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1. Introduction: philosophy of quantum gravity “in the
making”

Quantum Gravity is a hard problem. Besides the technical
difficulties of developing and applying the right mathematics,
adapted to a background independent context, the main difficul-
ties are conceptual. One is to imagine first, and then identify in
mathematical terms, the fundamental degrees of freedom of the
theory. The next one is to show how the quantum dynamics of
such fundamental degrees of freedom leads to an effective
classical behaviour described, at least in some approximation, by
General Relativity. If the fundamental degrees of freedom are not
spatio-temporal in the usual sense, that is, they are not associated
to a smooth spacetime manifold (as the basic variable of GR, the
spacetime metric), then one faces an additional challenge: to show
that the spacetime continuum itself, and the relative geometric
variables' arise at least as a useful approximation to the more
fundamental structures the theory is based on.

E-mail address: daniele.oriti@aei.mpg.de

! In this paper, we focus on pure gravity and geometry, leaving aside the
coupling (or the emergence) of matter and gauge fields. While this is of course an
important issue, we do not feel that the problem of emergence of spacetime, as
phrased here will be much affected by adding other degrees of freedom in the
picture.
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There has been an enormous progress in several approaches to
quantum gravity, in recent years, and in particular in the ones we
will be focusing on, group field theories, spin foam models and
loop quantum gravity. This has led to concrete suggestions for the
fundamental degrees of freedom, to interesting proposals for the
fundamental quantum dynamics, and even physical applications in
simplified context (e.g. symmetry reduced models in cosmology).
The “problem of the continuum” or “the issue of the emergence of
spacetime and geometry” remains open. This is, in our opinion, the
most pressing issue that quantum gravity approaches have to
tackle. Indeed, it is the real challenge even assuming that the true
fundamental degrees of freedom of quantum gravity have been
found. Such degrees of freedom would be of a different nature
than anything else we have learned to deal with up to now, in
usual spacetime-based physics, and many of the tools that we have
developed to describe similar micro-to-macro and few-to-many
transitions in ordinary physical systems, e.g. in condensed matter
theory, would have to be at the very least adapted to this new
background independent context and reinterpreted accordingly.
Beyond the technical difficulties, this is necessarily going to be a
conceptual tour-de-force.

It is here that philosophy can and should help the development of
theoretical physics. Clarify the conceptual basis of quantum gravity
approaches, smoothen the tortuous reasoning of theoretical physicists
towards a solution of the continuum conundrum, alert them of hidden
assumptions or prejudices and of shaky conceptual foundations for
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their theories, force them to be honest and rigorous in their thinking,
and not only in their mathematics. This is what we believe philoso-
phers working on the foundations of spacetime theories, and of
quantum gravity in particular, should do. In this respect, we cannot
but agree with Huggett and Wiitrich (2013) on the need to perform
philosophical investigations in parallel with the formal development of
the theory, rather than arrive on the stage after the show has taken
place, only to elaborate on it, while theoretical physicists are then
struggling with preparing a new one.”

The obvious problem is that a philosophical reflection based on
the ongoing, tentative work of theoretical physicists on models
that, most likely, will turn out to be incorrect or only partially
understood in the future will also be resting on shaky grounds,
sharing the same risks of future irrelevance. In addition, if the
ground on which these philosophical reflections take place is that
of quantum gravity theories, they will also have to struggle among
very abstract or yet-to-be developed mathematics and some
conceptual darkness, and without much input from experiments
(which is much less true in other areas of theoretical physics).
Well, the only reaction we feel is appropriate to these last worries
is “Welcome to the club!”

Another point we agree on with Huggett and Wiitrich (2013) is
that philosophical reflection, if it has to be serious and concrete,
needs concrete examples, on which general reasoning can be applied.

Thus, in this paper, we offer to philosophers a brief discussion
of the hints of a non-fundamental nature of continuum space and
time and the usual spacetime physics, a flying survey of how these
hints are realized in some quantum gravity approaches, a scenario
for the emergence of spacetime in quantum gravity, a concrete
framework for realizing this scenario (the group field theory
framework) and an explicit (if tentative) working example of what
such an emergence process could be like, in this framework. Along
the way, while we will not enter into any detailed discussion of
philosophical issues related to the idea of emergent spacetime
(let alone emergence tout court), we will not refrain for comment-
ing on some of them.

Our treatment will be necessarily rather sketchy and utterly
incomplete, and we will try to refer to the relevant literature
whenever needed. Still, we hope that we will manage to provide
philosophers and physicists alike some useful and possibly stimu-
lating material, for exercising philosophical reflections about the
foundations (and emergence) of space and time.

2. Hints for the disappearance of space and time

The current description of the world is as a collection of
(quantum) fields living on a spacetime continuum manifold, and
interacting locally (which is strictly related to the use of con-
tinuum manifold as a model of spacetime). In particular, the
structure and physical properties spacetime itself are encoded in
one such field, the metric, and the most conservative option is to
apply standard quantization methods to the dynamics of the
metric field. There are several reasons why this strategy either
did not work or proved very difficult. But the hints for the
disappearance of spacetime can be taken as suggestions that it is
the very starting point of this strategy has to be replaced by
something more radical.> We now recall some of them, briefly.

2 We believe that philosophical analysis should take place in parallel with
scientific developments also when its object is the scientific process itself, its
method, its sociological aspects, its modes of development, i.e. philosophy of
science proper and epistemology. The risk, otherwise, is to do not an ethology of
scientists, but their paleontology.

3 As we will discuss, the most successful example of such a conservative
strategy, canonical loop quantum gravity (Rovelli, 2006; Rovelli, 2011a, 2011b;
Thiemann, 2007), ends up anyway replacing the spacetime continuum with
something more radical. In fact, the idea of emergent space and time and the

One preliminary thing to notice is that, even if the strategy of
simply applying standard quantization methods to the metric field
was successful (and within the usual interpretative framework of
quantum mechanics now applied to spacetime as a whole), the
resulting picture of spacetime would be highly non-standard. The
basic quantum observables would be operators corresponding to the
metric field (or to equivalent geometric quantities, like the gravita-
tional connection) and quantum states would carry a representation of
such observables. Straightforward consequences of the quantum
formalism would be the quantum uncertainties in the determination
of the same geometric quantities, possibly a discrete structure of their
spectra, the superposition of metric states and thus of causal struc-
tures, and so on. A description of spacetime in which these phenom-
ena take place could hardly be considered as a minor modification of
the classical one. Still, one could argue that the resulting weirdness
would be purely a result of the quantization process, to be removed in
a classical limit. In a sense, the usual continuum spacetime concepts
would simply be mapped to weirder ones, their quantum counter-
parts, by the quantization map, but not dismissed altogether for a new
conceptual scheme. As said, to cope conceptually with the resulting
quantum framework would be already challenging (as it can be seen
in simplified schemes like quantum cosmologies, Ashtekar & Singh,
2011), but something even more radical seems to be needed.*

The notion of spacetime localization is challenged already in semi-
classical GR, ie. simply considering quantum fields in a curved
spacetime, the intuitive idea being that any attempt at exact localiza-
tion would imply probing spacetime events with such a concentration
of energy in such small spacetime regions, that the event itself would
be hidden by the formation of a horizon. This idea is at the root of
some models of quantum spacetime based on non-commutative
geometry (Dolplicher, Fredenhagen, & Roberts, 1995), and it is only
one of the many general arguments for the existence of a minimal
length scale, usually associated to the Planck scale, beyond which the
local description of events of a spacetime continuum ceases to make
sense. The associated model building, aimed at an effective level of
description of more fundamental quantum gravity structures, is vast
and the basis for much of current quantum gravity phenomenology
(see Hossenfelder, 2013 for a review). Non-locality seems an inevitable
feature of most models based on some form of spacetime non-
commutativity, where the existence of a minimal length translates
into non-vanishing commutation relation for (operators corresponding
to) spacetime coordinates. One model that takes this feature seriously
is so-called relative locality (Amelino-Camelia, Freidel, Kowalski-
Glikman, & Smolin, 2011a, 2011b), a modern incarnation of the idea
of deformed or doubly special relativity (Kowalski-Glikman, 2009), in
turn a specific version of the effective models of quantum spacetime
based on non-commutative geometry and a minimal length. Here the
starting point is the idea that what we really measure, in physical
experiments, are momenta (and energies), while spacetime has to be
reconstructed our of such momentum measurement, plus the idea
that a full theory of quantum gravity should allow for a non-trivial
geometry of momentum space itself, as well as a curved geometry of
spacetime as in GR. A generic consequence of a curved momentum
space seems in fact to be the relativity of the notion of locality of
processes in spacetime, and thus a breakdown of the universality of
reconstruction of a spacetime manifold for physical events, for
different observers. Similar arguments and supporting partial results
have been put forward in string theory (Giddings, 2006), where the
very fact that spacetime geometry is on the one hand probed and on

(footnote continued)
non-existence of space and time at the fundamental level have been repeatedly
advocated by (Rovelli, 2011a, 2011b), focusing on the temporal aspects.

4 Notice that we are also neglecting here the conceptual implications of
classical and quantum diffeomorphism invariance in the continuum, e.g. the
infamous “problem of time” (Isham, 1992).
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the other hand constituted by extended objects leads to a non-local
description of it, allowing for example for several dual descriptions
(the AdS/CFT conjectured duality is also often presented as evidence
for an emergent nature of spacetime) (Horowitz & Polchinski, 2009;
Rickles, 2011; Seiberg, 2012).

Spacetime singularities in GR, the cosmological singularity at
the Big Bang and black holes singularities, are generally regarded
as a most convincing hint that a quantum theory of gravity is
needed. They can be given a minimalistic interpretation, akin to
singularities in the classical electromagnetic field at the center of a
spherically symmetric source (e.g. in the naive classical model of
the hydrogen atom). Then, they would simply suggest the need for
quantum corrections to the dynamics of geometry and matter
(Ashtekar & Singh, 2011). More radically, they have been argued to
be more than a sign of incompleteness of the classical description
of spacetime, and rather of breakdown of the very notion of
spacetime continuum, itself implying the need for new degrees of
freedom and a change of descriptive framework. This second
interpretation is more in line with the prominent role that
divergences and singularities in physical quantities play in quan-
tum and statistical field theory, as a signal of a change of the
effective dynamics with scale due to new degrees of freedom
becoming relevant, to be taken care of via the renormalization
group, or as a signal of a phase transition of a physical system, due
to the collective dynamics of its microscopic constituents (see the
discussion on the importance of singularities in relation to the
issue of emergent physics, Batterman, 2006, 2011; Butterfield,
2011b, 2011c; Butterfield & Bouatta, 2012). We will return to the
issue of cosmological singularities, from this perspective in the
following. The analysis of cosmological singularities in GR and
supergravity theories, in particular via the so-called BKL approach,
has led to another argument for the disappearance of spacetime in
such extreme situations. The result of such an analysis (Damour &
Nicolai, 2008) is that, at least in some approximation, the
dynamics of spacetime (and matter) close to the singularity can
be mapped to the dynamics of a point particle on an infinite-
dimensional coset space based on the Kac-Moody algebra Eq.
In turn, this suggest that a new, purely algebraic description of the
relevant physics becomes appropriate at and beyond the singular-
ity, one that would not be based on any notion of spacetime at all.

In the case of black holes, the attention has focused on the physics
at the horizon and at the associated thermodynamics. It has been
argued (Giddings, 2011) that the black hole evolution can be unitary
and thus information preserving, despite their evaporation, only at the
expense of locality. But it is the notion of black hole entropy (or more
generally of horizon entropy, Jacobson & Parentani, 2003) itself that
challenges in a very serious way the usual continuum picture of
spacetime. A black hole horizon is nothing but a particular region of
spacetime, so it is spacetime itself that has entropy. And something
that has entropy has a microstructure, whose number of degrees of
freedom that entropy counts. If spacetime was a continuum, that
entropy would be infinite. So the finite value for the horizon entropy is
a clear indication that there exists a discrete microstructure for
spacetime (Sorkin, 2005). The laws of black hole thermodynamics
hint at something even deeper. Jacobson (1995) showed that the
relation between Einstein's GR equations and the laws of horizon
thermodynamics can be turned upside down, in the following sense.”
Considering a small region of an arbitrary spacetime, the metric g can
be approximated locally by a flat one and a local Rindler horizon can
be identified (this is the horizon associated to uniformly accelerated
motion in the region). The Rindler horizon isolates the subregion
accessible to uniformly accelerated observers and can itself be shown

> We hope the more sophisticated reader will forgive us for the unsophisti-
cated nature of our account of this topic.

to have a thermal character, ie. to have a temperature T and an
entropy S, via entanglement arguments which also show that its
entropy is proportional to its surface area (thus a function of the
metric).® Assuming that there are also matter fields ¢ around, one can
compute their energy flux Q across the same horizon (from their
energy-momentum tensor, itself a function of the metric). Using
another few reasonable assumptions (e.g. diffeomorphism invariance
and energy conservation), one can then show that the first law of
thermodynamics, i.e. the equation of state TsS = 6Q, is equivalent to
Einstein's dynamical equations for the metric and the matter fields. In
other more suggestive words, Einstein's equations are an equation of
state for whatever microscopic degrees of freedom can be collectively
described by a metric and some matter fields, and of which the
functions S(g) and Q(g,¢) define the entropy and the heat, in a
macroscopic approximation where the system can be approximated
by a spacetime manifold. These results have later been extended
to cover more general gravitational theories and non-equilibrium
situations.

To conclude our brief survey of hints at the disappearance of
spacetime and geometry from the fundamental ontology of the world,
let us mention the insights obtained from condensed matter analo-
gues of gravitational phenomena (Barcelo, Liberati, & Visser, 2011;
Volovik; Volovik, 2001). The insights here are, at the moment, only at
the kinematical level (but see Finazzi, Liberati, & Sindoni, 2012;
Sindoni, 2011). However, they support further the idea that spacetime
itself is an emergent concept and that metric and matter fields are
only collective variables for more fundamental degrees of freedom.
The basic analogy is captured by the following general fact (taken
verbatim from Barcelo et al., 2011). If a fluid is barotropic and inviscid,
and the flow is irrotational (though possibly time dependent), then the
equation of motion for the velocity potential describing an acoustic
disturbance is identical to the dAlembertian equation of motion for a
minimally coupled massless scalar field propagating in a (3+1)-
dimensional Lorentzian geometry. Thus the sound wave couples not
only to the metric of the laboratory in which the whole fluids sit, but
also to an effective Lorentzian metric, which depends algebraically on
the density, velocity of flow, and local sound speed in the fluid, i.e. by
the hydrodynamic variables. When the fluid is non-homogeneous and
flowing, the acoustic Riemann tensor associated with this Lorentzian
metric will be nonzero. This fact can be further generalized, specific
fluids (the most interesting being quantum fluids, like Bose conden-
sates) can be studied and more analogues of gravitational phenomena
can be identified. Clearly, both the effective metric and the effective
scalar field (the sound waves) are only emergent, collective excitations
of the underlying atomic system. The main limitation is dynamical.
The emergent metric does not satisfy general relativistic dynamical
equations, but the equations of hydrodynamics (even though some
limited form of gravitational dynamics can be reproduced, Finazzi
et al., 2012; Sindoni, 2011). For now, this serves only as an inspiration
for the idea that spacetime itself could be the result of a macroscopic
approximation, valid in a particular phase of a more fundamental
non-spatio-temporal system, for which continuum metric and mat-
ter fields are not appropriate variables.

3. Microstructure of spacetime in various QG approaches
3.1. Brief survey
Now that we have surveyed different reasons for believing that

continuum spacetime may not be the fundamental substratum of a
quantum gravity theory, let us survey, again briefly, the

 The proportionality factor depends on the precise form of the Equivalence
Principle that is assumed to hold.
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suggestions that different quantum gravity approaches offer as to
what instead this substratum may be.

Loop quantum gravity (Rovelli, 2006; Rovelli, 2011b, 2011c;
Thiemann, 2007) started off as a canonical quantization of con-
tinuum GR reformulated in terms of first order variables, namely a
Lorentz connection and a triad field, defining the phase space of
the theory. Still, the completion of the quantization programme, at
least before the imposition of the dynamics (Hamiltonian con-
straint), leaves with a Hilbert space of the form H=&,H,, ie. a
direct sum of Hilbert spaces associated to graphs. For each given
graph y, considered to be embedded in the spatial manifold where
the canonical analysis takes place, a generic state would be given
by a wave function (g, ...,gg) for an assignment of data to the
elements of the graph, which are themselves a discrete version of
the continuum variables: group elements g. representing holo-
nomies of the gravitational connection along the links e=1,...,E
of the graph, or Lie algebra elements representing their conjugate
discretized triad. Thus we have discrete combinatorial structures,
the graphs, labelled by algebraic data only. The algebraic nature of
the data is even more manifest in the fact that a complete
orthonormal basis of such states is given by spin networks, in
which the same graphs are labelled by representations of the
Lorentz (or rotation) group. In later developments, the initial
embedding of the graphs into a spatial manifold is dropped, so
that one is really left with no reference to any underlying
continuum spacetime, which has instead to be reconstructed from
the combinatorial and algebraic data alone. The canonical
dynamics is implemented by the action of an Hamiltonian con-
straint operator which acts by mapping any labelled graph into a
linear superposition of graphs with different labels (in the general
graph-changing case), thus retaining the purely combinatorial and
algebraic character of the formalism. The same is true at the
covariant level, where the dynamics is implemented by a sum over
histories. Each history is defined by a 2-complex ¢ (a collection of
vertices, links and faces) labelled by the same algebraic data
assigned to states. This is called a “spin foam”. A path integral-
like dynamics (a “spin foam model”) is then specified by a
probability amplitude weighting each spin foam, and by a sum
over all possible algebraic data assigned to each 2-complex and, in
general, by a sum over 2-complexes. In recent years (Perez, 2013),
it has been realized that the graphs y are best understood as the 1-
skeleton of a dual 3d cellular complex, usually taken to be a
simplicial one (with consequent restriction on the valence of y),
with the Lie algebra elements labeling the links of y associated to
the 2-cells of the cellular complex, and the 2-complexes ¢ as the 2-
skeleton of a 4d cellular (simplicial) complex. Also the choice of
spin foam amplitudes is adapted to this simplicial setting, being
usually given by or motivated from a lattice version of the
gravitational path integral. The basic fact remains that the funda-
mental excitations of quantum spacetime are given by discrete and
algebraic objects, rather than smooth quantum fields. It is natural,
in this set-up, to interpret such excitations in realistic terms, and
not as a mere regularization, devoid of physical significance; they
are the theory's candidates for the fundamental quantum degrees
of freedom of spacetime.”

This most recent incarnation of the LQG and spin foam approach
is closer to other covariant simplicial gravity approaches, like
quantum Regge calculus Hamber and (causal) dynamical triangula-
tions (Ambjorn, Jurkiewicz, & Loll, 2012). Quantum Regge calculus is
a straightforward lattice quantization of gravity. It defines a lattice
path integral for the Regge action, a discretization of GR with metric

7 Notice also that spin foam models can be defined (and in practice they
usually are) independent of any canonical derivation, thus the spin foam complexes
can have arbitrary topology and their algebraic labels (both in the bulk and in the
boundary) can correspond to timelike data (edges, triangles, etc.).

variables represented by the lengths of the edges of the simplicial
complex used to replace the spacetime manifold, and summed over
to define a discrete sum over histories, with some appropriate
choice of measure. (Causal) Dynamical triangulations are based on a
sort of “complementary” definition of a discrete gravitational path
integral: the edge lengths are fixed to be equal for every edge of the
simplicial complex, while the sum over histories is defined by a sum
over all such equilateral triangulations, usually restricted to a given
(trivial) topology, weighted by the same (exponential of the) Regge
action (restricted to the equilateral case). The focus is usually on the
sum over histories definition of the theory, but boundary data are
associated to 3d simplicial complexes, labelled by boundary edge
lengths (in quantum Regge calculus), or assumed to be equal (in
dynamical triangulations).

The structures used are thus similar to the ones of LQG and spin
foams. The main differences are the different types of variables
labeling the combinatorial structures (group and Lie algebra
elements or spins in the LQG case, interpreted as triangle areas,
holonomies, etc.; real numbers are interpreted as edge lengths in
simplicial quantum gravity), and the choices of amplitudes for the
quantum histories to be summed over, i.e. the precise definition of
the quantum dynamics. All these approaches can be defined, at
least in principle (i.e. modulo various technical complications), in
both Riemannian and Lorentzian settings, the difference being
encoded in the data assigned to the simplicial complex and
corresponding modifications at the level of the quantum ampli-
tudes. At a more conceptual level the main difference is that, while
as mentioned the discrete excitations in LQG are naturally inter-
preted realistically, thus are given ontological significance, the
same discrete structures in simplicial gravity are often interpreted
as a regularization tool only, needed to give mathematical mean-
ing to the theory which is, in the end, a continuum theory. This last
attitude is the standard one, of course, in non-gravitational lattice
gauge theory. This different interpretation has influenced the goals
of the different research programmes. The main goal of the
simplicial gravity approaches has been to prove, using statistical
field theory methods, the existence of a phase transition of the
discrete system in which any “discretization artifact” would be
removed and that would then define “the continuum theory”.
In LQG and spin foams, instead, the focus has been on extracting
physics from the theory formulated in terms of the discrete spin
networks and spin foams, and, due to obvious technical difficulties
of doing otherwise, mainly in the regime of a small number
of degrees of freedom, i.e. simple graphs and simple cellular
complexes.

Related (historically and mathematically) to the dynamical
triangulations programme is the formalism of matrix models
(Di Francesco, Ginsparg, & Zinn-Justin, 1995), which provides
in fact a successful quantization of 2d Riemannian gravity. The
dynamics is given again by a sum over 2d triangulations, with no
additional labels. The crucial difference is that this sum is obtained
as the perturbative Feynman expansion of (the free energy of) a
theory whose fundamental variables are abstract N x N matrices
M} whose classical action has no direct relation to any classical
continuum gravity dynamics, for example S(M) =1 tr(M?)—1/N'/?
tr(M>). The matrices can be graphically represented as edges with
endpoints labelled by their indices, and the Feynman diagrams of
the theory are represented by triangulations, since the interaction
vertex has the combinatorial structure of three edges glued along
vertices to form a triangle, while the propagator corresponds
to the identification of edges across two such triangles. At
this discrete level one can only hope to an indirect connection
with gravity and geometry analogous to that of dynamical trian-
gulations. However, appropriate matrix models can be shown to
undergo a phase transition, which can be phrased in terms of a
“condensation” of the eigenvalues of the matrices (the true
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degrees of freedom) for large N and some critical value of the
coupling constant /4, and to possess a continuum phase in which
the theory they define matches (in computable quantum obser-
vables) 2d Liouville quantum gravity. While the formal setting is
very close to the dynamical triangulations approach, the fact that
the triangulations arise as Feynman diagrams of a theory of
matrices suggests the possibility to give a more realistic inter-
pretation to the same matrices as underlying pre-geometric
degrees of freedom of 2d spacetime. It is in this sense that, for
example, matrix models are presented as an instance of “emergent
spacetime” in Seiberg (2012).

Another example of discrete approach to quantum gravity is
causal set theory (Benincasa & Dowker, 2010; Dowker). Here the
starting point is again the continuum theory but only in the
observation that the metric of a given spacetime is entirely
characterized by the causal structure, i.e. the set of causal relations
between any pair of spacetime points, and the conformal factor or,
equivalently, the volume element. Then, a discrete counterpart of
the same data is postulated to be the fundamental substratum of
the world: a discrete set of “events”, each assigned a constant
volume element (usually assumed to be of the order (Planck
length)*), and their causal relations, i.e. a partially ordered set
with a constant volume label on each element. The dynamics is
seek once more in a covariant sum over histories setting, i.e. in a
sum over causal sets weighted by some yet to be defined quantum
amplitude (a quantum version of the recently developed classical
sequential growth dynamics, which is a classical stochastic pro-
cess, and involving the recently defined causal set discrete
analogue of the Einstein action, Benincasa & Dowker, 2010;
Dowker). It is clear that the spirit of this approach is not to look
for a regularization of a continuum theory, but to identify the true,
more fundamental ontology of spacetime.

The type of discrete structures arising in spin foams and
simplicial gravity can seem very different from causal sets. This is
clearly true to some extent, but some similarities can be identified.
More precisely, Lorentzian spin foam models can be constructed
(Livine & Oriti, 2003) in such a way that the 1-skeleton of the spin
foam 2-complex is understood as a discrete set of events (the
vertices) with their causal relations, restricted to five per vertex (in
four dimensions), i.e. to a sort of “causal nearest neighbors”, and the
spin foam amplitudes can be defined so as to reflect this underlying
causal structure. Thus, the main kinematical differences between
the approaches are a richer set of pre-geometric labels and a more
restricted set of causal relations taken into account in spin foams
with respect to causal set theory.® The last difference may resultin a
breaking (or deformation) of local Lorentz symmetry in a con-
tinuum approximation of spin foams, while causal sets are argued
to be Lorentz invariant (Benincasa & Dowker, 2010; Dowker), but on
the other hand it allows for a discrete version of locality which
facilitates the mathematical treatment of the theory (and which
makes the group field theory formulation of it possible), while
causal sets are radically non-local.

3.2. The GFT framework

We give a few more details on the group field theory approach
(Oriti, 2006, 2009a, 2009b, 2012), since we will later give an
explicit example of emergent spacetime in this context. The
formalism
is a field theory over a group manifold (or the corresponding
Lie algebra) with the basic variable being a (complex) field

8 The other difference is that the 1-skeleton of a spin foam complex is a
directed set, rather than a poset, i.e. may contain closed timelike loops. These could
be added also in standard causal set theory and it is unclear whether they would
modify much the formalism.

¢(81,82,----84) = 12 function of d group elements, for models
aiming at a quantization of a d-dimensional spacetime (the most
relevant case, therefore, being d=4). It can be represented gra-
phically as a (d —1)-simplex with field arguments associated to the
faces of it, or as a d-valent graph vertex, with field arguments
associated to the links. The dynamics is specified by a choice of
action S(¢) = [ pKp+2 [ ¢p¢...¢pV, characterized in particular by an
interaction term with a non-standard (with respect to usual local
QFT) convolution of fields in terms of their arguments (analogous
to the tracing of indices in matrix models). The specific pattern of
convolution chosen depends on which requirement replaces
locality of standard QFTs. The quantum dynamics is given by the
partition function, expanded in Feynman diagrams around the
Fock vacuum:

Z= / DpeS® = YA
r

The choice of action involves a choice of the kinetic term, and a
choice of interaction. One example, in d=4 and for g; e SO(4), is

1 A
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where dg is the normalized Haar measure, /1 is a coupling constant,
and the field has the invariance ¢(hg,...,hg,) = ¢(gy,....84) for
any h e SO(4). The combinatorics of convoluted field arguments in
the interaction matches the combinatorics of five tetrahedra glued
along common triangles to form a 4-simplex. The propagator
induces a simple gluing of four simplices across one shared
tetrahedron, when used in perturbative expansion to form Feyn-
man diagrams. Such Feynman diagrams are representable, by
construction, as 4d simplicial complexes. This model describes
topological SO(4) BF theory. Models aiming at the description of 4d
gravity are constructed (Baratin & Oriti, 2010, 2012; Perez, 2013)
imposing specific restrictions on the fields ¢, corresponding to
discrete and algebraic versions of the constraints that reduce BF
theory to gravity in four dimensions (Baratin & Oriti, 2010, 2012;
Perez, 2013). In these models, one could say that usual QFT locality
is replaced by simpliciality, i.e. the requirement that interactions
are associated to d-simplices.

Another class of models has been the focus of studies (Ben
Geloun, 2012; Carrozza, Oriti, & Rivasseau; Rivasseau, 2010, 2011)
aiming at extending standard renormalization tools to GFTs and at
proving renormalizability of specific models, relying heavily on the
recent results of the simpler tensor models (Gurau & Ryan, 2012),
and thus referred to as tensorial GFTs or TGFTs. In particular, TGFTs
use a new notion of locality: tensor invariance (related to invar-
iance under U(N)? transformations, where N is a cut-off on the Lie
algebra dual to G). One labels the arguments of the basic field with
an index k and defines the convolutions such that any
k-th index of a field ¢ is contracted with a k-th index of a conjugate
field ¢. These invariant convolutions can be graphically repre-
sented as d-colored graphs, constructed from two types of nodes
and d types of colored edges: each white (resp. black) dot
represents a field ¢ (resp. ¢), while a contraction of two indices
in position k is associated to an edge with color label k. The
interactions (with coupling constants t,) are sum of connected
invariants I,

S(¢.¢) = Eb]fbfb(¢,$)~ (3.2)

The kinetic term is taken to be the Laplace-Beltrami operator A
acting on GY, accompanied by a “mass” term.

There are two main ways of understanding GFTs. The first is as
a second quantized field theory of spin network vertices, each
corresponding to a quantum of the field ¢ and labelled by the d
group or Lie algebra elements, constructed in such a way that its
quantum states are generic superpositions of spin networks and
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its Feynman diagrams are spin foams. For any given spin foam
models, there exists a choice of GFT action (thus, a specific GFT
model), such that the corresponding Feynman amplitudes are the
chosen spin foam amplitudes. It can be seen, therefore, as a
possible (second quantized) incarnation of the LQG programme.
Using the dual simplicial formulation of spin networks and spin
foams, in which each spin network vertex corresponds to a
labelled simplex and each spin foam 2-complex is dual to a
simplicial complex, GFTs can also be understood as a second
quantization of simplicial geometry, in which simplices can be
created and annihilated in fundamental interaction processes, as
well as change size and shape (with a group or Lie algebra
elements characterizing areas of triangles, discrete curvature,
etc.). The combinatorics of field convolutions in the GFT interac-
tion should correspond to the combinatorics of face gluings in a
d-simplex. According to this simplicial interpretation and to the
current treatment of spin foam models, the corresponding Feyn-
man amplitudes are then related directly to discrete gravity. The
group manifold G chosen is the Lorentz group in the appropriate
dimension or its Riemannian counterpart.

The second way is as a generalization of matrix models for d=2
gravity. This generalization takes place at two levels. The first is in
dimension. Instead of matrices with two indices, represented as a
segment with two endpoints, we have a field function of d
variables, represented as a (d—1)-simplex. Correspondingly, the
Feynman diagrams of the theory are d-complexes, rather than 2d
triangulations. The second level of generalization is in the data
carried by the fields. Instead of finite index sets, the arguments of
the field are now group manifolds or their Lie algebra (and one can
go from one to the other by a generalized Fourier transform).
These additional data are needed, formally, for bringing in the
structures used in LQG and simplicial gravity, and, physically,
because it can be expected that higher-dimensional gravity needs
a much richer framework to be properly described at the quantum
level, and these data can be understood as “seeds” of the geometry
that has to emerge from the models. This of course brings
mathematical complications, alongside conceptual and physical
richness, and these models prove quite non-trivial.”

The main advantages compared to other formulations of LQG or
spin foams are first of all that GFTs offer a complete definition of the
quantum dynamics, e.g. a clear prescription for the weights to be
used in the sum over spin foams and for how this should be
generated; second, that one can take advantage of more or less
standard QFT tools in studying the theory, despite the fully back-
ground independent context (from the point of view of physical
spacetime). This in particular would be a key asset to study the
physics of large numbers of LQG degrees of freedom (large spin
networks and spin foams), e.g. using powerful tools like the
renormalization group (Rivasseau, 2013). At the same time, it calls
for a new perspective on the theory, in the sense that, holding again
to a realistic interpretation of the discrete structures used in LQG and
spin foams, it suggests seeing the underlying field theory generating
them as the definition of the dynamics, and the place to look for its
physical consequences, rather than as an auxiliary tool. Also, it
suggests that the fundamental dynamics, encoded in the GFT action,
should not be necessarily derived from any canonical quantization of
the continuum theory, but something simpler, intrinsically discrete,
even if motivated by continuum considerations (this is the road
already taken by spin foam models). Compared with other simplicial
gravity approaches, similar structures are used as discrete

9 Much progress on the mathematical backbone of GFTs has been obtained in
the simpler tensor models, in which the combinatorial structure is maintained but
the extra degrees of freedom are dropped. Several insights have been obtained
(Gurau & Ryan, 2012), most notably a well-defined notion of large-N limit, and can
now be incorporated in GFTs.

counterparts of continuum spacetime (labelled triangulations) and
the same covariant implementation of the dynamics via sum over
histories. This dynamics looks like a combination of both quantum
Regge calculus and dynamical triangulations, with a sum over
triangulations each weighted by a sum over discrete geometric data
(albeit the variables chosen are different), weighted by a quantum
amplitude that indeed can be directly related to a simplicial gravity
path integral. Also, as mentioned, similar methods of analysis are
called for, taken from statistical field theory, and similar goals: look
for continuum approximations/limits, explore the phase structure of
the models. Beyond the technical differences, however, the main
difference is probably conceptual, in that (borrowing from the LQG
camp) GFTs call for a re-interpretation of the same structures in
realistic terms, as physical (discrete and quantum) degrees of free-
dom of spacetime.

3.3. Some more comments

Before moving to the issue of emergence of spacetime, let us
add some assorted comments on the discrete and quantum picture
of spacetime portrayed by these approaches, and by GFT in
particular. A similar brief survey of QG approaches in relation to
the issue of emergent spacetime was given very nicely in Huggett
and Wiitrich (2013). Compared to that account, besides the
addition of the GFT formalism to the picture, the main comment
we have is that in our opinion the distinction between these
various approaches is more blurred than portrayed there (as the
GFT approach shows explicitly). Simplicial lattices can be used in
correspondence with spin network graphs and spin foams. Ele-
ments of these combinatorial structures can be understood in
causal terms, as done in causal sets. Quantum superposition of
discrete structures is a key ingredient of all these approaches. Most
of them involve a sum over topologies as well (this is inevitable in
GFTs, in particular).

However, it is true, as mentioned, that this merging of struc-
tures and methods may call for a reinterpretation of them. For one
thing, the lattices used in LQG and spin foams and GFT are
interpreted more realistically than in simplicial quantum gravity
approaches. At the same time, the recasting of spin foams as
Feynman diagrams of a GFT suggest that, while they are indeed
possible physical processes of quantum building blocks of space-
time, the physics they encode is to be extracted from their sum
and not from them individually, if not in very peculiar approxima-
tions and after renormalization.

The other main point is the extent to which these discrete
structures should be interpreted in spatio-temporal terms. Here
we refer both to the combinatorial structures, graphs and cellular
complexes, and to the labels assigned to them, usually interpreted
in terms of discrete geometry. In our opinion, the spatio-temporal
meaning of these data can be assessed only after a procedure for
extracting a continuum spacetime manifold and geometry out of
them has been identified. This is because it is the last notions only
that define what space and time are, in our current understanding.
We do not use any discrete or algebraic notion of space and time to
conceptualize other experiences. The fact that specific discrete
quantum structures can be motivated from continuum spacetime
theories (or used to approximate them, as in classical Regge
calculus) is important and gives us an argument for trusting them
as the potentially correct seeds for the spacetime to come, but not
much more. For example, the graph or cellular structures used in
LQG, GFT, and simplicial gravity, define a notion of locality that can
be interpreted as encoding correlations between “spacetime build-
ing blocks”, but may differ drastically from any notion of locality
emerging in some approximation alongside a continuum space-
time and geometry. Consequently, one should be aware of the risks
of the interpretation of lattices as “discrete spacetimes” over which
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things happen or move. This view could be too anchored to the
usual background dependent context of lattice gauge theory,
where the lattice is indeed a sample of possible paths on an
existing background (flat) spacetime.

The conclusion is that, we argue, we should interpret the
discrete structures suggested by quantum gravity approaches
realistically, i.e. with some trust, but probably not naively, i.e. with
great conceptual care.

4. Emergent spacetime: what can it mean?

There are two main classes of objections to the idea of emergent
spacetime. Some have to do more generally with the very idea of
emergence, a rather slippery one. Others are directly tied to the
possibility that spacetime, in particular, could be understood as an
emergent concept.

One problematic point is whether or not the supposedly
emergent property of a system one wants to describe can be
reduced to properties of more fundamental constituents of the
same system, and whether or not the theoretical description of
such an emergent property can be deduced from the theoretical
description of the fundamental constituents. We will ignore the
subtle distinctions between the notions of reduction and deduc-
tion, and conflate the two, basically in the spirit of Nagel (1961).
Can this reduction/deduction be done at all for any property that
we may call “emergent”? A positive answer should come with
many qualifications, because to really define and understand this
connection is highly non-trivial. This is true (Batterman, 2006,
2011) even for theories whose connection is supposed to be well-
understood, like between statistical mechanics and thermody-
namics, or between molecular dynamics and hydrodynamics.
However, a negative answer, we believe, is untenable. There are
known microscopic derivations of macroscopic phenomena, small
scale justifications of large scale effects, even if these reductions
may not always be complete, rigorous, analytic, or even, some-
times, useful in practice. But if the answer is, roughly speaking,
positive, what does it mean that something is “emergent” at all?
Doesn't reducibility of properties to one another imply that the
one deduction starts from is the real or truly fundamental one?.

As for most of the following, we align with Butterfield (2011b,
2011c) and Butterfield and Bouatta (2012) in understanding
emergence to mean the appearance of properties of a system that
are novel with respect to other descriptions of the same system
(e.g. at different scales, or in different approximations, or with
different macroscopic constraints) and robust in the sense of being
reproducible and stable, thus systematically (observed at least in
principle). The typical example of reduction/deduction and of
emergence that we have in mind is, as in Butterfield (2011b,
2011c) and Butterfield and Bouatta (2012), that of collective
properties of many degrees of freedom, collective behaviour that
on the one hand can understood to be the result of interactions
among “basic building blocks”, and on the other hand is not
“implicit in or a simple cumulative effect of” the same building
blocks. Obviously, the richest realm for studying this type of
behaviour is condensed matter theory, and it is also where we
will take our specific guiding example from.

So how can emergence and reducibility be reconciled? We see
well justified in this context the solution proposed by (Butterfield,
2011b, 2011c; Butterfield & Bouatta, 2012), based on stressing the
importance of limits and approximations, and of singular ones and
divergences in particular (Batterman, 2006, 2011). Deducing the
emergence of some property requires in general a limiting procedure
in terms of some parameter of the system which leads to a new
feature that was not present in (the description of) the system before
the limit. This, at the same time, does not imply that the property

exists only for the system at the limit, or that the limit system is real, as
in many cases this would be physically untenable. Here enters the
second key notion of approximation: emergent behaviour, even when
it is identified or deduced via a limiting procedure, occurs physically
before the actual limit is reached, provided it is approached enough in
some sense that varies from case to case. It is this emergent
behaviour “close to the limit” which is real. The typical example
(Butterfield, 2011b, 2011c; Butterfield & Bouatta, 2012) is phase
transitions in condensed matter systems and different emergent
features in different phases of a physical system, where the limit to
be taken is the one of very large numbers of degrees of freedom, i.e.
(for finite density) the thermodynamic limit.

It is in this sense that we could have reduction and novelty at the
same time. Whether reduction is useful or necessary in practice, it is
a different debate, which we do not go into Bedau and Humphreys
(2008). Last, we would suggest that the existence of emergent
properties forces upon us a more flexible notion of ontology, one
that assigns reality to several levels of description of physical
systems, and in which there is no reductionism in ontology even in
the presence of reduction/deducibility in the theoretical description.

Coming to the specific case of emergence of spacetime, a new type
of objections is brought forward. A first issue is that in a background
independent context, and even more in a spacetime-free theory, it is
even more difficult to make the notion of emergence clear. Given our
tentative general definition above, and assuming we have identified
the right “fundamental” degrees of freedom and the right dynamics'®
for them, and that the nature of the emergent property we want to
obtain is clear, i.e. continuum spacetime and geometry and their
relativistic dynamics, the question becomes: what is the approxima-
tion/limiting procedure such that one can go from one to the other
and what are the conditions for its existence? if such a procedure
exists and if the fundamental degrees of freedom are not themselves
continuum spacetimes and geometries, we would have these notions
“emerging” along the way (this is also, more or less, the scheme
proposed in Huggett & Wiitrich, 2013). We will discuss a specific
proposal for what this procedure can be, and an example of it, in the
following.

The above issue has to do with the specific formalism one uses,
the strategy adopted, and has to be addressed in examples. Here
we only make the general remark that in any quantum gravity
approach like the ones introduced above, where the fundamental
degrees of freedom are discrete and quantum, based on combina-
torial, rather than continuum, structures, and subject to quantum
fluctuations (kinematical superposition as well as probabilistic
evolution). There are two very different types of approximations/
limits that have to be taken in order to start from them and arrive
to classical GR: a continuum limit and a classical limit. Not only the
precise definition of both of them will have to be specified, but
also the order in which they have to be taken is not obvious at all.
It is well possible, as we will show, that a continuum spacetime
stems from the quantum properties of its fundamental building
blocks, and would not be achieved if only their classical properties
were considered.

A more general objection against the idea of emergent spacetime
has to do with empirical coherence. It was put forward, for example,
by Maudlin (2007), it is central also in Esfeld and Lam (2013), and
was, in our opinion, nicely discussed and counter-argued in Huggett
and Wiitrich (2013). The basic point is that in all our theories the
connection to observation, thus the empirical relevance of the
theories themselves, is ensured by the existence, in the theory, of
local beables, that is observables entities localized in spacetime. In the

10 The problem of understanding and describing "dynamics" purely as rela-
tional change, and thus extending its definition to a time-less framework, is part of
the general issue of understanding the disappearance and emergence of time itself
in quantum gravity (see Rovelli, 2011a, 2011b).
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absence of such local beables the theory has no physical relevance. A
theory without spacetime in its fundamental definition is very
difficult to deal with and to interpret in physical terms. Some of
the statements by Maudlin amount basically, in our understanding,
to emphasizing how radical and conceptually challenging a quantum
gravity theory has to be, if it sticks to its promise. They come as a
confirmation of the everyday difficulties of quantum gravity
researchers, rather than as a surprise, and can certainly be agreed
on. Indeed, another way to put them is simply to re-state the need,
for any quantum gravity theory without continuum spacetime and
geometry in its fundamental structures, to unravel a procedure by
which they emerge in some approximation. In the same approxima-
tion the theory would then have to identify non-trivial local beables,
and possibly novel ones, that can be observed, to falsify it. Indeed, it
is a tough problem. Stretching the emphasis on local beables to more
than this is, in our opinion (in agreement with Huggett & Wiitrich,
2013), over-stretching it. It does not follow as necessity that empirical
coherence requires local beables in the fundamental definition of the
theory. Local beables can be removed from fundamental ontology
and re-appear as emergent concepts/quantities (e.g. phonons can be
characterized in terms of local quantities on the fluid, but the
microscopic description of the fluid itself cannot, by definition).
Maudlin himself seems to acknowledge this, i.e. that local beables
could be appropriate only to some level of reality, as approximations.
Would this make the fundamental degrees of freedom described by
the theory less real? Maudlin seems to think so, when he questions
whether the underlying theory, even though it manages somehow to
reproduce local beables in some approximation without having them
at the most fundamental level, is “physically salient”. Huggett and
Wiitrich correctly, in our opinion, point out that the issue is what
makes a theory “physically salient”. We do not have the expertise nor
the space to discuss this point further. We only point out that this
would not be such an unfamiliar situation in physics. The question
for any formalism postulating a certain set of degrees of freedom as
the microscopic explanation of some macroscopic observable phe-
nomenon, and then succeeding to derive the latter from the former,
would be whether we can either obtain a direct phenomenological
access to the microscopic entities or at least extract some new
macroscopic observable phenomenon that would distinctively follow
from specific properties of the same (not directly observable) entities.
The strict adherence to the need for local beables for empirical
relevance would preclude the first option, but not the second. If the
answer is positive, the common physicist's attitude would be to
declare the microscopic theory “salient”. One example is the experi-
mental indirect confirmation of atomic theory via Brownian motion
before atoms could be directly observed.

We will return to this issue after having offered our proposal
for what the emergence of spacetime could look like, and a
concrete (tentative) example of its realization.

5. A concrete, non-spacetime example of emergence

In order to set the stage for our quantum gravity example of
emergence of spacetime, and to clarify the above discussion on
emergence in general, we give now one concrete example of it,
taken from condensed matter theory: Bose condensation in dilute
weakly interacting gases (for details, see Leggett, 2001, 2006;
Pitaevskii & Stringari, 2003; Volovik; Volovik, 2001).

Assume that we have a gas of bosonic atoms, described by a
non-relativistic quantum field theory:
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This microscopic (continuum) field theory, in the regime of
small fluctuations around the Fock vacuum |Fock) (the “no atom”
state), i.e. when only a few atoms are present, and atom creation/
annihilation processes can be neglected (as in our laboratories),
gives an entirely satisfactory description in terms of a discrete
system: a finite number of atoms, possibly (e.g. if the system is
confined in a box) labelled by discrete quantum numbers (their
momenta and energies). What does happen when a large number
“close to infinite” of the same atoms are considered, together with
their interactions, in a thermodynamic limit/approximation (infi-
nite volume), that is, a continuum limit? How do we extract an
effective dynamics appropriate for such a limit? The question does
not have a unique answer, because it depends on the macroscopic
conditions imposed on the system of atoms, e.g. temperature,
pressure, constraints on the density, values of the coupling
constants (whether the system is strongly or weakly interacting).
In other words, the system may organize itself in different phases.
In any case, we need to change vacuum. For example, we may
know, from the solution for the free theory (which can be solved
exactly), from experiments or by some intuitive understanding of
the physics of bosonic particles, that at very low temperature (and
given pressure, weak interaction, etc.) the atoms will tend to
occupy the same quantum state, they will condense. That is, we
may assume that the new relevant vacuum state around which the
continuum dynamics will take place is not the Fock vacuum by a
condensate state:
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Clearly, this is a guess and it is not exactly correct, for an
interacting system: it is a state in which we have neglected all
correlations between atoms and in which all atoms behave exactly
the same, and thus have the same wave function ¢. Still, we have
reasons to believe that it is not too far from the real one (e.g.
because the interaction is weak), so we go ahead and extract the
dynamics of the system in terms of an equation for the collective
variable ¢o. It is a collective variable because it describes at once
the behaviour of the infinite atoms of the system (under the
assumption that they have more or less condensed).

From the quantum microscopic dynamics of the system,
encoded in the partition function corresponding to (5.1), one
extracts then an effective equation for the function ¢y(x). In the
crudest approximation it amounts to (1) assuming that the field
operator for the atoms writes i = gl +7; (2) inserting this in the
quantum equations of motion (n-point correlations, etc.);
(3) neglecting the dynamics of the fluctuations (over the con-
densate) y. The resulting classical non-linear equation for ¢q is
(with some more approximations made on the microscopic inter-
actions, etc.) the Gross-Pitaevski equation:
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which, we note, still contains a dependence on #, and a new
effective coupling constant resulting from the approximations
made on the microscopic interactions (Leggett, 2001, 2006;
Pitaevskii & Stringari, 2003). This is a hydrodynamic equation for
the whole fluid that the condensed atoms form. Its hydrodynamic
character can be made explicit by splitting the complex function
@o into its modulus p(x,t)'/?, corresponding to the fluid density,
and its phase, giving the velocity of the fluid as V (x,t) = VS(X, t),
using gy = ./pe". It is clear that we are dealing with an emergent
behaviour of the whole system of atoms that is not implicit in the
individual atoms and crucially depends on having a large number
of them and of having taken a continuum (thermodynamic) limit.
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A new entity has emerged, the fluid, where in the previous
description of the same system we had atoms. That it is a robust
behaviour is something that can be verified everyday in the
laboratories and has to do with collective symmetries (or breaking
of them) and their resulting stability, with a degree of universality
in microscopic behaviour leading to the same macroscopic one
(in similar conditions of temperature, density, etc.), and with the
separation of scales between micro and macro (Batterman, 2006,
2011). That is novel, with respect to the atomic description,
is another clear fact. It is enough to think of the associated
superfluidity.

A few more comments on the issue of emergence in light of this
simple example. Even though the macroscopic behaviour of the
fluid is to some extent universal and independent on the details of
the microscopic system, i.e. the atoms, the microscopic theory is
not at all irrelevant. Not only the parameters of the atomic model
enter the macroscopic equations, but the type of variables used in
the macroscopic theory are closely related to the microscopic ones,
even though the dynamics may be vastly different. Moreover, at
least in this case there is a path from the microscopic theory to the
macroscopic one and some macroscopic properties are found to
depend on features of the microscopic degrees of freedom, and
some features of the atomic dynamics do enter the effective
hydrodynamics (this is clear, for example, in spinor BECs). For
example, the fact that nappears in the effective classical hydro-
dynamic equation stems from the specific dispersion relation of
the atoms. More generally, the fact that quantum properties of the
atoms are responsible for some of the macroscopic behaviour of
the fluid is apparent in the whole phenomenology of superfluidity.

Now suppose that we did not have access to the atoms at all,
experimentally, but still, because we were so smart, we had
managed to guess the microscopic theory (5.1), and then even so
smart as to guess the appropriate approximate ground state of the
system, in the macroscopic phase we had experimental reasons to
believe we lived in, i.e. the state (5.2). Suppose that we insisted on
the idea that the macroscopic fluid we lived in (yes, we are
supposing we are unfortunate but smart fishes swimming in the
cold superfluid) was only emergent from something totally differ-
ent, and unaccessible, and almost unthinkable, the “atoms of the
fluid”. Suppose that we had managed even to find an approximate
derivation of (5.3) from (5.1), and thus to hypothetically explain
some features of the fluid in terms of its imaginary atoms. In such
a situation, would the atomic theory (5.1), despite not allowing
“fluid beables” to describe the atoms, still be “physically salient”?

6. The idea of geometrogenesis

So, what is the picture of quantum gravity and of the emer-
gence of spacetime that we suggest? The main hypothesis is that
what we call continuum spacetime is but a phase of an underlying
system of fundamental non-spatio-temporal degrees of freedom,
of the type we introduced above, to be reached in a quantum
gravity analogue of the thermodynamic limit used in condensed
matter systems (for an overview of different quantum gravity
models of emergent spacetime, see Sindoni, 2012). A continuum
spacetime would correspond to a collective, emergent configura-
tion of a large number of quantum gravity building blocks. The
notion of continuum geometry would, accordingly, make sense
only at this emergent level and possibly only in such a phase
(other continuum phases could be, in principle, non-geometric).
Emergence of spacetime becomes a problem akin to the emer-
gence of large scale, collective behaviour from atoms in condensed
matter theory. In fact, one can be more specific and put forward
the hypothesis that spacetime is indeed the result of a condensa-
tion of its microscopic building blocks turning it in a very peculiar

type of quantum fluid (Oriti, 2007a, 2007b, 2009a; Sindoni).
Actually the idea of spacetime as a condensate has been argued
for by several authors (Hu, 1988, 2005; Laughlin, 2006; Wilczek,
2010), and from a variety of standpoints. It can be seen as a way to
take seriously the results of analogue gravity models in condensed
matter (Bain, 2013; Volovik; Volovik, 2001), or as the next step
in the process of understanding fundamental interactions via
spontaneous symmetry breaking (which is the usual particle
physics way to formulate the idea of condensation) (Wilczek,
2010). It is the extension to spacetime physics of the new
(emergent) “emergentist” paradigm, itself raising from the amaz-
ing successes of condensed matter physics in the last century
(Laughlin, 2006). It is a bit of all of the above, plus the result of a
broader view on cosmology, also informed by the various quantum
gravity-related arguments for the disappearance of spacetime that
we cited at the beginning of this contribution (Hu, 1988, 2005).

In particular, we have in mind the group field theory frame-
work as the underlying description of spacetime, and its proposed
building blocks with features shared with loop quantum gravity,
spin foams and simplicial gravity. In this framework, the problem
becomes treatable, at least in principle, with more or less standard
tools from (quantum) statistical field theory, in particular the
renormalization group (Ben Geloun, 2012; Carrozza et al;
Rivasseau, 2010, 2011, 2013), and one can keep a close formal
contact with the field theory description of real condensed matter
systems. We will show one example in which one takes direct
advantage of these formal similarities in the following.

Here we want to comment on the general picture.

First of all, this hypothesis could be seen only as a suggestion for
solving the “technical” problem of deriving a continuum approxima-
tion from a candidate fundamental discrete and quantum theory, and
a suggestion for the right mathematical tools to use. In this case,
however, it would not necessarily carry immediate physical signifi-
cance, and in particular agreeing with it would not force a realistic
interpretation for the building blocks one starts from.

If one does give physical meaning to the fundamental degrees of
freedom suggested by the given approach, then one is compelled to
really see the system like a sort of condensed matter system with
the General Relativistic dynamics of spacetime being a sort of
hydrodynamic approximation, which would break down if one
was able to test the appropriate regime. What this regime can be,
exactly, not only is a difficult question given that the very notions of
energies and distances are geometry-dependent, but is also some-
thing that can be given meaning to only within a specific formalism
in which the condensation and the hydrodynamic approximation
are realized in the first place. The answer, then, has to wait.

One can however push the realistic interpretation even further,
and put forward a further hypothesis. That is, identify the process
of quantum spacetime condensation with a known, even if not
understood, physical process: the big bang singularity. Better, we
identify the coming of the universe, that is of space and time, into
being with the physical condensation of the “spacetime atoms”.
There was no space and not time before this condensation
happened.'' Therefore, we could call the spacetime condensation
geometrogenesis. In this line of thought (Hu, 1988, 2005; Volovik;
Volovik, 2001), cosmological evolution is understood as a relaxa-
tion process after the phase transition, towards the equilibrium
condensed state. This condensed state would then most likely
correspond to some special type of spacetimes, e.g. those
described by geometries high degree of symmetries. It is exactly

! The “tensed” wording is inevitable and can only refer to some internal time
variable, which started running monotonically from the condensation onwards, just
like the corresponding tensed statements about the evolution of the universe in
(quantum) cosmology; for example, this variable could be a hydrodynamic variable
corresponding to the volume of the universe.
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this symmetric geometries, in particular homogeneous ones,
that are used in physical cosmology, at late times after the big
bang. The tentative example of emergence of spacetime we will
present next is too preliminary and recent to confirm this scenario
in any compelling way. However, it is consistent with it, as we
shall see.

From this perspective, cosmological singularities, i.e. divergences
in curvature invariants in GR, could be a sign of the breaking down of
the continuum description of spacetime in yet another sense: they
would signal the breakdown of the hydrodynamic approximation of
the system of spacetime atoms, and at the same time signal the onset
of a phase transition for the same system, which we may call, with
no disrespect intended, the “boiling before the evaporation of the
universe”. This may even have a more concrete mathematical
implementation if, in the same quantum gravity formalism in which
the condensation process is described, curvature invariants emerge
as macroscopic quantities playing the role of thermodynamic poten-
tials. Then, their divergence would fit with the usual definition of a
phase transition.

If these hypotheses are correct, there is no reason to try to
derive the microscopic dynamics of the quantum building blocks
of spacetime, in any strict sense, from continuum GR dynamics.
Quantum spacetime dynamics is not quantum GR. The micro-
scopic!? dynamics can be some simplified, reduced-to-the-
backbone version of GR, as a simplicial version of it may be,
but it is not to be expected to be closer than that to the
continuum geometrodynamics we know. There are two orders
of reasons, both well exemplified in the case of real condensates.
The effective dynamics obtained in the hydrodynamic, mean
field approximation is in general very different from the true,
microscopic one. Remember, by the way, that we naively expect
the quantum gravity description of spacetime to be relevant
around the Planck scale, that is around seventeen orders of
magnitude (in length) below the quark scale and even more
below where we know the GR dynamics to be appropriate.
Second, quantizing BEC hydrodynamics, for example, would give
operators (observables) corresponding to the density and the
velocity of the whole fluid. What happens in that case, though,
is the not-so-surprising fact that, before quantum fluctuations of
p or v become relevant, the whole hydrodynamic approximation
breaks down, and the microscopic atomic structure of the fluid
becomes relevant.

Finally, if the spacetime condensate and the geometrogenesis
hypotheses are correct, the emergence of spacetime continuum
and geometry will be the result of the quantum properties of the
atoms of spacetime. It will be a quantum phenomenon. Therefore,
the order in which the two key limits/approximations needed to
recover GR, the semi-classical and the continuum limit, have to
be taken is clear: one has first to understand the continuum limit
of the quantum system and only then one can take a classical
limit and hope to recover a GR-like dynamics. This picture, in the
GFT framework, will be substantiated by the forthcoming
example.

7. An example of geometrogenesis

We now give the anticipated explicit example of emergent
spacetime in the context of the GFT framework. We report on
some work in progress (Gielen, Oriti, Sindoni, Gurau, & Ryan,

12 As we remarked concerning the use of “tensed” sentences, also the use of
micro/macro in all this discussion has to be taken in a rather metaphoric sense, and
for the same reason (background independence, i.e. no given geometry in the
game). We hope the sense of the metaphor is clear from the material presented
so far.

2013a; Gielen, Oriti, & Sindoni, 2013b), along a line of research that
was envisaged in Oriti, 2007b, Sindoni, and Oriti (2007a) (see also
Oriti & Sindoni, 2011; Rivasseau, 2013; Sindoni, 2012), aimed at
extracting cosmological dynamics directly from microscopic GFT
models, exactly from the idea of continuum spacetime as a
condensate, possibly emerging from a big bang phase transition.
We do not go into the details of the derivation, also because some
such details are being still worked out, and depend on the specific
GFT model one uses. We limit ourselves to an outline of the
procedure and of the main ideas and results. It should serve the
purpose of clarifying many of the general considerations made
above, and show a set of concrete possibilities that may have
important conceptual implications, and that can be a good
basis for further philosophical investigations of the emergent
spacetime idea.

We have seen that GFTs, just as the field theories describing
the fundamental atoms in condensed matter systems, are defined
usually in perturbative expansion around the Fock vacuum. In
this approximation, they describe the interaction of quantized
simplices and spin networks, in terms of spin foam models and
simplicial gravity. The true ground state of the system, however,
for non-zero couplings and for generic choices of the macro-
scopic parameters, will not be the Fock vacuum. The interacting
system will organize itself around a new, non-trivial state, as we
have seen in the case of standard Bose condensates. The relevant
ground states (which, due to diffeomorphism invariance, cannot
correspond to minima of an energy functional) for different
values of the parameters (couplings, etc.) will correspond to the
different macroscopic, continuum phases of the theory, with the
dynamical transitions from one to the other being indeed phase
transitions of the physical system we call spacetime. The fact that
the relevant ground state for a proper continuum geometric
phase would probably not be the GFT Fock vacuum can be argued
also on the basis of the “pre-geometric” meaning of it: it is a
quantum state in which no pregeometric excitations at all are
present, no simplices, no spin networks. It is a no space state, the
absolute void. It can be the full non-perturbative, diffeo-invariant
quantum state around which one defines the theory (in fact, it is
analogous to the diffeo-invariant vacuum state of loop quantum
gravity, Rovelli, 2006; Rovelli, 2011a, 2011b; Thiemann, 2007),
but it is not where to look for effective continuum physics. Hence
the need to change vacuum and study the effective geometry and
dynamics of a different one.

The first result of Gielen et al. (2013a, 2013b) is to define an
approximation procedure that allows one to associate an approx-
imate continuum geometry to the set of data encoded in a generic
GFT state. This applies to GFT models whose group and Lie algebra
variables admit an interpretation in terms of discrete geometries,
i.e. in which the group chosen is SO(3, 1) in the Lorentzian setting
or SO(4) in the Riemannian setting, which we focus on here, and
additional (simplicity) conditions are imposed, in the model, to
reduce generic group and Lie algebra elements to discrete counter-
parts of a discrete tetrad and a discrete gravity connection (Oriti,
2006, 2009a, 2009b, 2012; Perez, 2013).

A generic GFT state with a fixed number N of GFT quanta will be
associated to a set of 4N Lie algebra elements: {Bj‘(ggM}, withm =1,
..., N running over the set of tetrahedrajvertices, I= 1, ..,
4 indicating the four triangles of each tetrahedron, (AB) indicating
the Lie algebra components. In turn, the geometricity conditions
we mentioned imply that only three elements are independent for
each tetrahedron, and are given by Bj}, = aJike;}m)eﬁ(m), with vectors
ef}m) eR*(fori =1,2,3,m =1, ..., N). Further, one can consider an
action of SO(4) on these variables, of the type: Bjuy~—
(h<m))’1B,-(m)h(m), €igm)—>€igmyh(m). From the above variables, one can
define also the quantities: g, = e{,, eajm, Which are invariant
under the mentioned group action.
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Next we imagine the tetrahedra being embedded in a spatial
3-manifold M with a transitive group action H."* The embedding is
defined by specifying a “location” of the tetrahedra, i.e. associating
for example one of their vertices with a point x,,, on the manifold,
and three (tangent) vectors Vi), defining a local frame and specify-
ing the directions of the three edges incident at that vertex. Now we
can interpret the vectors eﬁm) as continuum tetrad vectors integrated
over paths in M corresponding to the edges of the tetrahedron
(specified by the vjm)). We have to assume that the paths are
sufficiently “small”, in the metric that we are about to reconstruct,
for the approximation to be consistent, and so that the same metric
can be approximated by a flat one along the same paths.

Then, the variables g;;,,;, can be used to define the coefficients of
continuum metric at a finite number N of points, as:
ijom) = &Xm)(Vim), Vjom)) (and similarly for the tetrad vectors), invar-
iant under the above action of the group SO(4). Clearly, this inter-
pretation depends on the choice of embedding. However, for
symmetric manifolds, the group action H identifies a unique, canonical
choice of embedding: the group H singles out a basis of left-invariant
vector fields at each point and thus a preferred embedding in which
these are identified with the vectors vjs,. Having made this natural
choice, the reconstruction of metric coefficients g, at a finite
number of points, from the variables associated to a state of N GFT
quanta, depends only on the topology of the assumed symmetric
manifold M and on the choice of group action H.

In particular, one can now define an unambiguous notion of
homogeneity for the reconstructed metric. The approximate metric
will be homogenous if it has the same coefficients gy, at any m.
This captures rigorously the intuitive notion of the metric being
the same at every point. Moreover, it implies that the same metric
would be also isotropic if H=R> or H=SU(2) and Sijom) = A5

Notice also that we have discussed here only the intrinsic geometry
of the spatial manifold M. The same reconstruction procedure can be
applied to the extrinsic geometry, to be extracted from the conjugate
data: the group elements labeling the same quantum GFT states. In a
quantum context, it goes without saying that it is not possible to
specify both sets of data exactly, due to the uncertainly principle.

Once more, this will give an approximation to a continuum
metric, in that it allows one only to specify a continuum metric at a
finite number of points N. The number of points can be understood
as an approximation scale, as the number of observations in our
sampling of a continuum metric. This in turn implies that a GFT
state that aims at representing a continuum geometry, i.e. some-
thing that can be specified at an infinite number of points and that
can be perturbed at each of them independently, should involve a
number of quanta N that is on the one end allowed to vary and on
the other hand allowed to go to infinity.

The second result of Gielen et al. (2013a, 2013b) is the
identification of quantum GFT states that, using the above proce-
dure, can be interpreted as continuum homogeneous quantum
geometries. In fact, in such second quantized setting, the definition
of states involving varying and even infinite numbers of discrete
degrees of freedom is straightforward, and the field theory
formalism is well adapted to dealing with their dynamics.

The crucial point, from the point of view of the previous
discussion on emergent spacetime and on the idea of spacetime
as a condensate of quantum pregeometric and not spatio-temporal
building blocks is that quantum states corresponding to homoge-
neous continuum geometries are exactly GFT condensate states. The
hypothesis of spacetime as a condensate, as a quantum fluid, is
therefore realized in quite a literal way.

13 The embedding is part of the reconstruction procedure chosen, thus of the
way one goes about interpreting the data that the theory provides, but it is not part
of the definition of the theory itself.

The simplest state of this type (one-particle GFT condensate), well-
defined in the Fock space of any GFT model with basic field ¢ and
vacuum |0y, and for which we assume a bosonic quantum statistics, is

_ S .
|poy=exppp|0y= ﬁfﬂom |0) with
m= .

P = /[dg]q)o(gls'-~ag4)&f(gl>“'>g4)y vo@)=woh~'gih)  (7.1)

This describes a coherent superposition of quantum states of
arbitrary number of GFT quanta, all of them described by the same
distribution ¢ of pregeometric variables. The function ¢ is a
collective variable characterizing such continuum geometry, and
indeed it depends only on invariant homogeneous geometric data.
These are the relevant geometries to consider, for example, in a
cosmological setting. It is a second quantized state characterized by
the fact that the mean value of the fundamental quantum operator ¢
is non-zero: (<p0|$(g,-)|¢o> = ¢p(g;), contrary to what happens in the
Fock vacuum. Other condensate states can be constructed, in
particular quantum states taking into account also 2-particle correla-
tions and realizing the symmetry under the group action in a more
natural way. These are analysed in detail in (Gielen et al,, 2013a,
2013b). They share however the same general interpretation as
homogeneous geometries and cosmological spacetime condensates.

One would expect that these condensate states describe the
system in one particular macroscopic continuum phase. In parti-
cular, they should arise dynamically from the no-space state via a
cosmological phase transition, that is a geometrogenesis. In fact,
alongside the extraction of effective dynamics for them, from the
microscopic theory, and their detailed physical interpretation in
cosmological terms, an important avenue of recent and future
developments is the study of GFT phase transitions in rigorous
terms, in turn based on the results obtained in the simpler tensor
models (Gurau & Ryan, 2012). Only such analysis could give solid
grounds to the realization of such GFT states, within the theory,
and, in perspective, in nature.

The third main result of Gielen et al. (2013a, 2013b) is the
extraction of effective dynamical equations for the condensate
directly from the fundamental GFT quantum dynamics. While the
details of the effective dynamics depend on the specific model
considered, and on the condensate state used, one can identify the
general form of the equations and their generic features. We
discuss them briefly here, because they are conceptually
interesting.

The generic form of the dynamics for the condensate ¢q is,
schematically:

(Kegr0)(€)+ 1 / (2o ... poVey =0 (7.2)

where K and Ve are modified versions of the kinetic and
interaction kernels entering the fundamental GFT dynamics, reflect-
ing the approximations needed to interpret ¢y as a cosmological
condensate, i.e. the approximations needed for the reconstruction
procedure outlined above to be consistent. They define a linear term
and an effective interaction term involving the convolution of the
interaction kernel with a number of functions ¢o. These convolu-
tions are as non-local as those in the fundamental GFT interaction,
in their pairing of field arguments. We have thus a non-linear and
non-local, Gross—-Pitaevskii-like equation for the spacetime conden-
sate function ¢o. Notice that it is an equation on superspace that is
on the space of (homogeneous) geometries of a symmetric space-
time, rather than an equation on spacetime itself. In this sense it is
the same type of equation that are used in continuum quantum
cosmology, with the basic variable being a “wave function of the
universe”. However, the differences with respect to quantum
cosmology are crucial. For one, the equation is non-linear and thus
it cannot be interpreted as an Hamiltonian constraint equation for a
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wave function. These non-linearities can be interpreted as taking
into account indirectly, that is in the context of an equation for
homogeneous quantum geometries, the effects of inhomogeneities,
resulting from the fundamental interactions of the quantum build-
ing blocks of spacetime (again, this is in direct analogy with real
atomic condensates). This type of non-linear and non-local equa-
tions have been in fact proposed independently and out of purely
cosmological considerations in Bojowald, Chinchilli, Dantas, Jaffe,
and Simpson (2012) (see also Calcagni, Gielen, & Oriti, 2012), as a
generalization of the usual quantum cosmology setting needed to
account for inhomogeneities. Non-linear equations have also been
proposed (Martin, Vennin, & Peter, 2012) as a way to solve
conceptual issues related to quantum mechanical measurements
in quantum cosmology. We find it remarkable that here they arise
naturally out of the fundamental definition of the quantum gravity
theory.

Next, this equation arises as a “hydrodynamic equation” for the
spacetime fluid, not as the quantization of a classical symmetry-
reduced dynamics. In particular, it could be written (as the Gross—
Pitaevskii equation) using the decomposition ¢q(g;) = |@(g;)eE,
that is in terms of a probability density on the space of geometries
and a quantum phase. While it is directly related to a quantum
cosmology equation, it seems to us that one has to be careful in
bringing in the usual interpretation of quantum wavefunctions.

Last, notice that, despite its hydrodynamic character and once
more in analogy with the dynamics of usual quantum fluids, no
classical limit has been taken to derive it, but only a continuum
limit. In fact, the effective equation is meaningful only because of
the quantum properties of the microscopic degrees of freedom, in
particular their statistics which allows for condensation to take
place, and carries the signature of these underlying quantum
properties. In particular, as the GP equation, it depends on #.

Further approximations are needed to deal wit the effective
equations above (and to solve them).

For example, one can identify regimes (e.g. the regime of very
small coupling constant x, or where special forms of ¢g can be used)
in which one gets an effective linear equation, in terms of some new
kinetic operator Icgff, which will in general involve derivatives on
the group (or Lie algebra) manifold. The effective linear equation
would then be of the same type of the Hamiltonian constraint
equation used in (loop) quantum cosmology, with /cgff playing the
role of Hamiltonian constraint operator for homogeneous (but
anisotropic) cosmologies. One should expect even this effective
linear equation, and not only the general non-linear hydrodynamic
equation, to imply corrections to the GR evolution of such cosmo-
logical geometries, not only because of quantum corrections but
also in the sense of a modified classical dynamics. This is more than
welcome. It may imply falsifiability of the theory in light of
cosmological observations and possibly new insights into the
microscopic origin of macroscopic cosmological phenomena.

One further approximation would then be a semi-classical WKB
approximation of the collective variable ¢y = |pole® in which the
quantum phase S is assumed to vary much more rapidly than the
density |¢q|. Then the phase can be interpreted as a classical action
(again, for homogeneous geometries) and the effective dynamical
equation ICﬁff(po becomes a Hamilton-Jacobi-like equation for it.

Last, one can reduce consideration to the isotropic sector, by
assuming that ¢o depends only on isotropic geometric variables, that
is the overall scale factor a of the universe and its conjugate variable.

To illustrate schematically'® the above approximations, let us
consider the simple case in which Icgjf:Z,A,, where A; is the

4 This is supposed to be only a tentative description of what could happen,
since the analysis of the GFT condensate equations is still in progress (Gielen et al.,
2013a, 2013b).

Laplace-Beltrami operator on SU(2) and we assume that the
function ¢ depends on four such SU(2) variables. This is a realistic
example, given that most GFT models for 4d gravity involve
geometricity conditions that effectively reduce the GFT field to
depend only on SU(2) variables, and that Laplacian kinetic terms
seem to be required for a proper renormalization group analysis
and for renormalizability of GFT models.

With this choice of /cgﬁ, one can introduce coordinates on SU(2)

given by g=\/1-%7°1-i@ -7, |Zl<1 and obtain, in a WKB
approximation in which |gg| is considered constant, the equation:
By - Bi—(m; - By)?) = 0, where B;:=dS/dn;. The last variables can be
interpreted as homogeneous triad variables, while the z; corre-
spond to homogeneous connection variables. They can be
expressed in terms of cosmological scale factors as: Bj=a? T,
and =; =p,V,, where T, V; are (state-dependent) normalized Lie
algebra elements. Then the classical dynamical equation reduces
to: Ya(p?T; - Vi—1) =0. Last, one can restrict the variables to the
isotropic ones by setting a; = a. The final equation one gets (for
non-degenerate geometries) is

p27k=0 (7.3)

that is the Friedmann equation for a homogeneous universe with
constant curvature k=1¥,T; - V,.

8. Concluding comments: emergence spacetime, what does
it mean, then?

We conclude by reconsidering the idea of emergent spacetime
and in particular the idea of spacetime as a quantum condensate,
in light of the GFT example we have just discussed.

The above example represents the first derivation of cosmolo-
gical continuum spacetime and geometry, including its dynamical
aspects, from a microscopic quantum gravity theory, as far as we
are aware of. This is remarkable enough, in our opinion. However,
it should be noted that it may represent a solution to the problem
of the emergence of continuum spacetime and geometry in
quantum gravity only in the simplest case in which truly local
degrees of freedom are absent, which is the case for homogeneous
geometries. Alongside the description of the GFT condensation as a
phase transition, thus realizing the idea of geometrogenesis, the
study of cosmological perturbations is indeed the next step in the
research programme centred around the idea of GFT condensation,
and can be tackled as well using ideas from condensed matter
theory.

Homogeneous geometries represent a very coarse grained level of
description of spacetime, and a detailed implementation of such
coarse graining is very difficult, both at the classical (Buchert, 2011)
and quantum level (Dittrich, Eckert, & Martin-Benito, 2012; Oriti,
Pereira, & Sindoni, 2012). The mechanism of condensation bypasses
many such difficulties and allows one to relate directly the micro-
scopic quantum dynamics to the macroscopic coarse grained one.
Still, it is clear that the real outstanding issue is to describe the
“middle ground”, i.e. the intermediate regime between the non-
spatio-temporal quantum structures of the fundamental theory and
the simple coarse grained structures at cosmological scale, i.e. the
regime that one could expect to be described by some modified
version of inhomogeneous quantum GR.

Still, the example clarifies what the realization of the emergent
spacetime idea may entail. We see realized in it several features of
the general scheme suggested by Huggett and Wiitrich (2013):
quantities with a genuine continuum geometric interpretation are
recovered by means of an approximation procedure; the super-
position of quantum states plays a central role in this recovery of
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continuum structures, and at the same time the emergent space-
time does not immediately encode adjacency relations (micro-
scopic locality) characterizing the microscopic discrete quantum
structures.

At a more general level, the example shows the important role of
limiting procedures in terms of parameters controlling the number of
degrees of freedom involved from the microscopic theory, here the
number of GFT quanta m, as advocated by Butterfield (2011b, 2011c)
and Butterfield and Bouatta (2012). And this limiting procedure may
in turn lead to the emergence of continuum spacetime being signaled
by divergences, singularities in macroscopic quantities, as advocated
in Batterman (2006) and Batterman (2011), as it would be the case if
the GFT condensate is realized after a phase transition of the relevant
GFT model.

At the same time, and again in accordance with Butterfield
(2011b, 2011c¢) and Butterfield and Bouatta (2012), the parameter
m encodes the approximation scale, the level of detail of a
sampling of continuum geometries by GFT data, and one could
well imagine a finite but large enough m to capture the essential
features of macroscopic cosmological dynamics, in such a way that
one does not have to assume that the “infinity” of GFT quanta is
physically realized in nature.

Last, it shows that the fear of empirical incoherence may not be
justified. If the details of the above procedure can be worked out
nicely, and once the same procedure is generalized to deal with
inhomogeneities, we would have a concrete framework for emer-
gent spacetime in which local, continuum spacetime properties
are non-“fundamental”, that is not present in the non-spatio-
temporal quantum degrees of freedom that “constitute” space-
time, and out of whose condensation the latter emerges, but at the
same time become real, empirically relevant quantities in some
controlled approximation, in one specific regime of the funda-
mental theory. In this regime, the effective dynamics would carry
the signature of microscopic quantum structures which would be,
in turn, empirically relevant because indirectly falsifiable via their
macroscopic consequences.

In this last respect, the GFT example, just as the BEC example,
confirms the compatibility between genuine emergence and
reduction, as argued in Butterfield (2011a, 2011b, 2011c) and
Butterfield and Bouatta (2012). Continuum spacetime geometry
can be the result of quantum collective behaviour of microscopic
non-spatio-temporal degrees of freedom. It can be a novel and
robust collective, thus emergent, description of them, but at the
same time it can be deduced from the microscopic non-spatio-
temporal description, in such a way that the origin of macroscopic
phenomena can be traced back, in principle, to specific micro-
scopic properties, even if not necessarily derived from them
analytically or rigorously in all detail.

The picture of spacetime as a condensate, emerging from a
non-spatio-temporal and non-geometric phase through geome-
trogenesis, challenges profoundly our worldview, in its most
fundamental aspects. It forces a rethinking of our basic ontology,
in two ways. Its “emergentist” approach applied to the most basic
structures of the world, space and time themselves, makes any
simple-minded reductionist or fundamentalist ontology proble-
matic. If spacetime emerges in a concrete, testable setting, from
non-spatio-temporal structures from which it can be, however,
precisely derived, then it is not real in an ontological sense, if such
reductionist ontology is maintained. And this conclusion is usually
anathema for the same thinkers who maintain reductionist
ontologies in the first place. If one, on the other hand, wants to
maintain that space and time are real, that they do exist, then one
seems to be forced towards a more flexible ontology, in which
different levels of reality, different regimes of approximation and
different modes of organization of physical systems in the world,
are all equally existent, all have a fundamental ontological status.

And the fact that one can reduce one to another, or deduce one
from the other, by whatever procedure, is in itself no argument for
the existence of one and the non-existence of the other. Liquid
water is just as real, in such fundamental ontology, as the
molecules of hydrogen and oxygen that constitute it, and that
we experience in different regimes of the same system and in
different approximations of its description, and just as ontologi-
cally real as solid ice or vapor. This may sound obvious to some,
but the point here is that the realization of the “spacetime as
condensate” idea may force us to adopt the same flexible ontology
for space and time themselves. This will be first done as a
speculation, as a working hypothesis, but this new attitude would
then suggest to pose new concrete questions to the framework
realizing it: can we access experimentally, directly that is, the
“atoms of spacetime”? can we identify physical situations in which
the “other phases” of the same system, the ones that do not
correspond to continuum, geometric spacetime, are realized in
nature?

Ontological questions would become scientific questions, at an
even more fundamental level than the analogous questions
regarding material atoms more than a century ago.
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