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The phase space given by the cotangent bundle of a Lie group appears in the context
of several models for physical systems. A representation for the quantum system
in terms of non-commutative functions on the (dual) Lie algebra, and a generalized
notion of (non-commutative) Fourier transform, different from standard harmonic
analysis, has been recently developed, and found several applications, especially
in the quantum gravity literature. We show that this algebra representation can be
defined on the sole basis of a quantization map of the classical Poisson algebra,
and identify the conditions for its existence. In particular, the corresponding non-
commutative star-product carried by this representation is obtained directly from the
quantization map via deformation quantization. We then clarify under which condi-
tions a unitary intertwiner between such algebra representation and the usual group
representation can be constructed giving rise to the non-commutative plane waves
and consequently, the non-commutative Fourier transform. The compact groups U(1)
and SU(2) are considered for different choices of quantization maps, such as the
symmetric and the Duflo map, and we exhibit the corresponding star-products, alge-
bra representations, and non-commutative plane waves. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4818638]

. INTRODUCTION

In ordinary quantum mechanics of a point particle on flat space, we can either choose to represent
our wave functions in the position representation, that is, realizing the Hilbert space of the system
as L? functions on the configuration space, or in the momentum representation, given again by
L? functions on the cotangent space. These two realizations can be independently defined, once a
quantization map of the classical Poisson algebra of observables has been chosen. On a Euclidean
space the usual Fourier transform gives a map between both representations, i.e., between the two
L? spaces, relating them self-dually. Explicitly, for ¢ € L?>(R¢), the Fourier transform is given by

I () = / dx e P y(E) e LARY,
R4

where ¢~/ are unitary irreducible representations of the group of translations in R?, and ¥, p
vectors in R¢. Thus, in the flat case, points on the cotangent (momentum) space are in one-to-one
correspondence with unitary irreducible representations of the translational symmetry group of the
configuration space.

For a generic curved manifold, a momentum representation in terms of L? functions on its
cotangent space cannot be defined, in the absence of symmetries, or a notion of Fourier transform.
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On the other hand, for symmetric spaces and, in particular, for Lie groups the notion of Fourier
transform can be generalized as an expansion in terms of unitary irreducible representations of
the same group, acting transitively on the configuration manifold. More precisely, for any locally
compact group G, the Fourier transform is defined as the unitary map between L*(G) and LZ(G),
where G, the Pontryagin dual of G, denotes the set of equivalence classes of unitary irreducible
representations of G. Harmonic analysis is, indeed, a very useful tool in quantum mechanics, quantum
field theory in curved spaces, and quantum gravity.

However, some of the nice features of the usual momentum representation and of the usual
Fourier transform are inevitably lost. When considering a physical system whose configuration
space is a Lie group G (e.g., a particle on a 3-sphere described by SU(2)), the momentum space
coincides with the dual of the Lie algebra g*, which in general differs from G.For example, for SU(2),
S/U-@ = Np/2, while su(2)* ~ R?. That is, the Pontryagin dual is a very different object from the
cotangent space of a configuration space, coinciding only in very special cases, as G = R? above.
Therefore, the dual representation obtained from harmonic analysis is not in terms of (generalized)
functions of momenta, i.e., functions on the Lie algebra. This implies that one is bound to lose contact
with the classical theory, at least at the formal level, when working with quantum observables that
are functions of the momenta. Of course, the same physical information can be recovered in any
representation of the quantum system, but one would like to maintain a closer formal resemblance
with the classical quantities, to help maintaining also a closer contact with the underlying physics.
In particular, several quantum gravity approaches, most notably loop quantum gravity,'~ spin foam
models* and group field theories,>”’ work with an underlying classical phase space based on the
cotangent bundle over a Lie group (either SU(2) or the Lorentz group SL(2, C)). While the group
elements encode the degrees of freedom of the gravitational connection, the elements of the Lie
algebra are related directly to the triad field, thus to the metric itself. A representation, which makes
directly use of functions of such Lie algebra elements, would then bring the geometric aspects of
the theory to the forefront.

Such Lie algebra representation has been proposed in the quantum gravity context (where it also
goes under the name of flux representation) and its development and application is now a growing
area of research.>"!7 However, it has been used, up to now, as a derived product of the usual group
representation, and obtained from a non-commutative Fourier transform whose mathematical basis
has remained only partially explored, and which has still a certain flavour of arbitrariness in its
defining details (e.g., plane waves and star-products).

The goals of this article are as follows. First of all, we want to show that the algebra representation
can be defined independently of the group representation, on the sole basis of the choice of a
quantization map of the classical Poisson algebra, and identify more clearly the conditions for
its existence. Second, we want to clarify under which conditions a unitary map between such an
algebra representation (assuming it exists) and the usual group representation can be constructed,
that is, characterize the non-commutative Fourier transform together with the corresponding non-
commutative plane waves. In looking to the above, we try to work with as general a Lie group
G as possible. Third, we want to consider specific and interesting choices of quantization maps
and Lie groups, and exhibit the corresponding star-products, algebra representations, and non-
commutative plane waves. On the one hand, we prove with these examples the non-emptiness of
the definitions provided together with the existence of their algebra representation and of their non-
commutative Fourier transforms. On the other hand, the results of specific quantization maps can
find direct applications, as we discuss in the following, to quantum gravity models. In particular, we
identify the non-commutative plane waves and a star-product for the Duflo map—a special case of
the Kontsevich star-product—, which has been suggested to be useful in several quantum gravity
contexts. 32!

The construction we present in this article extends earlier work on the non-commutative Fourier
transform by several authors. The concept arose originally in considerations of the phase space
structure of 3D Euclidean quantum gravity models. The earliest notion (to our knowledge) of a
non-commutative Fourier transform for the group SU(2) appeared in a paper by Schroers (see
Ref. 22), where the construction is based on the duality structure of the quantum double DSU(2),
which is introduced as a quantization of the classical phase space ISO(3). Later, more explicit
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notions of what became to be called “group” Fourier transform were introduced, first for the group
SO(3) by Freidel and Livine,? and later extended to SU(2) and related to the quantum group Fourier
transform by Freidel and Majid,” Joung, Mourad, and Noui,' and Dupuis, Girelli, and Livine,'”
each in their own different ways. See also Refs. 23 and 24. To a certain extent, our construction in
this paper can be considered as yet another extension of the original concept of Freidel and Livine®
to more general classes of non-commutative structures and Lie groups. However, it derives from
the canonical structures of the classical phase space, the cotangent bundle of G, of the quantization
map applied to it, and of the corresponding quantum observable algebra. Thus, it also provides
a better general understanding of the relation of the non-commutative Fourier transform to these
fundamental underlying structures.

For other directions to Fourier analysis on Lie groups, let us in particular point to the extensive
work on the Kirillov orbit method,> subsequent (Fourier) analysis based on the decomposition of
G into orbits in g*,26 and the Helgason Fourier transform?’ for further reference.

Let us summarize our results. The starting point is the Poisson algebra associated to the cotangent
bundle of a Lie group G, takentobe Pg = (C*(G x g*), {-, -}, -) with canonical symplectic structure
{ -, - }, and pointwise multiplication - . Canonical quantization of (a suitable subalgebra of) Pg gives
an abstract operator *-algebra 2{ endowed with natural Hopf algebra structures. A representation of 2
on the Hilbert space L?(G) of square-integrable functions on G (with respect to the Haar measure dg)
is straightforwardly available as any set of coordinates on G form (in an implicit sense given below) a
simultaneously diagonizable maximal abelian subalgebra of self-adjoint operators. This provides the
group representation. A definition of a dual algebra representation of 2l in terms of a function space
we denote by L2(g*) is made possible by introducing a star-product * in the sense of deformation
quantization,?® depending only on the chosen quantization map from Pg to 2. In particular, the
inner product in this Hilbert space is the L? inner product with respect to a star-product *, (and
the Lebesgue measure d“X on g*), which is the deformation quantization star-product + amended
with a projection that accounts for the compact subgroups of G; namely, (f, g) = [ (‘1;7))‘(, 7*,, g.
We show under which conditions on the star-product, such algebra representation can be defined.
The non-commutative Fourier transform is then shown to arise as the intertwiner between these two
representations. For ¢ € [*(G)and ¥ € Lf(g*), the non-commutative Fourier transform F and its
inverse F~! are determined to be

F(X) = F)(X) = fG dg E(X) ¥ (g).
. X —— .
W) = F i) = /g Gyt B0 %, FX).

where E,(X), the kernel of the transform, is what we call the non-commutative plane wave. The
explicit form of the non-commutative plane wave, and thus that of the transform, depends again on
the choice of a quantization map or, equivalently, a deformation quantization x-product. In fact, in
terms of the canonical coordinates (of the first kind) k(g) = —i In(g) € g on G obtained through the
logarithm map, the plane wave is shown to be given by the star-exponential

E(X) = e},

where X € g*.? In case G has compact subgroups, the logarithm is multivalued, and we take k(g)
= —iln(g) to be in the principal branch. The introduced amended star-product *, implements a
projection onto the principal branch for the product of non-commutative plane waves. The set of
plane waves E,(X) equipped with the x,-product then constitutes a representation of G, since E,(X)
*, Ep(X) = Eg;(X). Hence, a given choice of quantization map uniquely determines the star-product
and thus E,(X), which, in turn, uniquely determines the non-commutative Fourier transform and its
inverse. This result also clarifies the relation with the so-called quantum group Fourier transform,
extending again the work of Freidel and Majid.?
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Finally, we provide explicit examples of the above construction for three interesting choices of
quantization maps: the symmetric map, the Duflo map, and the so-called Freidel-Livine-Majid map
(used in the quantum gravity literature).

The outline of the paper is as follows: in Sec. II we motivate the general construction by
working with the simplified case of Euclidean space, where the guiding ideas are easy to follow and
the complications coming from the general Lie group structure are out of the way. Sections III and
IV constitute the bulk of the article. We start by quantizing a Poisson subalgebra of the algebra of
smooth functions on 7#G as an abstract operator algebra 2, emphasizing its underlying Hopf algebra
structures inherited from the Lie group G and Lie algebra g* structures. In Subsections III A and
III B we define representations of 2l in terms of functions on the group G and the dual algebra g*,
respectively. And finally, in Sec. IV we derive the non-commutative plane wave that gives rise to the
intertwiner between the aforementioned representations—the non-commutative Fourier transform.
Explicit examples in two distinctive cases, U(1) and SU(2), for various choices of quantization maps
are worked out in Sec. V, thus showing the existence of the algebra representation in some interesting
cases. A short conclusion on the obtained results is given in Sec. VI.

Il. MOTIVATION: HARMONIC ANALYSIS ON EUCLIDEAN SPACE

To motivate the route we will follow next, let us understand the procedure for the simple case
of Euclidean space, R? (d € N), and see how the usual Fourier transform arises as an intertwiner
between the position and momentum representations.

The classical phase space is given by T*R?¢ = R¢ x (Lie R¢)*, where (Lie R?)* denotes the dual
of the Lie algebra of R, which coincides with R itself, (Lie R?)* = (R9)* = R¢. Let ¥ = (x') and
p=(p i) (i, j=1,...,d) be canonical coordinates in some basis on R? and (Lie R%)*, respectively,
with Poisson brackets®

(x',x’} =0, {xi,p_]-}z(S;, {pi,pj} =0. (1)

The Poisson structure is defined directly on C*°(T*R¢) by the canonical symplectic structure of the
phase space and, together with the ordinary pointwise multiplication - on C*°(T*R?), gives rise the
full Poisson algebra Pr« = (C*®(R?9), {-, -}, -).3! As a physical system, we could think of P« as
the algebra of classical observables of a point particle moving on the Euclidean space, with X being
the position, and p the respective canonical conjugate momentum.

We now seek to quantize this algebra Pre, or a subalgebra A thereof, as an abstract operator
*-algebra §). That is, we want amap Q : A — § such that the basic Poisson brackets (1) are mapped
to the commutators

(X', X/1=0, [X', Pj]=isl, [P,P]=0, )

where X! = Q(x), P; = Q(p;) are self-adjoint elements in $). The Lie algebra generated by X, P,
and 1 is the usual Heisenberg algebra.
A few remarks about the map Q are in order:

e Q(A) = 5 is, at this stage, an abstract operator *-algebra. We may consider a representation
of § as a concrete operator algebra on a Hilbert space H, which is what we will do in the
following. However, due to (2), X' and P; are necessarily unbounded operators, and therefore
their domains of definition have to be restricted to some dense subspaces of 7 such that their
images under the action of the operators are contained in H; or the treatment extended to a
rigged Hilbert space.’>33

e Q@ is linear and satisfies Q(1) = 1 and possibly Q(¢(f)) = ¢(Q(f)) for any function ¢ : R
— R for which Q(¢(f)), p(Q(f)) are well defined (von Neumann rule).

e The need of a subalgebra A C C*®(R??) comes from the general obstruction to quantizing con-
sistently the full Poisson algebra Pg«, cf. Groenewold-van Hove’s theorem and generalizations
thereof.>* Even determining the maximal Lie subalgebra of C*°(R??) for which quantization
can be carried out is an open problem, and we again refer the reader to Ref. 34 for a detailed
analysis of such subtleties. In the following, we shall be content with assuming the existence
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of such A, and will require it to be big enough to contain all the relevant functions of the subse-
quent analysis (in particular, exponentials). Moreover, it is also important that .4 be complete
in the sense that it guarantees local separation of points everywhere on the phase space.

As remarked above, we now consider representations 7 of § as a concrete algebra of (in general,
unbounded) operators on some (dense subspace of a) Hilbert space . In particular, 7 : $§ — Aut(H)
is a linear *-homomorphism between §) and the automorphisms of H, preserving commutators:

() 7TOA + uB) = An(A) + ur(B),
(i) 7(AB) = w(A)m(B),

(i) m([A, B]) =[n(A), =(B)],

(iv) 7(A¥) = m(A)*,

forall A, B € Hand A, u € R.

The commutativity of the X operators allows to diagonalize all of them simultaneously. Accord-
ingly, we have the position representation . of the algebra on L?(R¢, d?x) on the joint spectrum
of X"’s such that

(T (XDY)(E) = x P (). A3)

As already noted, the operators X’ are unbounded, and therefore their domains must be restricted to a
dense subset C*(R?) c L*(R?, d?x) of smooth compactly supported functions on R¢. Furthermore,
since the operators X’ constitute a maximal subset of commuting self-adjoint generators of the algebra
9, the description of a state ¥ in L?>(R?, d%x) is complete. To complete the description of the action
of the operators, we note that by setting

5 L0
(T (PY)X) = =i Y (X)), “)

we consistently represent the commutator [X', P;] =i 8;]1, and thus this specification is shown to
determine a representation of the original abstract operator *-algebra ) on L>(R¢, d%x). (The same
remarks as before apply to the domains of P;’s.) Anticipating our later considerations, we should note
the important role the Leibniz rule of the partial derivatives with respect to the pointwise multipli-
cation plays in reproducing the correct commutation relations. If one further requires irreducibility
and regularity, this representation on L?>(R?, d%x) is shown to be unique up to unitary equivalence
due to the Stone-von Neumann theorem. -3¢

The same reasoning can be applied just as well, and independently, to the P;’s. The diagonaliza-
tion procedure gives another representation 77, of §) on L>(R?4, d? p/(2m)?), where now the operators
P; act multiplicatively

(T (PHYNP) = pid(P). &)

Analogously, /(p) are said to give a representation in terms of functions of the momenta, and 7 »
is thus called a momentum representation. Finally, the action of the operators X' in this basis which
correctly reproduces the commutators [ X', P;] = i8;.]1 is given by

o Jd -~ .
(T (XDY)(p) = ia— ¥(p). (6)
Pi

We will now see that the usual Fourier transform F is exactly the unique, unitary intertwiner
between these two representations, a property we may write as 7w,(A) o F = F o m,(A) for all
A € 9, establishing, therefore, their equivalence.

Hence, assuming that the two previous representations of §) are intertwined by an integral
transform F, that is,

V(p) = FW)Pp) = /R ) d’x EG, p)y(X), ¢ € LARY),
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where E(X, p) denotes the kernel of the transform, the intertwining property turns into properties
for E(X, p). On the one hand,

(T (PYFWY))P) = /R ) d’x p; EGX, pY(x),

R . 3 I _
F(r (PYY)(p) = / d’x E(X, p) <_i_a w(x)) = / d’x (i—. E(x,p>) Y(x),
R¢ x! R¢ axt

where we used integration by parts for the last equality. (Note that smooth compactly supported
functions vanish at infinity.) Therefore, for all ¢ € L?>(R?) we have the differential equation,

L A,
piE(x,p)=l—8 -E(x, p). (N
X

On the other hand, from the corresponding requirement for the X’ operators we get

Fr (XHY)(p) = fR ) d’x E(X, p) X'y (X),

] b N
(1, (X)F @) = /R ax (i;E(x, p)) v,

L

which, for all ¥ € L2(RY), gives
I AR
x'E(x,p)=i—E(X, p). ®)
opi

The unique and common solution to the two differential equations (7) and (8) is the plane wave
E(X, p) = ce'P* where ¢ € C is an arbitrary integration constant. Hence, we find

V(p) = FW)(p) =c /R ) dx e PT (X)) . 9)

For the particular value of ¢ = 1 the transform is found to be unitary,i.e., F o F* = idj2ray = F* o F
(and, in particular, invertible), the adjoint transform being given by

~ o dd =5 ST 7 ,- >
F@E) = /Rd ﬁ E(x, p)y(p) =¢(x). (10)

Therefore, as advertized, 7, and 7, are unitarily equivalent with the Fourier transform F their
intertwiner.

Let us further note an important property of the translations (73¥)(X) = ¥/(X + ¥). Since
F(T39)(p) = Py F (¥)(p), the translations act dually via pointwise multiplication by plane waves,
and, therefore, the plane waves ¢/ constitute a dual representation of the translation group. In fact,
this follows directly from the form of the representations, since by integrating the action of partial
derivatives we have ¥ (¥ + ¥) = e’ Vi (X) = 7. (e P)y(X), and since F intertwines the represen-
tations, F (. (7 PYyy)(p) = (7w,(e!V P)F(Y))(p) = e¥ P (p). Notice, in particular, the important
role that the global triviality of the Euclidean space plays here in integrating the action of the partial
derivatives. Later, we will see that extra complications arise, if there are compact subgroups to the
Lie group under consideration. These need to be properly taken care of in order for the translations
to act dually by plane wave multiplication.

This derivation of the ordinary Fourier transform between the position and the momentum
representations for 7*R? motivates the line of thought that will be used in Sec. III for the general
case of the cotangent bundle of a Lie group T#G, and whose result, having first defined the two
corresponding representations, will finally lead to the notion of non-commutative Fourier transform.

lll. QUANTUM REPRESENTATIONS FOR GENERAL (WEAKLY EXPONENTIAL)
LIE GROUPS

We now turn to the case where the configuration space is a Lie group G of the weakly exponential
type, that is, such that the image of the exponential map, exp(g) C G, is dense in G. The importance
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of this restriction will become clear, in particular, in Sec. III, where one wants to be able to
determine plane waves of the exponential type. Note that compact connected Lie groups are always
exponential, since the exponential map commutes with conjugation and any compact connected Lie
group is the union of the conjugates of a maximal torus, which is exponential. A thorough summary
of the status of the exponentiability of a Lie group and its complexity can be found in Refs. 37
and 38.

The phase space of the system is given by the cotangent bundle 7*G = G x g*, which for Lie
groups is always globally trivial, since we may always find a global basis of right (left) invariant
covector fields through the pull-back of the multiplicative action of G on itself R, : G — G, g
—gh (L, : G — G, g — hg), h € G. Cotangent bundles are endowed with a canonical symplectic
structure that, together with ordinary pointwise multiplication - on C*°(7T*G), uniquely determines
the Poisson algebra Pg = (C®(T*G), {-, -}, -),**® and for any functions f, g € C*°(T*G) we obtain

af k 0f 9g

dg
gt= o Lig = Lif ot oo
{f.8l=Lig faXi+Cl] 3X, 3K,

X, 11
X, k (11)

where £; are Lie derivatives on G with respect to an orthonormal basis of right-invariant vector
fields, X; are Euclidean coordinates on g* = R4, d := dim(G), ¢; jk the structure constants of the Lie
algebra g (= g*),i,j, k=1, ..., d, and Einstein summation convention is assumed.

We now seek to quantize this algebra, or at least a maximal subalgebra A thereof for which this
is consistent, as an abstract operator *-algebra 2. We define a quantization map Q : A — 2 such
that Q(f) =: f forall f € Ag C C¥(G), and Q(X ;) =: X, satisfying

[f.81=0. [X.fl=ilif eUs. [Xi.R)=ic;"Rs. (12)

for all £, 8 € Ag. We denoted by A the subalgebra of A C C®(G x g*) of functions constant in
the second argument, and 20 := Q(A¢), which is a commutative subalgebra of 2.

In general, we cannot introduce differentiable coordinates ¢’ € C*(G) on G due to a global
obstruction, in particular, if G has compact subgroups. Accordingly, we cannot have operators in
20 corresponding to coordinates on G. However, such coordinates can be approximated arbitrarily
well by elements in C*®°(G), and we may define coordinate operators ¢!, not necessarily in g,
corresponding to a set of coordinates ' : G — R by imposing f < f;(ff ), where f; o Z = f, for
all f € C*°(G). We then have formally the commutators

(E.81=0, [X.81=iLitl, (K. X]=ic)%. (13)

Further assuming that £/(e) = 0 and £;¢/(e) = Sl-j , the explicit form of the operator LZC\ J may be
obtained (in a neighborhood of the identity) from the Taylor series expansion of the Lie derivatives
at the identity in terms of the coordinates

Ligh(®) =) _Cl . £9() (" (g).
n=1

simply as
> .
38 =) Clypg £ 80 (14)
n=1
where C/ € R are constant coefficients specific to the chosen coordinates. Clearly, we are

1q1--"gn—1
always free to change coordinates as 2 is commutative. The same remarks for the quantization

map Q on Pru apply ipsis verbis with R? replaced by G.

We will call the algebra generated by f € 2 and X;, already denoted by 2, as the quantum
algebra for T*G. Note that it may differ from the Heisenberg algebra §) as now the commutator
[X;, Z7] does not in general equal a multiple of 1 for any choice of coordinates /.

The quantum algebra 2( has, in fact, some extra structure inherited from the Lie group and Lie
algebra structures of G and g. On the one hand, notice that the commutation relations for the X;
operators among themselves coincide with the Lie algebra commutation relations for g. Therefore,
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the restriction of Q onto functions Ag- C C™(g*) C C*(G x g ) that are constant in the first factor
maps to the completion of the universal enveloping algebra of g, 2y- := Q(Ag+) = U(g) C A. U(g)
is endowed with a natural Hopf algebra structure with coproduct A g*» counit €g+, and antipode Sg-,
which extends to a corresponding structure on 2(4« given by

Age: Age — Age @ A, Ag(XD)=X;®1+1®X;, (15)
€ 1 Agr — Age (=1, €:(X)=0, (16)
Sge : Age — Age Sg() =1,  Sg(X;))=—X;. (17)

On the other hand, the structure maps of G, that is, the group multiplication G x G — G, (g,

h) — gh, the inclusion of the unit {¢} — G, e — e, and the inversion map G — G, g+> g~ L

induce, respectively, the following algebra homomorphisms on C*(G),

A:C®(G)— C®(G x G), A(f)(g. h) = f(gh),
€:C®G)— R, e(f)= fle),
S:C®(G) = C¥(G), S(f)g) = f(g™h.

Equipped with these structure maps, C*°(G) forms nearly a Hopf algebra.*’ To obtain the correspond-
ing Hopf algebra structure in 2 for any exponential Lie group, consider the canonical coordinates
(of the first kind) k : G — g = R?, g > —iln(g) obtained through the logarithm map. As these

coordinates satisfy k(e) = 0 and k(g™ Hh=— k(g), by correspondence to the above structure, we
may set for the corresponding operators eG(IG") = 0and S¢ (12") = —k'. Furthermore, we may write
o0
K(gh) =" 3" B pgroak” (@) kP (K () -k (h), (18)
n=l } 1eN
k+l=n
where B j,] cepeqroeq € R are constant coefficients. This is just the Baker-Campbell-Hausdorff formula

for G, denoted in the following by ki(gh) = B(k(g), k(h)). In the lowest order in |k| we have k'(gh)
~ ki(g) + K'(h), and the hi gher orders encode the nonlinearity of the group manifold. Notice that, if
the logarithm for G is multivalued—which is the case if G has compact subgroups—, in general, the
result k(gh) does not lie in the principal branch of the logarithm even if k(g) and k(h) do. We may
then define the coproduct for the corresponding coordinate operators as

Ag(k') _Z Z B ~pearalk kP @k ke (19)
m=1 1N
k+l=n
which reflects the group structure. The coproduct corresponding to that of f € Ag in 20 can then
be formally defined as

Ac(f) = filAgk)),

where f; : g = R? — Cistheliftof f : G — C onto the Lie algebra as f; (k) = f(e’*). Clearly, by this
definition of the coproduct, the possible multivaluedness of k is taken care of by the corresponding
periodicity in f;. The explicit meaning of this rather formal expression can be understood locally
(for analytic functions) by expanding f; as a power series in k'.

Similarly, we can consider parametrizations { : G — g = R? of G other than the canonical
coordinates. Given ;k (k(g)) we may write accordingly

AG(gi)zg‘li(AG(lzi))_ Z Z C - q/ ...Z-Pk ®€-£11 ...é-LIz’ (20)

n=l 4 1eN
k+Il=n
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where the new coefficients C ",',] cepegreeq € R are obtained from the expression (18) for k-coordinates
by expanding ¢(g) in k'(g). Notice that the coefficients C;]m qrq DEre are the same as those

appearing in (14) for coordinates such that {,f(f)) =0 and 3%{,(’ (0) = &;. This will be important in

reproducing correctly the commutators in the algebra representation defined below.

The significance of these Hopf structures cannot be underestimated, in particular, with respect
to the coproducts Ag- and Ag, and how they ensure the correct reproduction of the commutation
relations in the two representations of 2 we now proceed to define.

We now turn to explicit representations 7 of the quantum algebra 2 as a concrete operator
algebra on some Hilbert space H, where, as before, 7 : 2 — Aut(H) is a linear *-homomorphism
preserving commutators.

A. Group representation = g

The group representation 7 on L*(G) is defined as the one diagonalizing all the operators
f € Ag:

Tc(Hv)g) = f(@v(g), (21)

for all f € Ag such that f = Q(f), as before. The resulting function fi will not in general lie in
L*(G) for all € L*(G), but we may again restrict the domain of 7 ( £) to be the subspace of Ag
of smooth compactly supported functions C2°(G) on G—dense in L*(G)—, so that f € CX(G)
for all Yy € C2°(G). For the Lie algebra operators X; we may set

(r6(XDY)(Q) =iLiv(g), (22)

where £; are again the Lie derivatives with respect to an orthonormal basis of right-invariant vector
fields on G, and similar remarks as above hold about the domain of ¢ ()A( ;). One can easily check
that the commutation relations (12) are correctly reproduced, so that the above actions define a
representation of 2. As usual, the inner product is given for ¥, ¥’ € L*(G) by

W, ¥ = fG dg (&) ¥'(g)., (23)

where dg is the right-invariant Haar measure on G.

To prove that (21), (22) give a representation of (12) we used, in fact, a fairly innocent property
of the Lie derivative: £; satisfies the usual Leibniz rule with respect to the pointwise product of
functions, that is, £;(ff") = (L; f)f + f(L; f’). Even though we know this to be true by other
means, this can be expressed as a compatibility condition between the coproduct Ay« of 2+ and the
pointwise product mg : fQ f' +> f - f' for f, f' € C*°(G), namely,

n6(Xi) omg = mg o (g ® 1) (A g (X)), (24)

where 7 ® 7 denotes the tensor product of the representation 7 . More simply, (24) amounts to
Li omg = mg o Ag-(L;), which on a tensor product f® f’ gives

Li(f - f)=Lioms(f®f)

=mgoAg(L)f® f)

=me(Lif @ f'+ L f)

=(Lif)- [+ (Lif),
that is, the usual Leibniz rule for the pointwise product. Notice that while the Leibniz rule is a
representation-dependent concept, the coproduct is representation-independent. Essentially, (24) can
be seen as consistency of the representation of the operator 7 (X;) and the pointwise multiplication,
with the underlying Hopf algebra structure of 2. Different elements in the given representation
will have, in principle, different multiplications such that the compatibility with the Hopf algebra

structure (in particular, the coproduct) of 2 is satisfied. For instance, the analogous expression for
Clismg(Eh) omy = my, o (mg ® mg)(Ag(¢h)), which is satisfied for the convolution product ...
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Since it will be crucial for defining the algebra representation, let us state this requirement more
generally. Let 7w be representation of 2 on a space §,, with m : f® ' + f -, f’ the corresponding
multiplication. The compatibility with the coproduct A can be written in an abstract form as the
identity n(f”) om=mo (T ® n)(A(f)), for T an operator in 2. That is, the following diagram

! |~ (25)
Sm & gm L) Sm

commutes. It is clear that the diagram does not commute for all products and coproducts. However,
given a coproduct, it tells which product makes it commute for the chosen operator 7' in the
given representation and, therefore, compatible with the Hopf algebra structure in the sense of the
diagram. Equivalently, reverting the logic, given a product and a coproduct, (25) tells how a certain
represeAntation of an operator T acts on an m-product of functions, i.e., a generalized Leibniz rule
for = (T).

B. Algebra representation zg.

We would now like to have a representation naturally acting on functions of the classical dual
space g*, according to the decomposition of the phase space 7*G = G x g*. That is, functions ¢(X)
analogous to functions of the classical coordinates on g*.

However, the route taken to obtain the group representation, based on simultaneous diagonaliza-
tion of the operators f € g can no longer be used because X; € g+ are non-commuting. In other
words, since the action (ng*(f( D) (X) = X;¢(X) cannot possibly make sense in general, due to the
non-zero Lie algebra structure constants c, k. we introduce an operation that suitably deforms it,
giving the needed freedom to satisfy the commutation relations. We will denote it by a star-product
*, and define foralli=1,...,d

(g (XD@)(X) 1= X x 9(X). (26)
Notice that the commutator [)A( i X il =ic jkf( & turns into
Xi*xX; — X« X)) *o(X) =i€;j Xi x (X)),
giving a condition on the x-product. In fact, we will impose the stronger condition
(g (fXNPNX) = fu(X) * (X)), 27

forall f, € Ag- C C*(g*) such that f X)) = Q(f,) € A g+. This guarantees that f; has the interpre-
tation of the function which upon quantization gives f(X;), and so establishes a connection between
the classical phase space structure and the quantum operators. We then have

(- ( QU QUNPNX) = (g (f (Xi)mg(f (Xi))p)(X)
= LX) * fU(X) * (X)
= (g (QUfa * fP)X)
for all f,, f] € Agq-. Therefore, the x-product and the quantization map Q are related by

fox 1= Q7QUIQUD, (28)

which is the idea of star-products defined in the context of deformation quantization.?® Associativity
and

Ixfi=fi=fixl, foxfi=fixfi=ilf £}

are easily verified using the properties of Q.
In other words, the choice of quantization map determines uniquely the x-product to be used in
representing the quantum algebra in terms of functions on g*.
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We note that in order for 2g- = Q(A4-) to be closed under operator product, a x-product of
functions on Ag+ must again lie in A44-. This imposes some natural continuity and convergence
requirements on the x-product, which we assume to be fulfilled in the following.

Before moving on to define the algebra representation, and identifying the properties that the
*-product has to satisfy for this to exist, let us give a few more details on the properties of quantization
maps, and of the resulting x-products.

As remarked before, the image of the quantization map restricted to functions constant in the
first factor, that is, Ag« := Q(Ag+), amounts to a completion of the universal enveloping algebra
U(g). Of course, Ay C C*°(g*) may be too big a space, and we can make do with the space of
polynomials in g*, Pol(g*), which is known to be (graded) isomorphic to the symmetric algebra
Sym(g) of g. The Poincaré-Birkhoff-Witt theorem then states that the latter is isomorphic to the
universal enveloping algebra U(g) (as a filtered vector space). The important point is that U(g) can
be identified with the algebra of right-invariant differential operators on G, the natural ground for
the algebra of a quantum theory. (See Appendix A for more details.) Further, the quantization map
Q, when restricted to Sym(g), provides an isomorphism and, in particular, encodes the operator
ordering ambiguity coming from the non-commutativity of the elements X; € U(g). For example,
we could choose standard ordering Q(X} X"") = f(;’f(}”, or Weyl ordering Q(X}'X"') = S(X;X")
where S is the total symmetrization map (A2), or ordering coming from the Duflo map D (A3)
o(X i X)) = D(X;X"'), all depending on the properties we want to preserve. The star-product on
Pol(g*) inherits these same properties, as it is constructed from the non-commutative product of the
differential operators exactly in order to mimic their behavior. More generally, the star-product can
be written as a formal power series with expansion parameter F:

fox fl=Ffl+ ) W B fn £, (29)

k=1

where By, are linear bidifferential operators of degree at most k, making quantization as a deformation
of the commutative pointwise product explicit. In general, this series diverges, and convergence has
to be established for suitable subalgebras.

Notice, however, also that for the completion U(g) the one-to-one correspondence with right-
invariant differential operators may be partially lost. In particular, if exponentials e/, k € g, belong
to the completion, and G has compact subgroups, there are k(e) # 0 in g such that ¢©* = 1. These
are the branched values of the logarithm k(e) = — iln (e), where e € G denotes the identity element.
The set of elements Z := {¢/* € U(g) : k = —i In(e)} forms a multiplicative normal subgroup of
U(g) and it is then natural to consider the elements of U(g) modulo Z to restore the one-to-one
correspondence. We will come back to this important point in Sec. IV.

Now, let x be a deformation quantization star-product for U(g), extended to g+, and let Z' be
(coordinate) operators corresponding to a specific parametrization of G, as defined in the beginning
of this section. We define the representation of the operators £’ and X; acting on the space of smooth
compactly supported functions ¢ € C2°(g*) on g* to be

(g (XDP)(X) = X; x 9(X),
(g (ENP)X) = —id p(X), (30)
il

where we denote 8’ := 75 » and by the second equation we explicitly mean

(g (HP)NX) = fil=id)p(X),

where fi(k) = f e ecC *(g) for all f € C*°(G). It is clear from the power series expansion (29)
of the x-product that the result of these actions is again compactly supported, and therefore C2°(g*)
is closed under these actions.

Now we proceed to identify the properties that the x-product has to satisfy in order for the
above equations to define a faithful representation of the fundamental quantum algebra 2(. Due to
the properties of the deformation quantization x-product, the first equation in (30) guarantees, by
construction, that the observables depending only on X; (up to finite order) are represented through
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an algebra isomorphism. Similarly, since the partial derivative operators on g* are commutative,
f g+ ( ., fe g+, is clearly a homomorphism. Therefore, in order to show that we have a
representation of the quantum algebra, the only non-trivial part is to show that the commutator
[)A( i gc Mis correctly reproduced, namely, due to (14) we should find

(g (X, S D@)X) =i Y CF o (g (GD) - e (G )p)(X) . €2))

n=1

Now, the left-hand side reads
mg((Xi, $ D = [mg (X)), g (£ )]
=—iX;* (@) +id/(X; x9).

In order to compute the second term, we must know how the partial derivative acts on x-products
of functions. Here, we will again impose the compatibility of the coproduct of the operator algebra
and the algebra multiplication, expressed neatly by the commutative diagram (25). In other words,
we require that

T (§)omg = mg: o (g ® TN AG(E)), (32)

where mg- : f ® f +— f » f'. Explicitly, using the coproduct formula (20), imposing this require-
ment gives

oo

(0N * =D D Chpgrog [(Z107) - (=i07) f]x [(=id") -~ (=id") '] |
n=ly 1eN
k+l=n

and thus we obtain

o0
/(X % @) = X; % CL(0 )+ 3 CL o (—id™) -~ (=3 ).

n=1

Assuming Cij = %gkf 0) = Sij at the origin of the coordinates, we have then

—iXi* () X) +id/ (Xix@) =i Y Cl . (=id7)- (=i )p),

n=1

which is exactly the right-hand side of (31). Therefore, if the x-product satisfies the property encoded
in the commutative diagram (25), then the commutator is correctly reproduced through the action
(30) of the operators, and therefore 4« defines a representation of 2 in terms of a specific choice of
coordinates on the group used in defining 2 itself. In fact, the compatibility condition can also be
interpreted as a condition between the choice of quantization map, thus of x-product, and the choice
of coordinates on the group.

Let us recapitulate what we have shown for the algebra representation thus far. Assume that

(i)  ™Uge 1= O(Ag~) is a subalgebra of the full quantum algebra 2, where Ag- C C*(g*),

(ii))  the coproduct Ag is compatible with the operator product in 24<, Equation (32), in the sense
of the commutative diagram (25), and 4 ‘

(iii) coordinates ¢ : G — g = R? on G satisfy ¢{(0) = 0 and ;;¢{(0) =¢8] forall i,j=1,...,
d, where ¢ (k) = ¢ (%).

Then, the action of the operators in (30),
(g (XDP)(X) = X; % p(X) ,
(g (EH)p)(X) = —id' p(X)

defines a representation of 2 on C°(g*) > ¢, which we call the algebra representation mg-.
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We remark once more that we have not provided a constructive definition, and that the existence
of the algebra representation for a given quantization map and x-product is not guaranteed a priori.
Instead, we have identified the properties that such x-product has to satisfy for the representation to
exist, to be checked for each given choice of quantization map. It is clear that, in general, that is, for
arbitrary quantization map and *-product, these requirements need not be satisfied, and no algebra
representation thus exists. On the other hand, we show in the following that these properties are in
fact fulfilled for various interesting choices of quantization maps, so the construction is at the same
time non-trivial and non-empty.

Finally, with the above assumption (i) implying that a »-product of functions in C°(g*) for the
deformation quantization corresponding to Q is again in C2°(g*), we have the sesquilinear form for
@, ¢' € CX(g*) given by

, a“x
(9, ¢)g = /Q*W(sow)(x)- (33)
This form is, in general, degenerate, i.e., the set of functions V' := {¢ € C(g*) : (¢, ¢)4- = 0} may
be non-empty. To define a proper inner product and the corresponding norm completion, which would
then be our Hilbert space, we should quotient C2°(g*) by the degenerate subspace A. Furthermore,
to be consistent with the action of 2(, we should also show that N\ is invariant under that action. The
latter is the non-trivial part, and for the time being, we will simply assume that this can be done,
and denote the completion of C2°(g*)/N in the norm |l¢|| = /(¢ ¢) ¢+ as L%(g*). The existence of
a unitary intertwiner between the two representation spaces L*(G) and L2(g*), which will be shown
in Sec. IV, will eventually justify this assumption.

IV. THE NON-COMMUTATIVE FOURIER TRANSFORM

Our next objective is to find the relation between the two representations 77 g and 774+ of 2 defined
above. In correspondence with the Euclidean case presented in Sec. II, we will assume that there
exists an intertwiner F : L>(G) — L2(g*) between the representations, which can be expressed as
an integral transform. Namely,

V(X) = f(lﬂ)(X)chdgE(g,X)W(g)GLE(Q*),

where ¥ € L*(G), and we denote by E(g, X) the integral kernel of the transform. Then, the goal is
to identify the defining equations for the kernel E(g, X) using the fact that the intertwined function
spaces define a representation of the same quantum algebra, and applying the action of 2 in the
different representations. If a solution exists, we will have thus shown that the representations are
related through the corresponding integral transform. Once more, its actual existence has to be
verified once an explicit choice of quantization map and x-product has been made.

The intertwining property of F can be expressed generally as F o wg(T) = ng*(f“) o F, where
T € 2. For the X; operators we have

FreXy)(X) = /G dg E(g. X) (.Liy)(g)

= / dg (—iLiE)(g, X) ¥ (8).
G
where for the last equality we used integration by parts and ¥ € L*(G). On the other hand,
(T (XDF)IX) = / dg (Xi x E(g, X)) ¥(g),
G

and accordingly, for all ¥ € L*(G) we must require the kernel E(g, X) to satisfy the differential
equation

—iL;E(g, X)=Xi*xE(g, X). (34)
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Integrating this action by right-invariant Lie derivatives, we obtain
E(hg, X) = M FE(g, X) = e X« E(g, X), (35)

where again k(h) = —i In(h) € g, and we introduced the x-exponential notation

oo
e{(x)zzif*-n*f(X).
nle— —

n=0 n times
Of course, such an integration of a differential equation is subject to the possible non-trivial global
properties of G. First of all, the assumption that G is exponential guarantees that any group element
h can be integrated to as in (35). However, since E(g, X) is to be considered only under integration,
weak exponentiality of G is a sufficient condition for our purposes. On the other hand, if G has
compact subgroups, the logarithm map is multivalued, and therefore the result of the integration is
not unique. In particular, we may choose k(%) = —i In(h) € g from any branch of the logarithm,
each one supplying a solution of the differential equation (34).

Consider then the intertwining of the operators /. We have

FrgCHy)(X) = /G dg E(g, X)¢'(9) ¥ (g)

and, on the other hand,
(g (CHFWY))X) = /Gdg(—if?iE)(g, X)v(g)

for all ¢ € L*(G). We must therefore require

(—i0'EXg. X) = ¢'(Q)E(8. X) (36)
which through integration yields

E(g, X +Y)=e""E(g, X) = OV E(g, X). 37)

Since g = RY, there are no global issues with this integration. Here the multivaluedness comes in
through the possible multivaluedness of the coordinates ¢ : G — g.

From (37) we have, in particular, that E(e, X) = E(e, 0) =: c is constant in the principal branch,
since ¢(0) = 0. We will set ¢ = 1. Combining this with (35), we find

E(g, X) = X (38)

where again k(g) = — iln(g) may a priori be taken from any branch of the logarithm. Thus, given
a suitable deformation quantization x-product, this formula gives the general expression for the
integral kernel E(g, X).

However, we also find from (37) another form

E(g, X) = n(g)e’“®X (39)

for the kernel. The prefactor n(g) := E(g, 0) may be non-trivial depending on the x-product or,
equivalently, the quantization map Q chosen, as we will see in Sec. V.

Let us note that the expressions (38) and (39) are, in fact, solutions to two distinct differential
equations (34) and (36), respectively, and for consistency we must require them to define the
same function. Of course, for a given x-product, determining coordinates for which this equality is
satisfied might be a difficult task and, in general, there is no guarantee that such coordinates exist.
It is a consistency requirement for the non-commutative Fourier transform to arise as an intertwiner
between the group representation and the algebra representation. In fact, as we will see in Sec. [V B,
the algebra representation is only guaranteed to exist under the conditions that such coordinates can
be found, tying together the existence of the non-commutative Fourier transform as an intertwiner
with that of the algebra representation, and vice versa.

Accordingly, for a given x-product, the last two equations give the explicit form of the corre-
sponding plane waves. They signify two important things. First, the non-commutative plane waves



083508-15 Guedes, Oriti, and Raasakka J. Math. Phys. 54, 083508 (2013)

take generically the form of x-exponentials with respect to the x-product (following from the quan-
tization map Q) in terms of the canonical coordinates k(g) on the group. That is, they are obtained
by the inverse quantization map Q' applied to the operators e/*®X € 2 .. Second, under the
above consistency requirement that (38) defines the same function as (39), there exists a choice of
coordinates ¢/(g), in which the same x-exponentials take the form of classical exponentials times a
multiplicative factor n(g). Also, the preferred coordinates on the group and the measure factor that
appear in this last expression thus follow uniquely from the choice of quantization map together
with the x-product.

Let us now note a very important point. From (38) we have that Q(E(g, X)) = k@)X ¢ A g+
= U(g), where k(g) = —i In(g) € g, and the quantization map is applied only to the coordinates X;
on g*. Elements of this form in 24« constitute a group: Since X, obey the Lie algebra commutation
relations, we have

glk'Xelk -X — 6‘tB(k,k )X ,

where B(k, k') is obtained through Baker-Campbell-Hausdorff formula, and k, k' € g. Let us denote
this group by £ := {e”‘"z : k € g} C Ay« However, because of the possible multivaluedness of the
logarithm, there is in general no one-to-one relation between the elements of £ and the group G. The
Lie algebra element k(g) may lie in any branch of the multivalued logarithm, and the Baker-Campbell-
Hausdorff formula applied to Lie algebra elements in one branch need not lie in the same branch.
As already noted before, there is in particular a set of elements Z := {¢/*X € Age i L =1} CE,
which correspond to translations around compact subgroups of G in the group representation. In
fact, 7 is a normal subgroup of £, so we may consider the quotient group £/Z, which is then
isomorphic to G itself (assuming again that G is exponential), because the different branches of
the logarithm are thus identified. Therefore, it would be natural to define the non-commutative
plane waves as the equivalence classes of elements Eg(X) := {ei"'x e C®(gx g"):k=—iln(g)},
which is the straightforward translation of the above quotient group to x-exponentials. E,(X) then
constitute a representation of G under x-multiplication. However, for practical purposes, it is more
convenient and transparent simply to introduce a new product “x,” for non-commutative plane
waves, which is the deformation quantization x-product amended by a projection onto the principal
branch of the logarithm. In a sense, this new product sees the global structure of G, whereas the
deformation quantization *-product is a purely local construct arising from the Lie algebra alone.
(For the action of the generators of 2( in the different representations above we considered only
infinitesimal translations, which are unaffected by global properties of G.) Then, we define

E (X) := eHerX (40)

where k(g) = —i In(g) € g is taken in the principal branch, constitute a representation of G with
respect to this x,-product. For weakly exponential Lie groups a representation is obtained in a weak
sense.

With the remarks from above on the coordinates ¢(g), let us then list some important properties
of the non-commutative plane wave E,(X), as they follow from our construction, which we will use
in the following:

Eg(X) = &8 = n(g)e" @, (41)
E(X)=1, (42)
Q(E (X)) = &% e 9, 43)
Eg1(X) = Eg(X) = Eg(=X), (44)

Egh(X) = Eg(X) *p En(X), (45)
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In addition, using Ey(X) = 1(2)e“@OX pie) = E,(0) =1,

and the properties of the ¢-coordinates, namely, ¢(e) = 0 and £; ¢/ (e) = Sl-j , we have

a’x J
n)l Ey(X) =6°(5(8) =48(g), (46)
g*

where the right-hand side is the Dirac delta distribution with respect to the right-invariant Haar
measure on G.
We have thus found an integral transform F intertwining the representations 7 g and 7g-:

F(X) = F)(X) = fG dg e y(g). 47)

where k(g) = —iln(g) is taken in the principal branch. The *,-product of non-commutative plane
waves is extended by linearity to the image of F.

A. Properties of the non-commutative Fourier transform

Let us now consider some properties of the transform F and the non-commutative function
space L2(g*):

o Group multiplication from the right is dually represented on F(/)(X) as x,-multiplication by
E,1(X),ie.,

FR)(X) = fG dh Eq(X) ¥ (gh)
= [ anEcucowin

:Eg_l(X)*p/Gdh En(X) ¥ (h)

= Eg1(X) %, FX)

using the right-invariance of the Haar measure.
e Consider the L2(g*) inner product of two functions obtained through the transform
dd

7 7/ X T T
(. ¥ = /g QTVI/I(X) *p YH(X)

_ [ 4 dg Eg1(X) ¥ (g) dh Ex(X) ¥/ (h
- QWUG g Eg( w(g)]*p[/G A w()}

= | dg [ dry(e)¥'(h S x
= [ae [ v | [ STeam).

Using (46), we find
77 _/ddX”‘X ”’/X_/d TeoN — l
(U, ¥ )g = - (27T)d¢( ) *p YH(X) = ; gV (V) =Y. ¥,

so F is, in fact, an isometry from L*(G) to L?(g*). Therefore, we may identify L2(g*)
= F(L*(G)).
e Consider the transformation F* : Lf(g*) — L*(G) given by

. X ——
F () (g) = /g @yt L% v X). (48)
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We have

. a‘x
(F* o F)WY)Q) fg 2 Eg(X)*prdhEh(X)w(h)

(

d?x
:/Gdh [ o Eglh(X)} V(h)
o

=/Gdh5(g—1h)¢(h)=w(g)~

That iS, FroF = idLZ(G).
e For F o F* we find

o aly —— .
(FoF )(w)(X)=/Gdg Eg(X)/g* @y EsMxp ¥ ¥)

a’y v
— UG dg Eg(X)Eg(—Y)} *p YY),

- g (2m)d

which shows that the (generalized) function
S(X,Y) = / dg Eg(X)E(—Y) € (LY (g*)* (49)
G

acts as the integration kernel of the projection operator F o F* onto L3(g*) (with respect to
the x,-product), and accordingly corresponds to the Dirac delta in L2(g*).

e Itis easy to check that the kernel of F o F*, ker(F o F*) = {{ € L(g*) : (F o F*)(¥) = 0},
contains all functions of the form (¢/@* — ¥ ©-X) 4 J(X), ¥ € L2(g*), where k(e), k'(e)
€ g are any two values of —iln(e), and therefore F o F* implements the aforementioned
& /T-equivalence classes in L2(g*).

e We have an expression (or two) for the %,-product under integration in terms of a pseudo-
differential operator o, namely,

[ ax 000, 500 = [ d'x (06D 700) 00)
g* g*

= [ X T (a-iB ir00) (50)

o
Vi, ¥ € Li(gh), where o(2) = (o(O)In(¢)I) ™" for ¢ € g, dg = w({(g))d¢(g) for the
right-invariant Haar measure, and 7(¢(g)) = E(g, 0). For the proof of this identity refer to
Appendix B.

e Due to (50), we may write the inverse transform F~!' = F* : L2(g*) — L?*(G) from (48)
explicitly without a star-product as

d

~ ‘X — .
ffl(lﬁ)(g)=6(g)/ WEg(X)I/f(X), (5D
g*

where o'(g) := (w(¢ (@)In(QH) "
o Finally, due to E, x, Ej, = Eg,, the x,-product is dual to the convolution product on G under
the non-commutative Fourier transform, i.e.,

Tap ¥ =P %9, (52)

where the convolution product is defined on the group as usual
vEyY(9) = f dhy (gh™" )y'(h).
G

Let us emphasize again the difference to standard harmonic analysis on locally compact groups:
In that case the Peter-Weyl theorem would take us through the expansion of functions on G in
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terms of unitary irreducible representations, and the Fourier transform would give us a unitary map
from square-integrable functions L?>(G) on the group G to square-integrable functions L2(G) on the
Pontryagin dual G:

Uy = /Gdg V() pi(g "),

V(g) =Y dTe[; pu(g)].

reG

where p,(g) is a unitary irreducible representation of G on a vector space of dimension d; . Note that
in the special case of Euclidean space the Pontryagin dual G happens to coincide with the momentum
space g*, and therefore the non-commutative Fourier transform and the Fourier transform coming
from the Peter-Weyl theorem coincide, as discussed in Sec. II. Nevertheless, let us also note, that in
the context of locally compact Lie groups we will have both transforms at our disposal.

B. Compatible coordinates and existence of algebra representation

As an aftermath of the derived form and properties of the non-commutative plane wave and
the corresponding interwiner of the representations 7 and my-— the non-commutative Fourier
transform F—, let us inquire a bit further on the existence of the algebra representation 4+ for a
specific choice of coordinates on the group G. Recall the property (32) encoding the compatibility
between a x-product (or, equivalently, a quantization map) and a choice of coordinates on the group,
which follows from the coproduct structure of the quantum algebra of observables to be represented,
and is needed for the existence of an algebra representation of the same. This was also represented
as the commutative diagram (25). Given the coordinates ¢ : G — g = R? on G arising from the

star-exponential of the non-commutative plane wave as Eq(X) = KX — 1(2)el¢®X | determined
by a suitable x-product leading to such a form, they compose as

o0

Fehy =3 3 €€ (@) L@ () - c(R) =: C(¢ (), £
n=l 4 1eN
k+Il=n

where C;l_“ pearq € R are constant coefficients. This gives rise to the following coproduct, as
in (20),

Ac(') =C(ay ta) = Z Z (SN SRRy SN - F SRR S

n=l 4 1eN
k+l=n

where the lower indices (1), (2) refer to the first and the second factor on the tensor product, on
which the coproduct operates. In the algebra representation this yields

(g @ TN AG(EH)) = C(—iday, —i5(2))i .
Now, for a given x-product, we want to check the commutativity of the diagram (25), i.e., Eq. (32)
Mg 0 (Tge ® T N AG(E")) = 7ge(E7) 0 mge

is satisfied. It will be enough to do the calculation at the level of the exponentials, once a Fourier
transform is established, since any function can then be written in terms of them. This can be done
by explicit calculation for exponentials. We want to show that

mge o (Tgr ® Tge ) AG(EN)N(Eg, (X) ® Eg, (X))
= 7g: (L") o mge (Eg (X) ® Eg,(X)). (53)
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The left-hand side of (53) reads explicitly
mg. o (g @ T ) AG(EN(Eg, (X) ® Egy(X))
= mg*(C(—ié(l), —ié(z))i Eq(X) ® Eq (X))
= mg:(C(L(g1), £(82)' Eg,(X) ® Eg,(X))
= ' (8182) Egx(X) |
where we used — iaiEg(X) = ;i(g)Eg(X). Similarly, the right-hand side of (53) reads

T (§) omg(Eg (X) ® Egy(X)) = —id" Eg,,(X) = £(8182)Eg,0o(X)

thus proving the equality. Accordingly, we see that when the %-product is verified to lead to a
non-commutative plane wave of the form Eg(X) = n(g)e' (®) - X as it happens in all the examples we
will consider below, then it is guaranteed that the ¢-coordinates in the exponential, along with their
coproduct, are compatible with the x-product in the sense of the commutative diagram (25).*!

V. EXPLICIT EXAMPLES

We have seen that the x-product used in defining the algebra representation follows from the
choice of quantization map, by the formula (28). Further, the key ingredient needed for the definition
of the non-commutative Fourier transform is the non-commutative plane wave. This can be computed
explicitly as soon as a quantization map (ordering prescription) for the algebra coordinate operators
(equivalently, a x-product) is chosen, such that it allows for a compatible set of coordinates as
encoded in the diagram (25).

We will now provide a few explicit examples of our construction. We start from the rather
trivial, but still interesting, abelian U(1) case (also considered in Ref. 42), and then move on to
the non-abelian but still compact SU(2) case. In the latter we consider three quantization maps: the
symmetric map (corresponding to the Weyl ordering), the Duflo map, and the so-called Freidel-
Livine-Majid map. The corresponding x-products and non-commutative plane waves are computed
and shown to be of the form required for the existence of the algebra representation, in particular,
E.(X) = n(g)e*® - X as proved above in Subsection IV B. Finally, the non-commutative Fourier
transforms along with their inverses are presented.

Before considering each of the following examples let us show how, in practice, one determines
the non-commutative plane waves. Recall that the plane wave is given by

E(X) = eF0% =3 L)t k(9)" X, % % X,
n.
n=0

=D k() k() Q7 (R - Ky

n=0 "
— Q*l(eik(g)X) .

Therefore, in order to obtain the explicit form of the plane waves, one can either compute the
inverse quantization map for all the monomials, or one can guess which function upon quantization
gives ¢™*®X that is, the function f(X) such that Q(f(X)) = ¢*®X_(Notice that Q- '(X;, - - X))
#0907 (X i./'j(i,,) = X;, --- X; .) As we will see, for the examples we will present, this latter route
turns out to be the most straightforward. Besides, once E,(X) is known, by using the property (45),
Eg %, Eg, = Eg 4,, one can determine the x-product on monomials as

8}’!

81822

X *--x X; = (=) Q! (k818 Xy

sees&n =

= (—i)'L;, ""Ci,,Eg(X)|g=e ’ oY
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thus reverting, in some sense, the natural logic of the construction. (Notice that the projection in
*p, is of no consequence in this formula, since the derivatives are taken in the neighborhood of the
identity.)

A. Commutative: U(1)

U(1) is given by the set of complex numbers z € C with modulus one |z|] = 1. Accordingly,
we can set z = €. The canonical coordinates k(g) = — iln(g) = @ are restricted to the principal
branch of the logarithm as 6 € ] — &, 7 ]. The dual of the Lie algebra u(1)* is simply given by the
real numbers X € R.

In this abelian case, and in particular for u(1), which has just one generator, no ordering
ambiguity arises, so that there is no difference between quantization maps in this respect. However,
first of all, the group is compact, and this topological feature already makes things a little more
interesting. Second, we have seen how the quantization map also affects the choice of coordinates
appearing in the plane waves. It is then worth it to consider this simple case in some detail.

For the symmetrization map S, Eq. (A2), (and also for the Duflo map D which we will consider
below, as they coincide for abelian groups) we indeed have S(X") = X" and, therefore,

i60X i0X
Sty =¢e"",

that is, as expected, the plane waves are given by %X for@ el —m,m], X € R, and the corresponding
*-product on monomials is simply the pointwise product

Xx o xX=X".
——
n times

Nevertheless, the product e?X ., ¢/?'X = ¢i(0+0'mod 210X of plane waves is still non-trivial due to the
compactness of the group, which has to be taken into account by explicit projection, as we explained
above in the general case.

Furthermore, from (50) we have that
[ex 0 roo = [ax reor.

since in this case dg = df = w(0) = 1 and Eg(X) = X = n(0) = 1,500 = 1.
The non-commutative Fourier transform is thus given by

I = / 90 iox ot 55)
_x 27
while its inverse is
Yy = / dX e X g (X). (56)
R

Let us now point out one consequence of the existence of normal subgroups corresponding to the
identity element in this simple case. The periodicity of the group is taken care of by the projection
in the product - ,, which translates it into the equivalence class of functions on the Lie algebra
P(X) = eFnX. » V¥ (X),n € Z. This is the counterpart, in our setting, of the usual Fourier transform
on the circle, where the restriction X € Z is imposed, and the inverse transform is given by a sum
over the integers.

In fact, it was proved in Ref. 42 that this U(1) non-commutative Fourier transform defined
for the full R can, in fact, be determined by its values on the integers; thus, even though the U(1)
non-commutative Fourier transform is defined distinctively from the usual Fourier transform on the
circle, they were shown to coincide due to this form of sampling.

We have thus seen that the symmetric (and Duflo) map leads to plane waves equivalent to the
usual ones. Still, we have also seen within the general formalism that the choice of quantization
maps affects non-trivially also the coordinates appearing in the plane waves. Vice versa, by choosing
nonlinear coordinates on the group, one can end up with non-trivial star-products, despite the
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abelianess of the group. Let us say we have Q such that
Q—l(eie)?) — plisingX

¢(0) = 2sin % can be seen as new coordinates on the group valid for 6 € | —m, w]. According to
(54), we get for the x-product on monomials already a diverting result at third order

X*xX = X2,

1
X*X*X=X3+ZX,

Of course, we still have fx, f* — f'», f=0forall f, f" € C*(R), so that the (trivial) Lie algebra
relations are well-represented, and * is a genuine deformation quantization star-product. Therefore,
as remarked before, we see that quantization map, choice of coordinates, and star-product are related
in a highly non-trivial way.

We may give an expression for the corresponding ,-product under integral, from (50), as a
(non-trivial) pseudo-diffential operator

/ dX f(X) %, f/(X) = / dX FOO 1+ 1 (L) F 0, (57)

(where diX may act either left or right) as we now have, in contrast to the previous parametriza-
tion, a non-trivial relation between the Haar measure df and the Lebesgue measure d¢, namely,

do = (/1 —¢2/H71de, soo(2) = /1 — ¢2/4.

The non-commutative Fourier transform is thus given by

1Z(X) _ /n de eZisin%X I/,(eia)’ (58)

¥

while its inverse is, from (51),

. dX S0y
Y(e) = cos(%) /I; Ee—““f’f V(X). (59)

B. Non-commutative compact: SU(2)

We now consider a simple but very important non-abelian example, SU(2), which is particularly
relevant also for quantum gravity applications. The Lie algebra su(2) has a basis given (in the
defining representation) by a set of two-by-two traceless hermitian matrices {o}; = 1, 2, 3, which read

0 1 0 —i 1 0
o] = , 02 = , 03 = >
1 0 i 0 0 -1

and satisfy 0;0; = 8;; + ie;o«. Thus, a generic element k € su(2) can be writtenas k=Ko, k/ € R,
while for any group element g € SU(2) we may write g = ¢¥'%/. Thus, SU(2) is an exponential Lie
group. Another convenient parametrization of SU(2) can be written as

g=p"1+ipoi, PV +ppi=1, peR. (60)
Here, the pi’s are constrained by the R3 vector norm | ﬁlz < 1. Thus, this last parametrization
naturally identifies SU(2) with the 3-sphere S3. p° > 0 and p° < 0 correspond to the upper and lower
hemispheres of S3, respectively, in turn, corresponding to two copies of SO(3). Parametrization of
the group elements in terms of p € R is one-to-one only on either of the two hemispheres, whereas
the canonical coordinates k parametrize the whole group except for —1 € SU(2).
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The relation between these two parametrizations is mediated by the following change of
coordinates

. sinlk|- . ‘
p=Wk, po = cos |k], K eR, (61)

where |I?| € [0, F[, or |£| € [5, m[ according to p° >0, p° <0, respectively, and g € SU(2) assumes
the form

- sinlkl- .
g=cos|k|l+i |I€| k-oc=e

ik

We call the coordinates introduced the l;-parametrization and the p-parametrization, respectively.
The Haar measure on the group takes then the form

- 2
~ {sin|k . .
dg=d3k<S]T];|||> . keRHel0.xl, ©2)

d’p - o
dg=———, peR |pP<1, (63)
V1=1pl?
where the latter is again applicable only for one of the two hemispheres.

We now consider three choices of quantization maps, and derive the corresponding *-product,
algebra representation, and non-commutative plane waves.

1. Symmetrization map

Given a set of su(2) coordinates X;,, ..., X;, , the symmetrization map S takes the symmetric
ordering of the corresponding coordinate operators X;,, ..., X;,,
1 A A
SX;, - Xi,) = o Yo XX,
oges,

where S, is the symmetric group of order n. Thus, for instance, for an exponential of the form e’*'X,

we have

i’k'k/ NS

SE®Xy = 14+ ik S(X;) + S SXiX)) + S X X + -

which tells that the function e’*X gives exactly the x-exponential (plane wave) for symmetric
quantization with the k-parametrization.

The composition of coordinates can be inferred from

oiki-X s ei/EZ-x _ Sfl(S(eil;yX) ) S(eiiz-x)) _ eiB(/Zl,l?z)-x’
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where B(lz] , I}é) is the Baker-Campbell-Hausdorff formula (cf. Appendix C for closed formula for
SU(2)), and therefore, the xs-product on x-monomials can be computed according to (54):

X,‘ *S Xj = X,Xj +i€iijk,

. 2 1 2
Xi *S Xj *S Xk = XinXk + l(eiijk + Gikaj + Ejkai)Xm + gaiji - §8ika + 58,‘]‘Xk ’

This star-product is referred to as the Gutt (or “standard”) x-product.** As explained above, for plane
waves we amend this product by a projection, which explicitly gives

elkyX iky-X

xsp e = /B k)X

where B p(l_é I 122) is the value of the Baker-Campbell-Hausdoff formula projected onto the principal
branch of the logarithm map. Under integration, using (50) and (62), the xs,-product acquires the
form

- 2

a
/d3Xf(X)*Spf/(X):/ dSXf(X)( | |~> FX.
g* g*

sin |9

Given the plane waves just computed, we may then write the explicit form for the non-commutative
Fourier transform as

)
- in |k = >
Y(X) = / @’k Smj ) e V), (64)
R3,[K|€[0.7] k]
with the inverse, from (51), being
ao\ o ex
k) = . / e X P (X). (65
W( (sin |k|> R (2].[)3 w( )

2. Duflo map
The Duflo map, as defined in more detail in Appendix A is given by

D=3So0j2(d),
where j is the following function on g
sinh Lad
J(X) = det <1—2X> .
Eadx
For X € su(2), j computes to
0 <sinh 1X| )2
J = .
|X]
The application of the Duflo quantization map to exponentials eikX gives
DXy = sin |k|ei1§~f(
Ik
which can be inverted to give
D—l(eil?f() _ || R X — ei’z‘x,

sin |k|
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that is, we have found the plane wave E,(X) under D with the %-parametrization. This result, as
other aspects of our construction, extends and confirms from a different perspective, the derivation in
Ref. 9.

Once again, we may now use (54) to compute the xp-product on monomials:

1
X,' *D Xj = Xin + iEl-ijk — 55,']' s

. 1 2 1
Xi*xp Xj»p X = X; X; X +i(€ijm Xy + €ixmXj + €jxm X)X + gajkxi - §5ika + §5ink,

This star-product coincides with the star-product introduced by Kontsevich.** For the non-
commutative plane wave we again have the corresponding projected star-product xp,, which satisfies

|k1 | e,’/EI.X N |k2| ei/zz'X _ |Bp(k11 k2)| ein(leJzz)'X
sin |B,(k1, k)]
Again, an expression for the xp,-product under integration can be obtained from (50). However, for

the Duflo map the factors  and n* cancel out exactly, and we have o(¢) ™! = w(¢)|n(¢)*> = 1.
Accordingly,

.7 Dp 7
sin |kq| sin |k; |

/ EX f(X)*p, f1(X) = f EX FX)f(X),
g* g*

i.e., the Duflo star-product coincides with the pointwise product (only) under integration. In par-
ticular, this implies that the Duflo L? inner product coincides with the usual L? inner product, and
therefore L2(g*) € L?(g*) (as an L? norm-complete vector space) for the Duflo map.

The explicit form of the non-commutative Fourier transform is thus

. s (sinlkl\ iy -
PY(X) = &k | —=— ) " Y(k), (66)
R3,[k|ef0,] k|
while the inverse is
(@) EX (K i g 67)
= = e N
r: (27)% \ sin |k|

3. Freidel-Livine-Majid map

The Freidel-Livine-Majid ordering map Qppy,” which has found several applications in the
quantum gravity literature (cited in the Introduction), can be essentially seen as symmetrization map
in conjunction with a change of parametrization for SU(2). In particular, for exponentials of the form
¢'7X it is defined as

.o . sin—! Pl = %
Qum(ePX) i= "7 P X (68)
which implies

jSnflE x 75
Ormle ® 7)) =e'"7,

. . ? S L i j Sl . x .
that is, with the k-parametrization, the plane wave is given by e*X = ¢' & " Accordingly, we

have

Of course, the transformation %‘l’“ié defines the p-parametrization as of (61), and therefore we may
ik-X

*

simply write e} % = ¢'?®X However, the coordinates p only cover the upper (or lower) hemisphere
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SU2)/Z, = SO(3), and the resulting group Fourier transform is applicable only for functions on
SO(@3).
Using the expression (C3) for the Baker-Campbell-Hausdorff formula for su(2) we have

i 51X i 5r X i PP X i5X
e wpm €' = Qv (Qrm(e' ) - Qprv(e’ 7))

ssinm gl - o ssinm gyl - o
— QI;I}M <el [ X . el 12l p2X

cof sin Tl iB = sinT LBl - ) o
= o7 (elB( T P )X
- FLM

sin” L iF @5y 5 na o
= Qnly <e’mﬁz"‘®"2"(

i(P1®p2)-X
b

=e
where

P@®pr=V1—IpP pr+v1—Ipil> p2— p1 x pa.
Now, since the p-parametrization is applicable only for the upper hemisphere of SU(2), that is, SO(3),
instead of restricting the parametrization of the non-commutative plane waves to the principal branch

of the logarithm, we restrict to the upper hemisphere, and introduce the corresponding projection
into the star-product of non-commutative plane waves as

eiPrX *FLMp P2 X — Li(P1®,p2)X ,

where

P @y 52 = e 52 (V1= 152P i+ VT = [P B2 = 1 x o) -

The factor e(ky, ky) = sen(y/1 — |p12y/1 — | p2|? = p1 - pa), introduced by the projection, is 1 if
both py, ps are close to zero or one of them is infinitesimal, and — 1 when the addition of two upper
hemisphere vectors ends up in the lower hemisphere, thus projecting the result to its antipode on the
upper hemisphere.

The *p p-monomials thus read

Xi *FLM Xj = Xin + iEiijk s

Xixprm X *rm Xk = X X Xy +i(€jmXi + €iumXj + €jkm Xi) Xm + 85 Xi — 6 Xj + 8ij X

which coincide with xs to second order, but no further.
As was already shown in Refs. 45 and 46, but rederivable from the general expression (50) and
(63), for the Freidel-Livine-Majid star-product we have under integration

/ &X f(X) *eLmp f’(X)=/ FX FOOVT+V2 f1(X).
o o

Now, given the plane waves just computed, we may write the explicit form of the non-commutative
Fourier transform as
3

. d - R
F(X) = — =P Xy, (69)

R3,[5P<1 /1 —|p|?

as well as the inverse

- - $Bx .
v(p)=+1- |p|2fR3 any € PXG(X). (70)
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VI. CONCLUSION

We have studied the representations of the quantum algebra 2{ obtained by canonically quantizing
the Poisson algebra P associated to the cotangent bundle of a Lie group G (with Lie algebra g). In
addition to the usual representation of 2 on the Hilbert space of square-integrable functions L*(G)
on G (with respect to the Haar measure dg), we have shown that a dual algebra representation of 2
in terms of a function space we denote as L2(g*) can be defined (and identified the conditions for its
existence) by introducing a suitable x-product, in the sense of deformation quantization,?® depending
only on the chosen quantization map between Pg and 2. The non-commutative Fourier transform
is then defined as the intertwining map between these two representations. We have seen that the
explicit form of the non-commutative plane wave, and thus that of the transform, depends again only
on the choice of a quantization map or, equivalently, a deformation quantization x-product. In fact,
in terms of the canonical coordinates (of the first kind) k(g) = —i In(g) € g on G obtained through
the logarithm map, the plane wave is shown to be given by the star-exponential

Eg(X) = eMrX

where X € g*, which can then be equivalently written as standard exponentials for some (a priori
different) choice of coordinates on the group, also following from the choice of quantization map.

Our results show that the possibility of a non-commutative algebra representation does not
require the existence of the group representation, but only a choice of quantization map. The algebra
representation for the quantum system, in other words, can stand on its own feet. Of course, which
representation is more convenient to use depends on the specific question being tackled, as different
representations have different advantages.

The results also offer a new perspective on the non-commutative Fourier transform and some
more insights into the various elements entering in its definition (e.g., the choice of coordinates),
and lead to a prescription for how to define plane waves for generic quantization maps. This also
clarifies the relation with the so-called quantum group Fourier transform of Majid, extending the
work of Freidel and Majid.’

In general, for an arbitrary quantization map and corresponding x-product, the necessary con-
ditions for the existence of the algebra representation would not be satisfied. However, we have
provided some explicit and non-trivial examples of the above construction, satisfying the neces-
sary conditions, in the case G = SU(2), corresponding to three choices of quantization maps: the
symmetric map, the Duflo map, and the so-called Freidel-Livine-Majid map (used in the quan-
tum gravity literature). For these examples, we have provided the corresponding »-product, algebra
representation, and non-commutative plane waves explicitly.

Besides clarifying some aspects and the underlying logic of the construction of the algebra
representation and of the non-commutative Fourier transform, we expect our results to have also
interesting applications in the study of specific quantum systems arising from the quantization of the
phase space we started from. In particular, we hope to have provided new tools to the development of
quantum gravity models in the context of loop quantum gravity and group field theory. For example,
a first application of our construction would be to study the flux representation of loop quantum
gravity and the corresponding coherent states for the Duflo map, extending the work of Refs. 15 and
42. In the same direction, the construction of a new 4D gravity model along the same lines as given
in Ref. 13 can now be performed for the algebra representation corresponding, again, to the Duflo
map, and it would be very interesting to identify clearly the consequences for the resulting model of
the nice mathematical properties of such a quantization map.
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APPENDIX A: UNIVERSAL ENVELOPING ALGEBRAS

Let V be an n-dimensional vector space over K (R or C) with basis {e;}; - |
the tensor algebra over V as

2, and define

.....

o0

T'(V)::@V®k=K®VEB(V®V)®(V®V®V)@~-~,
k=0

where multiplication is simply defined by concatenation. A generic element v € T*(V) can be
written as

v=0"+ve + v ®e; 1V e @e; @e + 0, (AD)

where 0, v', v, v* . e K,i,j, k... =1,...,n, with no conditions on the coefficients.
The symmetric algebra of V, Sym(V), is then defined as the quotient of the tensor algebra
T*(V) by the two-sided ideal generated by the set

T=vQuw—-w®v : v,weV}.

In particular, notice that Sym(V') is a commutative algebra, and it is actually isomorphic to the
polynomial algebra Kl[ey, ..., e,]. A generic element v € Sym(V) can be written the same way
as in (A1) but this time the coefficients are completely symmetric, v/ = v, vk = @0
identifying Sym(V') with the algebra of symmetric tensors on V. As a polynomial we would have
plxt, oy ) = 00+ vix; + vxx; + vUkxx x4+ - - -, with indeterminates xq, ..., x, € K, i, /,
k...=1,...,n.

In case V = g, the Lie algebra of the Lie group G with Lie bracket [ -, -], we can define the
universal enveloping algebra of V, U(g), as the quotient of the tensor algebra 7'*(g) by the two-sided
ideal generated by the set

T=hw—-w®v—[v,w] : v,weg},

that is, U(g) = T*(g)/J'. Naturally, U(g) is a non-commutative algebra, and can be identified with
the polynomial algebra K[x, ..., x,] with indeterminates xi, ..., x, satisfying the commutation
relations [x;, x;] = f; j kx, inherited from the Lie algebra structure [e;, e;] = f; j"ek. Note that for
the case of an abelian Lie algebra g, for which the Lie bracket is identically zero, the universal
enveloping algebra U (g) coincides with the symmetric algebra Sym(g). A generic element v € U(g)
can still be written as (A1), however implementing the ideal 7’ would involve the structure constants
at length. Luckily, the following theorem gives a natural basis for U(g).

Theorem A.1 (Poincaré-Birkhoff-Witt). Lez {e; }; — |
g, the monomials

» be an ordered basis for the Lie algebra

,,,,,

my

m
el ...en ,

with my, ..., m, positive integers, form a basis for the universal enveloping algebra U(g).

Thus,

v = § vmr'-mne;”l .. .er’lnn , pmte = K

The crucial point about U(g) is that this algebra can be naturally identified with the algebra of
right-invariant differential operators (of all finite orders) on G, making it a natural ground for the
algebra of the quantum theory. The left action of G on itself gives a natural action on functions
(LgfH)(h) = flgh), g, h € G. In turn, for each X € g we have its action on functions as differential
operators (Lx f)(g) = (% |t=0 f(e'X g), thus identifying g with the right-invariant vector fields on G,
or rather the right-invariant differential operators of order one. Extending this inclusion to the full
U (g) gives the desired mapping. Furthermore, the center of U(g), denoted Z(U(g)), consists of the
left- and right-invariant differential operators, of which the Casimir operators are a prime example.
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1. The Duflo map

We may now define the symmetrization map (or symmetric quantization):

S : Sym(g) — U(g)

1
xl...kaFZXm...xgk, (A2)

: GES;\-

where Sy is the symmetric group of order k. On the other hand, the symmetrization map may
be completely characterized by being the identity on g, linear, and satisfying the property S(X")
= S(X)" forall X € g, and n > 0. The idea of S is to map as surjectively as possible a commutative
algebra to a non-commutative algebra, and it is obviously not an algebra isomorphism unless g is
abelian (though it can be proved to be a linear isomorphism).

Invariant polynomials, i.e., elements of Sym(g) invariant under the (adjoint) action of G, denoted
Sym(g)¥, are particularly important since they map to Casimirs under any quantization scheme. In
fact, there exists an algebra isomorphism between the subalgebras Sym(g)? and U(g)?, the latter
corresponding to the G-invariant differential operators on U(g) (which is an alternative definition
for the center of U(g), that is, U(g)? = Z(U(g))). The map giving such an isomorphism is called
the Duflo map (or Duflo quantization) and is given explicitly by

D=S80ji(d), (A3)
where j is the following function on g*’
] sinh %ad X
JX)=det| ———] . (A4)
iadx

Physically, the Duflo map tells that the centers of the “classical” and “quantum” level are the same.
For semisimple Lie algebras g the Duflo map coincides with the Harish-Chandra isomorphism.

Finally, we note that the modified Duflo factor j(X) = det ( S ; =

isomorphism. The one parameter group of automorphisms of Sym(g) associated with the series

) also gives the same algebra

X +—— exp(const - Tr(ady))

preserves the structure of the Poisson algebra on g*, and indeed f(X) = det (e"“d"/2) j(X)
= ¢~ Tad0)/2 j(X) = j(X). It would, thus, be interesting to investigate further the unicity of the
Duflo map, at least, in the restricted case of semisimple Lie algebras.

APPENDIX B: ON A PROPERTY OF THE %,-PRODUCT UNDER INTEGRATION

In this appendix we prove the identity (50) stated without proof in the main text. Let us first
note that

8(g7'h) = w(t (W) '8¢ (g) — ¢(h)),

where the first delta function is the one with respect to the Haar measure on the Lie group G, and
the second one is the delta function with respect to the Lebesgue measure on the Euclidean space
g = R? of the coordinates ¢. The proportionality is given by the inverse of the measure factor w(¢),
which gives the Haar measure in terms of the Lebesgue measure as dg = w(¢(g))d¢(g). This can be
checked by noting that

fle) = /G dh f(h)8(g~"h)

= fG WAt FEm)o@m) ™ 8¢ @ — e (= @),
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where f =: f o ¢. Accordingly, we have

/ d'X Eg(X) *p Ex(X) = 27)'8(3™"h)
o

= w(¢ ()~ 2r)"8%(¢(g) — ¢(h))

= w(z(h)! / FX o i@ gie X
g*

— w(c () )| /

d’X n(—=¢(g)e @ Xn(c (hyet ™,
o

where 1n(¢(g)) := E(g, 0), and in the last equality we used n(—¢) = m and the fact that the
expression is non-zero only for {(g) = ¢(h). But here the integrand is exactly a product of two
non-commutative plane waves, and the prefactor we may write as a differential operator acting on
one of the plane waves as

o) @ W2 ER(X) = w(—id) ' [n(=id)| 2 Ex(X)
or, alternatively, as
o(£ (@) NN E,(X) = w(id) ' [n(id)| 2 Ey(X).
We therefore have

[ X B, 0 = [ X ((@inPid) EOD) Ex)
.

*

= [ X B ((@hnPx-iD) " Ey)
.

Linearity gives the sought for property (50).

APPENDIX C: CLOSED BAKER-CAMPBELL-HAUSDORFF FORMULA FOR SU(2)
Using the properties of the Pauli matrices o; (i = 1, 2, 3) we have the following expansion
gjzelk,f'a:COS|kj|]12+l.S1Tl_él |]|kj-0', (j=1,2)
J

which on multiplying two elements explicitly gives

sin |k, | sin |/€2|lz1 -1?2> .

818 = cos|l:1|cos|122|— =
( |k1l1k2]

[ cos|ky|sin|ki|-  cos|ki|sin|ky|~  sin|ki|sinlka]- -\ -
+1 = k1+ = kz E—— k Xk2 0. (Cl)
ki k2| ki lk2|

The Baker-Campbell-Hausdorff formula is defined by the product of two exponentials

ik ik _ eiB(/Z],lZz)-&
with a series expansion given by

Bki, ko) = ki + k2 — Ky x122+%i1 x (ki x ko) + - -
Again by the properties of the Pauli matrices we have an analogous formula

sin |B(ky, k)|

2182 = cos |Blky, k)|l + i ——=——>B(k, ky) - 5 . (€2)
1B(ky, k)|



083508-30 Guedes, Oriti, and Raasakka J. Math. Phys. 54, 083508 (2013)

Identifying the appropriate terms in (C1) and (C2) we obtain the desired expression

cos™! (cos|k1|cos|k2| Mk k)

Bk, ky) = - - u ]le E -
sin cos™! (cos |k1| cos |ka| — %%k k2>
cos |k2| sin |k1 | - cos |k1 | sin |k2| sin |k1| sin |k2| -
ki ky — X ko
Ik1 k2| Ky |k
Writing k as lp ——="L p; the formula can be expressed as a deformed addition of p;’
P T —1 = D)
sin”" [p] . sin” |paf cos” /1—|pi®pals - .
B( = D1, —ky | = — ——— 1D
Pl |pal sincos™! /1 — |p; & p>|?
_ sin”' 51 @ o 5@ ) ©3)
|P1 @ pal ’

where p; @ p» is given by
P@®pr=vV1—IplPpi+V1I—IpI>p2— P X P2,

and we have used

sincos ™' x = /1 —x2 =cossin"' x.
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