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Motion detection in the fly is extremely fast with low computational requirements. Inspired from the fly’s vision system, we focus
on a real-time flight control on a miniquadrotor with fast visual feedback. In this work, an elaborated elementary motion detector
(EMD) is utilized to detect local optical flow. Combined with novel receptive field templates, the yaw rate of the quadrotor is
estimated through a lookup table established with this bioinspired visual sensor. A closed-loop control system with the feedback of
yaw rate estimated by EMD is designed. With the motion of the other degrees of freedom stabilized by a camera tracking system,
the yaw-rate of the quadrotor during hovering is controlled based on EMD feedback under real-world scenario. The control
performance of the proposed approach is compared with that of conventional approach. The experimental results demonstrate
the effectiveness of utilizing EMD for quadrotor control.

1. Introduction

Flying insects have tiny brains and mostly possess compound
eyes which can get panoramic scene to provide an excellent
flying performance. Comparing with state-of-the-art artifi-
cial visual sensors, the optics of compound eye provide very
low spatial resolution. Nevertheless, the behavior of flying
insects is mainly dominated by visual control. They use
visual feedback to stabilize flight [1], control flight speed, [2]
and measure self-motion [3]. On the other hand, highly
accurate real-time stabilization and navigation of unmanned
aerial vehicles (UAVs) or microaerial vehicles (MAVs) is
becoming a major research interest, as these flying systems
have significant value in surveillance, security, search, and
rescue missions. Thus, the implementation of a bio-plausible
computation for visual systems could be an accessible meth-
od to replace the traditional image processing algorithms in
controlling flying robots such as a quadrotor.

Most of early applications using insect-inspired motion
detector focus on motion detection tasks rather than velocity
estimation. In robotics and automation applications, EMDs

are mainly used for a qualitative interpretation of video
image sequence, to provide general motion information such
as orientation and infront obstacles. In [4], a microflyer
with an onboard lightweight camera is developed, which
is able to fly indoor while avoiding obstacles by detecting
certain changes in optic flow. The recent approach for the
navigation in a corridor environment on an autonomous
quadrotor by using optical flow integration is shown in [5].
Another example is a tethered optic flow-based helicopter
that mimics insect behaviors such as taking off, cruise, and
landing [6, 7], and in [8] the EMDs visual sensors were
tested and characterized in field experiments under various
lighting conditions. Numerous authors have pointed out that
the Reichardt model, while sensitive to motion, does not
measure velocity [9–11]. However, some efforts have been
made, examining the possibility of velocity estimation tasks
by introducing elaborated models [12, 13]. In [14], yaw rate
estimates on a coaxial helicopter testbed are obtained using
a matched filter approach which yet incorporates a virtual
3D environment in the control loop. Although a lot of work
has been done on a simulation level or involving simulation
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tools, further robotic applications with EMDs considering
closed-loop velocity control are still to be investigated under
real-world scenarios.

In this paper, a quadrotor system with bioinspired visual
sensor is described. The novel image processing methods and
the control laws are implemented in real-time experiments.
The yaw rate control is totally based on the visual feedback
of the on-board camera. The reference velocity value is
provided by the on-board inertial measurement unit (IMU).
For a 6-DOF (degrees of freedom) flying robot control, a
tracking system of multicamera configuration is also utilized
to achieve the altitude and attitude stabilization near hover.
Due to the noise in real-world, the velocity estimation tasks
would be more challenging. In this work, the approach
of building an empirical lookup table from open-loop test
results is introduced for this task. The Reichardt motion
detector is modified which describes, at an algorithmic level,
the process of local motion detection in flying behaviors.
Certain patterns of receptive fields, which respond to
particular optic flow, are utilized to estimate the global
ego-motion through the environment. Another main issue
which needs to be tackled carefully in this work is that the
flying robot should be well stabilized during hovering. By
multicamera tracking, the absolute position as well as the
pose is determined from the positions of four on-board
markers.

The remainder of this paper is organized as follows: in
Section 2, we firstly introduce the bioinspired visual image
processing methods used in this work. In Section 3, the 3D
pose estimation using visual tracking system is described.
The control strategy of the system as well as the software
structure of algorithms is presented in Section 4. Then in
Section 5, an overview of the whole experimental platform is
illustrated. The control performance is also evaluated based
on the experimental results in this section. Conclusions are
given in Section 6, with directions on future works.

2. Bioinspired Image Processing
In this section, we introduce the essential part of this
work: using biological models for yaw rate estimation of a
quadrotor. The EMDs are utilized for this task. The whole
methodology is introduced in detail. To achieve the yaw
rate control, the system also requires accurate visual tracking
for pose stabilization (Section 3) and efficient controllers
(Section 4).

In an insect’s perspective, motion information has to be
computed from the changing retinal images by the nervous
system [15]. For engineering applications, some properties of
the biological visual system are converted into computational
algorithms.

The elaborated EMD model used in this work is a
modified model of the famous Reichardt motion detector
[16]. The original Reichardt motion detector (Figure 1(a))
has only low-pass filters and two correlations. In this work,
a temporal high-pass filter is added before the low-pass filter
to obtain a simple response to step edges [17] (Figure 1(b)).
The high-pass filters and low-pass filters in this model are all
designed to be of first order.

In [12], a mathematical analysis of the original Reichardt
motion detector is given regarding the response to different
images (sinusoidal gratings as well as natural images). With-
out loss of generality, we firstly consider the response of this
modified model to a moving natural image (which possesses
energy at all spatial frequencies). Similar to the response
of the simplified model [12], for this modified model, the
output is

R =
∫∞

0

2πτL fsv sin
(
2π fsΔφ

)
1 + (τL/τH)2 +

(
1/2π fsvτH

)2 +
(
2π fsvτL

)2 P
(
fs
)
dfs,

(1)

where Δφ is the angular displacement between the two vision
sensors, fs is the spatial frequency of the image input to the
detector, v stands for the velocity of the moving image, τL
and τH are the time constants of the low- and high-pass
filters, respectively, and P( fs) represents the power spectral
density. So according to (1), the local motion information is
calculated.

To obtain a global ego-motion estimation, certain recep-
tive fields of the motion-sensitive widefield neurons in the
fly brain are applied. Considering the specified experimental
scenario in this work, two novel templates of receptive
fields for rotation detection are utilized (Figure 2), which are
proposed in [17].

The algorithms for calculating the rotation global
response can be described as (image size: length×width; RH :
response of local horizontal motion; RV : response of local
vertical motion):

Horizontal rotation =
width/2∑
i=1

length∑
j=1

RH −
width∑

i=width/2+1

length∑
j=1

RH ,

Vertical rotation =
width∑
i=1

length/2∑
j=1

RV −
width∑
i=1

length∑
j=length/2+1

RV .

(2)

Now we examine the feasibility of using this model
for velocity estimation tasks. In [12], two criteria are
quantified for an accurate velocity estimation system: (1)
image motion at a fixed velocity should always have
approximately response; (2) at a given velocity, the response
to motion should be unambiguous over certain range. In
simulation, we find that by introducing this modified model,
the response to a specific velocity of image motion can
meet the two basic requirements at low velocities (above
which the response output is ambiguous). Thus, for velocity
estimation tasks, the motion velocity should be limited
in a certain range due to essential property (bell-shaped
response) of the Reichardt model. In order to reduce the
brightness sensitivity, logarithmic transformation could be
also applied (as the modified model in [17]). However,
by doing this the discrimination of response is also highly
reduced. That means, the response at a given velocity cannot
differ significantly from the response at other velocities,
which is not appropriate for quantifying velocity. Moreover,
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Figure 1: The simple Reichardt motion detector (a) and the elaborated EMD model (b). A and B are two visual signal inputs. The moving
luminance signal is observed by this pair of visual sensors (such as the ommatidia of a fruit fly). The detector compares visual sensor inputs
and generates a direction sensitive response R corresponding to the visual motion. D: delay block. Here it refers to low-pass filter; HP:
High-pass filter; M: multiplication.
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Figure 2: Rotation templates: horizontal (a) and vertical (b). The response of horizontal rotation is calculated by subtracting the upper part
and lower part of the template of receptive fields, while the vertical rotation is detected by the difference between left part and right part of
the global optical flow.

regarding the brightness sensitivity problem, a stable lighting
condition is demanded in real-time experiments.

We firstly examine the open-loop characteristics of
the system only for yaw rate estimation. The quadrotor
is tethered in the air, with an on-board camera looking
directly to the ground texture (the complete system is
further introduced in Section 5). This scenario in the indoor
environment involves a black-white chessboard ground
texture. It is considered to be the most suitable scenario for
detecting rotation motion of a flying robot. Compared to
other forms of textures, the high image contrast can also
help to improve the discrimination for quantifying velocity
(due to the characteristics of the biological model itself). The
quadrotor is rotated on horizontal level without control, and
we can get the relationship between the response output and

the rotation velocity (yaw rate). A lookup table is then built.
Due to the system noise and discrimination limitations of
the experiments, the curve has some nonmonotonic regions.
The polynomial minimum quadric method is used to fit
the curve, (where di is a residual which is defined as the
difference between the predicted value yi and the actual value
f (xi)):

n∑
i=1

d2
i =

n∑
i=1

[
yi − f (xi)

]2 = minimum. (3)

The experimental results of the open-loop characteristics are
shown and further discussed in Section 5.
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Figure 3: Quadrotor dynamics. (a) the overhead view of a quadrotor; (b) six degrees of freedom of the flying robot.
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3. Multicamera 3D Pose Estimation

Quadrotor is an underactuated vehicle. The 6 DOFs of
the quadrotor are controlled by four motor inputs (pitch,
roll, thrust, and yaw) by varying the lift forces and the
torque balance through changing the rotating speed of the
rotors (see Figure 3(a)). Yaw control is realized by tuning
the differential speed between the two counterrotating rotor
pairs. Increasing the rotating speed of all the four motors
at the same amount will cause an upward movement of the
quadrotor. When tuning the differential speed between the
two motors of either single rotor pair, the quadrotor will fly
sideways.

The work in this section is based on the former related
work in [18]. In this work, we set up an indoor GPS system
by using multicamera tracking instead of the former two-
camera tracking. By tracking the four markers installed on

the axis of the quadrotor, the 3D position as well as the pose
of the flying robot can be estimated. The experimental setup
of 3D tracking is further introduced in Section 5. The frame
of quadrotor dynamics is the same as the in Figure 3(b). We
have the following definition:

Marker i position vector: Si = (xi, yi, zi)
T (i = 1, 2, 3, 4).

Central point vector between two nonadjacent markers:
Mj = (xMj , yMj , zMj )

T ( j = 1, 2);
Estimated central point vector of the quadrotor: Mq =

(xM , yM , zM)T ;
Orientation of marker i: Vi = (xVi , yVi , zVi)

T (i = 1, 2,
3, 4);

The counting of the markers is clockwise, while the
first marker is on the main axis. For 3D pose control, the
central point should be used as the reference position of
the quadrotor. The central points of the distance between
marker 1 and marker 3 as well as between marker 2 and
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marker 4 are M1 = (1/2)(S1 + S3) and M2 = (1/2)(S2 + S4).
In consequence of the marker’s noise through the tracking
system, the two central points in the two equations above
are not identical. Thus, the central point of the quadrotor is
Mq = (1/2)(M1 +M2). The vectors between the central point
and marker 1 for pitch as well as between the central point
and marker 2 for roll are Vi = Si −Mq (i = 1, 2). The values
of pitch θ, roll φ, and yaw ψ angles can be then calculated,
and thus the 3D pose of the quadrotor can be estimated:

θ = sgn
(
zv1

)
arccos

⎛
⎝

√
xv1

2 + yv1
2

√
xv1

2 + yv1
2 + zv1

2

⎞
⎠, (4)

φ = sgn
(
zv2

)
arccos

⎛
⎝

√
xv2

2 + yv2
2

√
xv2

2 + yv2
2 + zv2

2

⎞
⎠, (5)

ψ = −sgn
(
yv1

)
arccos

⎛
⎝ xv1√

xv1
2 + yv2

2

⎞
⎠. (6)

4. Controller

At first the quadrotor should be regulated to hover in the
air on horizontal plane with little shaking. That means, the
stable state commands (usp for pitch, usr for roll, usy for yaw,
and ust for thrust) should be adjusted firstly. Basing on these
parameters, the control commands can be calculated next.
For each controller, we have an output value (u

q
p for pitch,

u
q
r for roll, u

q
y for yaw, and u

q
t for thrust) between −1 and

1, which is then added with the corresponding stable state
command. Since we only consider the rotation movement in
this experiment, which means, the quadrotor is not always
heading with the main axis towards X direction, the pitch

and roll commands should be adjusted in the ψ direction
with a rotation matrix:

⎛
⎜⎜⎜⎜⎜⎜⎝

up

ur

ut

uy

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎡
⎢⎢⎢⎢⎢⎢⎣

cosψ − sinψ 0 0

sinψ cosψ 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

u
q
p

u
q
r

u
q
t

u
q
y

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

usp

usr

ust

usy

⎞
⎟⎟⎟⎟⎟⎟⎠
. (7)

We choose proportional-integral (PI) controller for the
yaw rate control. The pitch, roll, and thrust commands are
controlled by proportional-integral-derivative (PID) con-
trollers:

u
q
y = kPy

(
ψ̇0 − ψ̇

)
+ kIy

∫ (
ψ̇0 − ψ̇

)
dt,

u
q
p = kPp(θ0 − θ) + kIp

∫
(θ0 − θ)dt + kDp

d

dt
(θ0 − θ),

u
q
r = kPr

(
φ0 − φ

)
+ kIr

∫ (
φ0 − φ

)
dt + kDr

d

dt

(
φ0 − φ

)
,

u
q
t = kPt (z0 − z) + kIt

∫
(z0 − z)dt + kDt

d

dt
(z0 − z).

(8)

In this experiment, the reference values θ0 and φ0 are set
to zero. The desired altitude z0 is 0.35 m near hover. The
measured values θ and φ are calculated from the received
data of the visual multicamera tracking system using (4)
and (5), whereas ψ̇ is searched out from a certain empirical
lookup table using the response value, which is calculated by
insect-inspired motion detectors. The yaw velocity can also
be obtained from (6) by time derivative, which is, for the
heading stabilization, used as a reference (ground truth). The
closed-loop results will be shown and further discussed in
Section 5.
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Figure 6: (a) lookup Table (LUT) in this work. This empirical LUT
shows the relationship between yaw rate (in low speed) and visual
response under the experimental environment; (b) open-loop
characteristics for rotation motion near hover (without control).

The main loop in the whole software architecture (Figure
4) consists of two simultaneous processes: yaw rate control
using on-board camera visual feedback and X , Y , and Z
position/poses control using visual tracking system. A graph-
ical user interface (GUI) is developed basing on Qt cross-
platform application, which provides data visualization (e.g.,
3D trajectory of the quadrotor, battery voltage and sensory
data information), commands input and real-time online
configuration of control parameters.

5. Experiments and Results

5.1. Experimental Setup. The whole experimental platform is
shown in Figure 5. It mainly consists of a quadrotor testbed,
off-board workstation, and video camera tracking system.

(1) Quadrotor. The miniquadrotor used in this work is a
“Hummingbird” with an “AutoPilot” central control board
from ascending technologies. It offers a 1 kHz control
frequency and motor update rate, which guarantees fast
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Figure 7: Heading stabilization.

response to changes in the environment. The size of the
whole quadrotor testbed is 36.5 cm in diameter, and the
four rotors (each with a propeller size of 19.8 cm) are
directly driven by four high-torque DC brushless motors
respectively. Powered by a state-of-the-art 3-cell 2100mAh
lithium-polymer battery, the vehicle is able to hover up to
15 minutes (with about 120 g of payload in this work).

(2) On-Board Camera. Considering the limited payloads of
the quadrotor, the PointGrey Firefly MV CMOS camera
which has a light weight (14 g) and a tiny size (25 mm ×
40 mm) is selected as the on-board camera. We choose a
standard resolution of 640 × 480 (pixels), and the frame rate
is 60 Hz. The camera is equipped with a 6 mm microlens,
providing a viewing angle of 56 deg and 38 deg in the
length and width directions, respectively. It uses a 5-pin USB
2.0 digital interface with a 480 Mb/s transfer rate and 8-
bit raw Bayer data format (connected through IEEE 1394
to workstation). The camera is mounted under the base
board of the quadrotor, looking directly down to the ground
texture.

(3) Workstation and Communication Module. An off-board
Linux PC (AMD Athlon 5200+; 2 GB RAM) is used for image
data processing, 3D pose estimation and control law execu-
tion in this case. The quadrotor is equipped with XBeePro
wireless communication module from MaxStream/Digi,
which enables the data transmission from the on-board
inertial measurement unit (IMU) and the control command
reception (with R/C transmitter enabled) from workstation
at a rate of 100 Hz.

(4) Visual Tracking System and Marker Placement. The track-
ing system VisualeyezII VZ4000 from Phoenix Technologies
Incorporated is used to get the absolute position of the
quadrotor. It has three cameras inside which can capture the
certain markers installed on the four axes of the quadrotor
in an accuracy of millimeter level. In this work, the tracking
system is installed on the ceiling of the lab (Figure 5).
The software VZSoft is installed in another Windows PC
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Figure 8: 3D position measurements when the quadrotor is in stabilized hover ((a), (b), and (c) for X , Y , and Z positions, resp.). The 3D
position is stabilized by multicamera tracking system exclusively. The X and Y positions are set to zero, which means the on-board camera
is heading directly to the central point of the ground texture as well as the origin of world reference coordinate. The altitude (Z position) is
set to 0.35 m.

(AMD Athlon XP 3000+; 2.1 GHz). It gets the data from
the tracking system through a COM interface. The data will
be then sent to the workstation with the interface Babelfish
which is developed by the Institute of Autonomic Control
Engineering, Technical University Munich, using Internet
Communications Engine (ICE).

5.2. Velocity Estimation. To validate the designed templates
of receptive fields for rotation detection, the bioinspired
image processing algorithm is implemented with C++
language using Open CV.

Under low velocities and within certain altitude range,
the response can be regarded as monotonic and near linear
from the test results. In this work, the yaw rate is under
100 deg/s and the altitude value is set to 0.35 m. The lookup
table is shown in Figure 6(a), with a polynomial curve fitting.
From the comparison in Figure 6(b), this approach provides

a fairly accurate yaw rate estimation (the mean error is
1.85 deg/s and the standard deviation of error is 10.22 deg/s).
This lookup table could be then used in the closed-loop
control under the same light condition.

5.3. Heading Stabilization. In this experiment, we compare
the heading control performance using EMD with those
using IMU or tracking system respectively. At first the
stable commands (usp, usr , u

s
y , and ust) should be determined

experimentally, so that without any controllers off board, the
quadrotor can be hovering in the air nearly on a horizontal
level and rotating as little as possible, with all the payloads
mounted (in this experiment, with on-board bread board
for tracking system using TCM8 mode, and with cable
power supply instead of battery). The X , Y , and Z positions
should be further controlled using the feedback from the
tracking system, while the yaw position has no controllers
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Figure 9: Attitude measurements of the flying robot near hover with yaw-rotation (a): yaw rate control. After takeoff, the quadrotor is
switched to a desired yaw rate of 30 deg/s; (b) and (c): pitch and roll angles of the quadrotor.

except the on-board IMU at the first attempt. The IMU
controller is already integrated on the base board so that no
other off-board controller is needed for IMU controlling. A
major disadvantage of using IMUs for navigation is that they
typically suffer from accumulated error (see Figure 7 blue
curve). In this case, in about 20 seconds the yaw position will
deviate by 30 degrees if only IMU is used for the heading
stabilization. The second reference is the yaw position with
the control using tracking system, but without using EMD
(the red curve in Figure 7). In Figure 8, the 3D position
when using EMD for heading stabilization is shown. By using
tracking system and EMDs (the green curve in Figure 7) a
satisfying performance could be both achieved. Despite some
deviation (for tracking system maximal ±5 degrees and for
EMD maximal ±7 degrees), the quadrotor can hover very
well with straight heading direction.

5.4. Yaw Rate Control. The next step is to achieve the velocity
control using EMDs. The yaw rate should be set in a low-
speed area considering a monotonic relationship between
response and velocity. In this case, the desired velocity is 30
degrees/s. The results are shown in Figure 9(a). The settling
time is about 4 seconds and the maximal error is about ±10
degrees/s. The inflight performance of 3D pose is shown
in Figures 9(b) and 9(c). Since the IMU provides only the
angular velocity values, the angle positions are integrated by
the base control board on the quadrotor in order to get the
angle positions, which are sent to the central workstation.

For velocity estimation, although the EMD is not a
pure velocity detector, a closed-loop control of yaw rate
is achieved with restrictions of the structured environment
and the limitation of velocity in low-speed area. Including
image translation delay through IEEE1394/USB cable, image
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processing by CPU costs 10–20 ms (the program takes nearly
10 ms to wait for images from the camera, while the actual
computing time is only several milliseconds). So the EMD
computing is extremely fast, which provides an evidence of
the efficiency when using biological models.

6. Conclusions and Future Works

In this work, the closed-loop control of a flying robot is
achieved by using bioinspired image processing method,
which proves to be an effective approach with low computa-
tional cost. For real-time implementation, the experimental
results of heading stabilization show that, by using EMD
response as a feedback, the accumulating drift from the
on-board IMU is compensated. Another trial regarding the
EMDs as a velocity sensor has realized a low-speed control
of the yaw rate on the quadrotor in real-world scenario. In
the future, all the 6 DOFs should be controlled by using
bioinspired image processing exclusively, without relying on
any off-board visual sensors or GPS. The absolute position
should be determined by certain advanced algorithms.
For the future works, some efforts should be put in the
development of novel approaches for highly robust flying
performance.
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