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a b s t r a c t

In this paper methods to simulate the signals in laser interferometers are proposed. The central part

deals with the computation of the photocurrent, subsequent phase demodulation and finally the

generation of interferometer signals, such as the longitudinal phase readout, differential wavefront

sensing signal, differential power sensing and contrast. Here, fundamental Gaussian beams without

astigmatism are assumed. The methods are validated in several examples by comparison with

experimental data, with analytical results as well as with an intuitively predictable system.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The scientific use of laser interferometers for precision length
measurements has become extensive in the past decades. For
instance in the field of gravitational wave detection, heterodyne
and homodyne interferometers are used to sense tiny changes in
the optical pathlengths in order to detect and chart gravitational
waves [1–3]. Another example is the use of laser interferometers
for spaceborne mapping of the Earth’s gravity field [4,5]. In such
interferometers, a laser beam is reflected from a mirror, which we
call test mass following the convention in gravitational wave
missions. The beam is then interfered with a reference laser beam
(see Fig. 1). Often, the two beams differ in frequency (heterodyne
interferometers) and we will assume that for the discussion, although
the methods can also be applied to homodyne interferometers.
The resulting interference pattern is recorded with a photodiode
which senses any phase shift in the resulting sinusoidal beat note.
This phase of the signal is then measured using a phasemeter and
converted into a length. The resulting signal is the ‘‘longitudinal
pathlength signal’’ (LPS) which senses any longitudinal movement
of the test mass with high accuracy.
ll rights reserved.
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A tilt of the test mass typically causes the beam reflected from
the test mass, the so-called measurement beam, to shift away
from the center of the photodiode. If the detector is a quadrant
photodiode (QPD), this beam walk can be sensed by the imbal-
ance of the sensed power of the four quadrants. The resulting
signal is the ‘‘differential power sensing’’ (DPS) or ratiometric
signal [6]. It can be used to measure tilts of the test mass over a
large angular range, limited only by the size of the photodiode or
other apertures.

A tilt of the test mass also tilts the phasefront of the measure-
ment beam with respect to the wavefront of the reference beam
(see Fig. 1 for an illustration). This causes an imbalance of the phase
signals on the various quadrants of the QPD. The difference between
these phase signals can be processed to produce the ‘‘differential
wavefront sensing’’ (DWS) signals [7,8]. This is a high gain readout
of the angle between the wavefronts and thereby a high precision
readout of test mass angular movements. In interferometers where
the DPS signal does not sense test mass rotations because imaging
optics are used to suppress resulting beam walk on the photore-
ceiver, the DWS signal can still be used for angular readout.

Finally, the contrast or fringe visibility of the interference
pattern is a typical interferometer property which gives general
information about the alignment status of the interferometer.

The prediction of these signals in laser interferometers is cumber-
some, since there exists no simple software tool or analytical method
to generate all these alignment signals for fundamental Gaussian

www.elsevier.com/locate/optcom
www.elsevier.com/locate/optcom
dx.doi.org/10.1016/j.optcom.2012.07.123
dx.doi.org/10.1016/j.optcom.2012.07.123
dx.doi.org/10.1016/j.optcom.2012.07.123
mailto:gudrun.wanner@aei.mpg.de
mailto:gerhard.heinzel@aei.mpg.de
dx.doi.org/10.1016/j.optcom.2012.07.123


Fig. 1. Typical interferometer with test mass (top mirror) and post-processing of

the photocurrent using phasemeter and computer (left graph). The right hand side

figure sketches how a test mass tilt causes a DWS signal: the measurement beam

wavefront is ahead of the reference wavefront on quadrants C and D but lags

behind the reference wavefront on quadrants A and B. This effect causes unequal

phase signals on those quadrants and thereby a DWS signal.
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beam input. Methods for tracing beams through optical systems are
known for decades and also methods for phase demodulation from a
photocurrent have been previously discussed in detail (for instance
in [9–14]). We present now how all these methods can be combined
to predict interferometric readout signals like those introduced
above, starting from the point of beam definition, tracing through
arbitrary three dimensional optical systems to generation of a virtual
photocurrent and the subsequent phase demodulation.

In this paper, we describe the basic methods needed for typical
laser interferometers. That means in particular, that the following
assumptions are made: Laser beams are circular (i.e. non-astig-
matic) fundamental Gaussian beams (i.e. in TEM00 mode). Non-
polarizing interferometers are used and all defined surfaces are
either flat or spherical and have no structure or defects. General-
ization of the methods to, for instance, higher order beam modes
(for example needed if a laser beam is clipped by an aperture) or
treatment of astigmatism in three dimensions (including non-
normal incidence at curved surfaces) is work in progress and will
be described in separate papers.

Outline. In Section 2 the main methods are presented, which
describe the computation of longitudinal and alignment signals.
In Section 3 several examples are given, comparing the numerical
method from Section 2 with experimental data (Section 3.1) and
analytical solutions (Sections 3.2 and 3.3). Since an analytical
prediction of the LPS in the general case is currently not possible,
one intuitively predictable example is given in Section 3.4.
Fig. 2. Accumulation of the Gouy phase during propagation and refraction.
2. Interferometer signal prediction

2.1. Beam impact on detector and resulting photocurrent

In this paper, methods for simulating two beam interferom-
eters are described. It is thus assumed, that after the ray tracing
part is completed, there are two beams impinging on a detector:
a measurement beam BM and a reference beam BR. These beams
interfere and cause a time varying photocurrent J(t) which is
proportional to the sensed beam power PS on the detector surface
S [15,16]:

J¼
Ze

_o PSðtÞ ¼ rPSðtÞ ð1Þ

PSðtÞ ¼

Z
dSIðtÞ ¼

1

2Z

Z
dS9ERðtÞþEMðtÞ9

2
ð2Þ

where r is the photodiode responsivity, Z the quantum efficiency,
Z the impedance of the medium, and I is the local intensity. Neither
the photodiode responsivity r nor the impedance Z of the medium
are needed for the phase demodulation and signal computation.
These factors are given only for completeness. It is however possible
to set r¼ 2Z ¼ 1 in a numerical computation.

In order to simulate this photocurrent – or effectively the
power sensed by the photodiode – the electric fields ER and EM

need to be computed. If ðxb,yb,zbÞ is a point described in the beam-
fixed coordinate system, the electric field of a Gaussian beam
segment in fundamental mode propagating in z-direction can be
written as [17,18]

Eðrb,zb,tÞ ¼ E0
w0

wðzbÞ
exp

�r2
b

wðzbÞ
2

 !
exp

�ikr2
b

2RðzbÞ
þ iZðzbÞ�ikz

 !
expðiotÞ

ð3Þ

with

rb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

bþy2
b

q
, ð4Þ

wavenumber k¼ 2p=l, angular laser frequency o, radius of curva-
ture RðzbÞ, Gouy phase ZðzbÞ and the spot size wðzbÞ defined from the
Rayleigh range z0 and the distance zb of the current position from
the beam waist by

1

RðzbÞ
¼

zb

z2
bþz2

0

,
1

wðzbÞ
2
¼

1

w2
0

z2
0

z2
bþz2

0

: ð5Þ

It is convenient to replace the constant E0 ¼ Eðrb ¼ 0,zb ¼ 0Þ by the
total beam power P:

P¼
1

2Z
2p
Z 1

0
drbrbJEðrb,zbÞJ

2
¼

1

2Z

pw2
0E0

2
ð6Þ

2E0 ¼
ffiffiffiffiffiffi
2Z
p

ffiffiffiffiffiffiffiffiffiffi
2P

pw2
0

s
ð7Þ

The phase contribution ikz in Eq. (3) is given with respect to the
local waist position. We replace this phase by iks where s is the
optical pathlength propagated from a suitable reference point. This
is necessary in order to compare situations when the waist position
moves (for instance by shifting curved optics). This argumentation is
equally valid for the Gouy phase, which needs to be accumulated in
order to avoid unphysical phase jumps at curved surfaces (cf. Fig. 2).
The electric field equation thus reads

Eðrb,zb,tÞ ¼
ffiffiffiffiffiffi
2Z
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P

pwðzbÞ
2

s
exp

�r2
b

wðzbÞ
2

 !
exp

�ikr2
b

2RðzbÞ
þ iZac�iks

 !
expðiotÞ,

ð8Þ

Eðrb,zb,tÞ ¼ Eðrb,zbÞexpðiotÞ: ð9Þ

For the integration over the detector surface, it is convenient to
describe the electric field in the detector coordinate frame. For the



Fig. 3. Coordinate transformation in the electric field, when a beam impinges on a

photodetector. Here, rp is an arbitrary point on the detector surface, ris is the

intersection point between beam and detector and d is the direction of propaga-

tion of the beam.
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corresponding coordinate transformation we need the intersection
point ris of ray and detector surface and consider the electric field at
a point rp on the detector. Both rp and ris are on the detector, such
that they are two dimensional with origin at the detector center.

In the beam-fixed coordinate system the direction of propagation
d forms an orthonormal basis with two normal vectors, called
‘‘horizontal’’ nh and ‘‘vertical’’ nv. Since all beams are assumed here
to be circular, nh and nv are not uniquely defined but can be chosen
as convenient. The coordinate transformation for the electric field of
Eq. (3) is then given by

xbðrpÞ ¼ ðrp�risÞnh, ð10Þ

ybðrpÞ ¼ ðrp�risÞnv, ð11Þ

zbðrpÞ ¼ ðrp�risÞdþzbðrisÞ ð12Þ

as illustrated in Fig. 3. The optical pathlength s accumulated in the
optical system during the ray tracing procedure is valid for the
intersection point ris and the intersection plane spanned by nv and
nh. In case of non-normal incidence the additional pathlength
ðrp�risÞd for all points rp on the detector surface needs to be
accounted for by substituting:

sðrpÞ ¼ sðrisÞþðrp�risÞd: ð13Þ

The electric field is thus fully defined in beam-fixed coordinates for
each beam and for any point rp on the detector surface. Therefore, if
two beams impinge on a detector, the beam power sensed by the
detector can be computed by a simple integral over the detector
surface (cf. Eq. (2)). In general, the integrals can only be evaluated
numerically. In that case an adaptive integration package like
DCUHRE [19] can be used. Since DCUHRE is designed for integra-
tions over rectangular grids, circular photodiodes can be implemen-
ted either by nested one dimensional integrals or by specifying
a circular filter function F, which is multiplied to the intensity I in
Eq. (2):

Icircular ¼ IF, F ¼ 1�Yðrb�rcÞ, ð14Þ

where YðrbÞ is the Heaviside step function, and rc is the radius of the
photoactive area. It can be useful to use a differentiable approxima-
tion of the Heaviside step function. One option for such an approx-
imation is

F ¼ 0:5 1�erf
rc�rb

W

� �h i
: ð15Þ

Here, W is a constant which can be adapted to the current problem
in order to reduce the numerical integration time. For instance
W ¼ 0:001rc can be chosen.

After the integration (Eq. (2)) is performed, the power sensed by
the detector or equivalently the resulting photocurrent is known.
2.2. Homodyne and heterodyne interferometry

Eq. (3) can be rewritten using a phase F and an amplitude A:

Eðrb,zb,tÞ ¼ Aðrb,zbÞ expðiot�iFðrb,zbÞÞ, ð16Þ

with

Aðrb,zbÞ ¼
ffiffiffiffiffiffi
2Z
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P

pwðzbÞ
2

s
exp

�r2
b

wðzbÞ
2

 !
, ð17Þ

Fðrb,zbÞ ¼
kr2

b

2RðzbÞ
�ZðzbÞþks: ð18Þ

For clarity, the dependence of the beam coordinates rb and zb will
be omitted in the subsequent equations. The local laser intensity
resulting from the interference of two such laser beams is then

I¼
1

2Z
9AR expðioRt�iFRÞþAM expðioMt�iFMÞ9

2
ð19Þ

¼
1

2Z
ðA2

RþA2
MÞ 1þ

2AMAR

A2
MþA2

R

cosðDot�DFÞ

" #
ð20Þ

¼ I ½1þcI cosðDot�DFÞ�, ð21Þ

where I is the time averaged local intensity and cI the local
contrast (fringe visibility). The phase difference DF contains the
pathlength difference between the two beams. The power sensed
by the active surface S of a detector is then given by

PS ¼

Z
dSI, ð22Þ

which has the general form

PS ¼ P ½1þc cosðDot�fÞ�: ð23Þ

This follows from the addition theorems of trigonometric func-
tions or the fact that the superposition of general sinusoids with
equal frequency is again a sinusoid of the same frequency:P

nAn sinðotþfnÞ ¼ A sinðotþfÞ.

2.3. Phase demodulation

With the procedures of the previous section, a virtual photo-
current can be computed. It corresponds to one certain but yet
unknown combination of P ,c,f in Eq. (22). Our next aim is to
determine P ,c,f from a given sensed power PS or equivalently a
given photocurrent J. This virtual photocurrent can be processed
with the same methods as a real photocurrent in an experiment.
We describe here the methods of phase demodulation performed
with the phasemeters in the LISA Pathfinder experiment [6]. These
methods are based upon a few simple integrals over the sensed
power PS in a heterodyne interferometer (Doa0). The first integral
is a plain averaging of the power over one period, which results in
the mean power P:

1

2p

Z 2p

0
dðDotÞPS ¼ P

1

2p

Z 2p

0
dðDotÞ½1þc cosðDot�fÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ 1

¼ P : ð24Þ

Additionally, the following two integrals are needed:

CQ :¼
1

p

Z 2p

0
dðDotÞPS cosðDotÞ, ð25Þ

CI :¼
1

p

Z 2p

0
dðDotÞPS sinðDotÞ: ð26Þ

If PS has the form given in Eq. (23), CI and CQ evaluate to

CQ
¼ Pc cosðfÞ, ð27Þ
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CI
¼ Pc sinðfÞ: ð28Þ

The values CI and CQ define the complex amplitude C:

C :¼ CQ
þ iCI , ð29Þ

which has according to Eqs. (27) and (28) the following value:

C ¼ Pc expðifÞ: ð30Þ

The contrast c and phase f are thus extracted from the integrals (25)
and (26) using

c¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCQ
Þ
2
þðCI
Þ
2

q
P

¼
9C9

P
, ð31Þ

f¼ arctan
CI

CQ

 !
¼ argðCÞ: ð32Þ

This method uses integration over continuous data. In order to
simulate the experimental sampling procedure, the given equa-
tions need to be discretized. This can be performed using the
N-bucket algorithm (for instance [9–14]). Here, instead of a
frequency shift Do a phase shift 2pn=N is introduced in one of
the two impinging beams, and Eq. (22) is evaluated N times:

Pn
S ¼

1

2Z

Z
dS ERðrb,zbÞþEMðrb,zbÞ exp i

2pn

N

� �����
����

����
����2, n¼ 0, . . . ,N�1,

ð33Þ

where any number of NZ3 [14] can be chosen. Since the virtual
photocurrent is typically free of noise, there is no need to choose a
large N and we usually use N¼5 to allow consistency checks. The
N-bucket algorithm can be used in heterodyne as well as in
homodyne interferometers. For heterodyne interferometers, the
time dependent photocurrent would be sampled at specific times:

tðnÞ ¼
2pn

Nohet
: ð34Þ

However, in homodyne interferometers where Do is zero, the
additional phase shift of 2pn=N has to be introduced explicitly in
the experiment.

The mean power on the surface S is now computed by

PS ¼
1

N

XN�1

n ¼ 0

Pn
S : ð24aÞ

The equivalents to Eqs. (25) and (26) are

CQ
S :¼

2

N

XN�1

n ¼ 0

Pn
S cos

2pn

N

� �
¼ PScS cosðfSÞ, ð25aÞ

CI
S :¼

2

N

XN�1

n ¼ 0

Pn
S sin

2pn

N

� �
¼ PScS sinðfSÞ ð26aÞ

and Eqs. (29)–(31), that is the contrast cS and phase fS sensed by
a detector with surface S, now becomes

CS :¼ CQ
S þ iCI

S ¼ PScS expði fSÞ, ð30aÞ

cS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCQ

S Þ
2
þðCI

SÞ
2

q
PS

¼
9CS9

PS

, ð31aÞ

fS ¼ arctan
CI

S

CQ
S

 !
¼ argðCSÞ: ð32aÞ

The consistency and accuracy can be checked by testing whether

Pn
S ¼ PS 1þcS cos

2pn

N
�fS

� �	 

: ð35Þ
From the results (mean power PS, contrast cS, and phase signal fS)
the most important one usually is the phase signal which can be
converted to a length by

LPS¼fS=k ð36Þ

defining the longitudinal pathlength signal ‘‘LPS’’. This signal is the
best estimate available in the experiment for the optical pathlength
difference between the two interferometer arms (sM�sR) but it
is also influenced by the wavefront curvature and Gouy phase
(Eq. (18)) and detector shape (Eq. (33)).

An alternative way to find the mean power P , contrast c and
phase f is computing the subsequent three integrals:

P ¼
1

2Z

Z
dSðJEMðrb,zbÞJ

2
þ9ERðrb,zbÞJ

2
Þ, ð37Þ

CQ
¼

1

2Z

Z
dS2R½EMðrb,zbÞE

n

Rðrb,zbÞ�, ð38Þ

CI
¼

1

2Z

Z
dS 2I½EMðrb,zbÞE

n

Rðrb,zbÞ� ð39Þ

and using Eqs. (31) and (32) to compute the contrast c and phase
f. This method requires comparable numerical effort but lacks
the possibility of consistency checking.

2.4. Separation of macroscopic and microscopic phase

The pathlength sðrisÞ accumulated during the beam propagation
through the setup (Eq. (13)) is typically in the range of millimeters to
meters. We therefore call ksðrisÞ the macroscopic phase. All remain-
ing contributors to the phase F in Eq. (18) are usually in the order of
picometer to micrometer (depending on the setup) and are therefore
referred to as microscopic phase. In order to avoid numerical
precision problems, it is necessary to separate the macroscopic and
microscopic phases. This can be performed by omitting sðrisÞ from
the electrical field in Eq. (8), such that only the additional pathlength
originating from a tilt of the beam relative to the detector surface is
accounted for

sðrpÞ ¼ ðrp�risÞ � d: ð13aÞ

This is compensated by adding sðrisÞ to the computed longitudinal
pathlength signal by

LPS¼ sðrisÞþfS=k: ð36aÞ

This method is valid because the macroscopic phase ks is constant
over the detector surface S, due to the coordinate transformation
performed in Eq. (13).

2.5. Alignment signals for quadrant photodiodes

For a quadrant photodiode (QPD), the surface S corresponds to any
of the four quadrants. Therefore, four sets of signals (mean power P ,
contrast c and phase signal f) are generally available for quadrant
detectors. By combining these signals, a larger variety of signals can
be defined. First, the power sensed by the various quadrants can be
compared, which results in a measure of the beam centroid position.
The resulting signals are called horizontal and vertical differential

power sensing signal (DPS signal) throughout this paper:

DPSh :¼
Pl�Pr

PlþPr

¼
PAþPC�PB�PD

PAþPBþPCþPD

, ð40Þ

DPSv :¼
Pt�Pb

PtþPb

¼
PAþPB�PC�PD

PAþPBþPCþPD

, ð41Þ

where the indices fl,r,t,bg label the {left, right, top and bottom} halves
of the quadrant diode, while fA,B,C,Dg label the quadrants according
to Fig. 4. These signals are a measure of the beam centroid position on
the QPD.
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Similar to the definition of the phase signal and the LPS on a
single element detector, it is possible to define a longitudinal
pathlength signal for a quadrant detector, by combining the four
segments. One possibility is to use the argument of the sum of all
complex amplitudes:

LPSLPF
¼

1

k
fLPF :¼ sþ

1

k
argðCAþCBþCCþCDÞ, ð42Þ

LPSLPF
¼ sþ

1

k
arctan

cAPA sin fAþcBPB sin fBþcCPC sin fCþcDPD sin fD

cAPA cos fAþcBPB cos fBþcCPC cos fCþcDPD cos fD

 !
: ð43Þ

This procedure to generate an LPS is used for instance in the LISA
Pathfinder (LPF) mission [6], such that we call it LPSLPF. However,
this is not the only possibility to define an LPS for a QPD. One
could, for example, also directly average the phases of the various
quadrants: ðfAþfBþfCþfDÞ=4, or apply various weighting fac-
tors in the averaging. A comparison of the possible definitions is
work in progress and will be discussed in a separate paper.

The phase signals of the various quadrants can be compared in
a similar way as the mean power for the DPS signal. The resulting
signals are the differential wavefront sensing (DWS) signals [7,8]:

DWSh ¼fl�fr , ð44Þ

DWSv ¼ft�fb: ð45Þ

These signals are a readout of the wavefront tilt between the two
interfering beams and therefore are also a high gain readout of
test mass tilts or more generally component rotation in the
interferometer. An illustration of the corresponding effect is
shown in Fig. 1. A comparison between the DPS and DWS signals
is listed in Table 1.

Like for the sum phase, the mean phase on the detector halves
are generated via the sum of complex amplitudes [6,20]:

DWSLPF
h :¼ argðCAþCCÞ�argðCBþCDÞ ¼ arg

CAþCC

CBþCD

� �
, ð46Þ
Fig. 4. Labeling of the quadrants of a quadrant photodiode (QPD).

Table 1
Comparison of the properties of DPS and DWS signals.

Property DPS

Compares Power signals

Senses Beam centroid shift on QPD

Reference QPD center

Number of beams needed One ore more

Tilt readout quality Low gain, low precision

Tilt readout w. imaging optics DPS¼0 - no readout possi

Range Wide (limited by QPD size
DWSLPF
v :¼ argðCAþCBÞ�argðCCþCDÞ ¼ arg

CAþCB

CCþCD

� �
: ð47Þ

The last term is preferable, because it avoids the discontinuity of
the arg() function on the negative real axis. The macroscopic
phase does not contribute to the DWS signals, since it is constant
over the entire detector surface–and thus equal on the left and
right halves of the diode. Finally, the (mean) contrast for a QPD is
defined here as

c¼
9CA9þ9CB9þ9CC9þ9CD9

PAþPBþPCþPD

, ð48Þ

which is again an approximation of the sensed contrast of an
SEPD which has the same diameter as the QPD.

2.6. Summary and ray tracing

In the previous sections, methods to compute interferometer
alignment signals have been described. In order to use these
equations, two Gaussian beams need to be traced to the detector
surface and the intersection point ris between each beam and the
detector needs to be computed. The complete list of parameters and
the corresponding output is sketched in Fig. 5. In case of a two
dimensional interferometer, i.e. all rays are lying in one plane, these
parameters can be obtained for instance from OptoCad [21] which
uses the full equations for reflection and refraction of elliptical
Gaussian beams according to [22]. For full three dimensional
interferometers, the authors are not aware of a suitable tool to
compute these parameters. The development of such a tool is work
in progress and currently exists for circular and simple astigmatic
beams. The corresponding methods are implemented in C and Cþþ
libraries which are available on request from the authors.
3. Examples

3.1. Comparison to experimental results

In the space mission LISA Pathfinder a heterodyne interferom-
eter will be used to sense displacement changes between two
free floating test masses which are about 35 cm apart [1].
DWS

Phase signals

Relative wavefront tilt

Second beam

At least two

High gain, high precision

ble High precision readout

or other apertures) Small (limited by loss of contrast)

Fig. 5. Parameter input and signal output (LPS, DWS, DPS, c) corresponding to the

procedures described in Section 2 of this paper.



Table 3
Settings for the comparison between numerical and analytical DWS signal

described in Section 3.2. The corresponding results are shown in Fig. 7.

Parameter Value

Wavelength l 1064 nm

Beam displacement x0s at zero beam angle 0

Waist radius wM of measurement beam 0.2 mm or 0.5 mm

Waist radius wR of reference beam 0.2 mm

Distance ztm between pivot

(point of beam definition) and QPD

20 mm

Radius rc of the photoactive surface of the QPD 5 mm

Diameter ds of the slit separating

the quadrants of the QPD

0 mm

QPD shape Circular
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Additionally, another heterodyne interferometer senses the rela-
tive displacement of one of the two test masses with respect to
the optical bench. Their signals are labeled ‘‘12’’ and ‘‘1’’ respec-
tively. The DWS signals of these interferometers will be used in
feedback loops to stabilize the angular jitter of the two test
masses. Since the DWS signals are linear in the measurement
range, they are typically characterized by coupling factors:

K
DWSj
ji
¼
@DWSj

@ji

, ð49Þ

where j labels the interferometer (here either ‘‘1’’ or ‘‘12’’) and i

the test mass (either ‘‘1’’ or ‘‘2’’). These coupling factors were
computed with the numerical procedures described in this paper.
In parallel, these coupling factors were measured at the Univer-
sity of Glasgow, using the flight model of the LISA Pathfinder
optical bench. The resulting values are listed in Table 2. These
values show agreement to a high degree, even though the
simulation was performed for the nominal optical bench, i.e.
without implementation of tolerances during the assembly of the
optical bench. In particular, nominal beam parameters were used
for the simulation, and deviations of these beam parameters have
a strong impact on the resulting coupling factors.

Additional information regarding the settings of the simula-
tion, the LISA Pathfinder interferometry and the stated values are
given in [23].
3.2. Comparison: numerical and analytical DWS signals

In some cases it is possible to compute the DWS response of a
system analytically, provided that the beam is small compared to
the photoactive surface of the QPD, the slit between the quad-
rants is negligible, and both the relative angle a between the
incident beams on a QPD and the static beam offset x0s are small.
It is thus possible to compare the DWS signal computed with the
procedures described in this paper with an analytically computed
DWS signal. A simple system fulfilling the listed requirements
is given by two interfering beams that propagate freely to a
quadrant detector as sketched in Fig. 6. The specific parameters
are listed in Table 3.

The DWS signal to first order is according to [24] given by

DWSa ¼

ffiffiffiffi
2

p

r
kweffa 1�

ztm

RM

� �
�k

weff x0s

RM

� �
FðsÞþOða2,x2

0sÞ: ð50Þ
Table 2
Comparison of measurement values obtained from the University of Glasgow and

computed DWS coupling factors for the LISA Pathfinder flight model of the optical

bench. Details regarding these values can be found in [23].

Coupling factor Numerical simulation Measurement

KDWS1
j1

4901 4985

KDWS12
j1

4355 4529

KDWS12
j2

5619 5155

Fig. 6. Sketch of the setup used for Section 3.2.
Here, weff is the effective beam radius on the photodiode

2

w2
eff

¼
1

w2
M

þ
1

w2
R

, ð51Þ

which depends on the spot sizes of the measurement beam wM

and reference beam wR. The variables F and s depend on the
relative wavefront curvature and the effective waist:

FðsÞ ¼ 1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þs2
p

1þs2

s
, s¼ kw2

eff

4Rrel
: ð52Þ

The relative wavefront curvature Rrel is defined as

1

Rrel
¼

1

RR
�

1

RM
, ð53Þ

where RM and RR are radii or curvature of the measurement and
reference beam at the photodiode surface. Finally, the static
lateral beam displacement x0s describes the beam displacement
for a¼ 0 and the distance ztm specifies the distance between the
adjustable mirror and the interference plane.

Result. The resulting DWS signals, computed both numerically
and analytically are shown in Fig. 7. For small beam angles, the
numerical and analytical procedures generate identical results.
This is regarded as a validation of the procedures described in this
paper. For large beam angles, the numerical data deviate from the
analytical result. This is understandable, since the analytical
equation (Eq. (50)) is linearized, in contrast to the numerical
procedure. The numerical results are therefore assumed to be
more accurate than the analytical result.

3.3. Comparison: numerical and analytical DPS signals

The DPS signal as defined in this paper can be computed
analytically for a wide set of systems. This results from the
definition of the DPS signals via the time averaged power on the
various quadrants without any effects of the interference. There-
fore, the DPS signal is computed analytically via

PS ¼

Z
dSI ¼

Z
dSðA2

MþA2
RÞ, ð54Þ

where AR and AM are the amplitudes given in Eq. (17) of the
measurement and reference beam. It is then assumed that the
reference beam is centered on the QPD while the measurement
beam moves. For instance, the measurement beam is shifted by x0

in the horizontal x-direction and has an incident angle of a. The
coordinate transformation of Eqs. (10) and (11) inserted in Eq. (4)
is then

r2
M-ðx�x0Þ

2 cos2ðaÞþy2, ð55Þ

r2
R-x2þy2: ð56Þ



Fig. 7. Comparison of the DWS computed numerically to the methods described in this paper with the linearized analytical result computed with Eq. (50) (cf. [24]). For

small angles, the numerical and analytical results agree perfectly. For large angles and low contrast the linearized analytical method is not valid.

Fig. 8. DPS signals generated analytically and numerically using a hypothetical QPD with infinite radius and no slits (a) or a finite QPD with slits (b). In (a), only one beam

was scanned over the surface of the QPD. In (b), the reference beam was centered on the QPD, while the measurement beam was scanned over the QPD surface. The

settings used to generate these results are listed in Table 4. For the analytical curves, Eqs. (57) and (58) were used, the incident angle a was set to zero.

Table 4
Settings for the results plotted in Fig. 8. In the system used in Fig. 8(a), only one beam

was used and a reference beam was thus not defined (n.d.). In this example, the QPD

size was set to infinity to generate the analytical curve (cf. Eq. (57)), for the numerical

result, a finite QPD with 10 mm radius was used. However, this is sufficiently large to

generate a perfect agreement in the given range, as shown in Eq. (57).

Parameter Settings for

Fig. 8(a)

Settings for

Fig. 8(b)

Wavelength l 1064 nm 1064 nm

Measurement beam waist radius 0.3 mm 0.3 mm

Reference beam waist radius n.d. 0.3 mm

Location of the pivot z¼0 mm z¼0 mm

Location of measurement beam waist zM ¼ 0:5 m zM ¼ 0:5 m

Location of reference beam waist n.d. zR ¼ 0:5 m

Location of the QPD z¼0.5 m z¼0.5 m

Radius rc of the QPD photoactive surface 10 mm 1 mm

QPD slit diameter dS 0 mm 20 mm

QPD shape Square Square
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The most simple system is a single beam incident on an infinitely
large QPD without slits. In this case, the DPS signal is given by a
simple error function:

DPSone_beam
ðrc-1,dS-0Þ ¼�erf

x0

ffiffiffi
2
p

9cosðaÞ9
w

 !
ð57Þ

Fig. 8(a) shows a comparison between this analytical DPS result
and the corresponding numerical result, generated with the
procedures described in this paper. This figure shows an agree-
ment to a very high degree, even though the curves were
generated either numerically using the procedures described in
Section 2 thereby including the mixed term 2RðEM En

RÞ or analy-
tically neglecting this mixed term. The settings used for this
simple example are listed in the second column of Table 4. This
comparison can also be performed for a more complicated case,
with two incident beams and a finite QPD with slits. In this case,
the analytical expression for the DPS signal is then given by
Eq. (58), where the incident angle a is set to zero to allow clearer
arrangement.
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A comparison for such a more typical system is shown in Fig. 8(b),
the settings are listed in Table 4. The analytical and numerical
methods generate again perfect agreement.
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Fig. 9. Gaussian beams and their wavefronts in a system with zero LPS and DWS

response. The dotted circle indicates the sphere which represents locally at z¼ z0

the wavefront of both the nominal (gray, on axis) and the tilted (light gray, off

axis) beam. A QPD at this location does not sense an LPS or DWS response to the

shown beam tilt.

Table 5
Settings for the comparison between numerical and analytical DWS signal

described in Section 3.2. The corresponding results are shown in Fig. 7.

Parameter Values for Section

3.4

Wavelength l 1064 nm

Beam displacement x0s at zero beam angle 0

Rayleigh range z0 of both beams 250 mm

Location of the pivot z¼�z0 ¼�250 mm

Location of both waists (for zero beam angle) z¼0 mm

Location of the QPD z¼ þz0 ¼ 250 mm

Radius rc of the photoactive surface of the QPD 1 mm

Diameter dS of the slit separating the quadrants of the

QPD

20 mm

QPD shape Square

Fig. 10. Signals for the system
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3.4. A system with zero LPS and DWS response

The phasefront of a Gaussian beam can locally be approxi-
mated by a section of a sphere which is defined by its center and
radius of curvature. If the pivot of a tilting beam coincides with
the center of this sphere, the beam rotation maps a spherical
phasefront upon itself (cf. Fig. 9). In that case, the beam tilt will
not cause a phase shift on any quadrant of the QPD. Thus, the
phase signal and the DWS signal should not sense the rotation.
Such a system is given by setting the distance between pivot (test
mass) and QPD as twice the Rayleigh range. The beam waist is
centered between test mass and QPD. The resulting signals for the
settings listed in Table 5 are shown in Fig. 10. The longitudinal
pathlength signal (LPS) and DWS signal show indeed a negligible
response in the order of femtometers and nanoradians.

It has therefore been shown for this example, that the
numerical procedures described in this paper generate an LPS
and DWS response that agrees with intuitive expectations.
4. Conclusions

This paper describes the methods to predict the interferometer
alignment signals LPS, DWS, DPS and the contrast. The simula-
tions include tracing Gaussian beams through typical optical
setups consisting of mirrors, beam splitters and lenses up to a
detector. On the detector surface, the photocurrent is generated
while taking into account the finite detector size and possibly slits
(like in a quadrant photodiode). Once the photocurrent is gener-
ated, the same phase demodulation procedure can be used as in
a corresponding experiment. Finally, methods to define alignment
signals were presented. For examples, a comparison was pre-
sented to experimental results, as far as possible analytical
results and intuitively clear results. All comparisons showed good
agreement.

The methods and functions described in this paper are col-
lected in both C- and Cþþ-libraries called ‘‘IfoCad’’ which act as
described in Section 3.4.
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toolbox for investigating and optimizing arbitrary interferom-
eters. IfoCad is available on request from the authors.
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K. Middleton, D. Hoyland, A. Rüdiger, R. Schilling, U. Johann, K. Danzmann,
Classical and Quantum Gravity 21 (2004) 581.
[7] E. Morrison, B.J. Meers, D.I. Robertson, H. Ward, Applied Optics 33 (22) (1994)
5041.

[8] E. Morrison, B.J. Meers, D.I. Robertson, H. Ward, Applied Optics 33 (22) (1994)

5037.
[9] Y. Surrel, Topics in Applied Physics 77 (2000) 55.

[10] J.H. Bruning, et al., Applied Optics 13 (11) (1974).
[11] F. Cassaing, Comptes Rendus de l’Académie des Sciences Paris t. 2, Serie IV

(2001) 87.
[12] K. Freischlad, C.L. Koliopoulos, Journal of the Optical Society of America A

7 (4) (1990).
[13] Y. Surrel, Applied Optics 32 (19) (1993).
[14] Y. Surrel, Applied Optics 36 (1) (1997).
[15] B.E.A. Saleh, M.C. Teich, Elementary electromagnetic waves, in: Fundamen-

tals of Photonics Wiley Series in Pure and Applied Optics, 1991, pp. 169–174.
[16] B.E.A. Saleh, M.C. Teich, Properties of semiconductor photodetectors, in:

Fundamentals of Photonics Wiley Series in Pure and Applied Optics, 1991,
pp. 648–654.

[17] A. Yariv, The Gaussian beam in a homogeneous medium, in: Quantum
Electronics, third ed., John Wiley & Sons, 1989, pp. 116–120.

[18] B.E.A. Saleh, M.C. Teich, The Gaussian beam, in: Fundamentals of Photonics
Wiley Series in Pure and Applied Optics, 1991, pp. 81–92.

[19] J. Berntsen, T. Espelid, A. Genz, ACM Transactions on Mathematical Software
(TOMS) 17 (1991) 452.

[20] G. Hechenblaikner, R. Gerndt, et al., Applied Optics 49 (29) (2010).
[21] R. Schilling, OptoCad /http://www.rzg.mpg.de/ros/OptoCad/S.
[22] G.A. Massey, A.E. Siegmann, Applied Optics 8 (5) (1969).
[23] G. Wanner, Complex Optical Systems in Space: Numerical Modelling of the

Heterodyne Interferometry of LISA Pathfinder and LISA, Dissertation at the
Leibniz University of Hanover.

[24] G. Hechenblaikner, Journal of the Optical Society of America A 27 (9) (2010).

http://www.rzg.mpg.de/ros/OptoCad/

	Methods for simulating the readout of lengths and angles in laser interferometers with Gaussian beams
	Introduction
	Interferometer signal prediction
	Beam impact on detector and resulting photocurrent
	Homodyne and heterodyne interferometry
	Phase demodulation
	Separation of macroscopic and microscopic phase
	Alignment signals for quadrant photodiodes
	Summary and ray tracing

	Examples
	Comparison to experimental results
	Comparison: numerical and analytical DWS signals
	Comparison: numerical and analytical DPS signals
	A system with zero LPS and DWS response

	Conclusions
	Acknowledgments
	References




