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Abstract

We treat the problem of N interacting, axisymmetric black holes and obtain
two relations among physical parameters of the system including the force
between the black holes. The first relation involves the total mass, the angular
momenta, the distances and the forces between the black holes. The second one
relates the angular momentum and the area of each black hole with the forces
acting on it.

PACS numbers: 04.70.Bw, 04.20.Cv

1. Introduction

The problem of interacting black holes dates back to the beginnings of general relativity.
Although a solution representing multiple black holes in equilibrium is known to exist [4]
(the Majumdar—Papapetrou solution, which consists of N extreme Reissner—Nordstrom black
holes, i.e. each black hole has electric charge equal to its mass parameter, g; = m;), it is in
general expected that there should be a force between different components of the horizon
in order to prevent the spacetime from collapsing. Nevertheless, based on Newtonian ideas,
a main concern was the following. Given two black holes, could the spin—spin repulsion
compensate for the gravitational attraction and keep the system in equilibrium? Many attempts
have since then been made in order to answer this question (see [2, 3, 10, 17, 20, 22, 25, 26, 28,
30-34, 37]). In particular, in order to rule out the existence of two vacuum axially symmetric
stationary black hole configurations, in 1991 Li and Tian [22] proved that when the solution
admits an involution interchanging the components of the event horizons, then equilibrium
is not possible (see also [12]). On the other hand, between 2000 and 2001, Manko et al
[25, 26] proved that the two Kerr black hole configurations fail to possess a positive Komar
mass. Finally, in a series of papers starting in 2009, Neugebauer and Hennig [17, 30, 31] (see
also the references therein) proved that any axially symmetric, stationary, vacuum solution of
Einstein equations with disconnected horizon (and only two connected components) violates
an inequality between area and angular momentum known to hold for each axisymmetric,
regular black hole. In a completely different approach, Weinstein [35-37], using harmonic
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maps, showed that stationary, asymptotically flat, vacuum, axially symmetric multiple black
hole solutions exist, although possibly with a conical singularity in the bounded component
of the symmetry axis.

The appearance of this conical singularity on the axis was clearly seen in the superposition
of two Schwarzschild black holes in the early work of Bach [2] and was later discussed by
Einstein and Rosen in [13]. Although the existence of a singularity may seem discouraging,
the solution so built has a well-defined action and the corresponding thermodynamic potential
describes a system of black holes at fixed temperature and at a fixed distance (see [18, 19] for
a thermodynamic description of solutions with conical singularities, cf [7]). The long-range
interactions in the multiple black hole solutions are unable to provide equilibrium between
the various black holes and the conical singularity is interpreted as a boundary condition that
keeps the holes at fixed separation preventing the collapse of the system.

The non-existence proof of Neugebauer and Hennig [30] for two rotating black holes in
vacuum strongly uses the relation A > 87 |J| between the area and the angular momentum of
each black hole which is known to hold in the axisymmetric, regular case (see [1]). These types
of geometrical inequalities relating physical parameters of black holes have been extensively
studied in the last few years as an attempt to explore the allowed values of angular momentum,
mass and size a black hole can have, and turned out to be relevant in different contexts as well
(see [8] for an excellent recent review on geometrical inequalities). As interesting outcomes
of these researches, two main relations have been found.

The first one of such relations in the context of (not necessarily stationary) multiple black
hole configurations was proved by Chrusciel et al [6] (see also [11] for the inequality in the
case of N = 1) and gives a lower bound to the ADM mass in the axisymmetric, vacuum case
in the form

02 f(h,....,Jny)—m, )]

where m is the total (ADM) mass, J; are the Komar angular momenta of the individual
constituents and f is a function of the J; (and possibly depending on other parameters as well),
not known explicitly, which reduces in the case of a single black hole to /]J].

The second inequality we are interested in, and the one used in [30], is the relation

8m|J]|

1> " 2
between the angular momentum J and the area A of an axisymmetric black hole which has
recently been proven. In [1, 14] and [9] maximal vacuum initial data (possibly with a positive
cosmological constant) containing a minimal stable surface are considered. Also, in [21] the
inequality is proven for spacetimes having outermost stable marginally trapped surfaces, not
necessarily in vacuum. As we will discuss later, (2) has been extended to incorporate electric
and magnetic charges. Inequality (2) holds for each black hole in a regular initial data and,
loosely speaking, states that a hole cannot rotate too fast.

Animportant ingredient in the above results, relations (1) and (2), is the assumed regularity
at the symmetry axis. As we mentioned, this is related to the notion of equilibrium, although it
does not imply it since one must also require stationarity. The regularity at the symmetry axis
only means the absence of conical singularities. A way to incorporate the interaction between
the black holes into the problem is by means of relaxing the regularity condition at the axis
and therefore allowing a conical singularity between the holes. The value of the deficiency
angle will be related to the force between the black holes [37] (see equation (11)).

The purpose of this work is to investigate how inequalities (1) and (2) are modified when
one takes explicitly into account the interaction between the black holes. In this way we will
obtain bounds on the forces between them (i.e. on the deficit angles) set by the physical
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quantities A, m and J. Although the results presented here are not restricted to stationarity,
they are the first step toward understanding, from a different and, in some sense, more general
point of view, the possible final states in black hole scenarios, that is, whether stationary
multiple black hole configurations might exist in equilibrium, or they would collapse into a
unique (possibly Kerr) black hole. From a heuristic perspective one would expect that such
multiple black hole solutions should not exist in equilibrium, which would correspond to
having a non-zero force between the black holes. Moreover, one would expect the force to be
positive, reflecting the attractive character of the gravitational interaction. Therefore, finding
appropriate lower bounds for the interaction force between the black holes seems to be a
promising and convenient way to prove this conjecture.

The paper is organized as follows. Beginning section 2, we briefly introduce the basic
features of multiple black hole solutions to Einstein constraint equations and the explicit
relation between the force and deficit angle. Then, in section 2.1 we present the more specific
hypothesis needed in order to obtain a relation between mass, angular momentum and force,
similar in spirit as (1), theorem 2.1, and finally, in section 2.2, we find a new inequality relating
area, angular momentum and force, theorem 2.2, analogous to (2).

2. Main result

We begin this section with a brief description of multiple black hole solutions of Einstein
equations in the form of maximal axisymmetric initial data.

Consider a maximal, simply connected initial data set (M, g,, K,p), invariant under a
U(1) action. It is known [5] that there exists a global coordinate system (p, z, ¢) such that the
metric is of the form

g=¢""(dp” +d%) + p’ " (dp + pA, dp + A. d2)?, 3)

where the functions are taken to be ¢-independent.

We assume vacuum for simplicity, although matter satisfying some positive energy
condition would be also allowed. The constraint equations in the maximal case, g”bKa;, =0,
are

3R = KK, VK = 0. 4)

Due to these constraints, it is known that there exists a twist potential w related to the second
fundamental form through the expression (see [11])

2€uc K7 dx = do, (5)

where n¢ is a 2 -periodic Killing vector field and €., is the Lévi—Civita tensor. Moreover, we
have the useful bound [11]

||

202
The quantities that we are interested in this work are the total mass of the initial data and
the area and angular momentum of each black hole. As is well known, the mass is a global
quantity, given by a boundary integral at spatial infinity

1
m= —— lim / (0p8ab — agpp)n” dS, (7)
3B,

1671 r—o0

(6)

KabKab > e—a—Zq

where r = /p? + 72 is the Euclidean distance, d denotes partial derivatives, B, is the Euclidean
ball r = const, 9B, is its border, n“ is its exterior unit normal and dS is the unit surface element
with respect to the Euclidean metric, dS = sin6 dé d¢.
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Now, consider an arbitrary two-surface ¥ in M with an induced metric y,; then the area
of X is given by the expression

AD) = / as, ®)
X

with dS,, being the surface element with respect to .
Finally, for axially symmetric and maximal data, one can define the angular momentum
J associated with X (the Komar integral of the Killing vector) as

J(D) = / Kan‘n®ds,, ©)
X

where n“ is the unit normal vector to X.

For concreteness, in what follows, we consider N > 1 black holes located at the symmetry
axis, which will be represented by punctures in section 2.1 and by minimal stable surfaces in
section 2.2. The axis p = 0 is denoted by I'. It contains N — 1 bounded components denoted
byI';,i=1,..., N — 1, and two unbounded components, I'y and I'y.

As we mentioned in the introduction, the interaction between the black holes can be
realized through the non-regular character of the solution at I'. The regularity condition at I"
can be stated as

li V1 (10)

p0_1>%+ fopo eo/2+a dp -
where n = n“n,, and is translated into the requirement that the metric function g (see expression
(3)) vanishes at the axis g|r = 0.

In general, this condition will not be satisfied and the metric will not define a regular
solution of Einstein equations. If (10) does not hold, then the singularity at the axis is called a
conical singularity. The deficit angle at the axis is given by e~% where g; is the constant value
of the function g at the ith connected component of the axis. These singularities are interpreted
as forces between black holes, and in the stationary case, would keep the bodies from falling
onto each other. We define this force in terms of ¢g; as (see [36] for a motivation and details)

Fi=1E -1, (1)

As we mentioned before, in the stationary case, one would expect this force to be positive,
reflecting the fact that a positive force is needed in order to prevent the black holes from falling
on each other. A positive force has been found in a few stationary situations, like in the zero
[2] and small angular momentum case [23], the case when the problem admits an involutive
symmetry [22], when there are two equal, counter-rotating Kerr black holes [33] and in the
limit when one of the black holes becomes extreme and the distance to one of the adjacent
black holes tends to zero [36]. Nevertheless, so far there is no general proof stating that the
force is always positive (or at least, non-negative).

One can prescribe the value of the function g on one of the components of the axis [36];
the other values will be determined by the solution of the constraints, and are not known in
general. In this paper, we give two results, which are the extensions of inequalities (1) and (2)
to include the non-zero values of ¢ at the axis and are presented in the following sections.

2.1. Bound in terms of mass and angular momentum

In order to extend the Chrusciel et al result [6], inequality (1), to the non-regular case, we state
here their main assumptions. We will retain basically all of them, and only relax the regularity
of the function ¢ at the axis.
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As we mentioned before, for the mass-angular momentum inequality we represent the
black holes as N punctures on the axis, separated by Euclidean distances L;, each puncture
being an asymptotically flat end in the sense that for k > 6,

Qab — Sap = 0 (r™ 112, (12)

K8ab € L*(M), (13)
where f = o0 (r*) means that f satisfies
O, .., f = o(r*™"), 0<n<k (14)

The main result of this section gives a relation among the total mass of the initial data, the
individual angular momenta of the each asymptotic region and the forces between them.

Theorem 2.1. Consider a maximal, asymptotically flat, axisymmetric initial data (M, g.p, Kup)
as described above, with N extra asymptotically flat ends represented by punctures on the axis

[, with angular momenta J;,, i = 1, ..., N. Then, there is a lower bound to the ADM mass m
given by

N-L

Zzlln(1+4]-",-)>f(J1,...,JN)—m, (15)

i=1
where L; is the Newtonian length of T';, F; is the force between adjacent punctures and f is a
function of the J;s.

Before entering into the proof, we want to make a few remarks about the result. It is
clearly seen from inequality (15) that it does not imply, in general, the result 0 > f — m. That
is only the case when the forces are non-positive. But if the forces are positive, which is the
expected situation when the data corresponds to a slice in a stationary spacetime, the total
mass m could, in principle, take values lower than f, as opposed to the regular case (1).

As the data are asymptotically flat, we must have gy = gy = 0, and (15) reduces to the
Chrusciel et al result, m > f, for g; = 0 and also to Dain’s result, m > /]J[, for N = 1 [11].

Note that there is no rigidity statement in this theorem. This is due in part to the lack of a
known minimizer for a mass functional appearing in the proof of the Chrusciel et al result in
the case N > 2. But also, because in inequality (15), two quantities appear that depend on the
given parameters of the data. Both, the mass and the force are to be computed after solving the
constraints and cannot be prescribed a priori. Therefore, for given values of angular momenta
J; and separation distances L;, there might exist different solutions saturating the inequality
with different values of F; and mass. In this respect, it is worth mentioning, that there exists
an explicit solution describing two equal, counter-rotating extreme Kerr black holes given by
Manko et al [28] which could saturate (15). We will meet this solution again in the following
section.

Proof. Since the proof is an adaptation of the Chrusciel et al argument, [6], we only sketch
the main steps and highlight the point where the non-zero force is incorporated. We refer the
reader to [6] and its references for more details.

Begin with the expression for the curvature scalar R of the metric g, given by

— gRe™ = [ A0 + (00)° + jArg + 5o e M (pA,; — Azp)? (16)
where A is the Laplacian in R and A, is the two-dimensional Laplacian

Aog =q.pp+ 9z 17
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Integrate (16) over R? and use the asymptotic flatness condition and the definition of the mass
m (see [11]):

/ Ao d*x = lim 9,01’ dS = —8m (18)

R3 =0 JaB,

to obtain

27tm=/ i(aov)erlA +1Re”+2‘1+i e M (pA,, —A. )| & (19)
| 16 472973 16" RS

Use inequality (6) to bound the Ricci scalar in the above integral and disregard the last,
non-negative term to obtain the following lower bound for the mass:

1 dol? 1
m> —/ (aa)2+ﬂdx3+—/ Argdx. (20)
327 R3 )’]2 8 R3

Note that the first integral is exactly the functional M used by Dain [11] and Chrusciel et al
[6] in the proof of the mass-angular momentum inequalities
1 (dw)?
M= — [ (30)* + ——dx’. 21
o R}( o) + 2 (21)
The second integral on the right-hand side of (20) is zero for regular solutions (i.e. when g = 0
at the axis). But when the solution contains conical singularities, it gives instead
N-1
Agdx =21 qil;, (22)
J. >
where L; is the Newtonian length of I'; and ¢; is the constant value of ¢ on it. With this result,
we arrive at the inequality

N—-1
1

In [6] (see proposition 2.1), the authors prove that for any set of aligned punctures and of axis
values w; := o|r,, there exists a solution (¢, @) of the variational equations associated with
the functional M, with finite values of M and appropriate asymptotic behavior near each
puncture. So, denote by f(J, ..., Jy) the numerical value of M at the harmonic map (¢, @)
from R? \ T to the two-dimensional hyperbolic space. Then we obtain

N—1
1
m2z f(Jy,....,JIn) + 1 ;%Li- 24)

Finally expressing the constants g; in (24) in terms of the forces (see equation (11)), the
statement of the theorem is proven. ]

2.2. Bound in terms of area and angular momentum

In this section, we obtain a bound on the forces acting on a black hole in terms of its area and
angular momentum. This will generalize inequality (2) to the interacting case (i.e. to the case
where conical singularities may be present).

For that purpose, we will follow Dain and Reiris’s argument [9], using minimal stable
surfaces. It is remarkable that since this result is quasi-local, there is no asymptotically flatness
requirement concerning the initial data. We only need the existence of stable minimal surfaces
located at the axis, with aligned angular momenta (in order to maintain axial symmetry). It
is clear that in order for these surfaces to have a non-vanishing Komar angular momentum,
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a non-trivial topology is needed. One way to think about this is imagining that each surface
encloses a puncture.

A surface X is called minimal if its mean curvature y vanishes, and it is called stable if it is
a local minimum of the area functional (8). This can be precisely stated in the following form.
Consider a flux of surfaces F; : R x §> — X parametrized by ¢ € R such that F|,—¢(§?) = =
and F “l;=0 = an’, where dot denotes derivative with respect to ¢, n“ is the unit normal to X
and « is in principle an arbitrary function on X. Then the stability condition can be written as

Alimo = / ayds, >0, 25)
where
X =—0ya— (R=R, + xax™)e, (26)

Xab 18 the second fundamental form of X, R is the Ricci scalar associated with the 3-metric
8ab (see equation (3)) and A, and R, are the Laplace operator and the Ricci scalar associated
with the 2-metric y,;, respectively.

As in the previous section, we allow the function ¢ in the 3-metric to have non-zero values
at the bounded components I';. This leads us to the following result, which is an extension of
theorem 1 in [9].

Theorem 2.2. Consider an axisymmetric, vacuum and maximal initial data, with a non-
negative cosmological constant and N > 1 orientable closed stable minimal axially symmetric
surfaces ;. Then

VIHAF /1 +4F >

87 |Jil
A;
where J; and A; are the angular momentum and area of X;, respectively.

i=1,...,N, Q7

Before giving the proof of theorem 2.2, we want to remark that the equality in (27) is
achieved by a stationary solution describing two counter-rotating identical extreme Kerr black
holes separated by a mass-less strut given by Manko et al [28]. The explicit values for the
separation distance, ratio A/8mJ and positive force in this solution are

a’> +m? A 21J] (a* —m?)?

L=om = T A T
where J = am, |J| is the angular momentum of each black hole and m its mass parameter
(2m is the total ADM mass). We note that a®> > m? holds for the extreme counter-rotating
constituents, unlike in the case of a single Kerr black hole, for which a® = m?. 1t is also clear
from the above expressions that as m — a~, the separation distance becomes arbitrarily large
and the mutual force becomes arbitrarily small.

In case that the force is positive, which is the expected outcome in the stationary case, the
quantity A/8m|J| can be less than unity, a situation that cannot happen for regular black holes.
Nevertheless, a type of variational characterization of extreme Kerr throat is still valid in the
presence of a conical singularity. This is due to the fact that in the variational principle used to
derive the above inequality (see [1]), the function g plays no role, and the relevant functions
are the conformal factor e’ and the twist potential w.

Inequality (2) has been recently extended in [15, 16] to include electric and magnetic
charges and to apply also to stable marginally outermost trapped surfaces satisfying the
dominant energy condition. To be more precise, consider a surface ¥ embedded in a spacetime,
with null normal vectors £¢ and k“ such that £k, = —1 and ¢¢ is outward pointing. Let ©)
be the expansion associated with the null normal ¢¢. Then, X is a stable marginally outermost
trapped surface if 9 = 0 and if there exists an outgoing vector X¢ = y£¢ — yk* with

7
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y > 0and ¥ > 0 such that §x0© > 0. Here, 8y denotes the deformation operator on X that
controls the infinitesimal variations of geometric objects defined on X under an infinitesimal
deformation of the surface along the vector X“. By following the same lines as in theorem
(2.2) based on the proof of [15, 16], one obtains the following corollary.

Corollary 2.3. Consider an axisymmetric, stable marginally outermost trapped surface %,
with a non-negative cosmological constant, satisfying the dominant energy condition. Then

\/ 8?4 (47 0% + 47 %)’
A;
where J;, Qip, Qip and A; are the angular momentum, electric charge, magnetic charge and

area of X;, respectively. F; and F;_y are the forces acting on ¥; along the axis components I';
and Fi—l-

VI+4F_ V1 +4F > i=1,...,N, (29)

In the case of zero angular momenta, a non-trivial solution satisfying inequality (29) is
given by the case of two Reissner—Nordstrom black hole configurations discussed in detail
by Manko in [27], and by Manko et al in [29]. The Majumdar—Papapetrou solution, with
Ji=0 =04 = 47TQI»2E saturates inequality (29) with vanishing forces. The same thing
does not seem plausible for Kerr black holes, since numerical results [10] suggest that a
configuration with two Kerr black holes having a = m leads to a positive force.

Proof of theorem 2.2. We follow the lines of [9] and refer the reader to this paper for more
details. Choose a coordinate system such that the determinant of the induced metric y,; on X;

is

Vdet(y) = e sin#, 30)
where c; is a constant. Then, the metric can be written as

Yap = €% (%% d6? + sin® 0 dp?) 31
with 0; 4+ ¢; = ¢; and

(0i + gi)lo=0 = (0i + qi)lo=x = ci. (32)

Now multiply x, given by (26) by «, use the constraint to express the Ricci scalar R in
terms of K, integrate over X; and use condition y = 0, the stability condition (25) and the
bound (6). Then we find, disregarding the non-negative terms,

2 1 2 . 10);2 oi=2¢; 2 ¢
|Dal® + SRya” ) e“dS > [ 2—5e" at et ds, (33)
n

where a prime denotes derivative with respect to 8. Now, using that

0i—2¢;
R, = — 5 (24;cos 0 + sinfo/q; + 2sin0 — (sin6o)) (34)
sin
and choosing
o = e, (35)

we obtain

which can be written as

2
4ﬂ(ci+1)—2ﬂ(qi(n)+qi(0))—/(m+%0{2) dS>/lw—idS, (36)
M;

4 (c;i + 1) — 2m(qi(w) + ¢:(0)) > is 37

SRS
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where M is the functional introduced by [1] and used also by [9] and [21],

w2
-=—/4al+0 + 5 ds. (38)

Note that in going from (33) to (36) is Where we have used the non-regularity of the metric at
the axis. Now, in [1] it has been proven that for each M;, the following bonds hold:

= 8(In(2J:]) + 1), (39
where J; is the angular momentum of X;. Using the fact that A; = 4me, we obtain
A= 8rlsile™ (40)

Finally, using the expression for F; in terms of ¢; we complete the proof of the theorem. [
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