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Black hole Area-Angular momentum-Charge inequality in dynamical non-vacuum spacetimes
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We show that the area-angular momentum-charge inequality(A/(4π))2 ≥ (2J)2 + (Q2

E +Q2

M)2 holds for
apparent horizons of electrically and magnetically charged rotating black holes in generic dynamical and non-
vacuum spacetimes. More specifically, this quasi-local inequality applies to axially symmetric closed outermost
stably marginally (outer) trapped surfaces, embedded in non-necessarily axisymmetric black hole spacetimes
with non-negative cosmological constant and matter content satisfying the dominant energy condition.
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Introduction. Isolated stationary black holes in Einstein-
Maxwell theory are completely characterized by their mass
M , angular momentumJ and electric and magnetic charges,
QE and QM. This no hair property is endorsed by the
black hole uniqueness theorems leading to Kerr-Newman
spacetimes. In these black hole solutions a mass-angular
momentum-charge inequality enforces a lower bound forM .
Such a constraint amongM , J , QE andQM is however lost
in the extended Kerr-Newman family, including singular so-
lutions without a horizon. In this sense, the mass-angular
momentum-charge inequality follows when the physical prin-
ciple of (weak) cosmic censorship, namely the absence of
naked singularities, is advocated. Weak cosmic censorship
conjecture provides adynamical principleaiming at preserv-
ing predictability and playing a crucial role in our understand-
ing of classical gravitational collapse. This picture motivates
the study of extensions of the total mass-angular momentum-
charge inequality to dynamical contexts, something accom-
plished in [1] for vacuum axially symmetric spacetimes. In
more generic scenarios, in particular incorporating matter, it is
natural to consider a quasi-local version of the inequalitynot
involving global spacetime quantities (see [2] for a review).
An appropriate starting point is the area-angular momentum-
charge inequality(A/(4π))2 ≥ (2J)2 + (Q2

E + Q2
M)2 also

holding in the stationary vacuum case. This inequality (for
QM = 0) has been proved to hold for stationary axisymmetric
spacetimes with matter in [3–6], although requiring electro-
vacuum in a neighborhood of the horizon. Regarding the dy-
namical case [7–10], a proof has been presented for the non-
vacuum uncharged case [11] and the area-charge inequality
[12] (in absence of any symmetries). Here we extend the full
area-angular momentum-charge inequality, in particular in-
corporating the magnetic charge, to generic non-axisymmetric
dynamical non-vacuum black hole spacetimes (axial symme-
try only required on the horizon). This completes the discus-
sion of this inequality in the Einstein-Maxwell context.

The result. The area-angular momentum-charge inequal-
ity applies to horizon sections satisfying a stability condi-
tion. Following the approach in [11], we consider a closed
marginally outer trapped surfaceS satisfying a (spacetime)
stably outermostcondition in the sense of [13, 14] (see Defi-
nition 1 below for details). Then the following result holds:

Theorem 1. Given an axisymmetric closed marginally
trapped surfaceS satisfying the (axisymmetry-compatible)
spacetime stably outermost condition, in a spacetime with
non-negative cosmological constant and matter content ful-
filling the dominant energy condition, it holds the inequality

(A/(4π))
2
≥ (2J)2 + (Q2

E +Q2
M)2 (1)

whereA is the area ofS andJ ,QE andQM are, respectively,
the total (gravitational and electromagnetic) angular momen-
tum, the electric and the magnetic charges associated withS.

This quasi-local result holds in fully dynamical spacetimes
without bulk symmetries and with arbitrary (non-exotic) mat-
ter possibly crossing the horizon. In particular, it extends to
generic scenarios the inequality proved in [5, 6] for Killing
horizons in stationary axisymmetric spacetimes, with elec-
trovacuum around the black hole (matter can surround but not
cross the horizon). Axisymmetry is required only onS, so
that a canonical notion of angular momentumJ can be em-
ployed. The stably outermost and dominant energy conditions
imply, for some non-vanishingJ , QE orQM and in our four-
dimensional spacetime context, the spherical topology of the
surfaceS. For Killing horizons [3, 5, 6] a rigidity result holds,
namely equality in (1) implies the degeneracy of the Killing
horizon (vanishing of thesurface gravity), providing a char-
acterization of extremality. In the present dynamical setting,
with no spacetime stationary Killing field, rigidity statements
involve rather the characterization of the induced metric on S
as anextremal throat(i.e. with the geometry of a horizon sec-
tion in the extremal Kerr-Newman family) and as a section of
an instantaneous (non-expanding) isolated horizon [15]. We
postpone the discussion of the rigidity part of the result to
[16], where full details of the proof of inequality (1) [required
to make the rigidity statement precise] are presented.

Main geometric elements.The proof of (1) proceeds by,
first, casting the stably outermost condition for marginally
outer trapped surfaces as a geometric inequality leading toan
action functionalM on S and, second, by solving the asso-
ciated variational problem. Following [11], we start by intro-
ducing the general geometric elements and by formulating the
geometric inequality following from the stability ofS.

Let (M, gab) be a 4-dimensional spacetime with Levi-
Civita connection∇a, satisfying the dominant energy condi-
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tion and with non-negative cosmological constantΛ ≥ 0. Let
us consider an electromagnetic field with strength field (Fara-
day) tensorFab, so thatFab = ∇aAb−∇bAa on a local chart
(corresponding to a given section of theU(1)-fibre-bundle,
possibly non-trivial to account for magnetic monopoles).

Let us consider a closed orientable 2-surfaceS embedded
in (M, gab). Regarding its intrinsic geometry, let us denote
the induced metric asqab with connectionDa, Ricci scalar
as2R, volume elementǫab and area measuredS. Regarding
its extrinsic geometry, we first consider normal (respectively,
outgoing and ingoing) null vectorsℓa andka normalized as
ℓaka = −1. This fixesℓa andka up to (boost) rescaling factor.
The extrinsic curvature elements needed in our analysis are
the expansionθ(ℓ), the shearσ(ℓ)

ab and the normal fundamental

formΩ
(ℓ)
a associated with the outgoing null normalℓa

θ(ℓ) = qab∇aℓb , σ
(ℓ)
ab = qcaq

d
b∇cℓd −

1

2
θ(ℓ)qab

Ω(ℓ)
a = −kcqda∇dℓc . (2)

We require the geometry ofS to be axisymmetric with axial
Killing vector ηa onS. That is,Lηqab = 0 andηa has closed
integral curves, vanishes exactly at two points onS and is
normalized so that its integral curves have an affine length of
2π. Besides, we demandLηΩ

(ℓ)
a = LηAa = 0 and adopt a

tetrad(ξa, ηa, ℓa, ka) on S adapted to axisymmetry, namely
Lηℓ

a = Lηk
a = 0 with ξa a unit vector tangent toS satisfy-

ing ξaηa = ξaℓa = ξaka = 0, ξaξa = 1. We can then write
qab =

1
ηηaηb + ξaξb (with η = ηaηa) andΩ(ℓ)

a = Ω
(η)
a +Ω

(ξ)
a

(with Ω
(η)
a = ηbΩ

(ℓ)
b ηa/η andΩ(ξ)

a = ξbΩ
(ℓ)
b ξa).

We introduce now the expressions forJ ,QE andQM. First,
the electric and magnetic field components normal toS are

E⊥ = Fabℓ
akb , B⊥ = ∗Fabℓ

akb , (3)

where∗Fab is the Hodge dual ofFab. The above-required ax-
isymmetry allows the introduction of the following canonical
notion of angular momentum onS [2, 17–19]

J = J
K
+ J

EM
=

1

8π

∫

S

Ω(ℓ)
a ηadS +

1

4π

∫

S

(Aaη
a)E⊥dS ,(4)

whereJ
K

andJ
EM

correspond, respectively, to (Komar) gravi-
tational and electromagnetic contributions to the totalJ . Elec-
tric and magnetic charges can be expressed as (e.g. [20, 21])

QE =
1

4π

∫

S

E⊥dS , QM =
1

4π

∫

S

B⊥dS . (5)

We characterize nowS as a stable section of a (quasi-local)
black hole horizon. First, we requireS to be a marginally
outer trapped surface, that isθ(ℓ) = 0. Second, we demand
S to be stably outermost as introduced in [13, 14] (see also
[22, 23]). More specifically we requireS to be (axisymmetry-
compatible)spacetime stably outermost[11, 12]:

Definition 1. A closed marginally trapped surfaceS is
referred to asspacetime stably outermostif there exists an
outgoing (−ka-oriented) vectorXa = γℓa − ψka, with γ ≥

0 andψ > 0, with respect to whichS is stably outermost:
δXθ

(ℓ) ≥ 0. If, in addition,Xa (i.e. γ, ψ) and Ω
(ℓ)
a are

axisymmetric, we will refer toδXθ(ℓ) ≥ 0 as an (axisymmetry-
compatible) spacetime stably outermost condition.

Here, the operatorδX is the variation operator on the sur-
faceS along the vectorXa discussed in [13, 14] (see also
[24, 25]). We formulate now the following lemma:

Lemma 1. Let S be a closed marginally trapped surface
S satisfying the (axisymmetry-compatible) spacetime stably
outermost condition. Then, for all axisymmetricα onS
∫

S

[

|Dα|2 +
1

2
α2 2R

]

dS ≥

∫

S

α2
[

|Ω(η)|2 + (E2
⊥ +B2

⊥)
]

dS,(6)

with |Dα|2 = DaαD
aα and|Ω(η)|2 = Ω

(η)
a Ω(η)a.

The proof is a direct application of Lemma 1 in [11]. Given
the vectorXa = γℓa − ψka, for all α onS it holds [11]

∫

S

[

DaαD
aα+

1

2
α2 2R

]

dS ≥ (7)
∫

S

[

α2Ω(η)
a Ω(η)a + αβσ

(ℓ)
ab σ

(ℓ)ab +Gabαℓ
a(αkb + βℓb)

]

dS ,

with β = αγ/ψ. First, sinceαβ ≥ 0, the positive-definite
quadratic term in the shear can be neglected. Second, we in-
sert Einstein equationGab + Λgab = 8π(TEM

ab + TM
ab ), with

TEM
ab andTM

ab the electromagnetic and matter stress-energy
tensors. In particular,TEM

ab = 1
4π

(

FacFb
c − 1

4gabFcdF
cd
)

.
From the dominant energy condition onTM

ab , Λ ≥ 0 and the
null energy condition applying forTEM

ab , the Einstein tensor
term in inequality (7) is bounded by below byα28πTEM

ab ℓakb.
Making use of (see e.g. [12, 21])

TEM
ab ℓakb =

1

8π

[

(

ℓakbFab

)2
+
(

ℓakb∗Fab

)2
]

, (8)

inequality (6) follows by identifyingE⊥ andB⊥ in (3). As
a final remark, note that takingα = const in (6), a non-
vanishing angular momentum or charge suffices to conclude
the sphericity ofS by applying the Gauss-Bonnet theorem.

The action functional and sketch of the proof.The proof
of inequality (1) proceeds by solving a constrained variational
problem onS, in whichJ ,QE andQM must be kept constant
under otherwise arbitrary variations. We construct the corre-
sponding action functionalM, by evaluating the geometric
expression (6) in a specific coordinate system onS.

First, on an axisymmetric sphereS, a coordinate system
can always be chosen such that

ds2 = qabdx
adxb = eσ

(

e2qdθ2 + sin2θdϕ2
)

, (9)

with axisymmetricσ andq satisfyingσ + q = c = constant.
Thenηa = (∂ϕ)

a, η = eσsin2θ anddS = ecdS0, with dS0 =

sinθdθdϕ. In particular,A = 4πec. Second,Ω(ℓ)
a expresses

uniquely on a 2-sphere asΩ(ℓ)
a = ǫabD

bω̃ +Daλ. SinceΩ(ℓ)
a

is axisymmetric,Ω(η)
a = ǫabD

bω̃ [11], and we can write

Ω(η)
a =

1

2η
ǫabD

bω̄ , (10)
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by introducing the potential̄ω, asdω̄/dθ = (2η)dω̃/dθ, that
satisfiesJ

K
= [ω̄(π) − ω̄(0)]/8 (cf. [11]). Third, from

ℓakb∗Fab =
1
2Fabǫ

ab [12] and the axisymmetry ofAa

B⊥ =
1

ec sin θ

dAϕ

dθ
. (11)

Finally, following [10, 11] we chooseα = ec−σ/2. Inserting
it together with (9), (10), (11) into inequality (6), we get

8(c+ 1) ≥ M[σ, ω̄, E⊥, Aϕ] , (12)

whereM[σ, ω̄, E⊥, Aϕ] is the action functional

M[σ, ω̄, E⊥, Aϕ] =
1

2π

∫

S

[

4σ +

(

dσ

dθ

)2

+
1

η2

(

dω̄

dθ

)2

(13)

+4e2c−σE2
⊥ + 4e−σ

(

1

sinθ

dAϕ

dθ

)2
]

dS0.

Inequality (1) follows by solving the variational problem de-
fined byM[σ, ω̄, E⊥, Aϕ]. In its form (13), enforcing the
constraints onJ , QE andQM is not straightforward. This
is addressed by introducing new potentialsω, χ andψ onS

dψ

dθ
= E⊥e

c sin θ , χ = Aϕ ,

dω

dθ
= 2η

dω̃

dθ
+ 2χ

dψ

dθ
− 2ψ

dχ

dθ
, (14)

with the crucial property thatJ ,QE andQM are written as

J =
ω(π)− ω(0)

8
, QE =

ψ(π) − ψ(0)

2
, QB =

χ(π)− χ(0)

2
.(15)

Physical parameters in inequality (1) can then be kept constant
by fixing ω, χ andψ on the axis as a boundary condition in
the variational problem (note that̄ω in (10) is an appropriate
potential to control the KomarJ

K
, but not for the totalJ). In

terms ofσ, ω, χ andψ the action functional reads

M[σ, ω, ψ, χ] =
1

2π

∫

S

[

4σ + |Dσ|2 (16)

+
|Dω − 2χDψ + 2ψDχ|2

η2
+

4

η
(|Dψ|2 + |Dχ|2)

]

dS0 ,

whereM is formally promoted beyond axisymmetry. The
proof of (1) proceeds in two steps (see details in [16]). First

A ≥ 4πe
M−8

8 , (17)

follows directly from (12) andA = 4πec = 4πeσ(0). Sec-
ond, by solving the variational problem defined by the action
functional (16) with values ofω, ψ, χ fixed on the axis and
determined from relations (15), it is shown

M ≥ M0 = 8 ln
√

(2J)2 + (Q2
E +Q2

M)2 + 8 , (18)

whereM0 corresponds to the evaluation ofM on an extremal
solution in the (magnetic) Kerr-Newman family with given

J , QE andQM. Inequality (1) follows from the combination
of inequalities (17) and (18). Full intermediate details ofthe
proof, in particular addressing the resolution of the variational
problem along the lines in [8] will be presented in [16].

Explicit proof of the vanishing magnetic charge case.Com-
plementary to the discussion above of the elements in the
proof of the full inequality (1), we present a straightforward
explicit proof of the caseQM = 0 by matching the reason-
ing in [5]. The result in [5] states that asubextremalstation-
ary black hole, in the sense that trapped surfaces exist in the
interior vicinity of the event horizon [28], satisfies the strict
inequality (1). Namely,

horizon subextremal condition⇒ p2J + p2Q < 1 . (19)

wherepJ = 8πJ
A andpQ =

4πQ2

E

A . This implication (actually,
its logical counter-reciprocal) is cast in [5] as a variational
problem on a Killing horizon section. The action functional
in [5] is constructed by combining thehorizon subextremal
condition in (19) with the conditionp2J + p2Q < 1. The key
remark here is to show that such variational problem, defined
solely on a sphereS, has full applicability in the generic dy-
namical case beyond the original stationary and spacetime ax-
isymmetric setting of [5]. More specifically, we show that
our expressions forpJ , pQ and the stably outermost condition
(12), valid in the generic dynamical non-vacuum case, match
exactly the expressions in [5] for the elements in (19). There-
fore, the proof in [5] extendsexactlyto the generic case.

From the comparison between the 4-dimensional stationary
axisymmetric line element in [5] with our line element (9) on
S and between the respective integrands of the Komar angular
momentum, we introduce new fieldsU andV from σ andω̄

û = eσ , ûN = ec , U =
1

2
ln

(

û

ûN

)

,

V =
eσ sin θ

2η2
dω̄

dθ
. (20)

Regarding the electromagnetic potentials, we defineS andT

S = −E⊥e
c/2 , T = Aϕe

−c/2 . (21)

Inserting these fields in (4) and (5) above, usingA = 4πec

and changing to variablex = cos θ we get

pJ = −
1

2

∫ 1

−1

V e2U (1− x2)dx+

∫ 1

−1

STdx

pQ =
1

4

(
∫ 1

−1

Sdx

)2

, (22)

that coincide exactly with expressions in Eqs. (23) and (24)in
[5]. Regarding the stability (subextremal) condition, we insert
(20) and (21) in condition (12) [with strict inequality]. Using
∫ 1

−1 Udx = −
∫ 1

−1 U
′xdx (following fromU(1) = U(−1) =

0, as a regularity condition forq on the axis) and denoting
with a prime the derivative with respect tox, we find

1 >
1

2

∫ 1

−1

(U ′2 + V 2)(1− x2)− 2U ′x+ e−2U (S2 + T ′2)dx.(23)
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This matches exactly thehorizon subextremal conditionin-
equality (28) in [5]. Considering expressions (22) and (23),
the same variational problem used in the proof of (19) can be
defined in the generic case. This is a complete proof of in-
equality (1) with vanishingQM in the strictly stably case.

Discussion. We have shown that(A/(4π))2 ≥ (2πJ)2 +
(Q2

E+Q
2
M)2 holds for axisymmetric stable marginally trapped

surfaces in generically dynamical, non-necessarily axisym-
metric spacetimes with ordinary matter that can be crossing
the horizon. More specifically, we have presented a complete
proof of the strictly stable case withQM = 0 and provided the
key elements for the proof of the general inequality. From the
perspective of theno hairproperty of vacuum stationary black
holes, the extension of inequality (1) to fully dynamical non-
vacuum situations represents a remarkable result. Indeed,al-
though parametersA, J,QE andQM do not longer fully char-
acterize the black hole state and new degrees of freedom are
required to describe the spacetime geometry, the generic in-
corporation of the latter is still constrained by inequality (1).
Such a constraint represents a valuable probe into non-linear
black hole dynamics. As a first remark, it gives support to
the physical interpretation of the Christodoulou mass in dy-
namical settings (cf. discussion in [2]), in particular endors-
ing dynamical horizon [15] thermodynamics [29]. More gen-
erally, whereas inequality (1) follows originally in the Kerr-
Newman family under the assumption of (weak) cosmic cen-
sorship, the present result is purely quasi-local involving no
global condition on the spacetime, namely no asymptotic pre-
dictability. This suggests a link between cosmic censorship

and marginally trapped surface stability to be further explored.
In this context, assuming Penrose inequality (with no surface
enclosingS with area smaller thanA), inequality (1) refines
the positive of mass theorem in terms of physical quantities:
16πM2 ≥ A ≥

√

(8πJ)2 + (4π[Q2
E +Q2

M])2. Although for
non-axisymmetric horizons we lack a canonical notion of an-
gular momentum, appropriate quasi-local prescriptions for J
should provide good estimates for a lower bound ofM . Giv-
ing closed general expressions seems however difficult since,
in contrast with the area-charge inequality [12], incorporat-
ing J involves a subtle variational problem (cf. [2]). In this
sense, Ref. [16] discusses the close relation between the vari-
ational problem (on a 3-slice) employed in [1] for the proof of
the spacetime mass-angular momentum-charge inequality and
the present action functionalM in (13) and (16), also closely
related to (but different from) the functional used in [5]. Re-
garding the latter, we stress that electromagnetic potentialsS
andT in (21) follow straightforwardly (with no gauge choices
involved) from the geometric formulation of the general sta-
bility condition in Lemma 1. This underlines the intrinsic in-
terest of theflux inequalityin Lemma 1 (and, more generally,
its complete expression in [11]) for exploring further geomet-
ric aspects of stable black hole horizons.
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