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Abstract

We give a complete analytical proof of existence and uniqueness
of extreme-like black hole initial data for Einstein equations, which
possess a cilindrical end, analogous to extreme Kerr, extreme Reiss-
ner Nördstrom, and extreme Bowen-York’s initial data. This extends
and refines a previous result [8] to a general case of conformally flat,
maximal initial data with angular momentum, linear momentum and
matter.

1 Introduction

Extreme black holes (i.e, black holes with maximum amount of angular
momentum and electric charge per unit mass) have received increased
attention during the last few years due to a number of reasons. Ex-
treme solutions are good candidates to be used in getting insights
concerning Penrose cosmic censorship hypothesis [3], because they lie
on the frontier between black holes and naked singularities. For ex-
ample, extreme Kerr black hole appears as a unique global minimum
of the total mass, a property used to prove the inequality between
mass and angular momentum [6] which provides evidences in favor of
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cosmic censorship. In addition, it has been suggested, both by ob-
servations [18] and numerical calculations [10] that black holes with
large amounts of spin, play a dominant role in determining the high
recoil velocities of black hole binaries. This important results came
at a time when there was a diversity of positions regarding the very
existence of nearly extreme black holes (see [19] and references therein
for discussions on this subject). Some models [22], stating that under
the combined effects of accretion and binary coalescences, the spin
distribution is heavily skewed towards fast rotating holes, confronted
with other models of black hole accretion not leading to large spins
[4], [12].

Extreme black hole initial data are also interesting from the ge-
ometric point of view, since they present an asymptotically cylindri-
cal end. Data with one cylindrical end have been much used in nu-
merical evolutions, where they are known as trumpet data (see [15],
[19], [16], [14] and references therein). It has been noticed that when
compactified wormholes are evolved using the standard moving punc-
ture method, the slices lose contact with the extra asymptotically flat
wormhole end, and quickly asymptote to cylinders of finite areal ra-
dius. It was also seen that maximally sliced data with this cylindrical
topology are indeed time independent in a moving puncture simula-
tion.

In this work we continue the analytical study of extreme black
hole initial data started in [8], where the existence of extreme initial
data built from the Bowen-York family of spinning black hole data
was proven. It was shown that the non-extreme solutions constitute a
monoparametric family (for fixed angular momentum) of initial data,
which were called uµ for each positive value of the parameter µ. Then
the µ → 0 limit solution was identified as the extreme one, due to its
similarities with extreme Kerr and Reissner Nördstrom analogues.

In this respect, what we want to show here is that the same phe-
nomena occur in a wider class of black holes initial data, more especif-
ically, in conformally flat, maximal initial data, without currents on
the initial hypersurface, indicating that an extreme solution exists for
each family of black hole initial data under the above hypotheses, and
suggesting that the cylindrical character of one of the asymptotic ends
is a general property among extreme black holes.

We remark that not only we deal with a richer class of initial
data, but we also prove that the extreme solution is unique in the
appropriate functional space, a key point lacking in [8] for the simpler
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case of a spinning Bowen-York black hole. In addition, the proof of
uniqueness will refine the singular behavior of the extreme solution
near the origin.

The paper is organized as follows. First, in section 2 we present
the problem and equations involved, and state our main result. We
also discuss the more relevant geometric and physical features of the
extreme initial data obtained. In section 3 we prove existence of this
initial data through a limiting procedure and finally, in section 4 we
prove that it is unique in the appropriate functional space.

2 Settings and Main Result

An initial data set for Einstein equations [2] consists of a Riemannian
metric ḡ and a symmetric 2-tensor field K̄ on a three dimensional
manifold M . These data must satisfy Einstein constraints, linking the
metric ḡ on M with the extrinsic curvature K̄ of M when seen as a
submanifold imbedded in the spacetime. As equations on M , these
constraints read

R(ḡ)− K̄ · K̄ + (trK̄)2 = 16πρ̄ (1)

∇̄ · K̄ − ∇̄trK̄ = 8πj̄ (2)

where all derivatives and dot products are computed with respect to
ḡ, R(ḡ) is the Ricci scalar associated to ḡ, ρ̄ is the energy density and
j̄, the currents on M .

The method we will use to treat these constraints is the conformal
method, which allows us to turn the hamiltonian constraint (1) into
an elliptic equation for a scalar function Φ by considering the metric
ḡ as given up to a conformal factor.

We will only consider maximal surfaces M (that is, hypersurfaces
such that the extrinsic curvature has vanishing trace) with no currents,
and which are conformally flat. Because of the conformal invariance of
the momentum constraint (2), we end up with the task of specifying
a traceless and divergence-less tensor field K on M and the energy
density of sources on the slice, ρ. Then, we just need to solve the
constraints for Φ. The (physical) initial data will be given by

ḡij = Φ4δij (3)

K̄ij = Φ−2Kij (4)
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where δ is the 3-euclidean metric, and Φ satisfies Lichnerowicz equa-
tion

∆Φ = − K2

8Φ7
− 2πρ

Φ3
:= F (x,Φ) in M. (5)

In this equation, all derivatives and dot products are referred to the
flat metric in R

3 and the scaled sources are

ρ = ρ̄Φ8. (6)

This scaling includes, for instance, generic fluid sources with no inde-
pendent field equations, electromagnetic sources and Yang-Mills fields
[5].

We also set M = R
3 \ {0}, with spherical coordinates r, θ, φ, im-

pose the energy condition ρ ≥ 0 and asymptotic flatness, both at
infinity and at the origin. This last requirement is accomplished by
defining a new function uµ in all R3, introducing a new positive pa-
rameter µ through the expression

Φ := Φµ = 1 +
µ

2r
+ uµ µ > 0 (7)

and demanding uµ to go to zero at infinity and to be well defined at
the origin.

The corresponding equation for uµ is

∆uµ = − K2

8
(

1 + µ
2r + uµ

)7
− 2πρ
(

1 + µ
2r + uµ

)3
= F (x,Φµ) in R3. (8)

In [7] it has been proven that any smooth, traceless solution of
∇ ·K = 0 in R

3 \ {0} is of the form

K = KP +KJ +KA +KG +Kλ (9)

where the first four terms on the right hand side are given by

Kab
G =

3

2r4

(

−Ganb −Gbna − (δab − 5nanb)Gcnc

)

(10)

Kab
J =

3

r3

(

naǫbcdJcnd + nbǫacdJcnd

)

(11)

Kab
A =

A

r3

(

3nanb − δab
)

(12)

Kab
P =

3

2r2

(

P anb + P bna − (δab − nanb)P cnc

)

. (13)
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In these expressions, A ≥ 0 is a constant, Ja is the angular momentum
of the data, P a is its linear momentum at infinity, and Ga, the linear
momentum at the origin. The last term, Kλ is a symmetric 2-tensor
depending on a scalar function λ and can be made smooth or smooth
with compact support by suitable choices of λ in the form λ = λ1+

λ2
r

with λ1 and λ2 C∞ functions in R
3 (see theorem 4.3 of [7]). Since

Kλ can be completely controlled through appropriate forms for λ, in
what follows, we will omit this term in all calculations. Moreover, we
will restrict attention to the case in which G ≡ 0, that is, 2-tensors
having the form

K = KP +KJ +KA. (14)

Note that in the previous work [8], it has only been considered the
case K = KJ (spinning Bowen-York black hole’s initial data), and no
matter.

For later use, it is convenient to write here the explicit form of K2

K2 = 6
A2 + 3J2 sin2 θ

r6
+

12AP ana + 18ǫabcn
aP bJc

r5
+

+
9(P 2 + 2(P ana)

2)

2r4
(15)

where na := xa/r is the radial unit vector, xa are Cartesian coordi-
nates on R

3, and we have oriented our coordinate axes so that Ja lies
along the z direction.

In what follows, we also assume that the energy density ρ has
an appropriate fall off behavior at both ends (see [20] where matter
requirements are discussed in the context of the finiteness of the total
mass) by defining a bounded, non-negative, regular function σ on R

3

such that ρ has the form

ρ =
σ

8πr4
. (16)

Under the hypothesis assumed on matter and K, equation (8) is reg-
ular in R

3, when µ > 0, and there exists a unique positive C1(R3)
solution uµ for each µ > 0. Since we want to investigate the limit
µ → 0, we define the extreme solution u0 as the solution to the singu-
lar equation

∆u = − K2

8(1 + u)7
− 2πρ

(1 + u)3
(17)

which will be constructed as the limit

u0 := lim
µ→0

uµ (18)
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in the sequence of solutions to the non-extreme equations (8). Note
that equation (17) is obtained from (8) if we set µ = 0. We will find
that this singular limit indeed exists, that it is the unique solution
to (17), and that it has some properties similar to the more familiar
cases of extreme Kerr and extreme Reissner Nördstrom solutions.

As mentioned in [8], the natural functional spaces arising in this
problem are weighted Sobolev spaces H ′2

δ [1]. In these spaces is where
existence and uniqueness of solution is proven. They are defined as
the completion of C∞ functions with compact support away from the
origin under the norms (we focus on the case p = 2 and dimension 3)

‖f‖L′2
δ
=

(

∫

R3\{0}
|f |2r−2δ−3dx

)1/2

, (19)

and

‖f‖H′2
δ
:=

2
∑

0

‖Djf‖L′2
δ−j

. (20)

The advantage of using these spaces is that they deal with weights
both at infinity and at the origin, and therefore they include functions
with certain fall-off properties at infinity and which are divergent at
r = 0. Since our main functions will be singular at the origin, we can
not use standard H2 or H2

δ Sobolev spaces (see [1] for more details
and properties of all these spaces). In particular, it is important to
remark that if a function f ∈ H

′2
δ then f = o(rδ) at infinity and at

the origin (see [9] for the proof).
We use these spaces in the statement of our main result:

Theorem 2.1. Let J , A and P be non negative constants with J or
A different from zero, K be given by (14), and ρ satisfy (16). Then,
there exists a unique solution u0 ∈ H ′2

δ , δ ∈ (−1,−1/2) of equation
(17) such that u0 is C∞ in R

3 \ {0}, and it can be written as

u0(x) =
V (θ, φ)√
r(1 + b

√
r)

+ U(x) (21)

where V ∈ C∞(S2) is a positive function depending only on J and A,
b is a positive, fixed constant, possibly depending on A, J and P , and
U ∈ H ′2

−1/2 is o(r−1/2) near the origin.
Moreover, we have that u0 is the limit of the sequence

lim
µ→0

uµ = u0, (22)
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in the norm H ′2
δ .

Before getting into the proof, let us discuss the main issues this
theorem exposes.

This result proves the existence of an extreme, non vacuum, confor-
mally flat initial data family, parametrized by the angular momentum
J of the data, its linear momentum P and the constant A. We remark
that we do not require both A and J to be non zero, but only assume
one of them is non vanishing. The very well known extreme Reissner
Nördstrom data is included in this family by setting J = A = P ≡ 0
and σ = q2 where q is the electric charge on the slice. It also includes
extreme spinning Bowen-York data ([8]) by setting A = P = σ ≡ 0
and non zero angular momentum, and also a particular foliation of
Schwarzschild’s black hole (see [15]) when P = J = σ ≡ 0. On the
other hand, This theorem does not include Kerr’s initial data, since it
has been proven [21] that there exists no foliation of Kerr spacetime
(including extreme Kerr) being conformally flat.

The main feature we observe by performing this limiting procedure
is the change in the global structure of the initial data. The asymptotic
geometry moves from having two asymptotically flat ends, to having
one asymptotically flat end and one cylindrical end. This property is,
of course translated into special properties in the physical 3-metric ḡ,
which shows an asymptotic cylindrical nature at the origin and the
usual fall-off as r → ∞.

Note that u0 ∈ H ′2
δ implies that the limit function is a strong

solution of equation (17) also at the origin. The first term in the
decomposition (21) completely determines the asymptotic geometry
of the end at r = 0, while the fact that U ∈ H ′2

−1/2 implies that this

function is o(r−1/2) at r → 0 and thereby does not contribute to this
feature. The behavior O(r−1/2) of the first term in (21) near the origin
is responsible for the cylindrical nature of the end, since the physical
metric has the asymptotic form

ḡij ≈
V (θ, φ)

r2
δij as r → 0 (23)

and therefore it especifies its limiting sectional area A0 through the
expression

A0 := lim
r→0

Ar = lim
r→0

∮

Br

Φ4
0r

2 sin θdθdφ =

∫ π

0

∫

2π

0

V 4 sin θdθdφ,

(24)
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where Br is a ball of radius r centered at the origin and Ar its area.
Since V is a strictly positive, bounded function on S2, this area is finite
and different from zero. Clearly, in the non extreme case (µ > 0), Φµ =
O(r−1) as r → 0 (see equation (7)), and therefore A0 → ∞ showing
that the origin is an asymptotically flat end. As it was mentioned
in [8], the same phenomenon occurs as we take the extreme limit in
Reissner Nördstrom, Kerr and spinning Bowen-York initial data.

Moreover, in the extreme case studied here, due to the equation
satisfied by the function V (see below, equation (56)), this area is
parametrized by the angular momentum, the constant A and possibly
matter, while the linear momentum does not play any rol in this end
(note also, from equations (11), (12) and (13), thatKA andKJ diverge
as r−3 near the origin, while KP does as r−2).

The proof of this theorem will be divided in two parts, an existence
proof, in section 3 and a uniqueness proof, presented in section 4.

3 Existence

The plan of the existence proof is as follows: We first prove that the
sequence uµ is pointwise monotonically increasing as µ decreases (Sec-
tion 3.1). Then, we show that there exists a function u+

0
, independent

of µ, which is an upper bound to this sequence for all µ (Section 3.2).
From this upper bound we construct a lower bound u−

0
. Finally, we

prove convergence in the appropriate functional space (Section 3.3).
Due to the similarity of the equations involved, this existence proof

follows along the lines presented in [8] for the Bowen-York spinning
case, therefore, we omit here some points and refer the reader to [8]
for more details about the arguments employed.

3.1 Monotonicity

We first show that if µ1 ≥ µ2 > 0 then uµ1(x) ≤ uµ2(x) for all x ∈ R
3.

Define w by
w(x) = uµ2(x)− uµ1(x), (25)

then using equation (8) and the nondecreasing property of the function
F defined in (5), we obtain that w satisfies

∆w − wH =
µ2 − µ1

2r
H, (26)
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where H = H(Φ2,Φ1) = H(Φ1,Φ2) is a non negative function given
by

H(Φ2,Φ1) =
K2

8

6
∑

i=0

Φi−7

1
Φ−1−i
2

+ 2πρ

2
∑

i=0

Φi−3

1
Φ−1−i
2

. (27)

Since uµ ≥ 0 for µ > 0, we have the bound H(Φ1,Φ2) ≤ H(1+ µ1

r , 1+
µ2

r ) which is finite for all x ∈ R
3 when µ1, µ2 > 0.

Since H ≥ 0 and by hypothesis we have µ2−µ1 ≤ 0, then the right
hand side of (26) is negative. We also have that w → 0 as r → ∞,
hence, we can apply the Maximum Principle for the Laplace operator
to conclude that w ≥ 0 in R

3. We emphasize that this theorem can
be applied because H is bounded in R

3 when µ1, µ2 > 0 .
Remarkably, the sequence Φµ has the opposite behavior as the

sequence uµ, namely Φµ is pointwise increasing with respect to µ.
This can be proven using the Maximum Principle and the fact that
uµ is bounded at the origin, whereas µ/2r is not (see Lemma 3.2 in
[8] for the complete proof in a similar situation).

3.2 Bounds

Lemma 3.1. (Upper bound) Let Q be a positive constant such that

Q2 ≥ σ + 7P 2 + 3A+ 9J. (28)

Then for all µ > 0 we have

uµ(x) ≤ u+µ (x) < u+
0
(x), (29)

where

u+µ =

√

1 +
M

r
+

µ2

4r2
− 1− µ

2r
, M :=

√

Q2 + µ2 (30)

and

u+
0
=

√

1 +
Q

r
− 1. (31)

Proof. In order to prove the first inequality of (29), we compute from
(30)

I := ∆u+µ − F (x, u+µ ) = − Q2

4r4
(

Φ+
µ

)3
+

K2

8(Φ+
µ )7

+
σ

4r4(Φ+
µ )3

(32)
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where Φ+
µ := 1 + µ/2r + u+µ is Reissner Nördstrom conformal factor

for the usual foliation t =const, and r, the isotropical radius. Now,
assuming that condition (28) holds, we write

I ≤ 1

4r4(Φ+
µ )3

(

K2r4

2(Φ+
µ )4

− (7P 2 + 3A+ 9J)

)

. (33)

Next, we use Φ+
µ ≥ Φ+

0
=
√

1 +Q/r and the following bound for K2

K2 ≤ 6A2 + 18J2

r6
+

12AP + 18PJ

r5
+

27P 2

2r4
(34)

to find I ≤ 0, which implies

∆u+µ ≤ F (x, u+µ ). (35)

Now, we define the difference w = u+µ − uµ, and using equation (8)
and (35) we obtain

∆w − wH(Φ+
µ ,Φµ) ≤ 0. (36)

Note that the function w is not C2 at the origin because u+µ is not C2

(and in general, uµ is neither), and hence it does not satisfy inequality
(36) in the classical sense at the origin. However, we have w ∈ H1

loc

(in fact w is C1) and then it satisfies (36) in the weak sense also at the
origin. We also have that w goes to zero as r → ∞. Hence, we can
apply the Maximum Principle to conclude that w ≥ 0, i.e u+µ ≥ uµ.

Finally, inequality u+µ < u+
0
for µ > 0 can be checked directly from

the explicit expressions (30)-(31).

Lemma 3.2. (Lower bound) Let u−µ with µ ≥ 0 be the solution to the
linear equation

∆u−µ = − K2

8(Φ+
µ )7

. (37)

We have that for all µ > 0

u−µ (x) ≤ uµ(x) (38)

and
Φ−
µ (x) ≥ Φ−

0
(x), where Φ−

µ := 1 +
µ

2r
+ u−µ . (39)

In addition,
u−
0
= O(r−1/2) as r → 0. (40)
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Proof. The solution u−µ for all µ ≥ 0 can be explicitly constructed
using the fundamental solution of the Laplace operator. From the
standard elliptic estimates we deduce that u−µ ∈ C2,α(R3) for µ > 0.

Let us prove inequality (38). As usual we take the difference w =
uµ − u−µ , then we have

∆w = F (x,Φµ)− F (x,Φ+
µ ) = (uµ − u+µ )H(Φµ,Φ

+
µ ). (41)

Since uµ − u+µ ≤ 0 by lemma 3.1 and H ≥ 0, we obtain ∆w ≤ 0,
with w → 0 at infinity, thereby, the maximum principle gives w =
uµ − u−µ ≥ 0.

Inequality (39) can be verified using Lemma 3.2. of [8], or by
explicit means.

Finally, in order to check the fall off behavior of the lower bound
u−
0
which satisfies

∆u−
0
= − K2

8(Φ+
0
)7

(42)

we write it as

u−
0
=

V −

√
r(1 + b

√
r)

+ U−, (43)

where b is a positive, fixed constant,

V − =
3

Q7/2

(

A2 +
J2

25
(51− 3 sin2 θ)

)

≥ 3

Q7/2

(

A2 +
46

25
J2

)

> 0

(44)
and U− solves the remaining linear equation

∆U− = ∆

(

u−
0
− V −

√
r(1 + b

√
r)

)

:= ℓ(x). (45)

By an explicit calculation it can be seen that ℓ ∈ L
′2
−5/2, and since

the Laplace operator is an isomorphism ∆ : H
′2
−1/2 → L

′2
−5/2 (see

[1]) we find U− ∈ H
′2
−1/2. Therefore U− is o(r−1/2) near the origin,

and we have proven the fall off behavior of u−
0

in (40). We remark,
however, that U− can be found in explicit, closed form in terms of a
few spherical harmonics, although it is not necessary for our purposes
here.
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3.3 Convergence

In this section we prove that the sequence uµ is Cauchy in the norm
H ′2

δ for −1 < δ < −1/2, which translates into proving

lim
µ1,µ2→0

‖uµ1 − uµ2‖H′2
δ
= 0 (46)

Consider the sequence uµr
−δ−3/2 for −1 < δ < −1/2 . This se-

quence is pointwise bounded by u+
0
r−δ−3/2 and monotonically increas-

ing as the parameter µ goes to zero, which means that it is a.e. point-
wise converging to a function u0r

−δ−3/2. Then, since u+
0
r−δ−3/2 is

summable in R
3 for the given values of the weight δ, we find that the

new sequence converges in L2(R3). But this implies that the original
sequence uµ converges in L′2

δ , with δ ∈ (−1,−1/2). That is

lim
µ1,µ2→0

‖w‖L′2
δ
= 0, (47)

where w := uµ1 − uµ2 and for convenience we set µ1 ≥ µ2.
In order to prove that the sequence uµ is a Cauchy sequence also

in the weighted Sobolev space H ′2
δ with δ ∈ (−1,−1/2), we will apply

the following estimate (see [1])

‖w‖H′2
δ
≤ C‖∆w‖L′2

δ−2
, (48)

where the constant C depends only on δ.
From the equations satisfied by uµ1 and uµ2 we compute

‖∆w‖L′2
δ−2

=

∥

∥

∥

∥

Hw +H
µ2 − µ1

r

∥

∥

∥

∥

L′2
δ−2

(49)

≤ ‖Hw‖L′2
δ−2

+ (µ1 − µ2)

∥

∥

∥

∥

H

r

∥

∥

∥

∥

L′2
δ−2

. (50)

where H = H(Φµ1 ,Φµ2). From the definition of the norm L′2
δ given in

(19) we obtain
‖Hw‖L′2

δ−2
≤ sup

R3

|Hr2| ‖w‖L′2
δ
, (51)

and hence, using the explicit expression of H it can be seen that

H(Φµ1 ,Φµ2) ≤ H(Φ−
0
,Φ−

0
), (52)

and thereby Hr2 is bounded in R
3 and the norm of H/r is finite for

δ ∈ (−1,−1/2). Then, we can write

‖w‖H′2
δ
≤ C

(

‖w‖L′2
δ
+ (µ1 − µ2)

)

, (53)

12



where the constant C does not depend on µ. This and equation (47)
give

lim
µ1,µ2→0

‖w‖H′2
δ
= 0, (54)

showing that the sequence uµ is Cauchy in the H ′2
δ -norm, with δ ∈

(−1,−1/2).
In this manner we have completed the existence proof of solution

to (17) in the Sobolev space H
′2
δ .

4 Uniqueness

In this section we prove that the solution found above by the limit
procedure, u0 = limµ→0 uµ, is the unique solution to equation (17).

The strategy is the following. Given a solution u ∈ H
′2
δ of (17), we

first show that it can be uniquely decomposed as

u =
V√

r(1 + b
√
r)

+ U (55)

where V is a C∞ function on the 2-sphere S2 (Lemma 4.1), b is a
positive, fixed constant, possibly depending on A, J and P , and U ∈
H

′2
−1/2 is unique for a given solution u (Lemma 4.2). Then, we show

that if two such solutions u exist, they must be equal (Lema 4.3).
The decomposition (55), together with the associated equation for

V , needed in the uniqueness proof, were inspired by the work of Han-
nam, Husa and O’Murchadha [14], where they assume an expansion
of Φ0 valid near the origin in the form Φ0 = D(θ)/

√
r + O(

√
r) and

analyze a similar equation for vacuum, axisymmetric initial data and
for A 6= 0.

Let us deal first with V . Define V as the solution to

∆̃V − 1

4
V = −3A2 + 9J2 sin2 θ

4V 7
− σ0

4V 3
in S2 (56)

where σ0 := σ(r = 0, θ, φ) is a bounded smooth function and ∆̃ is the
Laplace-Beltrami operator on S2:

∆̃V :=
1

sin θ
∂θ(sin θ∂θV ) +

1

sin2 θ
∂2
φV. (57)

We write equation (56) as LV = g(V ) where

L := ∆̃− 1

4
, g(V ) := −3A2 + 9J2 sin2 θ

4V 7
− σ0

4V 3
. (58)
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and we obtain the following lemma:

Lemma 4.1. There exists a unique positive solution V ∈ C∞(S2) to
equation LV = g(V ), such that

c− ≤ V ≤ c+, c−, c+ positive constants (59)

Proof. We will find a sub and a supersolution, both positive C∞ func-
tions on S2 for equation LV = g(V ), so that the Sub-super solution
theorem [17] gives existence and uniqueness of solution to this equa-
tion.

Let us check that the constant c+ given by

c+ :=

(

2 sup
S2

(σ0) +
√

6A2 + 18J2

)1/4

(60)

is a supersolution for the operator L. Applying the operator L to c+
we have

Lc+ = −c+
4

= − c4+
8c3+

− c8+
8c7+

≤ − σ0
4c3+

− 3A2 + 9J2 sin2 θ

4c7+
= g(c+) (61)

which shows that c+ is a supersolution.
Now, let us check that the C∞ function v− defined by

v− =
3

c7+

(

A2 +
J2

25
(51− 3 sin2 θ)

)

>
3

c7+
(A2 + J2) := c− > 0 (62)

is a subsolution for equation LV = g(V ). Note that v− = V −Q7/2/c7+,
and V − was used in Lemma 3.2.

It can easily be checked that v− < c+, then we compute, using the
explicit expression (62)

Lv− = −3A2 + 9J2 sin2 θ

4c7+
≥ g(c+) ≥ g(v−) (63)

which shows that v− is indeed the desired subsolution.
Finally, using the Sub-Super solutions theorem [17], we find that

there exists a unique positive C∞(S2) solution V to equation (56)
satisfying

0 < c− ≤ v− ≤ V ≤ c+. (64)

and the lemma is proven.
Note that by the strong maximum principle [11], we know a priori

that there exists certain positive constant c− such that 0 < c− ≤ V .
However, a constant function is not a subsolution for LV = g(V )
unless we explicitely assume A 6= 0.
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Now we treat the function U . We will define it as the solution to
equation

∆U = ∆

(

u− V√
r(1 + b

√
r)

)

(65)

where b is a positive, fixed constant introduced here in order to give
the right units.

It is clear that, since u ∈ H
′2
δ and V ∈ C∞(S2) exist, then U exists

and belongs to H
′2
δ . We want to verify that it is unique for each u and

that it actually belongs to H
′2
−1/2, which would imply that U diverges

as o(r−1/2) near the origin.
For that purpose, using the equations satisfied by u and V we can

write the above equation in the form

(

∆− h

4r2

)

U = f (66)

where h and f do not depend on U and are given by

h = h1 + h2 (67)

with

h1 := (3A2 + 9J2 sin2 θ)
6
∑

i=0

(
√
r +

√
ru)i−7

[(1 + b
√
r)1/7V ]i+1

(68)

h2 := σ0

2
∑

i=0

(
√
r +

√
ru)i−3

[(1 + b
√
r)1/3V ]i+1

(69)

and

f :=
6AP ana + 9ǫabcn

aP bJc

4r5(1 + u)7
− σ − σ0

4r4(1 + u)3
− 9(P 2 + 2(P ana)

2)

16r4(1 + u)7

+
h1

4r5/2

[√
r + V

(

1

1 + b
√
r
− (1 + b

√
r)1/7

)]

+

h2V

4r5/2

(

1

1 + b
√
r
− (1 + b

√
r)1/3

)

+
V b

4r2(1 + b
√
r)3

(1− b
√
r) (70)

Note that, due to the known behavior u = O(r−1/2) at the origin,
and the positivity of V , h is bounded in R

3 and f ∈ L
′2

−5/2 (we use

σ − σ0 → 0 as r → 0).
Then we prove the following lemma
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Lemma 4.2. Let u ∈ H
′2
δ be an extreme solution to (17). Define V

by Lemma 4.1. and U as the solution to (66) with h and f ∈ L
′2
−5/2

given in (67)-(70). Then we have that for each u, the solution U is
unique and U ∈ H

′2

−1/2.

Proof. We write equation (66) as LU = f with L := ∆ − h
4r2

. Then
since the operator L is an isomorphism H ′2

−1/2 → L2
−5/2 (see the Ap-

pendix for the proof), we obtain that for each f (that is, for each
solution u to (17)) there exists a unique U ∈ H

′2

−1/2 satisfying the
above equation.

With these two lemmas, we have

∆

[

u−
(

V√
r(1 + b

√
r)

+ U

)]

= 0 (71)

and since the Laplace operator is an isomorphism H
′2
δ → L

′2
δ−2

we
conclude

u =
V√

r(1 + b
√
r)

+ U. (72)

With these results, we are now ready to prove uniqueness of the
extreme solution.

Lemma 4.3. The solution u to equation (17) is unique in H
′2
δ .

Proof. Assume, on the contrary, that there exist two such solutions,
u and ũ, and write

u =
V√

r(1 + b
√
r)

+ U, ũ =
V√

r(1 + b
√
r)

+ Ũ (73)

(note that the same V appears in both solutions) and define the dif-
ference

w = u− ũ = U − Ũ . (74)

We see that w ∈ H
′2
−1/2, because U and Ũ do, by Lemma 4.2. Then,

in virtue of the equations satisfied by u, ũ we have

∆w = −K2

8

(

1

(1 + u)7
− 1

(1 + ũ)7

)

− σ

4r4

(

1

(1 + u)3
− 1

(1 + ũ)3

)

= H (1 + u , 1 + ũ)w (75)

where H ≥ 0 was defined in (27). But from the explicit expression, we
have that H = O(r−2) at r → 0, and goes to zero at infinity, therefore,
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we can apply the theorem from the appendix (∆ −H(1 + u, 1 + ũ) :
H

′2
−1/2 → L

′2
−5/2 is an isomorphism) to conclude that w ≡ 0, and

thereby u ≡ ũ.

This result completes the proof of our main result, Theorem 2.1.
on existence and uniqueness of the extreme solution to (17)

5 Final Comments

In this work we have learnt that given a conformally flat, maximal
family of non extreme black hole initial data for Einstein equation
(parametrized by the parameter µ > 0), having angular and linear
momentum and possibly some types of matter, there always exists
a special and singular limit (µ = 0), called the extreme initial data
which has a completely different geometry than the original family.
Namely, while each non extreme data in the family has a wormhole-
like geometry (two asymptotically flat ends), the extreme limit has one
asymptotically flat end and one cylindrical end. Moreover, this change
may be produced by the angular momentum, matter or the presence
of other singular term in the constraint equation (the term containing
the constant A). Any one of these factors alone can transform one
asymptotically flat end into a cylindrical end. On the other hand, the
linear momentum of the data plays no rol in making this transition,
since it can not produce the desired behavior at the origin.

We remark here that the observed behavior near r = 0 of the solu-
tion u0 is not present when we let G be non zero. This would amount
to saying that the end at the origin has non-zero linear momentum. It
also fails to be true when we deal with the vacuum case and vanishing
J and A, this is, when the data only possesses linear momentum, since
there is no term producing the cylindrical infinity.

As we mentioned in section 2, Theorem 2.1 can also be applied
with no mayor modifications to tensors K including a term Kλ for
appropriate complex functions λ. Nevetheless, calculations become
much more involved and do not seem to bring out any new insight on
the underlying phenomena.

As opposed to what happens with the end at r → 0, the asymp-
totic geometry of the other end, at r → ∞, does not seem to suffer any
relevant change. It remains being an asymptotically flat end. In this
respect, it would be interesting to analyze what is the effect of taking
the extreme limit on the ADM mass. We know (see [8] for details)
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that if the electric charge q is held fixed in a Reissner Nördstrom ini-
tial data, then the total mass m decreases as µ goes to zero, reaching
its minimum value at the extreme data, i.e., when m = q. The same
phenomenon is seen in Kerr’s data when the total angular momentum
J is fixed. And finally, it has also been numerically indicated in the
spinning Bowen-York initial data, that the total mass is a minimum in
the extreme case µ = 0. For the present initial data family, in order to
explore this issue further one should have information, at least, about
the behavior of the radial derivative ∂ruµ near infinity. Nevertheless,
we expect that in this general case too, the total mass decreases as
we approach the extreme limit µ = 0, which would correspond to
reaching the initial data with maximum amount of angular momen-
tum and matter per unit mass. If this were the case, then the name
”extreme” would be fully consistent with the familiar notions we take
from extreme Kerr and extreme Reissner Nördstrom black holes.

The case of non conformally flat initial data seems to be more
difficult if the present limiting procedure is attempted. First, because
of the presence of the Ricci scalar in Lichnerowicz equation, which in
general does not have a definite sign, and even might depend on the
parameter µ, as in the case of Kerr initial data. This could complicate
the task of finding appropriate bounds for the non extreme solutions
uµ. And second, because it is not easy to find, in the literature, basic
mathematical results as the Maximum principle, or the statement on
the non flat Laplace operator being an isomorphism between weighted
Sobolev spaces. This is due to singular behavior of the functions
and equations involved. However we believe that the case of axial
symmetry could be approached in this way, and that it could be a
useful, though laborious tool in the study of pertubations of extreme
Kerr initial data. See [9] for a different approach to the problem of
small deformations of extreme Kerr black hole initial data.

As a final comment, we want to remark that there are two situa-
tions in which some steps in the proof of Theorem 2.1 become some-
what easier. One is when σ0 (i.e. the value of the matter function σ at
r = 0) is a strictly positive function and the other is when A 6= 0. In
both cases we can construct appropriate lower bounds for uµ (and also
for V in section 4) much more easily. For instance when σ ≥ a > 0,
where a is some constant, the lower bound u−µ can be taken just as

u−µ =

√

1 +
m

r
+

µ2

4r2
− 1− µ

2r
, m :=

√

a+ µ2. (76)
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This indeed is what occurs, i.e., when matter consist of an electromag-
netic field associated to an point electric charge q (in this case σ = q2).
When A 6= 0, the subsolution Φ−

µ can be taken as the conformal factor
corresponding to Schwarzschild black hole’s initial data (see [14] for
details). Moreover, due to these observations, when A or σ are not
zero, the term containing the angular momentum becomes irrelevant
in the calculations.
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6 L is an isomorphism

In this section we prove that the linear map L : H
′2

−1/2 → L
′2

−5/2 is an
isomorphism. This important result is used in the proof of uniqueness
of the extreme solution. Also, it turns out to be useful in a the study
of perturbations of extreme Kerr initial data [9].

Theorem 6.1. The linear map L defined by

Lu := −∆u+ αu = f in R
3 \ {0}, (77)

where h, defined in (67) is a bounded function on R
3, and α ≥ 0 is

given by

α :=
h

4r2
, (78)

is an isomorphism H
′2

−1/2 → L
′2

−5/2.

We decompose the proof into two parts. First, we prove the ex-
istence of a weak solution ( Lemma 6.2), and then, we find it to be
regular (in Lemma 6.3).
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Lemma 6.2. There exists a unique weak solution u ∈ H
′1
−1/2 of (77)

for each f ∈ L
′2

−5/2, where α ≥ 0 is given in (78).

Proof. For u, v ∈ H
′1
−1/2, define the bilinear form

B[u, v] :=

∫

R3

Du ·Dv + αuvdx (79)

which corresponds to the linear operator Lu := −∆u + αu, where α
was defined in (78).

Let us check that B[ , ] satisfies the hypothesis of Lax-Milgram’s
Theorem (see [11]). First, we have

|B[u, v]| =
∣

∣

∣

∣

∫

R3

Du ·Dv + αuvdx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

R3

Du ·Dvdx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

R3

αuvdx

∣

∣

∣

∣

.

(80)
Using the expression for α and Hölder’s inequality, we obtain

|B[u, v]| ≤ |Du|L2 |Dv|L2 + C

∣

∣

∣

∣

∫

R3

uv

r2
dx

∣

∣

∣

∣

≤

≤ |Du|L2 |Dv|L2 + C
∣

∣

∣

u

r

∣

∣

∣

L2

∣

∣

∣

v

r

∣

∣

∣

L2
=

= |Du|
L
′2
−3/2

|Dv|
L
′2
−3/2

+ C |u|
L
′2
−1/2

|v|
L
′2
−1/2

≤

≤ max{1, C}
(

|Du|L′2
−3/2

|Dv|L′2
−3/2

+ |u|L′2
−1/2

|v|L′2
−1/2

)

≤

= max{1, C}|u|H′1
−1/2

|v|H′1
−1/2

(81)

thereby verifying the suryectivity hypothesis of Lax-Milgram’s Theo-
rem.

Let us move now to the coercitivity condition. We have

B[u, u] =

∫

R3

(Du)2 + αu2dx =

∫

R3

(Du)2dx+

∫

R3

αu2dx. (82)

Now, using the fact that α is non-negative, and Poincare’s inequality
(see [1], Theorem 1.3), we get

B[u, u] ≥
∫

R3

(Du)2dx =
1

2

∫

R3

(Du)2dx+
1

2

∫

R3

(Du)2dx =

=
1

2
|Du|L2 +

1

2
|Du|L2 ≥ 1

2
|Du|L2 +

1

4
|u|

L
′2
−1/2

≥

≥ 1

4

(

|Du|L2 + |u|L′2
−1/2

)

=
1

4
|u|H′1

−1/2
(83)
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verifying that L is a 1-1 operator.
Now, fix f ∈ L

′2
−5/2 and define 〈f, v〉 := (f, v)L2 , where (f, v)L2

denotes the L2-inner product. Let us check that this is a bounded
linear functional on L

′2
−1/2, and therefore, on H

′2
−1/2. Let v ∈ H

′2
−1/2,

then we have

〈f, v〉 = =

∫

R3

fvdx =

∫

R3

fr
−2(−5/2)−3

2 vr
−2(−1/2)−3

2 dx ≤

≤
∣

∣

∣
fr

−2(−5/2)−3
2

∣

∣

∣

L2

∣

∣

∣
vr

−2(−1/2)−3
2

∣

∣

∣

L2
= |f |

L
′2
−5/2

|v|
L
′2
−1/2

≤

≤ |f |L′2
−5/2

|v|H′1
−1/2

(84)

as we wanted to prove.
Then with these three conditions fulfilled, Lax-Milgram’s Theorem

states that there exists a unique u ∈ H
′2
−1/2 such that

B[u, v] = 〈f, v〉, ∀v ∈ H
′1
−1/2, (85)

that is, such that
∫

R3

(Lu− f)vdx = 0, ∀v ∈ H
′1
−1/2. (86)

Therefore u is the unique weak solution of Lu = f .

Next, we use standard regularity theorems (see e.g [13], chapter 8,
for more details), to find that u is a C∞ function in R

3 \ {0}.
We will use this regularity, to prove the following lemma.

Lemma 6.3. Let f ∈ L
′2

−5/2. Assume u ∈ H
′1

−1/2 is a weak solution

of Lu = f . Then u ∈ H
′2
−1/2

Proof. Let u ∈ H
′1
−1/2 be the unique weak solution to

Lu = ∆u− αu = −f, (87)

then we verify that f̃ := f − αu ∈ L
′2
−5/2:

|f̃ |
L
′2
−5/2

= |αu− f |
L
′2
−5/2

≤ C

(

|αu|
L
′2
−5/2

+ |f |
L
′2
−5/2

)

≤ C

(

∣

∣

∣

u

r2

∣

∣

∣

L
′2
−5/2

+ |f |L′2
−5/2

)

= C

(

|u|L′2
−1/2

+ |f |L′2
−5/2

)

≤ C

(

|u|H′1
−1/2

+ |f |L′2
−5/2

)

. (88)
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Since the Laplace operator is an isomorphism ∆ : H
′2
−1/2 → L

′2
−5/2, [1],

then there exists a unique ũ ∈ H
′2

−1/2 such that

∆ũ = −f + αu. (89)

But this implies that ũ is also a weak solution to the above equation.
Since, by Lemma 6.2, the weak solution is unique, we find that ũ =
u ∈ H

′2

−1/2

These two lemmas show that there exists a unique function u ∈
H

′2
−1/2 which solves equation −∆u+ αu = f a.e, for each f ∈ L

′2
−5/2.

This, in turn, means that L := −∆+ α is an isomorphism H
′2
−1/2 →

L
′2

−5/2, proving Theorem 6.1.
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