogies with the one
considered here for purely poloidal fields and has been investigated by Kiuchi
et al. (2008, 2011).

nonlinear rearrangement of the system. In addition, Ciolfi et al.
(2011) presented the first examples of gravitational waveforms
triggered by the instability, which were subsequently considered
more systematically by Zink et al. (2011) for nonrotating stars
and by Lasky et al. (2012) for rotating NSs. In this paper we
extend the work presented in Ciolfi et al. (2011), presenting
additional information on the numerical infrastructure used
and considering the instability-driven evolution of a series of
nonrotating NSs endowed with purely poloidal magnetic fields
of different strengths.

The organization of the paper is as follows. In Section 2 we
reconsider the setup of the system, improving in particular our
treatment of the atmosphere. Within the new setup, we con-
firm that our evolutions meet all the expectations on the onset
of the instability, in agreement with the previous perturbative
studies. In Section 3.1, we examine in more detail the nonlinear
rearrangement of the system, performing much longer simu-
lations and gaining substantial new insight into the final state
reached by the system. Section 3.2 is dedicated to a discussion
of the implications for the most likely magnetic-field configu-
rations in magnetized NSs and of the role played by magnetic
helicity. We also study the emission properties of the system,
relevant for the internal field rearrangement scenario of giant
flares, estimating in Section 3.3 the timescale of the process and
its electromagnetic luminosity, and discussing the detectability
of the GW signal in Section 3.4. For both electromagnetic and
GW emissions, our estimates rely on a good agreement with
the dependence on the magnetic-field strength expected in the
perturbative limit of weak magnetic fields, which allows us to
extrapolate our results to lower and more realistic values than
those actually considered in the simulations. Our conclusions
are finally presented in Section 4. Unless specified differently,
we adopt units in which c = 1 and G = 1.

2. PHYSICAL SYSTEM AND NUMERICAL SETUP

Our physical system of interest is represented by a nonrotat-
ing isolated NS surrounded by vacuum, initially endowed with
a purely poloidal magnetic field permeating the star and extend-
ing to the exterior. The initial configurations are fully relativistic
self-consistent solutions generated with the multi-domain spec-
tral method code LORENE, developed at the Observatoire de
Paris-Meudon (Bocquet et al. 1995). The stars are modeled as
composed of a barotropic fluid obeying a polytropic equation
of state p ≡ KρΓ, with Γ = 2 and K = 100. The reference
unmagnetized star has a gravitational mass of 1.4 M� and a
radius of 12.2 km. Magnetic-field strengths at the pole vary in
the range4 Bp = B1.0 − B9.5 ≡ (1–9.5) × 1016 G. A stronger
magnetic field shortens the evolution timescale of the system,
and the above choice makes our simulations computationally
feasible. On the other hand, as we discuss in Section 3, most
of our results can be extrapolated back to smaller (and more
realistic) magnetic-field strengths.

We perform fully 3D general-relativistic MHD simulations of
the system adopting the Cowling approximation, i.e., neglecting
changes in the spacetime metric. Evolutions are obtained with
the WhiskyMHD code. Most of the details on our mathematical
and numerical setup are discussed in depth in Pollney et al.
(2007), Giacomazzo & Rezzolla (2007), and Giacomazzo et al.
(2009, 2011). One aspect worth stressing is that in order to
guarantee the divergence-free character of the MHD equations,

4 For simplicity, we will hereafter use a more compact notation for
magnetic-field strengths in scales of 1016 G, i.e., BN = N × 1016 G.
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we use the vector potential as an evolution variable instead of
the magnetic field, as described in Giacomazzo et al. (2011).
Our standard grid setup consists of three refinement levels using
the Carpet driver (Schnetter et al. 2004), with the finest one
covering the entire star and having resolution h/M� = 0.17
(∼250 m). Our computational box extends to ±54 M� ∼ 80 km
and we impose no symmetries.

To shorten the time for the development of the instability
and thus reduce computational costs, a small perturbation is
added to the initial velocity of the fluid. In particular, we add
a θ -component of fluid velocity in the region surrounding the
neutral line, where the instability is expected to be triggered
and with m = 2 azimuthal distribution. The strength of the
perturbation corresponds to relative changes in the magnetic
field of the order of 10−3. We have verified that the instability
occurs even in absence of initial perturbations and that no
appreciable differences (besides that of reducing computational
costs) are introduced in the dynamics by the perturbation.

In our numerical setup, special care is paid to the treatment
of the atmosphere. We recall that, as customary in finite-volume
relativistic hydrodynamics simulations, our star is surrounded
by a fluid at much lower densities (i.e., the “atmosphere”),
obtained by imposing a minimum rest-mass density (see, e.g.,
Baiotti et al. 2005, 2008). In the atmospheric region, where
the density is equal to the imposed floor value, we set the fluid
velocity to zero to avoid the spurious accretion of the atmosphere
onto the star. Within the common assumption of ideal MHD,
also adopted in the WhiskyMHD code, this prescription would
imply that magnetic fields do not evolve in the atmosphere,
which represents a serious limitation from both the physical
and numerical points of view. In particular, this rapidly leads to
errors at the stellar surface and, for the magnetic-field strengths
we consider, ends the simulations prematurely.

A self-consistent solution to this problem would require the
implementation in general relativity of the equations of resistive
MHD, along the lines of the work reported by Palenzuela et al.
(2009) and which has seen recent progress in the work of
Dionysopoulou et al. (2012). Lacking for the time being this
more systematic solution, a reasonable first approximation can
be obtained by adding a resistive term to the evolution equation
for the vector potential, i.e.,

∂t A = ṽ × B + ηΔA , (1)

where ṽ = αv − β (see Antón et al. 2006 for the notation), η is
the scalar resistivity and, for simplicity, we take Δ to represent
the Laplacian in a flat spacetime. We impose that resistivity
is zero inside the star (thus retaining an ideal-MHD behavior),
up to a transition layer, where it continuously increases toward
the atmospheric value η0. This is shown in Figure 1, where we
plot the initial resistivity profile along the radial direction for our
fiducial simulation with Bp = B6.5. The plot shows two different
radial profiles, where we change the width of the transition
region inside the star, whose surface r = R is indicated with
a vertical solid line. As we will discuss below, the two choices
have a different impact on the overall results. The resistivity
profile is set to be an explicit function of the rest-mass density,
namely η(ρ)/η0 = g(ρ), where g is a Fermi-like function, with
g = 1 in the atmosphere and g = 0 inside the stellar core. In
this way, the resistivity will mimic the evolution of the rest-mass
density, following the stellar surface in its evolution.

Since the velocity is set to zero outside the star, Equation (1)
reduces there to ∂t A = η0ΔA. A few remarks are worth
noting about this limit and we start by considering the special-

Figure 1. Resistivity profiles along the radial direction for our fiducial simulation
with Bp = B6.5. The two lines refer to the choice of a wide resistive transition
layer (red dashed line) and corresponding to the one adopted in Ciolfi et al.
(2011), or of a thin layer (blue solid line). The vertical line marks the radius of
the star R.

(A color version of this figure is available in the online journal.)

relativistic case for simplicity. Maxwell’s equations in vacuum
are simple wave equations, e.g., ∂2

t B = c2ΔB, so that a non-
zero Laplacian of the magnetic field would be simply radiated
away in electromagnetic waves. In the quasi-static limit, that is,
in the limit in which the timescale associated with magnetic-
field variations is large compared to the light travel time L/c
(where L is the typical length scale of field variations), any
episodic time variation in the magnetic field produced by
the dynamics in the stellar interior would be rapidly radiated
away, leading to an exterior magnetic field which is again with
ΔB ∼ 0. In our system, where the quasi-static limit represents a
good approximation, a similar behavior outside the star can be
obtained by evolving the magnetic field according to a diffusion
equation,5 ∂t B = η0ΔB. In this case, the nonzero Laplacian
components of B are removed not through the propagation of
electromagnetic waves, but through resistive dissipation. Hence,
as long as one is not interested in the precise dynamics of the
exterior magnetic field, the two recipes are effectively equivalent
and the addition of a resistive term in Equation (1) has the
effect of mimicking the behavior of the Maxwell equations
in the vacuum outside the star, at least within the quasi-
static approximation. Indeed, this approach is not novel, but
it has already been considered in the literature, for instance by
Braithwaite & Nordlund (2006).

This logic is valid as long as the external evolution takes
place in the quasi-static limit, and we fulfill this requirement
by suitably choosing the timescale of magnetic diffusion via the
choice of the resistivity η0. More precisely, we set η0 to be always
high enough (hence with sufficiently short associated resistive
timescales) so as to keep the exterior of the star always close
to the condition ΔB ∼ 0. Although only an approximation, the
approach discussed above allows us to have a dynamical exterior
magnetic field, which adjusts itself to the changes triggered in
the interior by the development of the instability. The price to
pay is that in addition to the one lost because of the numerical
resistivity, the magnetic energy of the system is not conserved.
Per se, this would not be particularly problematic, since in a
realistic system one would expect the magnetic energy to be
radiated away, but it does introduce a dependence of the problem
on the profile chosen for the resistivity, since different profiles
will be responsible for energy losses.

As we will discuss in more detail in the following section,
in fact, during the initial development of the instability, the

5 Note that the same equation holds for the vector potential, ∂t A = η0ΔA.
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Figure 2. Poloidal-field instability in our fiducial simulation with Bp = B6.5. Panels show different stages of the evolution (from left to right t = 3.5, 7.5, and 60 ms) with
meridional view (top row) and equatorial view (bottom row). Shown with vector lines are the (global) magnetic-field lines, while the colors show the intensity (in Gauss)
of the toroidal magnetic field only; also reported are three rest-mass isodensity contours near the stellar surface, corresponding to ρ = (0.02, 0.2, 2) × 1013 g cm−3.

(A color version of this figure is available in the online journal.)

magnetic-field modifications are still very small compared to the
background field, and the system is not expected to show visible
changes, with the magnetic energy being essentially conserved.
Yet, because of the resistive layer inside the star introduced via
Equation (1), magnetic-energy losses will be present even in the
early stages of the evolution, simply because the magnetic field
will be divergence-free but not Laplacian-free in the outer layer
of the star.

In our previous work (Ciolfi et al. 2011), we chose a rather
wide resistive transition layer (cf. red dashed line in Figure 1),
which resulted in significant magnetic-energy losses from the
very beginning of the simulation. To minimize these losses,
here we have considered a thinner resistive transition layer (cf.
blue solid line in Figure 1), thus involving a smaller stellar
volume of the star where resistivity can act. As a result, the
magnetic-energy losses during the exponential-growth phase
(i.e., during the first ∼3.5 ms) go from ∼30% in the case of
a wide layer to below ∼2% in the case of a thin layer. In the
subsequent stages of the instability, the differences between
the two prescriptions are much smaller and this is because the
dynamics of the field are much less influenced by the properties
of the resistive layer at the surface of the star. Yet, since we have
shown that different layers lead to different energy losses, it is
reasonable to wonder whether the properties of the transition
region can be important also for the subsequent evolution of
the system. As we will argue in detail in the Appendix, results
are effectively independent of η0 as long as a suitable value
for η0 is chosen for the different magnetic-field strengths, more
specifically, if the resistivity is chosen to scale linearly with
Bp as η0/M� = η∗

0 × (Bp/B6.5) = 0.1 × (Bp/B6.5) (see the
Appendix).

3. RESULTS

3.1. Poloidal-field Instability

We next describe the evolution of the system for our fidu-
cial set of initial models from the onset of the instability to
the nonlinear rearrangement of magnetic fields. First, we briefly
recall the basic expectations of the perturbative studies on the
onset of the instability for a purely poloidal field in nonrotat-
ing magnetized stars (Markey & Tayler 1973; Wright 1973):
(1) the instability first develops in the region of closed field
lines surrounding the neutral line; (2) toroidal magnetic fields
are generated in this region and grow exponentially until their
local intensity is comparable to the poloidal one, which cor-
responds to the saturation of the instability; (3) the instability
saturates in about one Alfvén time6; and (4) the timescale as-
sociated with the exponential growth of the toroidal field scales
as 1/B with the magnetic-field strength. As we will show in the
following, our simulations meet all of these expectations.

A first visual overview of the dynamics of the system is
given in Figure 2, where we present snapshots of the star
and its magnetic field in the meridional (y, z) (top row) and
equatorial (x, y) planes (bottom row) at three different stages of
the evolution. In this example Bp = B6.5. The left panels refer
to the time of saturation of the instability when the magnetic
field starts to show visible modifications (t = 3.5 ms). From the
equatorial view, we note that the initial axisymmetric geometry
is lost and replaced by a nonaxisymmetric structure. Around
7.5 ms (central panels), the instability has fully developed. As

6 An estimate of the Alfvén time is given by τA ∼ 2R
√

4π〈ρ〉/Bp, where 〈ρ〉
is the average rest-mass density. Hence, τA ∼ 3 ms for our fiducial model with
Bp = B6.5.
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Figure 3. Left: evolution of total magnetic energy normalized to the initial value, for different initial magnetic-field strengths: B6.5 (continuous black line), B5.0
(dashed red line), B3.5 (long-dashed blue line), and B1.5 (dot-dashed magenta line). Middle: evolution of poloidal and toroidal magnetic energies normalized to the
initial total magnetic energy (log scale) for B6.5, B1.5. Right: ratio of toroidal and poloidal magnetic energies vs. time for the same collection of simulations shown in
the left panel.

(A color version of this figure is available in the online journal.)

expected, the closed line region is filled with toroidal fields
of strength comparable to the background, resulting in vortex-
like structures of magnetic-field lines. This stage is the most
dynamical and the rapid modifications of the field lead to
the expulsion of matter from the surface of the star (∼2 ×
10−4 M� in this example). Up to this point in the evolution, the
instability has affected only the region of closed magnetic-field
lines, in accordance with the perturbative predictions. However,
as the nonlinear rearrangement of the magnetic field proceeds,
the whole star is involved, with changes also encompassing the
open field lines and the exterior field. Of course, the extent of
these modifications will depend on the strength of the magnetic
field, being larger for more violent field dynamics. The last
panels refer to the end state of our simulation (t = 60 ms). At
this stage there is no trace of the initial geometry and the system
has lost most of its magnetic energy (see discussion below).
To make sure that the external magnetic field is always close
to a potential one (even if its geometry is unusual, as in this
case), we have computed its curl and found it is always smaller
than ∼10−6, while it reaches ∼10−3 inside the star and near the
surface. The same result holds for all the cases considered in
this work.7 In comparison with the snapshots presented in Ciolfi
et al. (2011) for the same magnetic-field strength, the evolution
appears more violent. The significant magnetic-energy loss due
to resistivity in a thicker transition layer, in fact, had the effect of
restraining the dynamics, resulting in a less dramatic and more
ordered evolution.

In Figure 3, we plot the evolution of the poloidal, toroidal,
and total magnetic energies. In practice, the evolution of
the total magnetic energy (left panel) provides information
on the various stages of the evolution: the initial phase-up
accompanied by very small variations, the sudden drop of
magnetic energy with a loss of ∼90% of magnetic energy in
a few milliseconds to tens of milliseconds depending on the
initial magnetic-field strength, and the final stage with a slower
evolution as the energy decreases to a few percent of the initial
value and the system reaches a quasi-stationary equilibrium.8

7 An essentially potential external magnetic field is not surprising given that
the field in the stellar exterior is to a good precision divergence- and
Laplacian-free.
8 Note that we refer to a “quasi-stationary equilibrium” and not to a stable
equilibrium because, strictly speaking, the latter is impossible to prove with
numerical simulations over a finite amount of time.

Assessing the equilibrium properties of the new configuration
is complicated by the fact that, by construction, our system
would suffer from resistive losses due to a thin layer inside
the star and outside of it, even if a stable equilibrium had
been reached. Hence, these residual losses make it difficult
to determine unambiguously whether or not the new, post-
instability configuration is stationary. What is evident is that
the system’s properties are not changing significantly (e.g., the
rest-mass density) or, if changing, they are doing so much more
slowly than during the instability (e.g., the magnetic field).
We interpret this behavior as (partial) evidence that the new
magnetic-field configuration has reached a quasi-stationary state
or that, if still intrinsically unstable, the growth time of the
instability is much larger than we can possibly investigate. As
we will comment below, this conclusion is further supported by
the dynamics of the rest-mass density.

The overall evolution does not change with smaller initial
field strengths, apart from the expected increase of timescales.
Figure 3 also reports the poloidal and toroidal field energies
in a logarithmic scale (middle panel). Note that the toroidal
energy grows exponentially in the initial stages of the evolu-
tion and that the growth rate depends on the initial magnetic-
field strength, the slope being steeper for larger magnetic fields.
The poloidal component, on the other hand, remains almost
unchanged during this initial stage, until the nonlinear rear-
rangement of the magnetic field starts. Then the system evolves,
losing most of the poloidal energy, while the toroidal energy
experiences smaller variations, thus resulting in a growing ra-
tio of toroidal and poloidal energies. In the last phase of the
evolution, the ratio of the poloidal-to-toroidal magnetic ener-
gies stabilizes in the range ∼0.7–1, indicating that at this stage
the toroidal magnetic field provides a dynamically important
contribution to the final quasi-stationary balance (right panel
of Figure 3).

From a closer look at the details of the dynamics, we
note a qualitative difference between stronger and weaker
magnetic fields, the latter having a much smoother evolution.
For Bp = B1.0 −B2.5 the system indeed undergoes less dramatic
modifications where the initial magnetic-field geometry is
partially maintained.9 This is evident in Figure 4, where we

9 In particular, the open field lines and the exterior field are not strongly
affected as in the case of stronger fields (see Figure 2). This result is more
similar to that obtained in Lasky et al. (2011).
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Figure 4. Same as in Figure 2, but for a star with an initial magnetic field of Bp = B1.5. Note that the dynamics are less violent and that the color scale is different
from the one shown in Figure 2.

(A color version of this figure is available in the online journal.)

show snapshots of the evolution of a star with initial magnetic-
field strength Bp = B1.5. These differences are relevant when we
consider the emission properties of the system and, in particular,
the emission of GWs.

In Figure 5, we show instead the growth time τ of the toroidal-
field energy in the exponential phase of the evolution as a
function of the initial magnetic-field strength. The predicted
linear scaling is very well satisfied in the full range of magnetic-
field strengths considered (the red dashed line represents a linear
fit to the data).

3.2. Final Magnetic-field Configuration

Since the new simulations have been carried out on timescales
that are much longer than the ones investigated in Ciolfi et al.
(2011), we are in a much better position to discuss the properties
of the final magnetic-field configuration. Also important in this
context is the evolution of purely hydrodynamical quantities,
which can provide important additional information on the
development of the instability and on the quasi-stationary state
approached by the system in the final stages. One such quantity
is the central (i.e., maximum) rest-mass density. We recall
that the initial purely poloidal magnetic field is responsible
for a quadrupolar deformation of the star, whose resulting
shape is slightly oblate (i.e., with a positive ellipticity ε),
despite being nonrotating. This deformation lowers the central
rest-mass density of the star with respect to the unmagnetized
case, and the difference is of the order of Δρmax/ρmax(B =
0) ≡ 1 − ρmax/ρmax(B = 0) ∼ ε. Since the ellipticity
scales as ε ∼ B2, when the system loses a factor ∼102 in
poloidal magnetic energy, Δρmax should be also reduced by
about the same factor. In addition, if there is a significant toroidal
component, this tends to deform the star into a prolate shape,

contrasting the effect of the poloidal field. As a consequence, in
our simulations we expect the final Δρmax to be much smaller
than the initial one, i.e., the star basically recovers the spherical
shape of the unmagnetized case.

In Figure 6, we show the evolution of the central rest-mass
density for different initial magnetic-field strengths. Note that
our different models are all built with the same initial central
density, which gives a percent difference in the central density
of the unmagnetized star corresponding to each model. Clearly,
for the rest-mass density also the evolution is much more
dramatic for stronger initial magnetic fields, with excursions
in the central density that become larger and more rapid as the
initial magnetic-field strength is increased. In all cases, however,
the central density mimics the evolution of the magnetic energy
and reaches an approximately constant value, with an overall
jump that scales roughly as ∼B2. The absence of additional
evolution in the rest-mass density after the instability has fully
developed provides the indication that the new configuration is,
at least hydrodynamically, stable, and that if the new magnetic-
field configuration is about to lead to a new unstable evolution, it
will do so on much larger timescales. For initial magnetic-field
strengths of 6.5 and 5 × 1016 G, the change is so violent and
rapid that it leads to high-frequency oscillations in the central
density, while we do not observe the same effect with smaller
fields. As we will further discuss in Section 3.4, a rapid variation
of central density can also affect the emission properties of the
star, e.g., introducing a significant modulation of the GW signal.

Other useful information on the final state can be obtained by
looking at the evolution of the total magnetic helicity Hm. This
quantity is associated with the topological properties of a given
magnetic-field geometry and measures the degree of linkage of
magnetic-field lines (Moffatt 1969). The initial purely poloidal
configuration has Hm = 0 because only regions with a mixed
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Figure 5. Instability growth time as a function of the initial magnetic-field
strength (black circles). The red dashed line represents a fitted linear scaling as
expected from perturbation theory.

(A color version of this figure is available in the online journal.)

poloidal–toroidal field contribute to the magnetic helicity.10 We
already noticed that the ratio of toroidal and poloidal energies
grows in time and then tends to stabilize to values in the range
∼0.7–1. The total magnetic helicity, even if related to the energy
in the two magnetic-field components, encodes independent
information about the topology of the field, and it is therefore
useful to investigate its evolution in our system.

We recall that, although in ideal MHD the total magnetic
helicity is conserved (Woltjer 1958), a highly conducting fluid
star in vacuum with a thin resistive layer does not represent
an ideal MHD system, and magnetic helicity conservation is
therefore not guaranteed (of course helicity is also produced
because of the intrinsic nonzero numerical resistivity, but the
latter is much smaller than that introduced in Equation (1)). We
compute the total magnetic helicity as

Hm ≡
∫

Σt

H 0
m

√−gd3x, (2)

where Hα
m ≡ ∗FαβAβ is the magnetic helicity 4-current and Σt

is the spatial hypersurface at a given time t (see Bekenstein 1987
and references therein). Since our initial helicity is Hm(t = 0) =
0, we normalize Hm to the helicity of an axisymmetric twisted-
torus configuration in which the poloidal field is arranged as in
our initial condition and the toroidal field, confined in the region
of closed field lines around the neutral line, is uniform and with
an energy equal to the poloidal one, i.e., Epol = Etor = Em/2.
Indicating such a reference helicity by H̃m, we can estimate
|H̃m| ∼ r

N

√
EpolEtor = r

N
Em/2, where r

N
(∼8 km) is

the radius of the neutral line and Em is set to coincide with
the magnetic energy of the stellar model under examination.
Note that we are not concerned here with the sign of Hm (or
of H̃m), since the latter depends on whether toroidal fields are
directed along the positive or negative φ-direction and a global

10 We note, however, that even a mixed field can be constructed such that
Hm = 0, e.g., in axisymmetry, through the superposition of a poloidal
magnetic field and of two toroidal ones of opposite polarity.

Figure 6. Evolution of central rest-mass density for different initial magnetic-
field strengths. From top: 6.5 (black), 5 (red), 3.5 (blue), and 1.5 × 1016 G
(magenta).

(A color version of this figure is available in the online journal.)

transformation Bφ → −Bφ would not change the properties of
the system.

We can now monitor the evolution of Hm. As long as
|Hm/H̃m| � 1 the total magnetic helicity is small, while
|Hm/H̃m| ∼ 1 is an indication that there is a significant magnetic
helicity. In Figure 7 (top panel), we show the evolution of
the normalized helicity for the different initial magnetic-field
strengths. Note that in all cases |Hm/H̃m| grows in time, and
around 60 ms it has reached a substantial fraction of 1. This
fraction is higher for weaker fields, where the evolution is
smoother, i.e., |Hm/H̃m| ∼ 0.6 for B1.5, while |Hm/H̃m| ∼ 0.3
for B6.5. This behavior supports the idea that configurations
with a significant amount of magnetic helicity are more stable,
as already suggested in the literature (see Braithwaite & Spruit
2006 and references therein). Such an indication is compatible
with the observed instability of the initial purely poloidal field
and the production of a toroidal component, which could be
interpreted as an attempt by the system to produce magnetic
helicity.

We have seen that the system can achieve a significant amount
of magnetic helicity; meanwhile most of its magnetic energy is
lost. In order to weigh the absolute variation of magnetic helicity,
we can compare Hm with the initial value of H̃m (bottom panel
of Figure 7). The ratio in this case is much smaller, �1%–3%,
indicating that the magnetic helicity produced would represent
a small amount for the initial star and becomes significant only
because the system has lost most of its magnetic energy.

On the basis of these results and bearing in mind the limits of
our approach, we conjecture that magnetic helicity could play
an important role as a stabilizing element for a fluid magnetized
star. If this is the case, we can give a natural interpretation of
the evolution of our system. (1) A purely poloidal magnetic
field is unstable and a significant modification of its topology is
necessary for stabilization. (2) While the system is evolving the
rate of change of magnetic helicity is small compared to the rate
of change of magnetic energy; thus the system has to lose most
of its magnetic energy in order to significantly alter its topology
and reach a more stable state.
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Figure 7. Top: evolution of magnetic helicity normalized to H̃m (see the text),
for different initial magnetic-field strengths: 6.5 (continuous black line), 3.5
(long-dashed blue line), and 1.5 × 1016 G (dot-dashed magenta line). Bottom:
evolution of magnetic helicity normalized to the initial value of H̃m, for the
same set of simulations.

(A color version of this figure is available in the online journal.)

As a complement to the information obtained from our non-
linear relativistic calculations, we should remark that the possi-
bility of a stable equilibrium has been questioned in the case of a
barotropic fluid star (Reisenegger 2009; Lander & Jones 2012).
A barotropic equation of state does not take into account the
effect of stable stratification associated with composition gradi-
ents, which could play an important role in determining the sta-
bility of magnetic equilibria in relativistic NSs (Reisenegger &
Goldreich 1992; Reisenegger 2009). Stable stratification, in-
deed, offers an additional degree of freedom that favors the
hydrostatic balance of fluid and magnetic forces. A strong in-
dication in support of stable equilibria in stratified magnetized
stars has been obtained for main-sequence stars, where stratifi-
cation is provided by entropy gradients (Braithwaite & Nordlund
2006), while there is no such evidence for barotropic NSs.

3.3. Electromagnetic Emission

As discussed in the Introduction, one of the leading explana-
tions of magnetar giant flares assumes that the event is due to a
sudden, global rearrangement of the internal magnetic field, i.e.,
the same kind of process that we are studying. A giant flare starts
with an initial burst of 0.1–0.5 s duration, followed by a long
pulsating tail lasting hundreds of seconds. In such a scenario, the
energy emitted in the initial burst is a significant fraction of the
total magnetic energy of the star, while the duration of the burst
is dictated by the timescale of the internal field rearrangement.
We have also remarked repeatedly that, in all cases considered,
our magnetized stars lose most of the initial magnetic energy
within few tens of milliseconds. This energy is converted in
very small part into fluid motions, e.g., f-mode oscillations of
the star with consequent emission of GWs (see Section 3.4),
while most of it is dissipated in the resistive layer inside the star
and then in the atmosphere, thus mimicking the radiative losses
that would be measured if the stars were actually in vacuum. We
can therefore use the information about the dissipated magnetic
energy to deduce, within the approximation of our approach, an
order-of-magnitude estimate of the electromagnetic luminosity

Lem associated with the hydromagnetic instability. In addition,
we can compare the luminosity and duration of the emission
computed in this way with the observations of giant flares.

In practice, most of the emission comes from the initial
fast drop of magnetic energy by ∼90%, corresponding to an
initial spike in Lem. Taking that as a reference, we measure the
duration of the spike and compute its peak and (time) average
luminosities for the different initial magnetic-field strengths
considered. Note that the expected scaling for the luminosity
is Lem ∝ B 3

p , since the timescale of the emission goes as 1/B,
while the magnetic energy scales as Em ∝ B2. Our estimate
for the average luminosity, obtained by fitting for the different
magnetic-field strengths, gives

〈Lem〉 = 1.9 ×
(

Bp

1015G

)3

× 1048 erg s−1 . (3)

Similarly, for the reference value of a magnetar-type magnetic
field of Bp = 1015 G, we obtain a duration of the initial spike of
∼0.7 s and a peak luminosity of Lem,peak ∼ 5.3 × 1048 erg s−1.

We can now compare with the observations. In the bright-
est giant flare detected, the one in 2004 from SGR 1806−20,
the initial spike lasted ∼0.5 s, had a peak luminosity of
∼(2–5) × 1047 × (d/15 kpc)2 erg s−1, where d is the distance
of the source, and accounting for the total isotropic energy ra-
diated (which was ∼99% of the total energy emitted in the
whole giant flare event, including the ∼400 s tail), the av-
erage luminosity was ∼(0.3–1) × 1047 × (d/15 kpc)2 erg s−1

(see Mereghetti 2008 and references therein). The duration of
the initial burst from SGR 1806−20 is clearly comparable with
our estimate. The difference in average luminosity (our esti-
mate is ∼20–60 larger), then, essentially reflects a difference in
the electromagnetic energy released, which does not constitute
a significant limitation for the scenario: while in our system
the magnetic energy is almost completely lost, it is perfectly
reasonable that in a more realistic situation the magnetic field
would migrate from one configuration to another with a smaller
jump in magnetic energy. Note that the timescale of the process,
on the other hand, is essentially controlled by the initial inter-
nal magnetic-field strength and depends weakly on the overall
jump in magnetic energy. Interestingly, the ratio between the es-
timated peak and average luminosities is also in good agreement
with the observations.

If the comparison with the phenomenology of SGR 1806−20
leads to a reasonably good match in the duration and energetics,
thus providing substantial support to the internal field rearrange-
ment scenario, the comparison with other observations is not as
striking. In particular, the average luminosity of the initial spike
in the case of the other two giant flares observed (1979 from
SGR 0526−66 and 1998 SGR 1900+14) was �1045 erg s−1,
with a comparable duration of ∼0.25, 0.35 s. In these cases,
therefore, the mismatch in the energy losses is far larger, al-
though still acceptable if the field rearrangement is to a new
configuration with comparable magnetic-field strengths.

The luminosity rise time at the beginning of the initial
spike constitutes an additional relevant timescale in a giant
flare. Being of the order of ∼1 ms (Palmer et al. 2005), it
can be easily associated with the Alfvén propagation time in
the magnetosphere, while it can hardly be explained by the
internal magnetic-field rearrangement, which acts on longer
timescales. Therefore, in order to have the internal scenario
fully compatible with the observations one probably needs to
assume that the instability also triggers an initial, less energetic
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Figure 8. Gravitational-wave signal for different initial magnetic-field strength Bp, in the range Bp = B1.0 − B6.5. Top (bottom) panels refer to the amplitude in ×
( + ) polarization; d is the source distance, which needs to be specified to obtain the amplitudes h×, h+. Note that the y-scale changes with Bp.

(A color version of this figure is available in the online journal.)

but sudden reorganization of the magnetospheric field, with
a mechanism similar to the one proposed in the alternative
external rearrangement scenario (Lyutikov 2003, 2006; Gill &
Heyl 2010). However, this feature cannot be captured by our
present modeling of the NS exterior.

In summary, although the dynamics of our system are
oversimplified when compared to the complex phenomenology
shown by a realistic magnetar giant flare, the overall agreement
in the duration of the burst and in its energetics when compared
with the observations of the giant flare from SGR 1806−20 lends
support to the suggestion that the basic phenomenology is that of
an internal-field readjustment. To the best of our knowledge, this
is the first time that a comparison between general-relativistic
MHD simulations and the magnetar phenomenology has been
attempted. Clearly, a lot more work needs to be done to improve
our self-consistent but crude modeling.

3.4. Gravitational Wave Emission

In the Introduction, we have pointed out the potential rele-
vance of our study for GW observations in connection to magne-
tar giant flares. The basic idea, already presented in Ciolfi et al.
(2011), is that the instability triggers stellar oscillations at the
f-mode frequency, with the consequent emission of GWs, simi-
lar to what should happen in association with a magnetar giant
flare. In what follows we provide a systematic assessment of this
emission for the different initial magnetic-field strengths con-
sidered and an estimate of the detectability of the GW signal for
the planned advanced GW detectors, i.e., advanced LIGO and

advanced Virgo, and the new-generation ones, e.g., the Einstein
Telescope (Punturo et al. 2010).

The GW signals produced in our simulations are shown in the
different panels of Figure 8, where we report the amplitudes in
the × and + polarizations for the various initial magnetic-field
strengths Bp, ranging from B1.0 to B6.5. Besides the differences
in the overall amplitude, that naturally grows with Bp (see also
discussion below), the waveforms also show other differences
with the magnetic-field strength. These include variations in the
transient stage of the instability and low-frequency modulations.
For example, for B6.5 we can observe a significant modulation
at ∼25 Hz, which could be associated with the jump in central
density (cf. Figure 6), whose timescale is compatible with the
period of the modulation. A similar modulation appears also
for B2.5. Rather irregular transients instead characterize the
initial amplitudes for B3.5 and B5.0. In both cases, in fact, we
can note sudden jumps in the signal, which correspond to the
highly dynamical phases in the evolution of the system. This is
indeed confirmed by the evolution of the total magnetic energy
in Figure 3, where bumps appear around ∼12 ms and ∼22 ms
for B3.5 and B5.0, respectively, while they are not present in the
other cases.

Despite these differences, all signals are essentially domi-
nated by oscillations at the f-mode frequency, as it is clear from
Figure 9, where we report the Fourier transform of the GW
amplitude in both the × and + polarization for B1.5, B3.5, and
B6.5. The f-mode we can read off the plot is about 1.85 kHz
for the lowest field strength, with a shift to lower frequencies
for higher magnetic fields (this shift is of ∼8% for B6.5). We
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Figure 9. Fourier transform of h× and h+ for Bp = B1.5 (lower magenta line),
B3.5 (intermediate blue line), and B6.5 (upper black line), assuming a source
distance of 10 kpc. The vertical line marks a frequency of 1850 Hz.

(A color version of this figure is available in the online journal.)

recall that since our evolutions are in the Cowling approxi-
mation, the corresponding f-mode frequencies are notoriously
larger by ∼15% than the correct ones computed in full general
relativity (Dimmelmeier et al. 2006; Takami & Rezzolla 2011).
This property will be taken into account when considering the
detectability of the signal.

Given the complexity of the signal, with large rapid and sec-
ular variations, the determination of the signal-to-noise ratio
(S/N) cannot be done by simply looking at the
maximum–minimum amplitudes, but rather by computing a
strain that represents a suitable time average. This is indeed
what can be done through the root-sum-square amplitude hrss,
defined as

hrss ≡
[∫ +∞

−∞
h(t)2 dt

]1/2

, (4)

where h2(t) = h2
×(t) + h2

+(t). The amplitudes in the two
polarizations are computed considering a source within the
Galaxy, i.e., at a fiducial distance of 10 kpc. If, as in our case, the
signal is dominated by a single frequency f0, then the S/N can
be estimated using the simple expression S/N = hrss/

√
Sh(f0),

where
√

Sh(f0) is the strain-noise amplitude of the detector at
the frequency f0. When computing hrss we also need to specify
the duration of the signal (in addition to the distance of the
source). Typical estimates of the f-mode damping time τGW
range between 100 ms and 1 s (Andersson & Kokkotas 1998;
Benhar et al. 2004), and here we assume τGW = 100 ms.

The resulting hrss amplitudes are reported in Figure 10, where
we also show with dotted lines the strain-noise amplitude of
advanced LIGO and Virgo and of the Einstein Telescope, and
where we have assumed f0 ∼ 1550 Hz to correct for the
Cowling approximation. Furthermore, the “noise” is estimated
to be

√
Sh(f0) ∼ 7.4 × 10−24 Hz−1/2 for advanced LIGO and

advanced Virgo, and
√

Sh(f0) ∼ 10−24 Hz−1/2 for the Einstein
Telescope (see Andersson et al. 2011, where the same strain-
noise amplitudes were considered).

Because we have considered magnetic-field strengths in our
simulations that are at least an order of magnitude larger than
those typically associated with magnetars, we need to rescale

Figure 10. hrss [
√

s] vs. Bp in Gauss assuming a distance of 10 kpc and a damping
time of τGW = 100 ms. Horizontal lines mark the strain-noise amplitude of the
considered GW detectors at the f-mode frequency f0. Finally, the red line is
obtained by imposing a quadratic scaling (∝ B2) and fitting the results for the
lowest magnetic fields (first four points).

(A color version of this figure is available in the online journal.)

our results for hrss to smaller field strengths in order to assess the
GW signal that could be expected if the instability is associated
with a magnetar giant flare. This is rather straightforward
to do since the expectation from perturbative analyses (see,
e.g., Levin & van Hoven 2011) is that, independently of the
mechanism considered, the amplitude of the excited f-mode by
the flare should scale as the magnetic energy, i.e., as ∝ B2. This
prediction is valid as long as the magnetic-field strengths are
sufficiently small so that the corresponding magnetic energy
can be considered as a small perturbation to the total binding
energy. The results shown in Figure 10 confirm that a quadratic
scaling is a rather good approximation to the computed data for
Bp � B3.0. This is highlighted in Figure 10 by the red solid
line, which represents a quadratic fit to the GW amplitude in
the case of low magnetic fields. We find it very reassuring that
our data do show the expected scaling behavior in the weak-
field limit, which instead appears to be absent in the scaling
reported by Zink et al. (2011) and subsequently by Lasky et al.
(2012) for rotating stars. Of course, this scaling is then broken
as the magnetic field is increased and a steeper dependence
is then expected and found for Bp � B3.5. The characteristic
amplitude then appears to saturate for Bp � B5.0. We note
that the very rapid increase in hrss for Bp � B3.5 is somewhat
surprising but not completely unexpected. We recall, in fact, that
the root-sum-square amplitude refers to a secondary quantity
which is calculated in a Newtonian approximation. Because of
the high time derivatives of the fluid variables that contribute
to its measure, this quantity is very sensitive to the dynamics
of the system and hence to the large velocities that develop
for large magnetic fields. By using different prescriptions of
the resistivity we have verified that this rapid change is robust,
although probably amplified by the breaking of the Newtonian
approximation.

The importance of the quadratic fit is that it allows us to
extrapolate back to even smaller values of the magnetic fields
and obtain the following predictions for the S/Ns for the

10



The Astrophysical Journal, 760:1 (13pp), 2012 November 20 Ciolfi & Rezzolla

different detectors:

S

N

∣∣∣∣
AdvLIGO−Virgo

� 1.2 × 10−4 ×
(

Bp

1015 G

)2

, (5)

S

N

∣∣∣∣
ET

� 0.9 × 10−3 ×
(

Bp

1015 G

)2

. (6)

We conclude that the GW signal produced by the f-mode oscil-
lations triggered by the hydromagnetic instability in association
with a magnetar giant flare will be undetectable for realistic
values of the magnetic field, i.e., Bp � 1015 G and marginally
detectable by third-generation detectors for unrealistic magnetic
fields, Bp � 2 × 1016 G. Because a longer damping time, say
of τGW = 1 s, would yield a gain of only a factor

√
10, we do

not expect that the prospects of a detection would improve if the
f-mode oscillations would last a factor 10 more in time.

Understanding why the detectability of this GW signal is so
hard in practice can be made easier if we take into account how
much energy is actually lost to GWs and compare it with the
amount of dissipated magnetic energy. More specifically, if hrss
is the root-sum-square GW amplitude, the energy emitted in
GWs can be computed as (see, e.g., Levin & van Hoven 2011)

EGW = 2π2f 2
0 c3

G
d2h2

rss ,

� 1.9 × 1037 erg ×
(

Bp

1015 G

)4

×
( τGW

100 ms

)
, (7)

where we retained factors of c and G, and d is the source
distance.11 Comparing expression (7) with the corresponding
estimates of the dissipated magnetic energy (Equation (3)), it is
easy to realize that the two energies differ by more than 10 orders
of magnitude. Hence, assuming EGW ∼ Em as done recently
by Corsi & Owen (2011) would indeed lead to a S/N ∼ 30
for advanced LIGO, but it would also be overly optimistic and
rather unjustified on the basis of our calculations, which instead
confirm the expectation of Levin & van Hoven (2011) that the
energy actually converted into GWs is only a small fraction
of the total energy available. As a result of this inefficient
conversion, the GW signal is too weak to be detected with the
near-future detectors. A similar conclusion was also reached by
Levin & van Hoven (2011) and Zink et al. (2011), and more
recently by Lasky et al. (2012) for rotating stars.

4. SUMMARY AND CONCLUSION

We have performed 3D general-relativistic MHD simulations
of nonrotating magnetized NSs endowed with a purely poloidal
magnetic field and studied the development of the hydromag-
netic instability that develops dynamically. This work represents
an extension of our previous study on the subject (Ciolfi et al.
2011), where we have improved our treatment of the atmo-
sphere, drastically reducing the undesired energy losses due
to the transition between the ideally conducting stellar interior
and the resistive exterior, and we have performed simulations on
much longer timescales, which have allowed us to gain essential
information about the final configuration reached by the system.
The resulting overall picture is much clearer and conclusive.

11 Note that d2h2
rss does not depend on the source distance, while hrss alone

does.

As expected from perturbation analyses, the instability is first
triggered in the region of close field lines and is accompanied
by the production of a toroidal magnetic field. When the growth
of the latter saturates in about one Alfvén timescale, the toroidal
field has reached a local strength which is comparable to the
poloidal one and the axisymmetry of the initial configuration is
lost. At this point, the most dynamical phase of the nonlinear
evolution takes place, with major modifications of the magnetic
field leading to a strong electromagnetic emission carrying away
∼90% of the magnetic energy in a few Alfvén timescales. At
the same time, a small fraction of magnetic energy is converted
into stellar oscillations, mostly at the f-mode frequency, which
cause the emission of GWs. The subsequent evolution proceeds
on longer timescales, with further loss of magnetic energy.

Since in the post-instability phase the magnetic field is
continuously changing, losing strength because of resistive
dissipation, it is difficult to determine whether or not the
corresponding configuration is stationary. The only robust
evidence is that the variations in the hydrodynamical and
electromagnetic quantities are much smaller than those during
the instability, taking place on larger timescales. We therefore
interpret this behavior as evidence that the new magnetic-field
configuration has reached a quasi-stationary state or that, if still
intrinsically unstable, the growth time of the instability is much
larger than can possibly be investigated numerically.

Because the ratio of the toroidal and poloidal magnetic en-
ergies tends to unity in this quasi-stationary configuration, and
because the growth of toroidal magnetic field at the expense
of the poloidal one is also accompanied by an increase in the
magnetic helicity, we are led to conclude that an equilibrium
magnetic-field configuration with a significant amount of mag-
netic helicity and comparable poloidal and toroidal magnetic-
field energies could be a preferred one for stability. Bearing this
in mind, we remark that it is still unclear if stable equilibria
exist for a simple barotropic fluid star, and that other stabilizing
contributions, such as a stable stratification, may be necessary
to obtain long-lived magnetic-field configurations.

The violent reorganization of magnetic fields induced by the
development of a hydromagnetic instability has been proposed
as a possible mechanism to explain giant flares in magnetars.
Using our simulations and in particular the information about
the magnetic energy dissipated, we have deduced, within the
approximation of our resistive approach, an estimate of the elec-
tromagnetic luminosity Lem associated with the hydromagnetic
instability. More specifically, we found that the average lumi-
nosity scales as ∝ B3 with the magnetic-field strength, in good
agreement with the expectation that the radiated energy should
scale as ∝ B2, while the duration of the emission should scale
as ∝ B−1. In this way we were able to perform a direct com-
parison with the observations of SGR 1806−20, finding a very
good agreement with the duration of the burst and an emitted
luminosity which is about an order of magnitude larger than
the measured one. As a result, although our modeling is over-
simplified, the overall agreement with the observations from
SGR 1806−20 lends support to the suggestion that the basic
phenomenology is that of an internal-field readjustment.

Finally, we have discussed the GW emission which should
be expected as a result of the f-mode oscillations triggered by
the instability. Also in this case, our calculations reproduce
the expected scaling behavior of the root-mean-square GW
amplitude in the limit of weak magnetic fields, i.e., hrss ∼ B2.
This important result allows us to extrapolate with confidence
our estimates to smaller magnetic fields than those covered

11
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Figure 11. Left: total magnetic energy (normalized to the initial value) vs. time for simulations with Bp = B6.5 and different values of resistivity: η0/M� = 0.02
(dashed red), 0.06 (long-dashed purple), 0.10 (blue), and 0.14 (black). In the insert, we have also η0/M� = 0.12 (dotted black). Right: ratio of toroidal and poloidal
magnetic energies vs. time for the same collection of simulations.

(A color version of this figure is available in the online journal.)

by our simulations and conclude that the GW signal from
f-mode oscillations will be undetectable for realistic values of
the magnetic field, i.e., Bp � 1015 G and marginally detectable
by third-generation detectors for unrealistically large magnetic
fields, i.e., Bp � 2 × 1016 G.

As a self-consistent solution to this problem in a fully resistive
regime is within reach (Dionysopoulou et al. 2012), we plan to
extend the investigation reported above and thus remove many
of the approximations that our present analysis had to sustain.
It will then be possible to set even more precise connections
between the complex phenomenology observed in magnetar
flares and the violent dynamics of hydromagnetic instabilities
in relativistic stars.

We are grateful to D. Radice, A. Harte, S. K. Lander, S.
Mereghetti, W. Kastaun, B. Giacomazzo, E. Bentivegna, G. M.
Manca, R. De Pietri, and S. Bernuzzi for useful discussions. R.
Ciolfi is supported by the Humboldt Foundation. Support comes
also from “CompStar,” a Research Networking Programme of
the European Science Foundation and by the DFG Grant
SFB/Transregio 7. The calculations have been performed on
the supercomputing clusters at the AEI.

APPENDIX

THE ROLE OF RESISTIVITY IN THE ATMOSPHERE

In this Appendix, we discuss how the results of our simu-
lations depend on the atmospheric value of resistivity η0 and
how a suitable choice for η0 can considerably limit the influ-
ence of this free parameter. We recall that if the value of η0
is too small, we expect that the exterior field is not evolving
rapidly enough relative to the interior dynamics, thus accumu-
lating magnetic-field distortions in the external layer of the star.
As η0 is increased, the timescale for the exterior field evolu-
tion decreases until it becomes comparable to or shorter than
the timescale of the internal evolution. At that point the overall
dynamics are less sensitive to a further increase of η0. Finally, if
we further increase η0, it will eventually become too large and

the effects of resistivity in the outer layer of the star will become
dominant, significantly influencing the interior dynamics also.

In Figure 11, we show the evolution of the total magnetic
energy and of the ratio of toroidal and poloidal energies,
obtained with different values of η0 ranging from 0.02 to
0.14 M�, with an initial magnetic-field strength Bp = B6.5. We
first focus on the total magnetic energy (left panel of Figure 11)
and note that in the range 0.02–0.10 M�, the differences among
different evolutions become smaller and smaller as the value of
η0 is increased. Furthermore, while a value of η0 = 0.12 M�
still gives comparable results, an additional increase leads again
to significant differences. As a result, for these magnetic-field
strengths, η0 � 0.06–0.12 M� represents a reasonable value for
the resistivity.

Let us now consider the toroidal-to-poloidal energy ratio
(right panel of Figure 11), which is particularly sensitive to the
value of resistivity. When considering η0 ranging from 0.02 M�
to 0.10 M�, we have a significant increase of the toroidal
field production. Around 0.10 M�, however, the ratio becomes
almost independent of η0, with no significant differences for
η0 between 0.10 and 0.12 M�. However, if we further increase
η0 above 0.12 M�, we again find a significant dependence, this
time with a decrease in the production of toroidal field.

In conclusion, for Bp = B6.5, a resistivity value of η0 =
0.10 M� yields optimal results and the scaling of this value
for different magnetic-field strengths can be done simply as
η0/M� = 0.10 × (Bp/B6.5). In the limit of low magnetic field,
a change in Bp accompanied by this rescaling of η0 would give
exactly the same dynamics, only rescaled in time.
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