
Quantification of the N-glycosylated Secretome
by Super-SILAC During Breast Cancer
Progression and in Human Blood Samples*□S

Paul J. Boersema‡, Tamar Geiger‡¶, Jacek R. Wiśniewski‡, and Matthias Mann‡§�

Cells secrete a large number of proteins to communicate
with their surroundings. Furthermore, plasma membrane
proteins and intracellular proteins can be released into
the extracellular space by regulated or non-regulated pro-
cesses. Here, we profiled the supernatant of 11 cell lines
that are representative of different stages of breast can-
cer development by specifically capturing N-glycosylated
peptides using the N-glyco FASP technology. For accu-
rate quantification we developed a super-SILAC mix from
several labeled breast cancer cell lines and used it as an
internal standard for all samples. In total, 1398 unique
N-glycosylation sites were identified and quantified. En-
riching for N-glycosylated peptides focused the analysis
on classically secreted and membrane proteins. N-glyco-
sylated secretome profiles correctly clustered the differ-
ent cell lines to their respective cancer stage, suggesting
that biologically relevant differences were detected. Five
different profiles of glycoprotein dynamics during cancer
development were detected, and they contained several
proteins with known roles in breast cancer. We then used
the super-SILAC mix in plasma, which led to the quantifi-
cation of a large number of the previously identified N-
glycopeptides in this important body fluid. The combina-
tion of quantifying the secretome of cancer cell lines and
of human plasma with a super-SILAC approach appears
to be a promising new approach for finding markers of
disease. Molecular & Cellular Proteomics 12: 10.1074/
mcp.M112.023614, 158–171, 2013.

There has been a long-standing interest in applying pro-
teomics to the cancer field (1). Technological advances in
liquid chromatography-mass spectrometry (LC-MS) have
made it feasible to profile the proteome of cancer cells to
great depth (2, 3) and these developments now allow studying
protein expression on a systems wide level (4). Analyses of

intracellular proteins provide data on what is occurring at the
intracellular level in terms of biochemical processes, signaling
pathways and cellular structure. However, from a clinical per-
spective, focusing on proteins that are secreted by these cells
is very appealing for diagnostic purposes, as they may filtrate
into the peripheral blood (5). This is advantageous because
peripheral blood is an easily accessible source whereas tissue
biopsies are invasive and they are generally only taken when
a medical condition is already suspected. Blood itself is a very
complex fluid whose proteome is extremely challenging to
analyze because of its very high dynamic range (6–8). Fur-
thermore, a tumor in the initial stages would not be expected
to secrete large amounts of proteins and these proteins would
be severely diluted in the total blood volume (9). Therefore,
discovery of biomarkers by direct analysis of blood plasma
has been very difficult so far (10). A more straightforward
approach would be the analysis of proteins secreted from
homogeneous cell populations (11–14). Consequently, the
conditioned medium of cell lines has extensively been used
for the analysis of secreted cancer proteins (15). The secre-
tome contains proteins that are actively secreted through
classical and nonclassical routes but also proteins that are
shed from the plasma membrane by various sheddases (12).
Secretome studies are generally performed using serum-free
media to reduce the initial protein contents. Further precau-
tions are taken to minimize the contamination of intracellular
proteins arising from dead cells that release their contents.
Despite these caveats, the totality of proteins that are found in
the conditioned medium has been referred to as the “secre-
tome” (13).

During cancer development, the invasive capacity of the
cells increases progressively. Cancer cells lose cell-cell ad-
hesion which allows eventual release of the cell from the
surrounding tissue and may facilitate metastasis to other or-
gans. The extracellular matrix is an important factor in this
process as it plays a significant role in regulating numerous
cellular functions like adhesion, cell shape, migration, prolif-
eration, polarity, differentiation and apoptosis (16, 17). Many
components of the extracellular matrix change in expression
during cancer development. Therefore, these changes would
likely be reflected in the protein contents of the secretome.

Here, we set out to profile the proteins that are secreted by
breast cancer cell lines from different stages by MS-based
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proteomics methods. For several reasons, we focused on
N-glycosylated proteins as an appropriate handle to probe
proteins that could be of clinical interest. First, proteins that
use the classical secretion pathway or are shed from the
membrane are typically N-glycosylated because they have
passed through the endoplasmic reticulum (ER)1 and Golgi
system (18). Second, glycosylation may enhance the stability
of the protein and protect it from proteolytic degradation (19),
which would increase the likelihood of detection away from
the place where the protein was produced or secreted. Third,
glycosylation has a direct relationship to cancer development
(20, 21). Fourth, almost all of the currently used protein bio-
markers are in fact glycoproteins, such as carcinoembryonic
antigen (CEA), cancer antigen 125 (CA125), and prostate-
specific antigen (PSA) (22). Finally, glycoproteins have them-
selves been used as therapeutic targets in cancer. These
include ErbB2, targeted by trastuzumab and VEGF-A, tar-
geted by bevacizumab (23).

Experimentally, a prime advantage of targeting glycosyla-
tion is the fact that glycopeptides or glycoproteins can be
efficiently enriched over nonglycosylated molecules. In pro-
teomics, enrichment targeted to N-glycosylation has typically
been performed using hydrazide chemistry (24–26) or lectin
based enrichment (27, 28). Our group has previously used the
‘filter aided sample preparation’ (FASP) as a basis of N-gly-
copeptide enrichment (29). The filter membrane in FASP can
be employed to physically retain mixtures of lectins, which do
not need to be coupled to beads. N-glycopeptides are first
bound to the lectins and in a subsequent step simultaneously
deglycosylated and released from the lectins. The complexity
of the sample is thereby reduced to a level where extensive
fractionation is dispensable and the highly enriched fraction of
previously N-glycosylated peptides can readily be analyzed in
a single high-resolution LC-MS run. We have used N-glyco-
FASP to determine N-glycosylation sites in several mouse
tissues (29) and in evolutionary distant model organisms (30).
Here we adapted the method to supernatants of cell lines and
we used the latest generation of Orbitrap analyzers for MS
detection. Furthermore, to allow accurate quantification of
differences in abundance levels between different secre-
tomes, we spiked an internal standard of a super-SILAC mix
(31) containing the conditioned medium of three heavy stable
isotope labeled cell lines into all the conditioned medium
samples. We collected the conditioned medium from a panel
of eleven breast cell lines that were representative of five
different cancer stages, from healthy to metastatic cells. The

method was further applied to the analysis of blood plasma to
verify its applicability in a body fluid context.

EXPERIMENTAL PROCEDURES

Cell Culturing and SILAC Labeling—Primary human mammary ep-
ithelial cells (HMEC) were obtained from the European Collection of
Cell Cultures (ECACC, Salisbury, UK; HMEpC1) and from Lonza
(HMEpC2; Basel, Switzerland); HMT-3522-S1 and MFM223 cells
were obtained from ECACC. HCC202, and HCC2218 cells were ob-
tained from the American Type Culture Collection (ATCC, Manassas,
VA); HCC1143, HCC1937, and HCC1599 cells were obtained from the
German Collection of Microorganisms and Cell Cultures (DSMZ);
MCF-10a and MDA-MB-453 cells were kindly provided by Axel Ulrich
(Max-Planck Institute of Biochemistry, Martinsried, Germany). HMEC
cells were grown in mammary epithelial cell growth medium (ECACC);
MCF-10a cells were cultured in DMEM/F12 supplemented with 5%
horse serum, 20 ng/ml EGF, 10 �g/ml insulin, 0.5 �g/ml hydrocorti-
sone and 0.1 �g/ml choleratoxin; HMT-3522-S1 cells were cultured in
DMEM/F12 supplemented with 250 ng/ml insulin, 10 �g/ml transfer-
rin, 0.1 �M sodium selenite, 0.1 nM 17�-estradiol, 5 �g/ml ovine
prolactin, 0.5 �g/ml hydrocortisone and 10 ng/ml EGF; HCC1143,
HCC1937, HCC202, HCC2218, and HCC1599 were grown in RPMI
supplemented with 10% FBS; MFM223 cells were grown in MEM
supplemented with 10% FBS; MDA-MB-453 cells were cultured in
L-15 supplemented with 10% FBS. All cells were cultured with Pen/
Strep at 37 °C and under 5% CO2, except for MDA-MB-453 which
were culture under 0% CO2.

For the super-SILAC mix, HCC1143, HCC1937, and HCC2218
were SILAC labeled by culturing in RPMI with the natural lysine and
arginine replaced by heavy isotope labeled amino acids, L-13C6

15N4-
arginine (R10; 13C6 98%, 15N4, 98%) and L-13C6

15N2-lysine (K8; 13C6

98%, 15N2, 98%). Labeled amino acids were purchased from Cam-
bridge Isotope Laboratories (Andover, MA). The media were supple-
mented with 10% dialyzed serum. Cells were cultured for approxi-
mately five passages in the SILAC medium for complete incorporation
of the heavy isotopes. Incorporation was checked by separate LC
MS/MS analysis of supernatant. For each of the proteins discussed in
the results, incorporation of the glycopeptide standard was better
than 95%.

Collecting Conditioned Medium—The secretomes of the cell lines
were collected as conditioned media. In short, 1.5 million cells were
seeded in 100 mm culture dishes and left overnight for cell attach-
ment in normal growth medium. After 24 h each medium was re-
placed by growth medium in which serum and other stimulatory
proteins were omitted. After another 24 h the medium was collected
and 4 ml of this collected conditioned medium was mixed 1:1 with the
super-SILAC mix which consisted of the pooled conditioned medium
of SILAC labeled HCC1143, HCC1937, and HCC2218. HCC2218 and
HCC1599 grow in suspension and their conditioned medium was
collected by taking the supernatant after spinning down at 1000 rpm
for 5 min. Viability of all cell lines before, during and after serum
starvation was monitored using the trypan blue exclusion technique.
The conditioned medium was filtered through a 0.22 �m Durapore
polyvinylidene difluoride Membrane (Millipore, Billerica, MA) and con-
centrated to 500 �l on Amicon Ultra 4, 30,000 molecular weight cutoff
centrifugal filter units. This procedure was performed in quintuplicate
for all the eleven cell lines.

Blood Plasma—Approximately 300 �g of plasma from four different
female donors (obtained from the Biobank der Blutspender, Munich,
Germany) was processed in duplicate. Two of the donors were later
diagnosed with breast cancer. The super-SILAC internal standard
was spiked-in before the N-glyco FASP procedure.

N-glyco FASP—To 500 �l of concentrated conditioned medium, 60
mg of urea and 16 �l of 1 M dithiotreitol were added, mixed and

1 The abbreviations used are: ER, endoplasmic reticulum; CA125,
cancer antigen 125; CEA, carcinoembryonic antigen; Con A, conca-
navalin A; FASP, filter aided sample preparation; FDR, false discovery
rate; GO, gene ontology; GOCC, gene ontology cellular compartment;
HMEC, human mammary epithelial cells; PIP, prolactin-inducible pro-
tein; PR, progesterone receptor; SILAC, stable isotope labeling by
amino acids in cell culture; SIM, selected ion monitoring; WGA, wheat
germ agglutinin.
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incubated at 56 °C for 15 min. This mixture was applied to an Ultracel
YM-10 10,000 molecular weight cut-off centrifugal filter (Millipore,
Billerica, MA) spun down and washed two times with 200 �l of 2 M

urea in 0.1 M Tris/HCl pH 8.5. 100 �l of 0.05 M iodoacetamide was
added and left for 30 min at RT in the dark. Two washes with 2 M urea
in 0.1 M Tris/HCl pH 8.0 were performed and finally 10 �l of 0.5 �g/�l
sequencing grade modified trypsin (Promega, Mannheim, Germany)
and 100 �l of 2 M urea in 0.1 M Tris/HCl pH 8.0 were added and left
for digestion overnight at 37 °C.

The digested peptides were eluted from the filters using two times
50 �l 1 � Binding Buffer (BB, 20 mM Tris/HCl pH 7.6, 1 mM MnCl2, 2
mM CaCl2, 1 M NaCl). Forty-five microliters of 3 mg/ml of wheat germ
agglutinin (WGA; Sigma-Aldrich, Taufkirchen, Germany) and conca-
navalin A (Con A; Sigma-Aldrich, Taufkirchen, Germany) in 2 � BB
and 6 �l of 50 mM of PMSF was added and left for 1h at RT.
Afterwards the mixture was filtered through a Vivacon 500 30,000
molecular weight cutoff centrifugal filter (Sartorius Stedim, Göttingen,
Germany). The flow through was collected as non-glycosylated se-
cretome (and analyzed in quadruplicate), while the filtrate was
washed with first 1 � BB followed by 0.05 M ammonium bicarbonate
in H2

18O. Two microliters N-glycosidase F (Roche Diagnostics, Mann-
heim, Germany) was added and incubated at 37 °C for 3 h. The
released deglycosylated peptides were then eluted. Before mass
spectrometry analysis, both the non-glycosylated and deglycosylated
fractions were desalted using C18 StageTips (32).

LC-MS—The samples were analyzed using LC-MS instrumentation
consisting of an Easy nano-flow HPLC system (Thermo Fisher Scien-
tific, Odense, Denmark) coupled via a nanoelectrospray ion source
(Thermo Fisher Scientific, Bremen, Germany) to either an LTQ-Or-
bitrap Elite (33) or Q Exactive (34) mass spectrometer (both Thermo
Fisher Scientific, Bremen, Germany). Peptide separation was per-
formed on a 20 cm column with 75 �m inner diameter packed
in-house with ReproSil-Pur C18-AQ 1.8 �m resin (Dr. Maisch GmbH,
Ammerbuch-Entringen, Germany). Peptides were loaded in buffer A
(0.5% acetic acid (v/v)) and eluted with a 140 min linear gradient of
buffer B (80% acetonitrile, 0.5% acetic acid (v/v)) at 200 nL/min
(5–30% buffer B in 90 min; 30–60% buffer B in 10 min; 60–95% B in
5 min; 5 min 95% buffer B). Mass spectra were acquired in a data-
dependent manner, with an automatic switch between MS and
MS/MS using a top 10 method. MS spectra were acquired in the
Orbitrap analyzer with a mass range of 300–1650 m/z and 120,000
resolution at m/z 400 (Orbitrap Elite) or 300–1750 m/z and 70,000
resolution at m/z 200 (Q Exactive). HCD peptide fragments, acquired
at 30 (Orbitrap Elite) or 25 normalized collision energy (Q Exactive),
were analyzed at high resolution in the Orbitrap.

Data Analysis—The raw files were processed using the MaxQuant
computational proteomics platform (35) version 1.2.2.9. The fragmen-
tation spectra were searched against the Human IPI database v3.68
(87083 entries, common contaminants were added to this database,
including Con A and WGA) using the Andromeda search engine (36)
with the precursor and fragment mass tolerances set to 6 and 20
ppm, respectively, tryptic cleavage specificity with up two missed
cleavages, minimal peptide length of six amino acids, carbamidom-
ethyl (C) as fixed modification and oxidation (M) only as variable
modification for the nonglycosylated fractions and oxidation (M) and
deamidation 18O (N, �2.99826 Da) for the deglycosylated fractions.
Leucines were replaced by isoleucines. False discovery rate, deter-
mined by using a reversed database, was set to 1% for peptide,
modification site and protein identifications. Specifying the FDR in-
dependently for peptides and proteins ensures that we obtain the
desired proportion of false positive proteins, independent of peptide
statistics. Peptides that belong to proteins that did not make it above
the independently specified protein FDR threshold were removed
from the dataset. The actual, final, FDR of the peptide data set is

therefore lower (3–5 times lower) than 1%. Peptides are assigned to
protein groups, rather than proteins. Matching between runs from the
same mass spectrometer and the same sample (i.e. nonglycosylated
or deglycosylated) was performed with a 2 min. retention time win-
dow. Quantification was performed using the heavy super-SILAC mix
as internal standard and ratios were normalized to this mix and
expressed here as L/H (i.e. sample/super-SILAC internal standard).
For the blood plasma analysis, the option “re-quantify” was disabled.
For cases where no ratio could be determined, an arbitrary Log2 value
of 7 or 9 was given, depending on whether a signal was seen in the
light or heavy SILAC channel.

All the statistical analyses of the MaxQuant output tables were
performed with the Perseus program (versions 1.2.3.3 and 1.2.7.4),
which is a component of the MaxQuant distribution. The tables were
filtered to remove contaminants and reversed sequences. Further-
more, only modified asparagines within the canonical sequence motif
N!PS/T/C were accepted as true glycosylation sites. This extra re-
striction, together with the data set being enriched for N-glycosylated
peptides, results in a FDR at N-glycosylation site identification and
localization below 1% (29, 37). Hierarchical clustering on Z-scored
values was based on Euclidean distance and average linkage
clustering.

RESULTS AND DISCUSSION

Enrichment of N-glycosylated Peptides from Conditioned
Medium of Breast Cancer Cell Lines—We used a panel of cell
lines that were isolated from human breast tumors represent-
ative of various TNM stages, to profile differences in the
secretome during breast cancer development. To investigate
generic breast cancer related changes, rather than cell line
specific differences, we selected per cancer stage two to
three cell lines derived from different patients (4). Primary
human mammary epithelial cells from two different sources
were selected as control cell lines. MCF-10a and HMT-
3522-S1 cells represent pre-malignant cells, HCC1143
and HCC1937 cells stage II tumors, HCC202, HCC2218, and
HCC1599 cells stage III tumors and, finally, MFM223 and
MDA-MB-453 are metastatic cells from pleural-effusions
(Supplemental Table S1). This panel of cell lines covers stages
in the progression to tumor phenotypes and includes triple
negative and ErbB2 over-expressing cells.

The secretome of the different cell lines was collected as
conditioned medium after 24 h of incubation. To reduce the
amount of background proteins in the conditioned medium,
supplementation of serum proteins and other growth factors
to the culture medium was omitted. An initial test showed
that none of the cell lines suffered from a significant reduc-
tion in viability on 24 h of serum and growth factor starvation
(EXPERIMENTAL PROCEDURES).

To enable SILAC-based quantification of differences in
abundance levels of secreted proteins and peptides between
the different cell lines, we collected conditioned medium from
three representative different heavy stable isotope labeled cell
lines. This so-called super-SILAC mix (31) was then mixed
with the conditioned medium of the tested cell lines as an
internal spike-in standard (38) (Fig. 1A).
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The conditioned medium was collected and processed in
quintuplicate replicates. After collection and mixing with the
super-SILAC mix, the conditioned medium was filtered and
concentrated. Proteins in the concentrate were then digested
with trypsin using the FASP method. After the digestion, N-
glycosylated peptides were captured on a 30 kDa filter by two
broad spectrum lectins—concanavalin A and wheat germ
agglutinin. The N-glycosylated peptides were thereby sepa-
rated from non-glycosylated peptides (N-glyco FASP, Fig.
1B)(29). Next, N-glycosylated peptides were released from
the lectins by deglycosylation and analyzed by highly sensi-
tive LC-MS using the latest generation linear ion trap Orbitrap
or quadrupole Orbitrap instrumentation (33, 34). As the degly-
cosylation reaction was performed in H2

18O, the former site of
glycosylation could be recognized by the 2.98826 Da increase
of the mass of asparagine, representing the deamidation of
this amino acid with incorporation of one heavy oxygen (39,
40).

Global Results for Detected N-Glycosylation Sites—Com-
bining LC-MS data from the analysis in quintuplicate of the
secretome of the 11 cell lines, we obtained 45,824 peptide
spectrum matches with a 1% FDR, which incorporated the
characteristic asparagine mass increment and whose N-gly-
cosylation site agreed with the canonical N!PS/T/C motif. This
amounted to a data set of 1398 unique N-glycosylation sites
(Supplemental Table S2). The use of replicates combined with
a consistent spiked-in super-SILAC mix resulted in a fairly
large overlap of identifications between the different cell lines:

on average, 881 N-glycosylation sites were identified and
quantified per cell line (Fig. 2A) with almost one third appear-
ing in all cell lines and more than half of the sites in at least
eight of the analyzed cell lines (Fig. 2B). When combining the
cell lines for each cancer stage, more than half of the sites
were found in each of them.

In total, 1253 of the N-glycosylation sites that we identified
were annotated in Uniprot (release 2012_01). However, for
almost 60% of these annotated sites, knowledge is based on
prediction or similarity. Therefore, 868 (62%) N-glycosylation
sites from our data set can be considered as new experimen-
tally confirmed N-glycosylation sites, a substantial increase
compared with the little more than 2300 sites that were an-
notated based on empirical data before. These N-glycosyla-
tion sites mapped to 701 different protein groups. Of these,
approximately half were identified with one N-glycosylation
site and one fifth with two N-glycosylation sites (Fig. 2C). The
maximum number of N-glycosylation sites per protein was
twenty for Alpha-2-macroglobulin receptor. Other proteins
with ten or more identified N-glycosylation sites include
laminin subunit alpha-5, cadherin family member 8, attractin,
cytotactin, sortilin-related receptor, cadherin family member
7, gastric mucin, CD109, and laminin B2 chain.

Many identified glycoproteins are known secreted or mem-
brane proteins, including components of the extracellular ma-
trix such as proteoglycans, fibronectin, and laminins. Among
the identified glycoproteins we find some of the membrane
proteins that are used to classify the cell lines. For example,

FIG. 1. Overview of the experimental workflow. A, The secretome was collected as conditioned medium from cell lines in culture.
HCC1143, HCC1937 and HCC2218 were also cultured under SILAC conditions to generate a super-SILAC mix as an internal standard.
B, N-glycosylated peptides were enriched using N-glyco FASP. Proteins were first digested to peptides and N-glycosylated peptides were then
captured using lectins. Finally, N-glycosylated peptides were released by deglycosylation using PNGase F and the deglycosylated peptides
were analyzed by LC-MS.
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ErbB2 expression levels are high in HCC202 and HCC2218,
whereas other growth factor receptors are found with rela-
tively higher expression in the metastatic cell lines (MFM223,
MDA-MB-453).

Using ion trap instrumentation, Yen et al. recently per-
formed an N-glycosylation centered study on 14 different
breast cancer cell lines to detect differences in glycosylation
between normal breast cells (HMEC) and breast cancer cells
based on spectral counting (41). For some 63% of the glyco-
proteins identified in that dataset, we found at least one
N-glycosylation site. More recently, Drake et al. compared the

N-glycosylated secretome of luminal and triple negative
breast cancer cell lines using the lectins SNA and AAL and
based their quantification on spectral counting (42). Even
though different cell lines were used, approximately half of the
identified sites were also present in our data set. Of the 83
putative triple negative-specific glycoproteins, twenty also
had a significantly higher expression in our comparison of
triple negative versus ErbB2 expressing cell lines (see below).
Although this reasonable overlap with these previous studies
is encouraging, we here went one step further by performing
quantification based on a super-SILAC internal standard,
which we used to quantitatively determine secretion profiles
as a function of cancer stage.

Increased Precision by Super-SILAC Internal Standard—In
this study, ample replicates were used to minimize the effects
of biological and technical variation. The inclusion of an inter-
nal super-SILAC standard further allowed for normalization of
technical variance. Variations that were expected include
plate-to-plate variability of the same cell line and technical
variation from N-glyco FASP being performed in different
batches and different LC-MS instrumentation (nanoLC-Or-
bitrap Elite and Q Exactive). When comparing the correlation
of intensities between replicates of the light SILAC channel,
i.e. the samples before normalization by the internal super-
SILAC standard, a certain degree of variation is apparent.
However, similar variability can be seen in the super-SILAC
channel. When performing normalization using the super-SI-
LAC internal standard, correlation between the replicates
clearly increased, and differences between the cell lines were
augmented (Fig. 3). This demonstrates the power of using an
internal standard, such as the super-SILAC mix, for increased
quantification precision. The effect of the internal standard is
lower at the proteome level, which was based on quantifica-
tion of both enriched and non-enriched supernatant (see be-
low). This is because in protein quantification, variation may
be balanced out by different peptides. In contrast, quantifica-
tion of N-glycosylation sites usually involves only one peptide,
which, moreover, may be more prone to variation compared
with nonglycosylated peptides because of the additional
steps of lectin-capture and release with PNGase F. Remark-
ably, normalization with the internal standard elevated the
correlation between replicates to the level of protein
quantification.

Differences Between Proteins from N-glycosylation En-
riched and Nonenriched Samples—In addition to the N-gly-
cosylated peptides captured by the lectins, we also analyzed
the noncaptured, and thus nonglycosylated, peptides (Fig.
1B, Supplemental Tables S3 and S4). This allows us to com-
pare differences in features between glycosylated and non-
glycosylated proteins and to assess the beneficial effect of
enriching for N-glycosylated peptides. Of the 701 glycopro-
teins, 366 were only identified by their N-glycosylated pep-
tides, whereas the remaining 335 were also identified by
nonglycosylated peptides. The latter represent less than 10%
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of the 3482 proteins that we identified in the supernatant in
total and less than half of the glycoproteins detectable when
using enrichment. This suggests that the enrichment of N-
glycosylation peptides efficiently focuses the analysis on a
particular subset of proteins that may otherwise remain
undetected.

To determine what subset of proteins was enriched using
N-glyco FASP we looked at the predicted cellular localization
of the proteins using Gene Ontology (GO) annotation (43). In
total, 75% of the identified N-glycosylated proteins had a GO
cellular compartment (GOCC) term that included the key-
words “extracellular” and/or “plasma membrane” versus 31%
in the non-enriched dataset (Table I). Moreover, the GOCC
terms “intrinsic to membrane” and “extracellular region” were
enriched 3.1 and 2.6 times in the N-glycosylated dataset

compared with the whole dataset, respectively (Benjamini-
Hochberg corrected p values 6.3 � 10�152 and 3.2 � 10�37).

Proteins are N-glycosylated in the ER and Golgi apparatus.
The route through ER and Golgi system delivers proteins to
the plasma membrane and extracellular space and is part of

FIG. 3. Effect of normalization using the super-SILAC internal standard. A, Correlation of intensities of light N-glycosylated peptides
intensities between different replicates and cell lines (light channel of SILAC measurements only). Samples are ordered horizontally and
vertically according to replicates and cell line (from HMEpC1 until MDA-MB-453). B, Correlation of intensities of heavy isotope labeled
N-glycosylated peptides (super-SILAC internal standard) intensities between different replicates and cell lines. C, Correlation of N-glycosylated
peptide ratios between different replicates and cell lines after normalization using the super-SILAC internal standard. Correlations between
replicates (“green blocks” near the diagonal) and cell lines from the same cancer stages are increased, whereas differences with other cell lines
are augmented. D, Correlation between replicates from each cell line at the N-glycosylated peptide level (from panel A and C) and protein level
(based on nonglycosylated and glycosylated peptides) before and after normalization using the super-SILAC internal standard. Pearson’s r was
calculated between all replicates from each cell line. Two aberrant measurements (one from HMEpC2 and one from HCC1937) were omitted.

TABLE I
Percentage of proteins with GOCC terms or predicted signal peptide

and pathway of secretion

% of proteins
N-glyco
dataset

Non-enriched
dataset

GOCC “extracellular”, “plasma
membrane”

75 31

Signal peptide predicted 84 21
Non-classical secretion predicted 9 31
Secretion predicted 93 53
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the classical secretion pathway (18). As most of the proteins
that enter the ER have an N-terminal signal sequence used to
target them for translocation across the ER membrane, we
expected that N-glycosylated proteins would therefore be
more likely than nonglycosylated proteins to contain a signal
peptide. SignalP 4.0 can be used to predict whether the
protein amino acid sequence contains a signal peptide (44),
whereas SecretomeP 2.0 delivers ab initio predictions of non-
classical secretion (45). Confirming our expectation, the N-
glycosylation enriched data set contained more proteins with
a predicted signal peptide (84% versus 21% for the nongly-
cosylation enriched dataset), whereas the percentage of pro-
teins predicted to be nonclassically secreted was lower (9%
versus 31%, Table I). Finally, the percentage of proteins that
was predicted to be secreted was 93% for the N-glycosyla-
tion enriched data set compared with 53% of the non-en-
riched dataset. This demonstrates that enriching N-glycosy-
lated peptides is advantageous as it focuses the analysis on
actively (classically) secreted and plasma membrane proteins.

Determining Dynamics of N-glycosylation—The abundance
changes that we detect at the N-glycosylation site level can
have various underlying causes. In principle, the used lectins
may have different affinity toward the glycan-chain after mod-
ification of the glycan-structure. In our method, we may ne-
glect these changes because the used lectins for capturing
N-glycosylated peptides select for glycan characteristics that
are rather common. If they are not because of glyco-structure,
the detected differences may relate to actual differences in
occupancy of N-glycosylation sites whereas the overall pro-
tein expression remains the same. Or, the differing abundance
may be related to the changed expression, secretion or shed-
ding of the whole protein. We can differentiate between these
two scenarios by comparing abundance changes of N-glyco-
sylated peptides with the total protein changes. When we plot
the ratios at the N-glycosylation site level against the protein
ratios (that were calculated excluding the N-glycosylated pep-
tides), we observe a high correlation (Supplemental Fig. S1;
average Pearson’s correlation coefficient 0.84). This suggests
that most of the changes that we detected at N-glycosylation
level are in fact caused by changes in protein abundance. This
is in agreement with a previous study in which a significant
part of the apparent N-glycosylation dynamics correlated well
with protein dynamics as measured by RNAseq (42). It is also
in agreement with the general character of N-glycosylation as
a rather stable, co-translational modification. In the remainder
of this manuscript, we will therefore discuss expression levels
of proteins, synonymous with the N-glycosylation sites.

Hierarchical Clustering to Identify Cell Line and Cancer
Stage Specific Features—The “one shot” analysis of N-glyco-
peptides allowed us a quintuplicate analysis which in turn
provides an excellent basis for statistical analysis of differ-
ences between cell lines. By one-way ANOVA, 722 N-glyco-
sylation sites showed a significant difference (Benjamini
Hochberg FDR � 0.05) in at least one of them. We then

performed hierarchical clustering based on Euclidean dis-
tance on the Z-scored mean values of the N-glycosylation
sites per cell line. Even though this clustering was unsuper-
vised, cell lines that belong to the same cancer stage were
grouped together and the secretomes of the Stage III and
metastatic cells were separated from the lower grade and
non-tumor cells (Fig. 4A). This is encouraging because the
selected cell lines differ in the required growth medium, the
supplier of the cell line, the adherence to the culture plate and
expression of estrogen receptor, progesterone receptor (PR)
and ErbB2, which all may affect the conditioned medium that
was collected. In contrast, in our recent study of the proteome
of these cells the clustering was not always by cancer stage
(4). Our results demonstrate that in the N-glycosylated secre-
tome, cancer stage specific factors are dominating the secre-
tome rather than cell culture-related aspects.

From the previous clustering analysis it became clear that
the variation between the five cancer stages was larger than
the variation between cell lines within the same cancer stage.
Therefore, we decided to combine the replicates within the
cancer stages to elucidate N-glycosylation differences that
may be indicative of breast cancer development. The 510
N-glycosylation sites that showed a significant difference
(Benjamini Hochberg corrected students t test � 0.05) be-
tween at least one cancer stage and healthy epithelial cells
were filtered followed by hierarchical clustering of the Z-
scored values to identify patterns in regulation (Fig. 4B). Five
main clusters can be observed (Fig. 4C). Cluster I contains
N-glycosylation sites with a mixed regulation, but often low in
pre-malignant and metastatic cell lines. In cluster II the ex-
pression of N-glycosylation sites is continuously increasing
with the aggressiveness of the cancer stages. Cluster III
shows the highest expression in Stage II cancer cells,
whereas cluster IV has the highest expression in the meta-
static cells. Finally, cluster V, encompassing slightly more
than 50% of the data set, shows a trend of expression that is
the lowest in Stage III and metastatic cancer cells. GO-term
enrichment analysis showed that the GOCC term “integral to
membrane” is enriched in cluster II (1.7 times, 3.1 � 10�6

Benjamin-Hochberg FDR), whereas cluster V had significantly
more proteins with the “extracellular space” tag (1.5 times,
5.6 � 10�11 Benjamin-Hochberg FDR). Many of the sites in
cluster V map to proteins involved in cell-cell interaction and
adhesion. The fact that their abundance is lower in the later
stage cancerous cell lines suggests negative involvement of
these proteins in the release of the cell from the surrounding
tissue.

From a biomarker perspective cluster II-IV would be more
valuable as these are positive (increasing) markers for cancer
development. Cluster II and IV have highest expression in the
metastatic cell lines, whereas proteins in cluster III could be
considered early indicators. Within these clusters are known
cancer makers such as CEA and CEACAM1, as well as pro-
teins suggested to be biomarkers in other studies. This is a
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powerful positive control for our approach and indicates that
the N-glycosylated secretome of the cell lines may be a po-
tential source to identify disease markers. In the following, we
discuss proteins that were found in clusters II-IV and have a
known or potential role in cancer development and may there-
fore mark carcinogenic changes in breast cancer.

Growth Factor Pathways—The growth factor receptors
ErbB2, ErbB3, and FGFR1 were found in the clusters with
higher abundance in metastatic cells. They have clearly been
associated with breast cancer development and the success
of cancer treatment whereby trastuzumab (Herceptin) targets
ErbB2, whereas amplification of FGFR1 causes tamoxifen
resistance (46). There is crosstalk between EGFR and NTRK2
(or Trk�), which in the context of ovarian cancer enhances cell
migration and proliferation (47). Silencing the expression of
neurotrophin tyrosine kinase receptor related protein
(NTRKR1) was shown to impair the growth and survival of
human breast cancer cells (48).

Other proteins that are involved in growth factor signaling
and that appeared in cluster II are PRSS14, LIV-1, and LTBP1.
PRSS14 is a protease that was suggested to function as an
epithelial membrane activator for other proteases and latent
growth factors and its expression was associated with various
types of tumors (49). LIV-1 (or estrogen-regulated protein 1) is
an effector molecule downstream of soluble growth factors
and has previously been associated with breast cancer and
its metastatic spread to regional lymph nodes (50). Further-
more, it promotes the epithelial-mesenchymal transition in

human pancreatic, breast, and prostate cancer cells (51).
Finally, LTBPs are required for the proper folding and secre-
tion of TGF-� (52). The expression of both proteins was re-
ported to be synchronized in ovarian and breast cancer cells
(53).

TSPAN-enriched Microdomain—Fourteen of the identified
glycoproteins belong to the family of tetraspanin (TSPAN)
proteins or are recruited into the organized membrane struc-
tures known as TSPAN-enriched microdomains (54). In these
domains, TSPAN proteins assemble with similar or different
TSPANs, integrins, cytokine receptors, Ig superfamily mem-
bers, cytosolic signaling molecules, gangliosides, and pro-
teases such as ADAMs and MMPs. Their roles include signal
transduction, cell-cell adhesion, cytoskeletal anchoring and
protein trafficking. Therefore it is not surprising that TSPANs
have been associated with cancer development. In this study,
TSPAN1, 8, 13, 15, 24, and 27 were identified, but not with a
sufficient number of quantitative values to determine a signif-
icant change compared with the healthy control stage. How-
ever, TSPAN3, 6, 29, and 30 did show a significant increase in
abundance on cancer development. Among the direct TSPAN
interactors that we identified were EWI-2 (in cluster II), EWI-F
and EpCAM (not significantly quantified), CD44 (cluster V),
and various integrin subunits with varying dynamics. In gen-
eral, TSPAN8 (CO-029) and 24 (CD151) are considered to
promote motility of tumor cells whereas TSPAN27 (CD82), 29
(CD9), and 30 (CD63) appear to limit the dissemination of
tumor cells (54). It is therefore striking to see TSPAN29 and 30

FIG. 4. Hierarchical clustering of N-glycosylation abundance profiles. A, Hierarchical clustering based on Euclidean distance at the cell
line level. B, Hierarchical clustering based on Euclidean distance at the cancer stage level of N-glycosylation sites that showed a significant
difference between healthy mammary epithelial cells (HMEC) and at least one other cancer stage. C, Five main clusters extracted from B).
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and EWI-2 (which is a direct partner of TSPAN27 and
TSPAN29) appear in cluster II, with a higher expression in the
later cancer development stages. This is, however, in accord-
ance with previous proteomics data of the same cell lines (4),
suggesting that different TSPAN members may not only have
different roles in cancer development but also cell type spe-
cific roles. In support of this notion, we observed some cell
line specific abundance differences for these proteins.
TSPAN29 and EWI-2, for example, are significantly higher in
abundance in MFM223 and HCC202 than their respective
cancer stage members (Supplemental Fig. S2).

Semaphorins—Another class of proteins of which many
members were identified are the semaphorins, proteins that
are secreted or membrane anchored and that can be shed
from the membrane by ADAMs and MMPs. The semaphorins
were first described as axon guidance factors in the nervous
systems, but semaphorin receptors were found to be ex-
pressed in various cell types including endothelial cells and
many types of cancer (55). In this study, we identified sema-
phorins 3C, 4B, 4C, 4D, 5A, 7A, and their receptors NRP1 and
plexin A1, A2, B1, B2, and D1. With a significant quantitative
difference compared with the HMECs, semaphorins 3C, 4B,
and plexin B1, B2, and NRP1 were all members of cluster II-IV
whereas Semaphorin 7A was found in cluster V. Activation of
plexins by semaphorins modulates cell adhesion and induces
changes in the organization of the cytoskeleton of the target
cells (55). Some semaphorins and their receptors have been
considered tumor suppressors whereas others are known to
activate tumor formation. For example, overexpression of
NRP1, which is a receptor for the secreted semaphorins type
3 and pro-angiogenic factors such as VEGF and HGF, was
shown to induce rapid tumor growth and progression in the
context of prostate cancer and colon carcinoma (56). NRP1
appeared in cluster III with the highest abundance in the early
cancer stages. VEGF-C and VEGF-E appeared in cluster V
with a decrease in the abundance over the cancer stages,
whereas semaphorin 3C showed the opposite profile. Regu-
lation by semaphorins can be context dependent; for exam-
ple, Semaphorin 4D can be pro- or antimigratory, depending
on the presence of ErbB2 or MET (57).

Additional Proteins With Potential Breast Cancer Links—
Prolactin induced protein (PIP or GCDFP15) was first isolated
from human breast gross cystic fluid (58) and it has a mito-
genic effect on breast cancer cells (59). This secreted glyco-
protein has been suggested as a marker for apocrine breast
carcinoma and prognosis predictor (60–62). Zinc �2-glyco-
protein (AZGP1) forms a complex with PIP (63) and increased
protein expression was found in well-differentiated tumors in
which PIP levels were higher (64). In our data set, both AZGP1
and PIP appear in cluster II with higher abundance in the later
stages of cancer, although AZGP1 does not seem to fully
correlate with PIP levels in different cell lines (Supplemental
Fig. S2).

The expression of phosphatase leukocyte common antigen
related (LAR), a transmembrane tyrosine-protein, has been
shown to increase in breast cancer (65). In accordance with
these observations, we also see an increase in LAR expres-
sion in the later stages of cancer development. We identified
11 N-glycosylation sites on the extracellular matrix protein
cytotactin (or tenascin, TNC). Their expression was increased
mostly in the metastatic cell lines and HCC1143. TNC is a
protein that binds to fibronectin, periostin, integrin cell adhe-
sion receptors, and syndecan membrane proteoglycans.
Breast cancer cells have been shown to produce TNC to
support the fitness of initiating cells during the establishment
of metastasis in lungs (66). That may be the reason that their
expression is high in the later, metastatic stages of breast
cancer cells (Supplemental Fig. S2).

Breast Cancer Specificity—A clinically useful positive
marker for disease should be up-regulated in expression spe-
cifically in that disease but not in related diseases. Addition-
ally, it would be of interest if the proposed marker was specific
to the tissue in which the disease originated. However, in
general many of the proteins that are detected with a differ-
ential regulation during cancer development are proteins that
are rather generically involved in cancer progression. In our
data set, for example, we observe an increase in expression of
ephrin-A3, ICOS ligand, and inositol monophosphatase 3.
However, according to immunohistochemistry data from the
Human Protein Atlas (67) all of the 65 different cell types and
all cancer tissues that were tested stained positive for these
proteins. ErbB2 is more specific with expression detected by
antibodies in 40% of cancer tissues other than breast cancer
and 81% of breast cancer tissue. PIP had the highest spec-
ificity in breast cancer; only four out 66 test cell types and only
4% of the cancer tissues showed some expression of the
protein by antibody staining. Interestingly, most of these were
breast cancer tissues. Note that not all proteins that we iden-
tified have been evaluated in the Human Protein Atlas yet.

Differences Between Breast Cancer Cell Types (triple neg-
ative and ErbB2 expressing cell lines)—So far, we based
analysis of the secreted glycoproteins on breast cancer stage,
however, in a more detailed analysis we noticed several pro-
teins that seemed to differ significantly between cell lines
within the same cancer stage group. These different cell lines
represent different breast cancer types, and therefore as an
example, we decided to investigate possible difference be-
tween ErbB2 expressing or triple negative. In total, 132 N-gly-
cosylation sites showed a significant differences between
these types of which 96 also differed significantly compared
with the healthy breast epithelial cells. A total of 98 of the
N-glycosylation sites were higher in abundance in the triple
negative cell lines. Cluster III contains N-glycosylation sites
for which the expression was highest in the pre-malignant cell
lines, HCC1143 and HCC1937. Almost 40% of these sites
also appear in the analysis of the difference between ErbB2
positive and triple negative and may therefore be explained by
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their expression of hormonal receptors. Of the above dis-
cussed proteins only SEMA4B, NTRKR1, and CD44 had a
significantly higher expression in triple negative cell lines,
whereas PIP has a significantly higher expression in the ErbB2
expressing cells.

N-glycosylated Secretome Versus Cellular Proteome—The
abundance change of proteins in the secretome can be re-
lated to altered protein expression, but also to differential
secretion or shedding. To distinguish these scenarios, one
can compare the secretome data with intracellular data. Pre-
viously, our group analyzed the intracellular proteome of the
panel of cell lines that was used in this study to identify cancer
stage specific differences (4). Of the protein groups identified
in the current study, 461 (representing 1031 N-glycosylation
sites) overlapped with the Geiger et al. dataset. Unsupervised
hierarchical clustering with the averaged ratios of proteins of
the different cell lines grouped the proteome and the N-
glycosylated secretome next to each other in almost all cases
(Supplemental Fig. S3). This demonstrates that proteomic
quantification of the cellular and secreted proteomes both
capture essential aspects of cancer stage related changes
and that the differences between the different cell lines are
larger than the differences between the same cell line in the
two proteomic approaches. The secretome of the cancer cell
lines therefore appears, at least partly, to be a reflection of the
intercellular protein state and vice versa. In the previous study
we strove for a deep and comprehensive analysis of the
cellular proteome and identified more than 8000 proteins. The
data set reported here is significantly smaller as no fraction-
ation was performed and the analysis was focused on cap-
turing N-glycosylated peptides, but interestingly still more
than 30% of the proteins were not found in the large proteome
dataset. This is likely the result of focusing on the secretome
versus cellular proteome in combination with enriching for
N-glycosylated peptides. These features of N-glyco FASP of
cancer cell secretomes prompted us to investigate the
method for detecting and quantifying the potential breast
cancer biomarkers directly in human blood as described next.

N-glyco FASP Applied to Blood Plasma—One large stum-
bling block in the proteomics analysis of plasma is the enor-
mous quantitative dynamic abundance range of proteins. Al-
bumin, for example, takes up about 50% of the total mass of
plasma proteins and is present at 35–50 mg/ml levels,
whereas other clinically interesting proteins are present at
only pg/ml levels (6). For this reason, plasma is often depleted
of the highest abundant proteins, such as albumin, immuno-
globulins, and complement components, before proteomics
analysis. However, this risks losing proteins that may bind to
the proteins that are depleted (68). We reasoned that using
the N-glyco FASP strategy to reduce the complexity of the
sample, may also reduce the dynamic range challenge in
plasma, as has already been shown with other glyco-capture
approaches (26). Although many of the high abundance
plasma proteins (but not albumin) are N-glycosylated (22), the

removal of their non-N-glycosylated peptides should result in
a significant reduction of their share in the final analyzed
sample.

We first set out to compare the identified proteins prior and
after enrichment of N-glycosylated peptides and for this pur-
pose we digested plasma of female blood donors. An aliquot
was used for determination of the plasma proteome, whereas
the remainder was enriched for N-glycosylated peptides using
N-glyco FASP (Fig. 5A). More than 800 proteins were identi-
fied from both the non-enriched and N-glycosylation enriched
fractions. Among them we found as the most abundant ones
almost all proteins that were listed by Anderson et al. as
“classical plasma proteins” (6). These include the proteins that
are depleted by, for example the Hu-6, Hu-14, and Proteo-
prep 20, multiaffinity removal systems (68). To test whether
these classical plasma proteins are relatively reduced after
enriching for only their N-glycopeptides, we summed the MS
intensities of their peptides and normalized for the total pep-
tide intensity present in the samples. Interestingly, this indeed
revealed a twofold decrease in relative intensity after enrich-
ment of N-glycosylated peptides. Considering that the input
for the N-glyco FASP for a single analysis can be about a
hundred times more, this leads to an about 200 times reduced
intensity of the high abundance proteins compared with a
total proteome measurement. This then allowed the identifi-
cation in single, 2h LC MS/MS runs of many lower abundant
glycoproteins such as CD63, ALCAM, Plnxb2, and CD49 and
180 additional proteins that may be classified as “tissue leak-
age” proteins.

Quantification of N-glycoproteins in Blood by Super-
SILAC—Apart from the difficulties imposed by the large dy-
namic range of the plasma proteome, accurate quantification
in body fluid is likewise challenging. The super-SILAC strategy
has been employed with tissues and post-translational mod-
ifications (38, 69), but it may seem to be impossible to apply
to the quantification of body fluids. To evaluate the use of the
super-SILAC mix in blood plasma we analyzed in duplicate
the plasma of four female donors to which we added an
approximately equal amount of the super-SILAC mix com-
posed from the secretome of SILAC labeled cell lines. From
this analysis we identified 925 unique N-glycosylation sites
(Supplemental Tables S5, S6, and S7). Three classes of quan-
tification results would be expected: proteins that occur in
both the secretome of breast cancer cells and in human
plasma should occur as SILAC pairs in the analysis. Proteins
that are largely unique to plasma, such as the classical plasma
proteins discussed above can be recognized by not having an
equivalent heavy labeled counter-peptide. Finally, proteins
that are unique to breast cancer cells and not present in the
donor plasma would only have the heavy form of the SILAC
peptides. On inspecting the results, we indeed found these
three classes of glycopeptides (Fig. 5B).

Because the apparent SILAC-ratios may be very high or
very low for classical plasma proteins and secretome proteins
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that do not appear in the plasma, some precautions need to
be taken not to introduce artifacts. For example, during quan-
tification in MaxQuant, the “re-quantify” option shifts the iso-
tope pattern of the detected SILAC partner to the location of
the inferred missing SILAC partner to integrate the signal at
that position and thereby determine a minimum ratio. Be-
cause there may be no partner in this case, the re-quantify
option should be turned off. Furthermore, although in general
the incorporation of isotopically labeled lysine and arginine in
the super-SILAC mix is high, there may be proteins that are
not fully labeled. A small, but detectable, fraction of the light
version of the peptide may therefore remain and this can be
determined by analyzing the super-SILAC mix on its own.
Finally, typically used normalization methods are not applica-
ble, because no normal distributions are expected between

super-SILAC N-glycopeptides and plasma N-glycopeptides.
For practical analysis purposes, the N-glycosylation sites for
which no ratio could be determined because of missing light
or heavy labeled counter-peptides, received an value of –7 or
9 (the minimum and maximum ratios that were quanti-
fied) depending on whether only the light or the heavy ver-
sion was found (Fig. 5B). With only one or two exceptions, for
the classical plasma proteins no counter-peptide could be
detected in the super-SILAC mix, validating our analysis strat-
egy. Given the above described challenges of plasma pro-
teome analysis, we were encouraged to see that more than
half of the N-glycosylation sites overlapped with the 1398
sites found in in-depth measurements of the cell line secre-
tomes. Taking a Log2 ratio of –2 as a very conservative lower
threshold for positive proof of presence of the light peptide,

FIG. 5. N-glyco FASP applied to blood plasma. A, Blood plasma was mixed with the breast cancer cell secretome super-SILAC mix. The
enrichment of N-glycosylated peptides, and thereby removal of nonglycosylated peptides, reduced the intensity of abundant plasma proteins
by about 200 times. B, Distribution of ratios of N-glycosylation sites between the super-SILAC internal standard and plasma. Sites without a
signal in the light or heavy SILAC channel were assigned a Log2 ratio of –7 and 9, respectively. Overlapping sites with the secretome data set
are labeled in red, whereas classical plasma proteins (as taken from Anderson et al. (6)) are labeled in pink. C, D, E, example MS spectra of
N-glycosylated peptides with differing ratios. C, IHVTIYN(de)CSFGR (3�), plexin B2, average ratio �1.75; D, FEAEHISN(de)YTAIIISR (3�),
semaphorin 4B, average ratio 0.0; E, IDSTGN(de)VTNEIR (2�), attractin, average ratio 4.3.
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180 N-glycosylation sites were found with both a signal from
the plasma and the super-SILAC internal standard. Of these,
164 sites (91%) were also quantified in the secretome study.
When mapped on the N-glyco secretome, these plasma sites
have a small bias toward the more abundant part of the
distribution but cover most of the dynamic range (Supplemen-
tal Fig. S4A). For these overlapping sites we also have
information about their dynamics in breast cancer develop-
ment. In total, 101 of the sites overlapping with the secre-
tome and with a ratio between –2 and 9 were present in one
of the five clusters discussed above, with no apparent
preference.

Overall a surprisingly high share of the N-glycosylation sites
identified in the secretome of breast cancer cell lines was also
identifiable and quantifiable in the blood plasma. For example,
from the proteins that we discussed above with an abundance
increasing in breast cancer cell lines we identify here in the
plasma, NTRK2, PRSS14, LTBP1, TSPAN30, CD44, sema-
phorins 4B and 7A, plexin B1, B2, and D1, NRP, AZGP1, and
cytotactin. This indicates that numerous potentially clinically
relevant proteins that are secreted by cell lines are also pres-
ent in blood plasma at detectable levels. Often, antibody
based techniques, such as ELISA, have been used to validate
findings from secretome studies in body fluids (11, 13, 23).
Here, however, by spiking the super-SILAC mix from the
secretome of cell lines into the plasma, we can simultaneously
determine whether proteins are tissue-derived and quantify
the abundance of many N-glycosylation sites at once.

CONCLUSION

Here we have shown that the enrichment of N-glycosylated
peptides using N-glyco FASP allowed for a focus on a specific
subset of classically secreted or shed proteins. In this manner
a reasonably deep analysis could be obtained in a “single-
shot” LC-MS fashion in a very short analysis time. While this
method requires additional sample handling compared with
direct shotgun analysis, this may often be outweighed by the
above advantages, especially when analyzing blood. In gen-
eral, N-glycosylation proved to not be a transient modification
as barely any difference was observed between N-glycosyla-
tion occupancy and changes of the protein abundance itself.
Quantification at the N-glycosylation site level therefore in
most cases acts as a proxy for protein quantification, but in a
much more feasible way given the reduced complexity of the
sample after enrichment of N-glycosylated peptides. Includ-
ing an internal standard, such as the heavy isotope labeled
super-SILAC mix in the N-glyco FASP analysis further allows
normalizing the data for technical variation between repli-
cates, thus increasing quantification precision.

The total N-glycosylated secretome profiles that we meas-
ured were cell line and cancer stage specific and clustered as
such. This implies that there are indeed cancer stage specific
differences in glycoproteins that are secreted or shed into the
supernatant. Further proof of the usability of the conditioned

medium for finding differences between breast cancer cell
lines came from the identification and quantification of several
known markers for breast-cancer such as CEA and CEACAM.

Of the detected N-glycosylation sites, 510 showed a sig-
nificant difference in abundance in one of the cancer stages
compared with the normal breast epithelial cells. Many of the
sites that had an abundance that was lower in the advanced
cancer stages were mapped to proteins that are involved in
cell adhesion, which suggests a (negative) role in the release
of cancerous cells from the surrounding tissue. Other N-gly-
cosylation sites were found to have a higher abundance in the
later cancer stages, including proteins from the TSPAN and
semaphorin family, proteins involved in growth factor signal-
ing and other proteins that have been associated with breast
cancer development. In general, cell lines within a cancer
stage group showed similar N-glycosylation profiles, but
some glycoproteins proved to be cell line specific, partly
correlated to the expression of estrogen receptor, PR, and
ErbB2. The fact that our quantification of the N-glycosylated
secretome found a class of proteins with a higher expression
in the later breast cancer stages suggests that this workflow
could be used for biomarker discovery, provided that the
sensitivity and specificity of these candidates was independ-
ently verified in large patient cohorts.

In a study of blood plasma from female donors, we for the
first time extended the super-SILAC approach to body fluids.
We showed that the super-SILAC approach can distinguish
classical plasma proteins from tissue leakage proteins by their
SILAC ratios. We confirmed that similar proteins as found in
the condition medium of cell lines can be detected in plasma
underlining the clinical usefulness of the secretome of cell
lines. Even in this initial study, about a hundred N-glycosites
associated with proteins that had significant changes with
breast cancer stage in the cell line secretome, were also
quantifiable in plasma and this number can surely be ex-
tended with further method development. For instance, some
120 sites were quantified in the N-glycosylated secretome of
the cell lines but these heavy peptides were nevertheless not
detected after mixing with plasma. We suspect that their
abundance in the super-SILAC mix may have been too low to
be detected and in the secretome study their abundance was
indeed in the lower half of the abundance distribution (Sup-
plemental Fig. S4B). For these, MRM-based targeted ap-
proaches could be employed to improve S/N (70, 71) or for
the quadrupole-Orbitrap instrumentation employed here, se-
lected ion monitoring (SIM) scans (34) could be used. Further
studies could incorporate analyses of plasma comparing
healthy donors and breast cancer patients to trace the even-
tual altered abundance of these markers in the peripheral
blood.
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