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Abstract: Michelson-type laser-interferometric gravitational-wave (GW)
observatories employ very high light powers as well as transmissively-
coupled Fabry-Perot arm resonators in order to realize highmeasurement
sensitivities. Due to the absorption in the transmissive optics, high powers
lead to thermal lensing and hence to thermal distortions of the laser
beam profile, which sets a limit on the maximal light power employable
in GW observatories. Here, we propose and realize a Michelson-type
laser interferometer with arm resonators whose coupling components are
all-reflective second-order Littrow gratings. In principle such gratings
allow high finesse values of the resonators but avoid bulk transmission of
the laser light and thus the corresponding thermal beam distortion. The
gratings used have three diffraction orders, which leads tothe creation
of a second signal port. We theoretically analyze the signalresponse of
the proposed topology and show that it is equivalent to a conventional
Michelson-type interferometer. In our proof-of-principle experiment we
generated phase-modulation signals inside the arm resonators and detected
them simultaneously at the two signal ports. The sum signal was shown
to be equivalent to a single-output-port Michelson interferometer with
transmissively-coupled arm cavities, taking into accountoptical loss. The
proposed and demonstrated topology is a possible approach for future
all-reflective GW observatory designs.
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Garching 30-meter prototype gravitational-wave detector,” Phys. Rev. D38, 423-432 (1988).

1. Introduction

Today’s laser-interferometric gravitational-wave (GW) detectors [1, 2, 3], as well as the propos-
als for future observatories [4], are based on advanced Michelson-type interferometer topolo-
gies. A gravitational wave will cause a differential changeof the interferometer’s arm lengths
and will thus result in a signal at the detection output port.If the measurement sensitivity is
limited by quantum shot noise, the signal-to-noise ratio (SNR) scales with the square root of
the laser light power in the interferometer’s arms. Issues that will effectively limit the maximal
laser power employable in future GW observatories arise from thermal effects at mirror sur-
faces as well as inside the interferometer optics used in transmission. These effects are caused
by the residual absorption within the surface and the bulk material, respectively, leading to a lo-
cally varying temperature increase. Because the index of refraction is a function of temperature,
the absorption manifests itself as thermal lensing and thusas a reduced interferometer contrast
[5]. Furthermore, transmission through optical components generally leads to thermo-refractive
noise and photo-thermo-refractive noise [6, 7].

A promising approach to avoid thermal effects associated with absorption in the bulk ma-
terial is the employment of an all-reflective topology. For this, diffraction gratings have been



proposed as a means to split and recombine monochromatic light without transmission through
a beam splitter or a cavity-coupling mirror [8]. An additional benefit is that in an all-reflective
interferometer highly transmissive materials are no longer essential. This permits the use of
opaque or less transmissive but mechanically and thermallyfavourable materials that would
allow cooling down to temperatures not appropriate with current materials [9].

In [10], the diffractive replacement of the balanced beamsplitter in Michelson- and Sagnac-
interferometers was reported. In these experiments holographic metal gratings with an optical
loss of about 3.6 % were used. Meanwhile, dielectric reflection gratings have become a promis-
ing alternative. Such gratings are etched either directly into a substrate or into a multilayer
dielectric coating [11]. They have a lower optical loss and ahigher damage threshold. Further-
more, the diffraction characteristics are more precisely controllable than in the case of tradi-
tional metal gratings owing to constantly improving design, electron beam writing and etching
skills. An all-reflective Michelson interferometer with a dielectric diffractive beamsplitter was
demonstrated by Friedrichet al. in [12], where an optical loss of less than 0.2 % was achieved.

To increase the circulating light power, the GW observatories LIGO and Virgo make use
of transmissively-coupled Fabry-Perot cavities (FP cavities), as shown in the simplified sketch
of Fig. 1 (a). This means that – besides the beam splitter – thepartially transmissive resonator
coupling mirrors are also exposed to high thermal load, making all-reflective resonator couplers
based on reflection gratings all the more interesting. An early approach was the use of high-
efficiency gratings in first-order Littrow configuration [10, 13], having, however, the drawback
of stringent restrictions on beam pointing and alignment [14]. An alternative with considerably
relaxed requirements is provided by the so-calledthree-portgratings used in second-order Lit-
trow configuration. In this topology, the diffraction efficiency of the first diffraction order is
used as the coupling efficiency to a resonator that is arranged perpendicular to the grating sur-
face, while the angle of the incident laser beam and the grating period are chosen such that the
second diffraction order is back-reflected towards the laser source. Consequently, to reach high
cavity finesses, a low-efficiency coupling and thus very shallow grating structures are required.
This considerably relaxes the demands on grating fabrication processes and suggests that cav-
ities with well-defined Gaussian TEM00 modes are feasible. Low-loss three-port gratings have
been investigated theoretically and experimentally [15, 16]. It was shown that the single-ended
three-port-grating-coupled cavity can be employed as the arm cavity of a GW interferometer.
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Fig. 1. (a) Michelson-type laser interferometer with conventional (transmissively-coupled)
Fabry-Perot arm cavities, consisting of the coupling mirrors CM1,2 and the highly reflective
end mirrors EM1,2. (b) Interferometer with diffractively-coupled arm cavities. Because of
the second-order Littrow configuration, the signal is distributed into two ports that both
need to be monitored to obtain the full signal strength.



On resonance, no carrier power is lost to the additional portbecause the light fields involved
interfere destructively [17]. Hence, all power is reflectedto the beamsplitter of the interferome-
ter, making an optimal power-recycling possible [18, 19]. Thus, second-order Littrow gratings
are promising optical components for future high-power andall-reflective gravitational wave
observatories beyond the 3rd observatory generation.

Fig. 1 (b) shows a schematic of the proposed topology with thearm cavities coupled in
second-order Littrow configuration. A theoretical discussion of the signal response of the
diffractively-coupled interferometer is presented in section 2. It is shown that the sum signal of
the two detection ports carries the same amount of information as the signal of a single-output-
port Michelson interferometer with FP cavities shown in Fig. 1 (a). Thus, the advantages of an
all-reflective topology can be used without the drawback of apotential signal loss. In section 3,
the table-top prototype interferometer and the signals measured in the two detection ports are
discussed.

2. Signal transfer function of the second-order Littrow grating cavity

Laser GW interferometers are operated close to theirdark fringe, which means that due to de-
structive interference almost no (carrier) light leaves the signal port and all optical power is
reflected back to the laser. If a gravitational wave interacts with the light fields in the FP cav-
ities, phase modulation sidebands are generated. In the case of a conventional (transmissively
coupled) arm cavity, thefull signal interferes constructively at the interferometer’ssignal port,
manifesting itself as an amplitude modulation on the residual carrier light. One single detection
port is therefore sufficient to gather the full information available as illustrated in Fig. 1 (a).

Fig. 2 (a) shows a linear Fabry-Perot cavity with an end mirror reflectivity of R= 1 (single-
ended). Independently of the cavity detuning (length), thefull carrier light power is back-
reflected towards the source. Consequently, any phase modulation signal generated inside this
cavity (e. g. by a gravitational wave or equivalently by a moving end mirror or an electro-
optical modulator) is fully coupled out at the retro-reflection port. The normalized frequency-
dependent cavity-induced signal amplification for the upper and lower sidebands (±Ω) reads

gFP1(±Ω) =
iτ1exp[i(Φ±ΩL/c)]

1−ρ1ρ2exp[2i(Φ±ΩL/c)]
. (1)

Here,τ1 andρ1,2 are the amplitude transmissivities and reflectivities of the mirrors,Φ is the
cavity detuning parameter,Ω the modulation frequency,L the cavity length, and c the speed of
light [20]. When the cavity is tuned to resonance,Φ is equal to zero and the two sidebands are
amplified by the same factor.

In the case of a diffractively-coupled single-ended arm cavity in second-order Littrow con-
figuration that is illustrated in Fig. 2 (b), the signal output is additionally influenced by the
cavity detuning and the grating parameters [15, 16]. If the second-order diffraction efficiency
is minimal and the cavity is tuned to resonance, the carrier field is, as in the case of the linear
Fabry-Perot cavity discussed above, fully back-reflected towards the source. This means that
the interference for the carrier light is constructive at the input port (C1 in Figure 2 (b)) and
correspondingly destructive at the forward-reflection port C3 [17]. The phase modulation sig-
nal generated inside the cavity, however, is split equally into the back-reflected port C1 and the
forward-reflected port C3 because of the grating structure’s symmetry [11].

The signal amplification function is given by

gC1(±Ω) = gC3(±Ω) =
η1exp[i(φ1+Φ±ΩL/c)]

1−ρ0ρ2exp[2i(Φ±ΩL/c)]
, (2)

whereη1 is the diffraction efficiency andφ1 the phase shift associated with the first diffraction
order,ρ0 the amplitude reflectivity of the grating at normal incidence, andρ2 = 1 the amplitude



reflectivity of the cavity end mirror [15]. If phase-modulation signal sidebands are generated in
a single cavity that is tuned to resonance, an optimal readout (gathering the full information) has
to be carried out in the phase quadrature. The signal transfer function for the phase quadrature
readout can be written as

G(Ω) = g(+Ω)−g∗(−Ω), (3)

assuming the normalized carrier to be real and positive [20]. Fig. 2 (c) shows the phase quadra-
ture readouts|G(Ω)| in thesinglesignal port of a resonant Fabry-Perot cavity and in thetwo
signal ports of a three-port-grating coupled cavity with minimal second-order diffraction ef-
ficiency. For better comparison, the parameters were chosensuch that the normal-incidence
power reflectivityρ2

0 of the grating equals the power reflectivityρ2
1 of the Fabry-Perot cavity

coupling mirror and the intra-cavity optical powers are identical. In this case, the signals of the
grating-coupled cavity (dashed lines) are each a factor of two smaller than the FP cavity signal
output (solid line). Thus, the sum signal (dotted line) is identical with the Fabry-Perot one, so
that the two topologies are equivalent with respect to the signal-to-noise ratio. If, in contrast,
merely the conventional output port is monitored (the detection port in Fig. 1 (a), corresponding
to detection port 1 of Fig. 1 (b)), exactly 50 % of the signal islost. Please note that the laser
power input to a three-port grating cavity needs to be a factor of two higher in order to achieve
the same power build-up as in a linear cavity [15].
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Fig. 2. (a) Signal response of a single-ended standing-waveFabry-Perot (FP) cavity. Both,
signal and carrier light fields are back-reflected towards the laser source. (b) Signal response
of a single-ended three-port grating cavity with reflectionports C1 and C3. While the carrier
interferes destructively at C3, the signal is distributed equally among the two ports. (c)
Phase-quadrature readout at the FP output port and at the ports C1/C3. The dotted line
shows the sum of the C1- and C3-signals, being identical to the FP reference. As cavity
parameters, values realisable in LIGO were chosen:L = 4 km, ρ2

0 = 1− 2η2
1 = 99.5%,

ρ2
1 = 1− τ2

1 = 99.5%, η2 = η2min. The two cavities were tuned to resonance, the intra-
cavity power was identical.

3. Experimental setup and results

Figure 3 shows the layout of the experiment. The laser sourcewas a single-mode Nd:YAG laser
(non-planar ring oscillator, NPRO) operating at 1064 nm. The laser output was transmitted



through a ring mode-cleaner cavity to provide a spectrally and spatially filtered beam in the
TEM00 mode [21]. A set of cylindrical lenses was employed to mode-match this beam to the
eigenmode of the grating arm cavities [19].

The two diffractive cavity couplers used in the experiment were cut from a single dielectric
three-port grating. The binary grating structure was written and etched in the topmost SiO2-
layer of a highly reflective multilayer coating applied ontoa 1"× 1" large fused silica sub-
strate. The grating had a period ofd = 1450 nm for a first-order diffraction angle of 0◦ and a
second-order Littrow angle of incidence of 47.2◦ at a laser wavelength of 1064 nm [11]. The
grating design was chosen such that for a first-order diffraction efficiency ofη2

1 = 3.3% the
second-order diffraction efficiencyη2

2 = 0.04% was close to the theoretical minimal bound-
ary value [15]. The grating was first characterized via a finesse measurement using the set-up
discussed in [17] and then cut into two parts to provide two identical diffractive cavity couplers.

The arm cavities had a length ofL = 81.5cm each. To generate the phase-modulation signals
simulating the effect of a GW, electro-optical modulators (EOMs) were placed in each arm,
applying a modulation at 13.7 MHz. The highly-reflective cavity end mirrors were mounted on
piezoelectric transducers (PZTs). To stabilize the cavitylength, a Pound-Drever-Hall (PDH)
locking scheme [22] was used. The modulation frequency for the PDH error signals was
15 MHz. The error signals were detected at the respective forward-reflected grating port C3
using a partially transmissive mirror with a power transmission of 8 %. With the two cavities
being resonant, the contrast at the main interferometer beam splitter BS1 was 98.7 % . The main
interferometer was locked via an internal modulation scheme [23]. For this, phase-modulation
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Fig. 3. Schematic of the prototype experiment. The main interferometer was operated
”close to the dark fringe” at the detection port, and thus almost all carrier light was back-
reflected to the laser. To generate phase-modulation signals in the arm cavities, two electro-
optical modulators (EOMs) were used. The EOMs were driven byphase-locked frequency
generators, the signal frequency was 13.7 MHz. The signals were brought to interference at
the beam splitters BS1 and BS2 and recorded at the photo detectors PD1 and PD2, respec-
tively. The photo detector output was analyzed with a R&S® FSP spectrum analyzer.



sidebands at 493 kHz were generated using the steering mirror located in the coupling path
of grating cavity 1. The error signal detected at PD1 was demodulated at the modulation fre-
quency and fed back to the steering mirror. The chosen operation point of the interferometer
was close to the dark fringe so that a local oscillator beam for a self-homodyne readout scheme
was available. The signal fields transmitted at the forward-reflection ports C3 of the two arms
were brought to interference at another balanced beam splitter (BS2). To stabilize the phase
relation of the two beam splitter input fields another internal modulation scheme at a sideband
frequency of 343 kHz was employed. The control signal was fedback to another PZT-mounted
steering mirror as shown in Fig. 3. At the second beamsplitter a contrast of 96.0 % was realized.
The AC-gains of the two photo detectors PD1 and PD2 were carefully matched.

Figure 4 shows the results obtained at the two signal output ports. Trace (a) shows the signal
that was measured by PD1 if only EOM1 in the north arm was actuated. The modulation depth
was adjusted to generate a signal with a peak power of -60 dBm for a resolution bandwidth
of 3 Hz. An equally strong signal was produced in grating cavity 2 using EOM2 as shown in
Fig. 4 (b). If the EOMs were now actuated simultaneously, thephase relation of the EOM’s sig-
nal generators determined the interference of the signals leaving the two arm cavities and com-
bined at BS1. The maximal destructive interference, leading to a residual signal of−94 dBm,
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ments, no signal was generated simultaneously by the other EOM. The modulation depth
was adjusted to generate−60 dBm-signals. (c) EOM1 and EOM2 were operated simulte-
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power increase by 6 dB. (e-h) same as (a-d), but detected by PD2. For a discussion of
signal strengths and loss see text.



was realized at a phase relation of 63◦ and is shown in trace (c). The deviation from the theo-
retical value of 0◦ is due to the residual differences of the two gratings (e. g. originating from
the cutting process and local variations), and to differentsignal responses of the two EOMs as
well as to differing electrical signal paths (cabling).

When a phase shift of 180◦ was applied to one of the EOMs, the maximal constructive
interference of the two signals was achieved, the results are shown in Figure 4 (d). As expected,
the signal increased by 6 dB or a factor of four to−54 dBm. The factor offour is due to the
fact that the two signalamplitudesadd up coherently when the two EOMs are operated in
differential mode. The signal power that is proportional tothe square of the sum amplitude thus
increases by a factor of 22.

The lower part of Figure 4 shows the signals measured in detection port 2. The signals gen-
erated by EOM1 and EOM2 were−62.4dBm and−65.4 dBm, respectively [Fig. 4 (e,f)]. The
signal loss with respect to port 1 was due to a combination of propagation loss and unequal
electronic stabilization loops. For EOM1 the total signal loss was 43 %, and 71 % for EOM2.
The optical propagation loss was due to the partially transmissive steering mirror required for
error signal generation as well as to absorption by optical components. Furthermore, the optical
path to port 2 considerably exceeded the path length to port 1, so that air perturbations had a
stronger effect in terms of beam pointing fluctuations and thus manifested itself as a fluctuating
fringe visibility. The stronger loss for EOM2 was mainly due to the PZT-mounted steering mir-
ror in this path that led to beam pointing fluctuations. In addition, the length stabilization loop
of grating cavity 2 had a lower stability than the one for grating cavity 1.

The constructive interference of the two EOM signals in port2 is shown in Figure 4 (h). The
signal strength was−57.5 dBm and thus corresponded the measurements of the single EOM
signal levels [Fig. 4 (e,f)]. For all measurements, the shotnoise level was with a value of about
−125 dBm similar in the two ports, as was the dark noise with−129.5dBm. The signal-to-noise
ratio was limited by quantum shot noise, no technical laser noise was present at the frequencies
of interest. The sum of the signals recorded in port 1 and port2 [Figure 4 (d) and (h)] is by
26 % smaller than the value theoretically expected for the topology in the case that no signal
loss is present. It is, however, still by 46 % larger than the signal from the single port 1. This
experimentally confirms the theoretical concept of the proposed topology and its property of
having the same measurement sensitivity as a single-output-port Michelson interferometer with
transmissively-coupled FP arm cavities.

4. Conclusion

We have proposed and analyzed a Michelson-type laser interferometer with diffractively-
coupled arm resonators. A proof-of-concept table-top experiment was set up using dielec-
tric binary-structured three-port gratings with minimal second-order diffraction efficiency in
a second-order Littrow configuration. This topology introduces a second signal output port in
addition to the one in a conventional Michelson-type interferometer. The signal generated in-
side the arm cavities splits equally into the two ports. We have theoretically shown that the full
signal power can still be recovered if the two signal ports are monitored and that this signal
power is identical to the one of a single-output-port Michelson interferometer in the case of
equal cavity parameters and intra-cavity powers. This result was verified in a proof-of-principle
experiment. The sum signal power was only slightly degradedby optical loss and imperfect
electronic control loops. Our topology has an application in future precision metrology in all
cases when light absorption in bulk optical materials sets alimit for the achievable measure-
ment sensitivity. The conventional beam splitter employedin the work presented here can in
principle be replaced by a purely reflective grating beam splitter, as already demonstrated in
[12]. In particular, we consider our topology to have an application in future (ground-based)



gravitational wave observatories.
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