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Black hole Area-Angular momentum-Charge inequality in dynamical non-vacuum spacetimes
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We show that the area-angular momentum-charge inequality4r))? > (2J)% + (Q% + Q31)? holds for
apparent horizons of electrically and magnetically chdngeating black holes in generic dynamical and non-
vacuum spacetimes. More specifically, this quasi-locajuradity applies to axially symmetric closed outermost
stably marginally (outer) trapped surfaces, embedded mmexessarily axisymmetric black hole spacetimes
with non-negative cosmological constant and matter cars&isfying the dominant energy condition.

PACS numbers: 04.70.-s, 04.20.Dw, 04.20.Cv

Introduction. Isolated stationary black holes in Einstein- Theorem 1. Given an axisymmetric closed marginally
Maxwell theory are completely characterized by their masdrapped surfaceS satisfying the (axisymmetry-compatible)
M, angular momenturd and electric and magnetic charges, spacetime stably outermost condition, in a spacetime with
Qe and Q. This no hair property is endorsed by the non-negative cosmological constant and matter content ful
black hole uniqueness theorems leading to Kerr-Newmatfilling the dominant energy condition, it holds the inequali
spacetimes. In these black hole solutions a mass-angular 5 ) ) 5 5
momentum-charge inequality enforces a lower boundiior (A/(4m))” = (2J)° + (Qg + Qu) (1)
Such a constraint amonty, J, Qg and @y is however lost

in the extended Kerr-Newman family, including singular SO the total (gravitational and electromagnetic) angular meam

lutions without a hquzon. I this sense, the mas;—angt_;la{um’ the electric and the magnetic charges associated&vith
momentum-charge inequality follows when the physicalprin

ciple of (weak) cosmic censorship, namely the absence of Thjs quasi-local result holds in fully dynamical spacetime
naked singularitiesis advocated. Weak cosmic censorshipwithout bulk symmetries and with arbitrary (non-exotic)tna
conjecture provides dynamical principleaiming at preserv-  ter possibly crossing the horizon. In particular, it externad
ing predictability and playing a crucial role in our undewst-  generic scenarios the inequality proved|ih[[5, 6] for Kigfin
ing of classical gravitational collapse. This picture naatés  horizons in stationary axisymmetric spacetimes, with -elec
the study of extensions of the total mass-angular momentumrovacuum around the black hole (matter can surround but not
charge inequality to dynamical contexts, something accomeross the horizon). Axisymmetry is required only 6n so
plished in [1] for vacuum axially symmetric spacetimes. Inthat a canonical notion of angular momentuntan be em-
more generic scenarios, in particularincorporating mattss  ployed. The stably outermost and dominant energy condition
natural to consider a quasi-local version of the inequaidy  imply, for some non-vanishing, Q or Qv and in our four-
involving global spacetime quantities (séé [2] for a reView dimensional spacetime context, the spherical topologjef t
An appropriate starting point is the area-angular momentumsyrfaceS. For Killing horizons[[8] 5, 6] a rigidity result holds,
charge inequalitf A/(47))* > (2J)* + (Q% + Q3)” als0  namely equality in[{lL) implies the degeneracy of the Killing
holding in the stationary vacuum case. This inequality (forhorizon (vanishing of theurface gravity, providing a char-
®@wm = 0) has been proved to hold for stationary axisymmetricacterization of extremality. In the present dynamicalisgit
spacetimes with matter inl[8-6], although requiring electr \ith no spacetime stationary Killing field, rigidity statemts
vacuum in a neighborhood of the horizon. Regarding the dyinyolve rather the characterization of the induced metricSo
namical case [7=10], a proof has been presented for the no@s arextremal throa(i.e. with the geometry of a horizon sec-
vacuum uncharged case [11] and the area-charge inequalifyon in the extremal Kerr-Newman family) and as a section of
[12] (in absence of any symmetries). Here we extend the fulhn instantaneous (non-expanding) isolated horizoh [15. W
area-angular momentum-charge inequality, in particular i postpone the discussion of the rigidity part of the result to
corporating the magnetic charge, to generic non-axisymenet [}, where full details of the proof of inequalitil(1) [reed

dynamical non-vacuum black hole spacetimes (axial symmer make the rigidity statement precise] are presented.
try only required on the horizon). This completes the discus

sion of this inequality in the Einstein-Maxwell context. Main geometric elementsThe proof of [1) proceeds by,
first, casting the stably outermost condition for margipnall
outer trapped surfaces as a geometric inequality leadiag to

The result. The area-angular momentum-charge inequal-action functionalM on S and, second, by solving the asso-

ity applies to horizon sections satisfying a stability cend ciated variational problem. Following [fL1], we start byrimt

tion. Following the approach in_[L1], we consider a closedducing the general geometric elements and by formulatiag th

marginally outer trapped surfac® satisfying a (spacetime) geometric inequality following from the stability &f.

stably outermostondition in the sense of [18,114] (see Defi- Let (M, g.;) be a4-dimensional spacetime with Levi-

nition 1 below for details). Then the following result holds ~ Civita connectiorV,, satisfying the dominant energy condi-

whereA is the area ofS and J, Qr andQ\; are, respectively,
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tion and with non-negative cosmological constAnt 0. Let 0 andt > 0, with respect to whicl§ is stably outermost:
us consider an electromagnetic field with strength fieldgFar 5,99 > 0. If, in addition, X (i.e. v, ¢) and 0 are
day) tensot,, so thatty,, = VA4, — VA, onalocal chart  axisymmetric, we will refer tox 6(©) > 0 as an (axisymmetry-

(corresponding to a given section of th&1)-fibre-bundle,  compatible) spacetime stably outermost condition.
possibly non-trivial to account for magnetic monopoles).

Let us consider a closed orientable 2-surf&cembedded Here, the operatafx is the variation O%rator on the sur-

in (M, gas). Regarding its intrinsic geometry, let us denotefacealong the vectorX™® discussed in 3:14]. (see also
the induced metric ag,;, with connectionD,, Ricci scalar [24,125]). We formulate now the following lemma:

as’R, volume element,; and area measuet5. Regarding  Lemma 1. LetS be a closed marginally trapped surface

its extrinsic geometry, we first consider normal (respetfiy S satisfying the (axisymmetry-compatible) spacetime gtabl
outgoing and ingoing) null vectors' andk* normalized as  outermost condition. Then, for all axisymmetion S

%k, = —1. This fixes/® andk® up to (boost) rescaling factor.

The extrinsic curvature elements needed in our analysis are [|Da|2 + 1042 23] ds > / a? {|Q(77)|2 + (Ei + Bi)} ds,(6)
the expansio*), the sheab—fli) and the normal fundamental /s 2 S

form Q% associated with the outgoing null norntél with | Da|? = DyaD%a and|QM|? = Qg?)Q(n)“_

u ¢ . 1 The proofis a direct application of Lemma 1in[11]. Given
00 = ¢"Valy . opy) = °0q")Vela - 59“)‘]‘11’ the vectorX @ = ~¢* — k%, for all & on S it holds [11]
QY = —k°¢? Vb, . 2

q an ( ) / |:DaOéDaOé+ %QQ 2R:| dS Z (7)

We require the geometry & to be axisymmetric with axial S
Killing vectorn® onS. Thatis,£,q., = 0 andn® has closed [0[295;7)9(77)“ + aﬂg(?(,(é)“b + Gapal®(ak® + ﬂgb)} ds,
integral curves, vanishes exactly at two points®rand is S ¢
normalized so that its integraL curves have an affine length o1, B = av/4. First, sincea > 0, the positive-definite
2. Besides, we demanﬂanl) = L,A, = 0 and adopta quadratic term in the shear can be neglected. Second, we in-
tetrad (¢, 7", £*, k") on S adapted to axisymmetry, namely sert Einstein equatiofia, + Aga, = 8m(TEM + TM), with
Lpl* = Lyk* = 0 with £* a unit vector tangent t6 satisfy-  7EM and 7M the electromagnetic and matter stress-energy
ing £%1q = "o = £%ka = 0, ¢, = 1. We can then write  tensors. In particularf5M = L (F,o ¢ — g FegFod).
Gab = 5 7al + Ealp With 1) = 1774) and0”) = 0" + 0 From the dominant energy condition ayl, A > 0 and the

(with Q" = 771791(78)77(1/77 andn(® — ngl()é’)ga)_ null energy condition applying fof 5™, the Einstein tensor
We introduce now the expressions frQr, andQy,. First, €M ininequalityl(y) is bounded by below by 87T M0 k.
the electric and magnetic field components norma tre Making use of (see e.d. [12.121])
1 2 N 2
EJ_ = Fabfakb s BJ_ = *Fabfakb s (3) T(E)Mgakb = g [(Eakaab) + (gakb Fab) :| ) (8)

where*F,; is the Hodge dual of ;. The above-required ax- inequality [8) follows by identifying, andB. in (@). As
isymmetry allows the introduction of the following canoaic @ final remark, note that taking = const in (@), a non-

notion of angular momentum o [2,[17-+£19] vanishing angular momentum or charge suffices to conclude
the sphericity ofS by applying the Gauss-Bonnet theorem.

1 1
J =g+ Jou = g/ On*ds + P / (Aan®)ELdS ,(4)  The action functional and sketch of the procThe proof
s § of inequality [1) proceeds by solving a constrained vaviai
whereJ,. andJ,, correspond, respectively, to (Komar) gravi- problem onS, in which J, Qg and@y must be kept constant
tational and electromagnetic contributions to the tdtaElec-  under otherwise arbitrary variations. We construct theeor
tric and magnetic charges can be expressed as [eld. [20, 218ponding action functionaM, by evaluating the geometric
expression(6) in a specific coordinate systensSon

1 1 : : i i
Op = _/ ELdS, Ou = _/ B.dS . (5) First, on an axisymmetric sphe® a coordinate system
4 Jg dr Jg can always be chosen such that

We characterize no@ as a stable section of a (quasi-local) ds® = qapdz®dz’ = e (e*1d6* + sin®0dy?) | )
black hole horizon. First, we requig to be a marginally . ; ; e o ‘
outer trapped surface, that@§” = 0. Second, we demand \_?v;:gna)gsin(wén ?H'“fgﬂg;ﬁ‘gjﬁ'ggg i chgc ;vﬁ%n;gani
S to be stably outermost as introduced [inl[13, 14] (see also " w) 0 ) o 0
[22,123]). More specifically we requits to be (axisymmetry- sinfdfde. In particular, A j) 4mec. Secondfl, expres(i)es
compatible)spacetime stably outermdatl,[12]: uniquely on a 2-sphere &% = ¢,, D@ + D, ). Since’

; ; i~O(m b~ ;
Definition 1. A closed marginally trapped surfaggis 'S @XISymmetricf2e™ = eq, D7 [11], and we can write

referred to asspacetime stably outermostthere exists an

1
(m) — — b~
outgoing (k®-oriented) vectorX * = ~¢* — k%, withy > Q" = 2 € D00 (10)



by introducing the potentiab, asdw/df = (2n)do/df, that
satisfiesJ, = [@w(m) — @(0)]/8 (cf. [11]). Third, from
(kP Fap = 1 Fape [12] and the axisymmetry o,

1 dA,
ecsinf df -

B, =

(11)

Finally, following [10,[11] we choose' = e¢~7/2. Inserting

it together with [9),[(ID) [(T1) into inequaliti](6), we get
8(C+1) > M[O’vajvEL7A‘P] ) (12)

whereM|o,w, E |, A,] is the action functional

do\?> 1 [dw\?

1 dAg,)Q

-
27TS

+4e*7F? + 4e_U<

M[U,@,EL,Aw] =

sind do dSo-

Inequality [1) follows by solving the variational problered
fined by M[o,w, E|, A,]. Inits form (13), enforcing the
constraints onJ, Qg and @y is not straightforward. This
is addressed by introducing new potentialsy andy onS

dip ..
@:ELe sinf , x=A4,,
dw dw dy dx
b = Mg T 2V (14)
with the crucial property thaf, Qi and@y; are written as
_w(m) —w(0) , _ ¥(r) —¥(0) x(m) — x(0)
A T 2

Physical parameters in inequalify (1) can then be kept emist
by fixing w, x andvy on the axis as a boundary condition in
the variational problem (note thatin (I0) is an appropriate
potential to control the Komar, , but not for the total). In
terms ofo, w, x andy the action functional reads

Mizo.vx] = 5= [ [ao+1Daf (16)

|Dw — 2D + 2¢p Dx|?
+ 7

4
+ E(IDwI2 + [Dx|*)| dS

where M is formally promoted beyond axisymmetry. The

proof of (@) proceeds in two steps (see details in [16]).tFirs
A>dre’ s, (17)

follows directly from [I2) andd = 4me¢ = 47e’(©). Sec-

3

J, Qg andQy;. Inequality [1) follows from the combination
of inequalities[(I7) and{18). Full intermediate detailstod
proof, in particular addressing the resolution of the Véoizal
problem along the lines in/[8] will be presented|in/[16].

Explicit proof of the vanishing magnetic charge ca&am-
plementary to the discussion above of the elements in the
proof of the full inequality[(IL), we present a straightfordgia
explicit proof of the cas&)n; = 0 by matching the reason-
ing in [E]. The result in[[5] states thatsubextremastation-
ary black hole, in the sense that trapped surfaces exisein th
interior vicinity of the event horizon [28], satisfies theist
inequality [1). Namely,

horizon subextremal conditios- p? + pé <1l. (19

wherep; = % andpg = %. This imé)lication (actually,
its logical counter-reciprocal) is cast inl [5] as a variatb
problem on a Killing horizon section. The action functional
in [5] is constructed by combining theorizon subextremal
conditionin (I39) with the conditiorp? + sz < 1. The key
remark here is to show that such variational problem, defined
solely on a spherg, has full applicability in the generic dy-
namical case beyond the original stationary and spacetime a
isymmetric setting of[[5]. More specifically, we show that
our expressions fas s, pg and the stably outermost condition
(12), valid in the generic dynamical non-vacuum case, match
exactly the expressions inl [5] for the elementdInl (19). €her
fore, the proof in[[5] extendexactlyto the generic case.

From the comparison between the 4-dimensional stationary
axisymmetric line element in/[5] with our line elemeht (9) on
S and between the respective integrands of the Komar angular

,Qp = ————=—+15) momentum, we introduce new fieldsandV from o anda

1 .
u = e, uny =e°, U—ln<Au> ,
2 unN
e? sin 6 di
202 df

Regarding the electromagnetic potentials, we defimadT

1% (20)

S=-FEie’? | T=A,e?. (21)

Inserting these fields if(4) andl (5) above, usifig= 4me®
and changing to variable = cos 6 we get

1 /1 1
——/ Ve2U(1—ac2)dac—|—/ STdx
2/ —1

1 2

pPQ = i(/_lsdz> ,

that coincide exactly with expressions in Egs. (23) and {24)

by

(22)

ond, by solving the variational problem defined by the action[s]. Regarding the stability (subextremal) condition, weert

functional [16) with values ok, v, x fixed on the axis and
determined from relation§ (1L5), it is shown

M= Mo =8Iny/(20)2 + Q%+ Qh)? +8,  (18)

whereM, corresponds to the evaluation.®f on an extremal
solution in the (magnetic) Kerr-Newman family with given

(20) and [[21) in conditior (12) [with strict inequality]. g
f_ll Udr = — f_ll U'zdzx (following from U (1) = U(—1) =
0, as a regularity condition fog on the axis) and denoting
with a prime the derivative with respect ig we find

1 1
1> / (U +VH(1 —2?) — 20"z + e 2V (8% + T'?)da(23)
—1
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This matches exactly thiorizon subextremal conditiom-  and marginally trapped surface stability to be further exgd.
equality (28) in[5]. Considering expressioisl(22) aad (23) In this context, assuming Penrose inequality (with no sierfa
the same variational problem used in the proofol (19) can benclosingS with area smaller thanl), inequality [1) refines
defined in the generic case. This is a complete proof of inthe positive of mass theorem in terms of physical quantities
equality [1) with vanishing),, in the strictly stably case. 167 M2 > A > \/(87rJ)2 + (47[Q% + Q3,])?. Although for
non-axisymmetric horizons we lack a canonical notion of an-
5 5o _ : . gular momentum, appropriate quasi-local prescriptioms/fo
(Q+Qy)” holds for axisymmetric stable marginally trapped g o4 provide good estimates for a lower bound6f Giv-
surfaces in generically dynamical, non-necessarily amisy g closed general expressions seems however difficulesinc
metric spacetimes with ordinary matter that can be crossing, “ontrast with the area-charge inequality|[12], incogter
the horizon. More specifically, we have presented a completﬁ]g J involves a subtle variational problem (cf] [2]). In this
proof of the strictly stable case withy = 0 and providedthe  gonge Ref[[16] discusses the close relation between the va
key elements for the proof of the general inequality. From th 5404 problem (on a 3-slice) employed|ih [1] for the probf o
perspective of theo hairproperty of vacuum stationary black 4 spacetime mass-angular momentum-charge inequadity an
holes, the. extgnsion of inequalify (1) to fully dynamicahro the present action functionat in (I3) and[(IB), also closely
vacuum situations represents a remarkable result. Indged, (q|ated to (but different from) the functional used fih [5]eR
though parameters, J. Qr andQw do notlongerfully char- g1 jing the latter, we stress that electromagnetic patisi
acterize the black_ hole state anq new degrees of freedor_n a7 in () follow straightforwardly (with no gauge choices
required to describe the spacetime geometry, the generic in,,q\yed) from the geometric formulation of the generaksta
corporation of the latter is still constrained by |n_eqqal]]]). __bility condition in Lemma 1. This underlines the intrinsic i
Such a constraint represents a valuable probe into noafline (arast of thelux inequalityin Lemma 1 (and, more generally,

black hole dynamics. As a first remark, it gives support 0jis complete expression in [11]) for exploring further gestm
the physical interpretation of the Christodoulou mass in dy ;. aspects of stable black hole horizons.

namical settings (cf. discussion id [2]), in particular ers
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Discussion. We have shown thatA/(47))? > (2nJ)? +
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