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Abbreviations 

AFP   α-feto protein 
ANK    Ankyrin 
AJ   adherens junction 
Akt    RAC-alpha serine/threonine protein kinase 
Arp2/3   actin-related protein 2/3 complex 
ATP    adenosine triphosphate 
Bak   Bcl-2 homologous antagonist 
Bax   Bcl-2 associated X protein 
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Bid   BH3 interacting-domain death agonist 
Bim   Bcl-2 interacting mediator of cell death 
Bmf   Bcl-2-modifying factor 
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FGF   fibroblast growth factor 
GAP   GTPase-activating protein 
GEF   guanine nucleotide exchange factor 
Gsk-3β   glycogen synthase kinase-3β 
GTP   guanosine triphosphate 
HGF    hepatocyte growth factor 
ICAM    intercellular adhesion molecule 
ILK    integrin-linked kinase 
IP3    inositol triphosphate 
IPP    ILK/PINCH/parvin 
IRS   inner root sheet 
JAM   junctional adhesion molecule 
JNK    c-jun N-terminal kinase 
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Lima-1  Lim domain and actin binding 1 
LN   Laminin 
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MDCK   Madin Darby canine kidney cells 
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Rac1   Ras-related C3 botulinum toxin substrate 1 
Rap-1   Ras related protein 1 
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TEM   Transmission electron microscope 
TGFβ    transforming growth factor β 
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TM   transmembrane 
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Summary 

Integrins are heterodimeric transmembrane receptors that mediate cell-ECM and cell-

cell adhesion. Upon ECM binding integrins cluster and assemble focal adhesions (FAs). 

Since the short cytoplasmic tails of integrins lack enzymatic activity, they rely on 

downstream adaptor, signaling, and scaffolding proteins to exert their functions such as 

proliferation, survival, differentiation, and migration. One important complex that works 

downstream of integrin signaling is the ILK-PINCH-Parvin (IPP) complex. A core 

component of the IPP complex is PINCH, which consists of 5 LIM domains and a 

nuclear localization/export signal. It has two isoforms in mice and men, namely PINCH-

1 and PINCH-2. PINCH-2 null mice have no overt phenotype whereas PINCH-1 null 

mice die at the peri-implantation stage due to several defects including apoptosis of 

endoderm cells. The molecular mechanism leading to this apoptotic event is not known 

and therefore we determined how PINCH-1 executes cell survival. An abnormal cell-cell 

adhesion of endoderm and epiblast is a second characteristic defect of PINCH-1-

deficient embryos. The cause for this defect was addressed in the second part of this 

thesis work.  

 

In the first part of the thesis we investigated how endoderm cell survival is regulated by 

PINCH-1. We derived embryoid bodies (EBs) from mouse embryonic stem cells and 

used them as an embryonic development model. We demonstrate that loss of PINCH-1 

expression in EBs and isolated EB-derived endoderm cells results in increased activity 

of JNK and of the pro-apoptotic Bcl-2-associated X protein (Bax), which are known to 

trigger apoptosis. The sustained activation of JNK was due to diminished levels of the 

Ras suppressor protein-1 (RSU-1), whose stability depends on PINCH-1 binding. 

Importantly, chemical inhibition of JNK ablates apoptosis of endoderm cells, however, 

without diminishing Bax activity. The increased Bax activity was associated with 

reduced integrin signaling and diminished Bcl-2 levels, which has been shown to inhibit 

Bax. Altogether our findings show that primitive endoderm cells require PINCH-1 to 

regulate a pro-survival signaling pathway that functions via Bax through integrin-

mediated Bcl-2 expression and to inhibit a pro-apoptotic pathway that functions via; JNK 

through the PINCH-1 binding partner RSU-1. 
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In a second study, we investigated the role of PINCH-1 in cell-cell adhesion formation 

and maintenance. To this end, we generated a mouse that conditionally lacks PINCH-1 

in epidermis. We report that lack of PINCH-1 in epidermis leads to epidermal 

detachment from the basement membrane (BM), epidermal hyperthickening and 

progressive hair loss as well as increased intercellular spaces. In vitro studies with 

keratinocytes revealed that PINCH-1 is a mechanosensory molecule that is recruited to 

cell-cell junctions as soon as tension is applied to the cells. Mechanistically, recruitment 

of PINCH-1 to cell-cell adhesion sites occurs independently of its binding partner 

integrin-linked kinase but requires ROCK-dependent myosin light chain 

phosphorylation. Interestingly, PINCH-1 recruitment to cell-cell adhesion sites occurs in 

conjunction with a novel PINCH-1 binding partner, called Epithelial Protein Lost In 

Neoplasm (EPLIN). We also show that EPLIN is recruited to focal adhesions (FAs) in a 

PINCH-1-dependent manner. Our results suggest that PINCH-1 and EPLIN form a 

complex to maintain stable FAs and to regulate the maintenance of cell-cell junctions in 

a force dependent manner. 
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Introduction 

1. Integrin receptor family 

Integrins are heterodimeric transmembrane receptors that mediate cell-extracellular 

matrix (ECM) and cell-cell adhesion. They consist of α and β subunits. They were 

originally referred as integrins to underscore their ability to link the ECM to the 

cytoskeleton (Tamkun et al., 1986). Integrins are evolutionarily conserved. There are no 

homologs in the prokaryotes, or fungi. However, simple metazoan such as sponges and 

cnidaria as well as flies, nematodes and vertebrates possess integrin dimers (Hynes, 

2002; Hynes and Zhao, 2000; Johnson et al., 2009). In mammals, there are 18 α 

subunits and 8 β subunits, generating 24 integrin heterodimers (Takada et al., 2007).  

Integrins function in a bidirectional way. Inside-out signaling regulates ligand affinity and 

outside in signaling relays signals from the extracellular environment into the cell. These 

signals are crucial for different cellular processes such as proliferation, survival, 

adhesion, migration, polarity, haptotaxis, gene expression and cell shape (Takada et al., 

2007). Integrins lack enzymatic activity and actin binding sites, and thus their ability to 

regulate and bind actin relies on downstream signaling molecules. 

1.1 Integrin structure 

Integrin subunits have large extracellular domains (approximately 800 amino acids (aa)) 

that contribute to ligand binding, single transmembrane domains (approximately 20 aa) 

and short cytoplasmic tails (13 to 70 aa, except that of β4) (Moser et al., 2009b). The α 

subunit is composed of a seven-bladed β-propeller, which is connected to a thigh, a 

calf-1 and a calf-2 domain, together forming the leg structure that supports the integrin 

head. The last three or four blades of the β-propeller contain EF hand domains that bind 

Ca2+ on the lower side of the blades facing away from the ligand binding surface 

(Barczyk et al., 2010; Humphries et al., 2003). Nine of the α chains contain an I domain 

(also referred as a von Willebrand factor A domain), which is a domain of approximately 

200 aa, inserted between blades 2 and 3 in the β-propeller. The I domain is almost 

always the ligand binding site. The I domain contains a conserved metal ion-dependent 

adhesion site (MIDAS), which binds divalent cations required for ligand binding (Barczyk 
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et al., 2010; Moser et al., 2009b). The characteristics of α subunits are summarized in 

Table 1. 

β subunits are composed of a βI domain, a hybrid domain, a plexin-semaphorin-integrin 

(PSI) domain, four epidermal growth factor (EGF) domains and a membrane proximal β 

tail domain (βTD) (Figure 1). In integrins lacking an I domain, ligands bind to a crevice 

between the αβ subunit interface where they interact with a metal ion-occupied MIDAS 

within the β subunit and the propeller domain of α subunit (Moser et al., 2009b). 

Integrins can exist in low-, intermediate- and high-affinity states (Figure1). There are two 

models that have been proposed to explain the allosteric changes that occur when 

integrins move to the high affinity state: the ‘switchblade’ model (Luo et al., 2007) and 

the ‘deadbolt’ model (Arnaout et al., 2007). In both models, the low affinity state is 

defined by bent integrins, in which the head domain faces the plasma membrane. In the 

switchblade model, the α and β transmembrane and cytoplasmic regions separate (Kim 

et al., 2003) and lead to dislocation of an EGF-like repeat. This causes the head domain 

to extend outwards with a switchblade-like motion (Arnaout et al., 2005). In the deadbolt 

model activated integrins maintain their bent conformation. However, the extracellular 

stalks of α and β subunits slide due to the piston-like movements of the transmembrane 

regions. This sliding disrupts the interaction between headpiece and the β stalk.  

Transmembrane (TM) domains are crucial for integrin activation. Separation of integrin 

TM domains, which is mediated either by tilting and thus shortening of the TM domains 

or the by piston-like movements leading to the disruption of interactions within the 

membrane, is a requirement for the high affinity state of integrins (Moser et al., 2009b).  
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Figure 1: Integrin architecture and schematic representation of integrin 

activation. When integrins are activated integrin legs, TM and cytoplasmic tails are 

separated, resulting in an extended conformation (Moser et al., 2009b). 

Integrin cytoplasmic tails regulate integrin affinity by carrying highly conserved NxxY 

motifs which serve as binding sites for talin and kindlins. Integrin activation via talin 

and/or kindlin binding has been extensively studied on leukocyte-specific β2 and 

platelet-specific αIIbβ3 integrins and also on β1 integrin in the case of kindlins 

(Calderwood et al., 2002; Calderwood et al., 1999; Montanez et al., 2008; Moser et al., 

2008; Tadokoro et al., 2003; Wegener et al., 2007).  
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Table 1: Characteristics of human integrin α subunits (Barczyk et al., 2010). 
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1.2 Integrin ligands 

In vertebrates, 18 different αsubunits can couple with 8 different β subunits to produce 

24 different heterodimers (Figure 2). Based on their ligand binding properties, integrins 

can be categorized into 4 major classes: the laminin-binding integrins, the collagen-

binding integrins, arginine-glycine-aspartate (RGD)-binding integrins as well as 

leukocyte-specific integrins (Barczyk et al., 2010; Humphries et al., 2006). Leukocyte-

specific integrins bind to endothelium by interacting with other adhesion molecules such 

as intercellular adhesion molecules (ICAMs) and vascular cell adhesion molecules 

(VCAMs). 

                

Figure 2: Representation of the integrin family in vertebrates (Barczyk et al., 

2010). In vertebrates, integrins consist of 24 heterodimers. 

Five αV integrins, two β1 (α5β1 and α8β1) and the αIIbβ3 integrins recognize and bind 

to RGD peptide, which is present eg. in fibronectin, vitronectin, tenascin, osteopontin 
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and fibrinogen. α4β1, α4β7 and α9β1 bind to an acidic motif called ‘LDV’ (lysine-

aspartate-valin), which is functionally related to RGD. However, osteopontin interacts 

with α4β1, α4β7 and α9β1 via different peptide, SVVYGLR. The binding sites of ligands 

that bind to β2 are structurally similar to the LDV motif. The main difference is that β1/β7 

ligands have an aspartate residue for cation coordination whereas β2 integrins have a 

glutamate. The consensus sequence for LDV motif is therefore L/I-D/E-V/S/T-P/S 

(Humphries et al., 2006). 

α1, α2, α10 and α11 subunits heterodimerize with β1 subunit and constitute the 

collagen binding integrin subfamily. GFOGER is the triple, helical collagenous sequence 

that all these heterodimers interact with (Knight et al., 1998). The common property for 

these α subunits is that all of them contain an αA domain. Certain variants of GFOGER 

sequence might show preference to different collagen-binding integrins. For instance, 

GLPGER sequence binds preferentially to α11β1 over α2β1 (Barczyk et al., 2010). 

α3β1, α6β1, α7β1 and α6β4 heterodimers are the laminin-binding integrins. The 

common property of α subunits is that they do not contain an αA domain (Humphries et 

al., 2006).  

Additional integrin ligands are generated by proteolysis of ECM components, which 

include endostatin (derived from collagen XVIII), endorepellin (derived from perlecan) 

and tumbstatin (derived from collagen α3 (IV)). Moreover, integrins can also bind snake 

toxins, certain viruses and bacteria (Barczyk et al., 2010). Other integrin ligands are milk 

fat globule-EGF factor 8 (MFGE) and complement factor iC3b, which mediate 

phagocytosis of apoptotic cells and pathogens, respectively, and the latency-associated 

peptide of the transforming growth factor β (TGFβ) that regulates TGFβ signaling 

(Legate and Fassler, 2009). 

Each individual integrin has specific biological functions, which are apparent from 

genetic studies in mice for single integrin unit. The phenotypes observed after ablation 

of single integrin subunits vary from embryonic lethality in the case of β1 integrins, to 

perinatal lethality as in the case of α3, α6, α8, αV, β4, β8 integrins, defects in leukocyte 

function (αL, αM, αE, β2, β7) and others (Hynes, 2002). 
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1.3 Bidirectional regulation of integrin signaling 

Integrins signal in a bidirectional way. Intracellular changes can induce a conformational 

alteration in the integrin, which induces binding affinity for different ligands. This process 

is named either ‘inside-out signaling’ or ‘integrin activation’. After integrins are activated, 

they cluster due to the complex nature of ECM, and this in turn leads to concentration of 

cytoplasmic regulators. 

Upon ligand binding, downstream adaptor and signaling proteins are recruited to the 

cytoplasmic tail of integrins. These proteins are important in terms of linking integrin 

signaling to actin cytoskeleton as well as to different signaling pathways. This process is 

called ‘outside-in’ signaling.  

1.3.1 Inside-out signaling 

Integrins are localized to cell surface in an inactive conformation. Upon binding of 

cytoplasmic ligands to specific binding sites, conformational changes are transmitted to 

extracellular ligand binding domain via the TM and stalk region. Talin and kindlins are 

the only known integrin binding proteins capable to active integrins. 

Inside-out signaling has been extensively studied in platelets and leukocytes. These 

cells contain mainly αIIbβ3 and β2 integrins at their cell surface. These integrins are 

only activated under certain physiological conditions such as extravasation through the 

blood vessel wall and migration to the site of inflammation and thrombus formation 

during primary homeostasis (Coller and Shattil, 2008). The molecular mechanism of 

integrin activation has not been precisely elucidated; however it is known that the small 

GTPase Rap1 and its effector RIAM are involved in the process. Activated Rap1 binds 

to RIAM, which in turn binds to talin and this ternary complex is recruited to plasma 

membrane to target β2 and β3 integrins (Lee et al., 2009). Furthermore, cytohesin-1 

and cytohesin-2 were reported to bind with the sec7 domain the membrane proximal 

region of the β2 integrin chain of Leukocyte-specific Function Antigen (LFA-1) (Geiger et 

al., 2000; Kolanus et al., 1996). This interaction leads to increased substrate binding of 

integrin (Kolanus, 2007). 

Talin has two isoforms in vertebrates, talin1 and talin2. They differ in their expression 

pattern. Talin1 is expressed ubiquitously, whereas talin2 is the primary isoform of brain 
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and striated muscle (Monkley et al., 2001; Senetar et al., 2007). They are 270 kD 

proteins consisting of an N-terminal 47 kD head domain and a C-terminal flexible rod 

domain. The talin head is composed of a FERM (4.1, ezrin, radixin, moesin) domain 

consisting of 3 subdomains (F1-F3) and an F0 subdomain (Moser et al., 2009b)(Figure 

3). The F3 subdomain binds to the conserved membrane proximal NPxY motif in the β1 

integrin tail (Calderwood et al., 2002), phosphatidylinositol 4-phosphate 5-kinase γ 

(PIPKIγ). The rod domain contains binding sites for the F-actin binding protein vinculin 

and a second integrin-binding site. It is thought that talin binding to integrin leads to 

recruitment of vinculin and actin filaments, which links the cytoskeleton with the ECM 

(Critchley and Gingras, 2008). 

 

Figure 3: Domain structure and binding partners of talin (Critchley and Gingras, 

2008).  

Kindlins are the second known integrin activating molecules. It has recently been shown 

that talin alone is not sufficient to activate integrins and that kindlins are also required 

(Ma et al., 2008; Montanez et al., 2008; Moser et al., 2009a; Moser et al., 2008; Ussar 

et al., 2008). Kindlins belong to a family of FERM-domain containing proteins which bind 

to the membrane distal NxxY motif of β1, β2 and β3 integrins (Meves et al., 2009). 

Since talin and kindlins bind different regions of integrin tails, they may regulate integrin 

affinity in a cooperative manner. Kindlins alone are not sufficient to activate the 

integrins. They require talin function. On the other hand, talin depends on kindlins to 

promote integrin affinity because it has been demonstrated that overexpression of talin 
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head is not sufficient to induce the activation of αIIbβ3 integrin in kindlin-depleted CHO 

cells. Therefore, kindlins require talin and talin requires kindlin to increase integrin 

affinity (Moser et al., 2009b). For more information on kindlins, please refer to Karaköse 

et. al., 2010.  

1.3.2 Outside-in signaling 

After integrins are activated and clustered, they transmit an array of intracellular 

changes, which are collectively referred as ‘outside-in signaling’. Integrin activation 

requires large conformational changes including the outward swing of the hybrid domain 

in the extracellular region, and in turn separation of α and β cytoplasmic tails, which 

leads to the binding of intracellular signaling molecules (Arnaout et al., 2005). Over the 

years, 156 signaling, structural and adaptor molecules that comprise the ‘integrin 

adhesome’ have been described (Zaidel-Bar et al., 2007).  

The intracellular effects after integrin activation can be divided in 3 temporal stages; (1) 

the immediate effects that occur within 0-10 minutes after integrin activation and include 

tyrosine phosphorylation of specific substrates and an increase in the lipid second 

messenger concentration, (2) the short term effects which take place within 10-60 

minutes after integrin activation and include cytoskeletal changes that allow cells to 

spread and migrate and (3) the long term effects that take place after 60 minutes of 

ECM-integrin interaction and require changes in gene expression (Legate et al., 2009) 

(Figure 4). 
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Figure 4: Consequences of integrin activation (Legate et al., 2009).  

1.4 Assembly of integrin dependent adhesion structures 

Cell-matrix attachment sites are dynamic places containing active integrin clusters. 

These sites include nascent focal adhesions, focal complexes, focal adhesions (FA), 

fibrillar adhesions and podosomes. Collectively, these sites are called integrin 

adhesions (Zaidel-Bar et al., 2007). The molecular composition of earliest integrin 

adhesion complex is not clear, but it contains two molecules of talin that connect two α-

β integrin dimers. The earliest microscopically visible integrin-containing structures are 

focal complexes or nascent adhesions which are ~100nm in diameter (Geiger et al., 

2009). When stabilized, they mature into FCs and FAs, which are cell-substrate 

adhesion structures with a size of 1-5 µm that anchor the ends of stress fibers. Stress 

fibers consist of actin filament bundles that contain an array of proteins, including 

myosin II and actin crosslinkers such as α-actinin and filamin. Myosin II regulates the 

contractility of stress fibers (Geiger et al., 2009; Kumar et al., 2006).  
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FAs are mechanosensitive cellular complexes. It has recently been shown that certain 

binding sites for vinculin that reside in the talin rod are only accessible after force 

application, suggesting that vinculin recruitment to FAs is enhanced by local tensile 

force (Lee et al., 2007). Therefore, it seems that FA maturation requires F-actin-

generated mechanical force. 

Fibrillar adhesions are streak-like structures with different integrin composition in 

comparison to FAs. While αvβ3 integrin is enriched at the FA sites, fibrillar adhesions 

contain α5β1 integrin. It seems that different integrins recruit different cytoplasmic 

factors, which give rise to different signaling responses. Fibrillar adhesions also contain 

abundant tensin and low levels of protein tyrosine phosphorylation (Berrier and 

Yamada, 2007) (Figure 5). 

          

 Figure 5: Comparison of focal adhesions and fibrillar adhesions (Berrier and 

Yamada, 2007). Different cytoplasmic proteins are recruited to distinct adhesion types. 

For example, FAKpY397 levels are high at FAs, but lower at fibrillar adhesions. 

Podosomes are found on the ventral side of osteoclasts, hematopoietic and endothelial 

cells (Albiges-Rizo et al., 2009). They are similar to FAs in terms of size and half-life. 

However they have a ring-like composition of adhesion components and surround an F-

actin core (Gimona et al., 2008). 

1.4.2 The integrin-actin connection 

Integrin outside-in signaling induces the interaction between integrins and the actin 

cytoskeleton, which is required for cell spreading and cell migration. FA proteins that 

establish and maintain the integrin-actin linkage can be divided into four groups: (1) 
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integrin-bound proteins that directly bind actin, such as talin, α-actinin and filamin; (2) 

integrin-bound proteins that indirectly associate with cytoskeleton such as kindlin, ILK, 

paxillin and focal adhesion kinase (FAK); (3) non-integrin bound actin binding proteins, 

such as vinculin and (4) adaptor and signaling molecules that regulate interactions of 

the above mentioned groups (Legate et al., 2009). 

The talin head domain is sufficient for integrin activation, however is not able to rescue 

the cytoskeletal linkage in talin deficient cells indicating that the rod domain of talin is 

responsible for the actin binding activity of talin and that talin is a direct mechanical link 

between actin and integrins (Tanentzapf and Brown, 2006; Zhang et al., 2008). The role 

of talin in connecting integrins to actin cytoskeleton is also underlined with in vivo 

studies in different organisms. Mice lacking talin-1 die during gastrulation due to 

cytoskeletal defects and cell migration (Monkley et al., 2000). Drosophila embryos 

lacking talin (rhea gene) display germ band retraction and muscle detachment that are 

similar to integrin-deficient (βPS) flies (Brown et al., 2002).  

Upon talin binding, other proteins such as vinculin are recruited to nascent adhesions. 

Expression of the talin head, which is unable to bind vinculin, in talin-null cells activates 

integrins but fails to induce the formation of focal contacts (Zhang et al., 2008). This 

finding suggests that talin makes the initial contacts between integrins and actin, 

however, is unable to maintain them. Vinculin is required to strengthen the integrin-actin 

linkage by acting as a cross-linker and by binding directly to both proteins (Legate et al., 

2009). 

Recently, α-actinin has been shown to be a binding partner for both talin and vinculin. 

The force dependent strengthening of integrin-actin linkage correlates with α-actinin 

incorporation into integrin adhesion sites (Laukaitis et al., 2001). α-actinin, in 

collaboration with myosin II also plays a critical role in FA growth and maturation (Choi 

et al., 2008). 

The physical link between integrins and actin allows both local and global control of 

cytoskeletal dynamics. Local actin polymerization is also regulated by Rho GTPases. 

The mammalian Rho GTPase family is composed of 20 proteins, which cycle between 
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an active GTP-bound form and an inactive GDP-bound form. The switch between 

different forms is regulated by three different sets of proteins: guanine nucleotide 

exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine nucleotide 

dissociation inhibitors (GDIs). The most studied GTPases for the regulation of actin 

dynamics at FAs are Rac1, Cdc42 and RhoA (Legate et al., 2009). RhoA activation 

leads to actin-myosin filament contraction, whereas Rac1 and Cdc42 activation leads to 

the protrusive lamellipodia and filopodia, respectively (Etienne-Manneville and Hall, 

2002). Both Rac1 and Cdc42 stimulate actin polymerization via the Arp2/3 complex, and 

RhoA initiates actin polymerization via formins (Jaffe and Hall, 2005). Recent studies 

have revealed that Cdc42-induced filopodia act as precursors for Rac-induced 

lamellipodia (Guillou et al., 2008).  

As a central molecular machine for the actin polymerization, Arp2/3 is recruited to 

nascent adhesions via interacting with FAK as well as vinculin. FAK-deficient cells 

display impaired lamellipodium formation and cell spreading defects (Serrels et al., 

2007), whereas vinculin binding is more transient and is not required for cell motility or 

spreading, but it might be necessary for relocating the Arp2/3 complex to nascent 

adhesions (DeMali et al., 2002; Legate et al., 2009). 

1.5 The ILK/PINCH/parvin (IPP) complex 

ILK, PINCH and parvin have emerged as key regulators of integrin functions. These 

molecules form a heterotrimeric complex (IPP complex) that regulates several cellular 

processes. 

1.5.1 Molecular composition of the IPP complex 

ILK was first identified in a yeast two hybrid screen (Hannigan et al., 1996). It links the 

IPP complex to cytoplasmic tails of β1 and β3 integrins (Li et al., 1999; Pasquet et al., 

2002). The N-terminal domain contains five ankyrin repeats, which mediate protein-

protein interactions. The C-terminus shares sequence homology to Ser/Thr protein 

kinases. A putative pleckstrin homology (PH) domain is inserted in between these two 

domains (Legate et al., 2006). The PH domain of ILK has been shown to bind 

phosphatidylinositol-3,4,5-triphosphate (Delcommenne et al., 1998; Persad et al., 2001). 
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The ankyrin repeats 2-5 of ILK bind to PINCH, a family of LIM-only domain proteins 

composed by PINCH-1 and PINCH-2 (Chiswell et al., 2008). PINCH-1 was identified in 

1994 as a marker for senescent erythrocytes and was shown to bind ILK in 1999 

(Rearden, 1994; Tu et al., 1999). PINCH-2 was identified by a sequence-database 

mining based prediction (Braun et al., 2003; Hobert et al., 1999; Zhang et al., 2002a). 

Both PINCH-1 and PINCH-2 contain 5 LIM domains, and the first LIM domain is 

responsible to interact with ILK (Chiswell et al., 2008; Tu et al., 2001; Tu et al., 1999) 

(Figure 6). The main difference of these two proteins is that PINCH-2 contains 11 

additional amino acids at the C-terminal tail (Chiswell et al., 2008). 

The linkage of ILK to the F-actin cytoskeleton is mediated either via parvin or paxillin. 

Paxillin was shown to bind to parvin and vinculin (Legate et al., 2009). Parvin protein 

family consist of three members; (1) the ubiquitously expressed α-parvin (also known as 

actopaxin or CH-ILKBP), (2) the heart and skeletal muscle enriched β-parvin (also 

known as affixin) and (3) the γ-parvin, which is exclusive to the hematopoietic system 

(Chu et al., 2006; Nikolopoulos and Turner, 2000; Olski et al., 2001; Tu et al., 2001; 

Yamaji et al., 2001). Parvins consist of two calponin homology (CH) domains. The 

second CH domain of parvin mediates the interaction with ILK (Grashoff et al., 2004). 
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Figure 6: Anatomy of the IPP complex and its binding partners (Legate et al., 

2006).  

ILK binds to PINCH via the ANK 2-5 domains and to parvins, paxillin, kindlin-2, 

cytoplasmic tails of integrins and the RAC-alpha serine/threonine protein kinase/protein 

kinase B (AKT/PKB) and Pyruvate dehydrogenase lipoamide kinase isozyme 1 (PDK1) 

via the kinase domain. The LIM4 domain of PINCH binds to RTKs through the SH2-SH3 

containing adaptor Nck2. PINCH also binds to RSU1 and thymosin-β4 (Tβ4). α- and β- 

parvins bind to F-actin directly and indirectly through paxillin or HIC5 (only α-parvin) or 

α-actinin (only β-parvin). 

1.5.2 Biological functions of the IPP complex 

Several organisms have been used to study the biological functions of the IPP complex. 

ILK-deficient fibroblasts fail to adhere, spread and migrate (Sakai et al., 2003; Stanchi et 

al., 2009). Deletion of ILK in Caenorhabtidis elegans (C. elegans), Drosophila or 

zebrafish leads to muscle detachment from the body wall due to the detachment of actin 

from the plasma membrane (Mackinnon et al., 2002; Postel et al., 2008; Zervas et al., 

http://en.wikipedia.org/wiki/Lipoamide
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2001). Genetic deletion of ILK in mice leads to lethality at the peri-implantation stage 

due to a failure in the epiblast polarization (Sakai et al., 2003). Moreover, conditional 

deletion of ILK in the epidermis leads to epidermal defects and hair loss (Lorenz et al., 

2007). 

The role of parvins in cell spreading and migration is more complex. Mice lacking β- or 

γ-parvin show no overt phenotype, whereas mice lacking α-parvin die between E11.5 

and E14.5 due to vascular defects (Chu et al., 2006; Montanez et al., 2009). α-parvin 

depletion in HeLa cells leads to activation of Rac and lamellipodium formation, 

suggesting that α-parvin can function as a negative regulator of Rac in α- and β-parvin 

expressing cells (Zhang et al., 2004). α-parvin binds to F-actin directly and also 

indirectly through paxillin. However, it is not clear whether ILK and α-parvin bind the 

same paxillin molecule or two paxillin molecules bind the same IPP complex. A paxillin 

related protein Hic5 also binds α-parvin (Nikolopoulos and Turner, 2000).  

PINCH-1 is expressed ubiquitously during development and adult life, whereas PINCH-

2 expression starts at the second half of embryonic development (Braun et al., 2003). 

PINCH-2 ablation in mice does not alter the embryonic development. However, loss of 

PINCH-1 in mice leads to embryonic lethality due to abnormal epiblast polarity, impaired 

cavitation, detachment of endoderm and epiblast from BMs, endoderm survival defects 

and cell-cell adhesion defects of endoderm and epiblast (Li et al., 2005).  

PINCH-1 has several interaction partners. For instance, a link between the IPP-complex 

and the actin cytoskeleton is maintained via the interaction of PINCH and ILK with 

thymosin β4, a small, G-actin monomer sequestering peptide (Bock-Marquette et al., 

2004). Furthermore, the fourth LIM domain of PINCH binds to Nck2, which in turn links 

PINCH-1 to growth factor receptor and GTPase signaling (Tu et al., 1998). Nck2 

regulates actin dynamics through several pathways: (1) the WASP family members and 

the Arp2/3 complex, (2) small GTPases and (3) PAK or DOCK180 (Buday et al., 2002).  

Moreover, PINCH-1 interacts with RSU-1 in both vertebrates (Dougherty et al., 2005a) 

and D. melanogaster (Kadrmas et al., 2004) which negatively regulates JNK activity. In 

addition, an Akt-1 regulating protein phosphatase1α (PP1α) has been shown to directly 
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bind PINCH-1. Upon binding, PP1α activity is inhibited and therefore the Akt 

phosphorylation is increased, which in turn leads to radio-resistance (Eke et al., 2010). 

Despite PINCH-1 play a role in cell survival of tumor cells, the molecular mechanism 

underlying the survival of primitive endoderm cells remains elusive. 

The PINCH-interacting protein ILK has been suggested to play a role in epithelial sheet 

morphogenesis and to localize to cell-cell junctions (Vespa et al., 2005; Vespa et al., 

2003). However, whether PINCH and parvin follow ILK to cell-cell junctions has not 

been addressed thus far. 

2. Apoptosis 

Apoptosis is programmed cell death that is involved in development and homeostasis 

and is characterized by cell contraction, membrane blebbing, chromatin condensation 

and DNA fragmentation (Meier et al., 2000; Tait and Green, 2010). In vertebrates, there 

are two main signaling pathways through which apoptosis is proceeding; (1) the intrinsic 

and (2) the extrinsic pathway. Both pathways converge on caspase-3 which executes 

the apoptosis (Degterev et al., 2003). The intrinsic pathway is triggered by intracellular 

stress signals such as DNA damage or ECM detachment and leads to mitochondrial 

outer membrane permeabilization (MOMP) which in turn triggers the release of pro-

apoptotic proteins from the mitochondria. The extrinsic pathway is triggered by cell 

death receptor ligation which leads to the activation of the caspase-8 that initiates 

apoptosis (Tait and Green, 2010).  

The members of the Bcl-2 family, which comprise anti-apoptotic or pro-apoptotic 

proteins, regulate the MOMP. Anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-XL, Mcl-1) 

antagonize the function of pro-apoptotic Bcl-2 family proteins that fall into two classes; 

the so-called BH3-only proteins such as Bim, Bid, Puma or Bmf, and multi-domain 

proteins such as Bax and Bak (Gilmore et al., 2009). The activity of these proteins can 

be regulated at different levels. For example, the activity of Bim, which can activate Bax, 

can be regulated at transcriptional, post-transcriptional and post-translational levels 

(Tait and Green, 2010).  
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Mitogen-activated protein kinases (MAPKs) are key regulators of cell survival and 

apoptosis (Dhanasekaran and Reddy, 2008). For instance, extracellular signal-

regulated kinase (ERK) and Jun N-terminal kinase (JNK) signaling can regulate both 

cell survival and apoptosis during embryonic development (Lei and Davis, 2003). A 

transient activation of JNK pathway is associated with cell survival, whereas a sustained 

activation is associated with apoptosis (Ip and Davis, 1998). JNKs induce apoptosis by 

regulating the expression of pro-apoptotic genes or by controlling the activities of 

mitochondrial pro- and anti-apoptotic proteins through phosphorylation (Dhanasekaran 

and Reddy, 2008). 

Integrin-mediated cell-ECM adhesion and signaling regulate cell survival and apoptosis 

during embryonic development and tumor progression (Frisch and Screaton, 2001; Liu 

et al., 2009; Martin and Vuori, 2004; Reddig and Juliano, 2005). It has been previously 

reported that α5β1 integrin can regulate apoptosis by regulating Bcl-2 expression levels 

(Lee and Ruoslahti, 2005). Whether PINCH-1 is involved in this signaling pathway is not 

known. 

PINCH-1 is an important survival factor of endoderm cells during embryo development 

(Li et al., 2005). Moreover, PINCH-1 protects tumor cell from death by enhancing the 

activity of the pro-survival proteins ERK1/2 and AKT (Chen et al., 2008; Eke et al., 

2010; Sandfort et al., 2010). How PINCH-1 regulates cell survival during peri-

implantation, however, is not understood. 

3. Intercellular adhesion complexes 

Adhesion between epithelial cells is of crucial importance to maintain tissue 

homeostasis. In mammals, three different types of junctions mediate adhesion between 

epithelial cells: 1. adherens junctions (AJ), 2. desmosomes, and 3. tight junctions (TJ) 

(Perez-Moreno et al., 2003). AJ and TJ are associated with actin cytoskeleton, whereas 

desmosomes link to the intermediate filaments (Figure 7). Epidermis and other tissues 

also contain gap junctions that provide a direct connection between neighboring cells. 
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Figure 7: Composition of three types of intercellular junctions (Perez-Moreno et 

al., 2003). (A) Cartoon and (B) electron micrograph of three major types of intercellular 

junctions in epithelial cells. 

 

In stratified epithelium such as epidermis, there are four main cell layers, namely basal 

layer (stratum basale), spinous layer (stratum spinosum), granular layer (stratum 

granulosum) and stratum corneum. These four layers comprise of specific cytoskeleton 

and cell junction types, including AJ, TJ, desmosomes and gap junctions (Figure 8) 

(Simpson et al., 2011).  
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Figure 8: Epidermal architecture and intercellular junctions (Simpson et al., 2011). 

Cytoarchitectural organization of epidermis. Cytoskeleton and adherens junctions, tight 

junctions, desmosome and gap junctions are depicted. 

3.1 Adherens junctions (AJs) 

AJs are the intercellular connections that contain classic cadherins, namely epithelial 

(E)- and placental (P)-cadherin, also known as cadherin 3. Homophilic interactions 

between their extracellular domains provide mechanically strong adhesive links 

between cells (Baum and Georgiou, 2011). Binding of Ca2+ to their extracellular domain 

is required for their correct conformational organization (Hartsock and Nelson, 2008). 

The cytoplasmic tails of classical cadherins recruit p120 catenin and β-catenin by 

binding directly to their armadillo repeat domains, and α-catenin, which is linked to the 

cadherin complex via β-catenin (Simpson et al., 2011).  

 

p120 catenin was first identified as a Src-tyrosine receptor kinase substrate and later as 

a member of the catenin family, mainly based on the sequence homology to an 

armadillo domain of β-catenin (Hartsock and Nelson, 2008). p120 catenin positively 

regulates cadherin function by counteracting cadherin endocytosis and degradation, 

thereby enhancing their surface levels (Ishiyama et al., 2010). p120 catenin also links 
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cadherin to microtubules through either a kinesin or the adaptor protein PH domain-

containing family member 7 (PLEKHA7), which indirectly links p120 catenin to 

microtubule minus ends (Harris and Tepass, 2010). 

 

Cytoplasmic tails of cadherins are resistant to proteolysis only when they are bound to 

β-catenin (Huber et al., 2001). The association starts at the endoplasmic reticulum (ER) 

and is required for cadherin exit from ER (Chen et al., 1999). At the plasma membrane, 

the cadherin-β-catenin complex recruits α-catenin (Bajpai et al., 2008), which is 

essential for AJ formation. Similarly like β-catenin, α-catenin can also bind actin 

filaments directly (Rimm et al., 1995). It has recently been suggested that α-catenin 

binds to actin preferentially as a dimer and the dimerization domain overlaps with the β-

catenin binding site. Therefore α-catenin is not able to bind β-catenin and actin at the 

same time (Yamada et al., 2005). Recent models suggest that α-catenin dimerizes after 

detaching from β-catenin and the dimers then compete with the ARP2/3 complex which 

nucleates actin. This in turn helps to convert lamellipodial actin networks into actin 

bundles associated with AJs (Drees et al., 2005; Yamada et al., 2005). 

 

Figure 9: Adherens junctions (Simpson et al., 2011). E- or P- cadherin homophilic 

interactions are formed between the neighboring cells, by Ca2+ induction. Cytoplasmic 

molecules p120 catenin, β-catenin and α-catenin are recruited to the cytoplasmic tails of 

cadherins. 

 
Rho family GTPases regulate AJ formation by driving actin-based protrusions (Ridley, 

2006). Active GTP-bound Rac can stimulate the activity of phosphatidylinositol 3-kinase 

(which leads to formation of PIP2), Cdc42- and Arp2/3-mediated actin nucleation and 

the recruitment of adhesion proteins which increases the cell-cell contact zone (Baum 
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and Georgiou, 2011). In addition, RhoA helps to maintain AJs via mDia1 (Sahai and 

Marshall, 2002) and non-muscle myosin II (Shewan et al., 2005). RhoA signaling is also 

important for the disassembly of cell-cell contacts during epithelial-mesenchymal 

transition (Bhowmick et al., 2001).  

As a core component of the IPP complex, ILK has also been shown to localize in the 

vicinity of AJs and associated F-actin fibers (Vespa et al., 2005). However, whether ILK 

recruitment to AJs occurs with other IPP complex members has not been addressed.  

3.2 Desmosomes 

Desmosomes are composed of proteins from three families: the cadherins, the 

armadillo proteins and the plakins.  

 

Human desmosomal cadherins include four desmogleins (DSG1-4) and three 

desmocollins (DSC1-3). In contrast to classical cadherins of AJs, DSGs have extended 

cytoplasmic tails whose function has not been fully elucidated yet. Desmosomal 

cadherins interact directly with armadillo family members, which include plakoglobin 

(PG, also known as γ-catenin) and p120-catenin-related proteins, plakophilin (PKP) 1-3 

and p0071 (also known as plakoglobin4) (Getsios et al., 2004). PG and PKPs are 

homologous to β-catenin and p120 catenin, respectively, and bind to desmosomal 

cadherins via armadillo repeat domains and N-terminal head domain, respectively 

(Simpson et al., 2011). The link to the keratin intermediate filament network is mediated 

by plakin family member desmoplakin (DP) (Bornslaeger et al., 1996; Gallicano et al., 

1998) (Figure 10). 
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Figure 10: Desmosomes (Simpson et al., 2011). DSGs and DSCs are the cadherin 

family proteins mediating desmosomal interaction between two neighboring cells. PG 

and PKPs are recruited to the cytoplasmic tails of DSGs and DSCs. DP mediates the 

linkage to intermediate filament network. 

 
PG is an armadillo protein that links desmosomes to the intermediate filament system 

by directly binding to desmosomal cadherins, DP, plakophilin-2, plakophilin-3 and p0071 

(Bonne et al., 2003; Chen et al., 2002; Hatzfeld et al., 2003). PG depletion in mice leads 

to skin and heart defects and can result in embryonic lethality (Bierkamp et al., 1996; 

McKoy et al., 2000; Ruiz et al., 1996). Interestingly, in these mutant embryos 

desmosomes can form, which occurs through the related protein β-catenin that 

becomes redistributed to desmosomes (Bierkamp et al., 1999). On the other hand, PG 

has been suggested to cross talk between AJs and desmosomes by binding 

desmosomal and classical cadherins (Lewis et al., 1997).  

 

Although DP, plectin, envoplakin and periplakin bind intermediate filaments and localize 

to desmosomes, genetic studies suggest that only DP is indispensable for 

desmosomes. The N-terminus of DP is responsible for targeting DP to junctions by 

mediating interactions with desmosomal armadillo proteins and potentially directly 

binding the DSG1 and DSC1 cytoplasmic tails (Getsios et al., 2004; Leung et al., 2002). 

3.3 Tight junctions (TJs) 

Desmosomes and AJs cooperate to hold epithelial sheets together, whereas TJs 

establish a diffusion barrier between apical and basolateral membrane domains. In skin, 

they form a belt at the apical side of keratinocytes of the stratum granulosum and 
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provide a barrier beneath the stratum corneum that controls fluid loss and protects 

against pathogens. TJs form a belt-like adhesion between cells, allowing the passage of 

only small molecules and ions (Simpson et al., 2011). TJs contain two types of 

transmembrane proteins, occludins and claudins, which link TJs to the actin 

cytoskeleton, AJs and junctional adhesion molecules (JAM-1-4). Other cytoplasmic 

scaffolding proteins play a role to associate with occludins, claudins and JAMs. They 

include the zonula occludens (ZO) proteins ZO1, ZO2 and ZO3 that can directly interact 

with occludin and claudins (Niessen, 2007) (Figure 11). 

 

 

 

Figure 11: Tight junctions (Simpson et al., 2011). Claudins and occludins are the 

main TJ components. ZO proteins mediate the linkage to the actin cytoskeleton. 

 

Occludin is a tetraspan protein with two extracellular loops (Furuse et al., 1993). 

Occludin localization to AJs and TJs is regulated by phosphorylation in both epithelial 

and endothelial cells (Sakakibara et al., 1997). The second extracellular loop of occludin 

interacts with claudin and JAMs (Nusrat et al., 2005).  

 

The claudin family consists of at least 24 members. Although they do not share 

sequence similarity with occludins, they also comprise a tetra span with two 

extracellular loops (Hartsock and Nelson, 2008). Claudins are responsible to recruit 

occludins to TJs (Furuse et al., 1998). 

 

Zonula occludens 1 (ZO1), ZO2 and ZO3 are members of MAGUK (membrane-

associated guanylate kinase homologs) family with the capability of binding to AJs and 
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TJs. ZO1 and ZO2 can bind α-catenin (Itoh et al., 1999; Itoh et al., 1997) whereas the 

C-terminus of ZO3 has been shown to bind p120 catenin (Wittchen et al., 2003). This 

region overlaps with the binding region to N-terminal ZO3. It has been proposed that 

this binding switch could sequester p120 catenin from regulation of RhoA activity 

(Hartsock and Nelson, 2008; Wittchen et al., 2003). 

3.4 Actin linkage to AJ 

AJs are closely related to actin cytoskeleton in early and mature state. In Madin Darby 

canine kidney (MDCK) cells, the lamellipodial protrusions bring neighboring cells in 

close proximity. As protrusion form, cadherins and catenins form small clusters at the 

nascent cell-cell contact (Harris and Tepass, 2010). As cadherins and catenins 

aggregate, they connect with actin and actin is remodeled to promote AJ growth 

(Vasioukhin and Fuchs, 2001). 

In primary keratinocytes, initial contact formation between cells is mediated by filopodia, 

which also leads to cadherin clustering at the ends of radial actin filaments (Vasioukhin 

et al., 2000). When the adhesions mature, radial arrays of actin filaments are replaced 

by circumferential actin belts (Yonemura et al., 1995). 

To promote formation of early cell-cell contacts, cadherin-catenin clusters must recruit 

actin polymerizing proteins such as ARP2/3, formins and Ena/VASP family member 

proteins (Kobielak et al., 2004; Kovacs et al., 2002; Scott et al., 2006; Verma et al., 

2004). This suggests that these proteins are active at cell protrusions even before the 

cell-cell adhesion is formed (Harris and Tepass, 2010). 

How actin cytoskeleton and AJs are linked to each other is currently not well 

understood. Either actin de-polymerization or removal of α-catenin disrupts the 

movement of cadherin clusters with actin bundles (Kametani and Takeichi, 2007), 

suggesting a crucial role for α-catenin in cadherin tethering to actin. Recent studies 

suggest that α-catenin might interact with actin via other actin-binding proteins, such as 

vinculin, formin, ZO1 and afadin (Kobielak and Fuchs, 2004). EPLIN has also been 

shown to be involved in linking cadherin-catenin complex to actin cytoskeleton. 

However, EPLIN loss has no effect on the actin cables that enter the junction 
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perpendicularly (Abe and Takeichi, 2008). These actin bundles may be linked to AJs by 

the α-catenin-binding protein afadin (Sawyer et al., 2009). As α-catenin can interact with 

many actin-binding proteins, there may be redundancies between different interactions 

linking actin to α-catenin (Harris and Tepass, 2010).  

EPLIN is also known as Lima-1 (Lim domain and actin binding 1). It was identified as a 

gene that displays different expression patterns in normal and transformed cells (Chang 

et al., 1998). There are two isoforms of EPLIN, EPLINα and EPLINβ. They are derived 

from the same gene by different promoter usage (Maul and Chang, 1999). EPLIN 

consists of one LIM (Lin11, Isl-1 and Mec-3) and two actin-binding domains (Maul and 

Chang, 1999; Zheng and Zhao, 2007). The ability to crosslink and bundle actin 

filaments suggest that EPLIN is involved in different actin-related processes such as 

cytokinesis, migration and intercellular junction formation (Abe and Takeichi, 2008; 

Chircop et al., 2009; Han et al., 2007). EPLIN has never been observed at FAs. 

4. Mechanotransduction 

The process by which cells sense and respond to their mechanical environment, eg. the 

ECM, adjacent cells or external stresses, is termed mechanotransduction (DuFort et al., 

2011). There are more and more studies indicating that forces can regulate important 

biological processes such as cell proliferation, differentiation, tissue homeostasis and 

inflammatory cascades (Eyckmans et al., 2011). For instance, mechanical stress may 

cause alterations in endothelial and smooth muscle cell signaling (Chien et al., 1998; 

Tzima et al., 2005), expression of inflammatory markers (Yamawaki et al., 2005) and 

vascular cell proliferation (Davies et al., 1984; Sumpio et al., 1987). Moreover, diseases 

such as artherosclerosis, arthritis, deafness, osteoporosis, cancer and developmental 

disorders such as Kartagener’s syndrome result from an abnormal response to extrinsic 

or intrinsic forces (DuFort et al., 2011; Jaalouk and Lammerding, 2009). Therefore, 

understanding the link between mechanical sensing and the subsequent biochemical 

response is of crucial importance. 

4.1 Mechanotransduction machinery of cell-ECM interactions 
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Integrins have been implicated in a range of mechanotransduction events, such as 

responses to stretch, increased hydrostatic pressure, shear stress and osmotic forces 

(Katsumi et al., 2004). Integrins together with their downstream molecules form a major 

mechanical link between the actin cytoskeleton and the ECM (Figure 12).   

 

Proteins within FAs including integrins (Friedland et al., 2009), talin (del Rio et al., 2009) 

and p130Cas (Sawada et al., 2006) can undergo conformational changes in response 

to force. The outcome of the force-dependent conformational change can either be that 

it stabilizes protein-protein interactions as in the case for fibronectin bound integrin or it 

may produce a cryptic binding site as in the case of talin. Moreover, p130Cas can 

activate Rap1 in response to force, which may induce conformational activation of 

integrin through its effector RIAM, which directly binds to talin (Han et al., 2006; 

Schwartz and DeSimone, 2008). 

 

The major focus of mechanotransduction field has so far been on proteins with the 

ability to change conformation under tension; however, FAs also show force-dependent 

responses that do not only rely on protein switches (Bershadsky et al., 2006). For 

example, intermolecular distance may change upon force generation, which then leads 

to different cellular functions. In this model, FA assembly is linked to ECM compliance 

and force (DuFort et al., 2011; Paszek et al., 2009). 

 

Cytoskeleton is the main structure to mediate force transmission (Wang et al., 1993). 

The cytoskeleton is composed of F-actin with a diameter of 6 nm, intermediate filaments 

with a diameter of 10 nm and microtubules with diameter of 23 nm. These three 

cytoskeletal components are not single proteins, but consist of many monomers 

(Eyckmans et al., 2011). F-actin together with myosin filaments constitutes the cellular 

contractile machinery. Inhibition of myosin II reduces cytoskeletal tension and leads to 

disassembly of FAs (Kirfel et al., 2004; Rid et al., 2005). Recent proteomics studies 

have suggested that the FAs formed after myosin II inhibition have a very distinct 

composition in comparison to native adhesion (Byron et al., 2011; Kuo et al., 2011; 

Schiller et al., 2011). 
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Figure 12: The mechanical network at FAs (DuFort et al., 2011). 

Integrin-containing cell-matrix adhesions can sense physical properties of the ECM via 

proteins such as vinculin, talin, p130Cas and integrins which undergo conformational 

changes upon force application to trigger downstream cellular responses.  

 

IPP-complex members have also been suggested to play a role in mechanotransduction 

in different cellular systems. For instance, ILK and α-parvin negatively regulate RhoA-

ROCK signaling in vascular smooth muscle cells (Kogata et al., 2009; Montanez et al., 

2009). ILK has also been shown to negatively regulate RhoA-ROCK signaling both in 

vivo and in vitro in Schwann cells (Pereira et al., 2009). Moreover, primary ILK-deficient 

fibroblasts have elevated RhoA levels, indicating that ILK regulates contractility in a 

wound-healing system (Blumbach et al., 2010). Whether PINCH-1 is involved in 

mechanotransduction, however, remains unclear.  

4.2 Mechanotransduction machinery of cell-cell interactions 

Although majority of the mechanotransduction studies focus on cell-ECM contacts, 

recently cell-cell adhesion complexes have also been elucidated as mechanosensors. 

Upon cell-cell adhesion, cells generate contractile forces that modulate the actin 

organization at the AJs. Actin bundles can have two different orientations, namely 

parallel and orthogonal bundles to the junctions. Parallel bundles can be found at the 
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apical actin belt next to the zonula adherens (ZA) of simple epithelium whereas 

orthogonal bundles are observed in the hypodermis of early C.elegans embryos 

(Gomez et al., 2011b). These bundles are rich in myosin II suggesting that they are 

contractile (Shewan et al., 2005; Smutny et al., 2010). Predictably, bundles that are 

parallel to the junctions would exert the tension along the junctions; however orthogonal 

bundles exert the tensile forces on junctions themselves (Figure 13). However, tension 

generated on cadherin adhesions is probably more complex, because many filaments 

terminate at the puncta of cadherin at the junctions (Shewan et al., 2005; Yonemura et 

al., 1995).  

 

 

Figure 13: Relationship of actin bundles and cell-cell junctions (Gomez et al., 

2011b). The orientation of actin bundles influences the tensile forces.  

 

Experiments with soluble cadherin ligands demonstrated that cadherins are also force 

sensors. Similar to integrins, cadherins are able to sense the matrix rigidity. Increased 

substrate rigidity increases the force generated by cells plated on cadherins (Ladoux et 

al., 2010; le Duc et al., 2010). Mechanical stimuli can regulate cadherin receptors via 

several signal transduction modes, including small GTPases, PI3-kinases and Src 
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kinases (Niessen et al., 2011). Another way of regulating cadherins in response to force 

occurs via conformational changes of proteins, which reveal cryptic binding sites. It was 

known that α-catenin can recruit vinculin to cell-cell junctions (Watabe-Uchida et al., 

1998; Weiss et al., 1998). However, it was only recently that it has been shown that 

recruitment of vinculin to cell-cell junctions requires force (Yonemura et al., 2010).   

 

Vinculin interacts with a central motif (residues 325-402) of α-catenin. A region C-

terminal to the vinculin binding motif inhibits vinculin binding by keeping α-catenin in a 

‘closed’ conformation when no actomyosin tension is present. When tension is applied, 

α-catenin is unfolded and the vinculin binding site is exposed, which in turn leads to 

vinculin-mediated F-actin recruitment to E-cadherin sites (Lecuit, 2010) (Figure 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Actin cytoskeleton is mechanically coupled to adherens junctions via a 

force-dependent vinculin binding to α-catenin (Lecuit, 2010). The cartoon depicting 

α-catenin structure and domains responsible for β-catenin, vinculin and F-actin binding. 
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A central domain binds and masks the vinculin binding site when no force is applied. 

Upon myosin II-dependent contractility, vinculin can bind α-catenin and mediate the link 

between the F-actin cytoskeleton and cell-cell junctions. 

 

A mechanosensitive role for EPLIN at the AJs has also recently been shown. EPLIN 

cooperates with vinculin to maintain the ZA and regulate epithelial reshaping (Taguchi 

et al., 2011). Furthermore, vinculin is missing from AJs when EPLIN is absent, 

suggesting a cooperation between EPLIN and vinculin to maintain AJs (Chervin-Petinot 

et al., 2012). 

 

Beside vinculin no other FA protein has been reported to be recruited to cell-cell 

junctions upon force stimulation (le Duc et al., 2010). ILK has been shown to localize to 

AJs. However, this localization is not force-dependent (Vespa et al., 2005; Vespa et al., 

2003).   

5. Skin 

Skin separates the body from the environment and thereby maintains homeostasis and 

protects against potential hazards, such as radiation, pathogens and mechanical 

damage.  

 

Mammalian skin is a multilayered organ consisiting of an epithelial and a mesenchymal 

compartment called epidermis and dermis, respectively. These two compartments are 

separated by a BM. There are also appendages such as hair follicles (HFs) and sweat 

glands present in the skin. 

5.1 Epidermal architecture and homeostasis 

Epidermis is a stratified epithelium, which consists of several layers of keratinocytes 

(Figure 8). Stratum basale consists of the basal keratinocytes, which are the only cell 

type in epidermis with the capacity to proliferate. The following layers are the stratum 

spinosum and stratum granulosum. Spinous cells synthesize extensive network of 

keratin filaments which are connected to desmosomes, while granular cells produce 

lipid-rich lamellar granules (Fuchs and Horsley, 2008). Stratum corneum, which consists 
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of cornified cells lies on top of these layers. As granular cells move to stratum corneum, 

they lose their metabolic activity and cytoplasmic organelles. The cornified envelope 

serves as an epidermal barrier (Fuchs, 2007; Koster and Roop, 2007). The different 

layers can be distinguished by expression of specific markers. Keratin5 and Keratin14 

are specific for the basal cell layer, whereas Keratin1 and 10 are characteristic for the 

spinous layer. Granular and cornified layers express lorigrin and fillagrin, respectively. 

The epidermis originates from the ectoderm. After gastrulation, a layer of epidermal 

cells form between E9.5 and E12.5. Then the HF morphogenesis initiates with the 

signals received from the mesenchymal cells that populate the skin, meanwhile the 

same signals govern the epidermal stratification (Blanpain and Fuchs, 2006; Koster and 

Roop, 2007). During stratification, suprabasal cells occasionally divide, however at 

E17.5 epidermal stratification is completed and epidermis consists of a basal layer with 

the proliferative capacity and a suprabasal layer with terminally-differentiated cells. 

 

Mammalian skin consists of a pilosebaceous unit, which is composed of a HF and its 

interfollicular epidermis (IFE) (Figure 15a). The tissue homeostasis and repair are 

ensured by stem cells present the bulge of the skin. 

 

HFs undergo cycles of degeneration and regeneration throughout life (Figure 15b). After 

the first 2 weeks of morphogenesis are completed, the supply of matrix cells declines, 

HF growth stops and the follicle enters a degenerative phase called catagen. This 

phase takes 3-4 days in mice. During catagen, the lower two-thirds of the follicle regress 

and the HF is reduced to an epithelial strand by apoptosis; however the bulge region 

containing the HF stem cells remains intact (Blanpain and Fuchs, 2009; Fuchs, 2007). 

Catagen is followed by a quiescent stage called telogen. After the telogen phase, 

activating factors stimulate the stem cells to regrow the hair (Paus and Cotsarelis, 

1999).  

 

The molecular mechanisms regulating the HF morphogenesis and cycle are poorly 

understood. However, the signaling pathways important for these processes involve 

Notch, Wnts, bone morphogenic proteins (BMPs), sonic hedgehog (shh), fibroblast 



45 
 

growth factor (FGF), EGF, MAPK, and nuclear factor-κB (NF-κB) signaling pathways 

(Blanpain and Fuchs, 2009; Schmidt-Ullrich and Paus, 2005). 

 

 

Figure 15: Homeostasis in the epidermis and hair follicle (Blanpain and Fuchs, 

2009). Mammalian skin is composed of hair follicles (HF) and its surrounding 

interfollicular epidermis (IFE). (a) Bulge region contains the stem cells that are 

necessary to ensure the turnover of skin epidermis. (b) As matrix cells lose their 

proliferative capacity, the hair growth stops and follicle enters the destructive phase 
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called catagen that is followed by a resting phase called telogen. Following telogen, HF 

stem cells are activated and a new growth phase (anagen) starts.  

5.2 Role of integrins in epidermis and HF homeostasis 

Integrins are found at the BM attachment sites of the basal or ORS cells. The main 

integrin heterodimers that are present in keratinocytes are α2β1 (collagen receptor), 

α6β4 (laminin receptor), α3β1 (laminin receptor), α9β1 (tenascin receptor) and at lower 

levels αvβ5 (vitronectin receptor). In pathological conditions, fibronectin receptors 

(α5β1, αvβ6 and α9β1) become upregulated (Watt, 2002). 

 

The importance of integrins in epidermis and HF homeostasis is mainly based on the 

integrin knock-out mice experiments. The Cre-LoxP system has been commonly used 

to delete genes in keratinocytes. To this end the Cre recombinase was expressed under 

the control of Keratin-5 (K5) or Keratin-14 (K14) promoters that are specifically 

expressed in basal keratinocytes. 

 

Constitutive deletion of α6 or β4 integrin leads to neonatal lethality due to severe BM 

impairment (Dowling et al., 1996; Georges-Labouesse et al., 1996; van der Neut et al., 

1996). Constitutive α3-knock-out mice die shortly after birth due to renal and/or lung 

failure (Kreidberg et al., 1996). When skin is analyzed, BM defects are observed, 

suggesting a role for α3β1 in epidermal homeostasis (DiPersio et al., 1997). 

 

When β1 integrin is conditionally deleted in epidermis by using K14-Cre, it leads to early 

lethality due to severe blistering and dehydration and when K5-Cre is used (Raghavan 

et al., 2000), they die later and show progressive hair loss, infiltrating macrophages 

surrounding the HFs, upregulated pro-inflammatory cytokines and dermal fibrosis 

(Brakebusch et al., 2000; Grose et al., 2002; Lopez-Rovira et al., 2005; Raghavan et al., 

2000). 

 

Keratinocyte-specific ILK depletion in skin in a K5- or K14-Cre background, gives rise to 

epidermal defects, HF disruption and hair loss. Moreover primary ILK-deficient 

keratinocytes display adhesion, spreading and migration defects (Lorenz et al., 2007; 
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Nakrieko et al., 2008). However, the role of PINCH-1 in skin homeostasis has not been 

studied so far. 

5.3 Role of intercellular adhesions in epidermal homeostasis 

Intercellular adhesions are crucially important for epidermal homeostasis. For instance, 

targeted ablation of E-cadherin in skin leads to hyperproliferation, aberrant 

differentiation and impaired barrier formation (Tinkle et al., 2004; Tunggal et al., 2005; 

Young et al., 2003), whereas depletion of both E- and P-cadherin results in lethal 

blistering (Tinkle et al., 2008). On the other hand, epidermal deletion of p120 catenin 

does not have an effect on adhesion (Perez-Moreno et al., 2006). However, it impairs 

cytokinesis leading to binucleated cells in the suprabasal layers of epidermis (Perez-

Moreno et al., 2008). 

 

In addition to the roles in adhesion and cytokinesis, adhesion molecules can also 

regulate inflammatory signaling in epidermis (Perez-Moreno and Fuchs, 2006). 

Epidermal deletion of α-catenin leads to hyperproliferation through elevated mitogenic 

MAPK signaling (Kobielak and Fuchs, 2006). p120 catenin also affects inflammatory 

signaling in the epidermis (Perez-Moreno et al., 2006) by regulating NF-κB signaling. 
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Aim of the Thesis 

PINCH-1 is a core component of IPP-complex that acts downstream of integrin 

signaling and functions in concert with the other complex members. Similar to ILK and 

β1 integrin deficient mice, constitutive PINCH-1 gene deletion leads to early embryonic 

lethality due to abnormal epiblast polarity, impaired cavitation and detachment of 

endoderm and epiblast from BMs. However, PINCH-1 deletion in mice is also leading to 

phenotypes that are differ from ILK and β1 integrin deficient mice. They include 

endoderm survival defects and cell-cell adhesion defects of the primitive endoderm and 

epiblast. This suggests that PINCH-1 may also act independently from the IPP-complex. 

Whether IPP-complex-independent functions operate in vivo and in vitro was the major 

aim of my thesis work. 

 The aims of the thesis were:  

1. to determine how PINCH-1 molecularly regulates cell survival by using EBs and 

EB-derived endoderm cells as a model. 

2. to investigate how PINCH-1 regulates cell-cell adhesions in the epidermis in vivo.  
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Materials and Methods 

1. Common Chemicals 

All the chemicals used in this study were purchased from Carl Roth GmbH (Karlsruhe, 

Germany), Merck (Darmstadt, Germany), Peprotech (Hamburg, Germany), Reidel de 

Haen (Seelze, Germany), Roche Diagnostics GmbH (Mannheim, Germany), Serva 

(Heidelberg, Germany), Sigma Aldrich (Munich, Germany) unless otherwise specified.  

2. Animals 

All mouse strains used in this study were kept and bred in the animal facility of the Max-

Planck-Institute of Biochemistry (Martinsried, Germany). The mice had standard rodent 

diet and water. The light cycle was set to 12 hours. 8 week-old mice were used for 

breeding. 3 weeks after birth, mice were separated according to the sex, marked with 

ear tags and maintained in separated cages. For genotyping, mice tails were clipped, 

and used for DNA isolation immediately (2.7.2). All experiments were carried out 

according to the German Animal Protection Law.  

2.1 Breeding scheme 

To generate a conditional PINCH-1 knockout in the epidermis, we crossed mice with a 

loxP-flanked PINCH-1 gene (PINCH-1fl/fl) (Li et al., 2005) and mice expressing the Cre 

recombinase under control of the K5 promoter (K5-Cre) (Ramirez et al., 2004). 

3. Histological analyses of conditional PINCH-1 knockout mice 

3.1 Histology material 

Embedding machine: Shandon, HistoCentre 2  

Microtomes: Microm, Vacutome HM5000M, HM355S  

Cryomold: Sakura, Tissue-Tek, #4566  

Cryomatrix: Thermo Scientific, Shandon Cryomatrix
TM

, #6769006  

Microscope slides: Thermo Scientific, Menzel-Gläser Superfrost®Plus, #J1800AMNZ  

Entellan mounting medium: Merck, #1.07960  

Meyers hemalaun: Merck, #1.09249  
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Eosin G: Merck, #1.09844 

3.2 Histological methods 

The most important aspect of histological methods was to preserve on one hand the 

morphology of the biological specimen and on the other hand to its biological activity in 

the best possible way. This is crucially affected by the selection of fixation and 

embedding, therefore a variety of fixation and embedding protocol is used for each 

particular experiment. The most commonly-used fixatives are paraformaldehyde (PFA) 

and alcohols (ethanol and methanol). PFA better preserves the morphology of the 

specimen, but can compromise the biological activity. Paraffin is used as embedding 

material. If the specimen is not affected from PFA treatment, the best combination is to 

fix the sample with PFA and to embed in paraffin, which allows cutting of thin sections 

(6µm). Another commonly-used embedding method is freezing un-fixed specimen in a 

cryomatrix. This method is preferred when the biological activity of the specimen should 

not be compromised. 

3.2.1 Preparation of paraffin sections 

To analyze epidermis and HF morphology, skin was isolated at selected time points. 

The back skin of mice was shaved and a fragment was cut. This fragment was fixed in 

freshly-prepared 4% PFA/PBS solution overnight at 4°C. The following day, samples 

were dehydrated in consecutive baths with a gradually increasing concentration of 

ethanol: 50%, 70% and 80% for 60 minutes, 90% for O/N and 100% – 3 × 60 minutes. 

Then, skin fragments were treated with xylol for 2 × 15 minutes and subsequently 

transferred to a container with liquid paraffin (kept at 56°C). To remove all traces of 

xylol, paraffin solution was changed twice during the incubation time (60 + 60 + 90 

minutes). In the end, skin fragments were set in paraffin blocks using an embedding 

device. Samples were stored at 4°C. Before cutting, they were cooled down on ice or in 

a -20°C freezer. Paraffin embedded tissue was cut using a microtome into 6 μm thick 

sections. They were collected on glass slides and stored at RT or 4°C. 

3.2.2 Preparation of cryosections 

To analyze epidermis and HF morphology, skin was isolated at selected time points. 

The back skin of mice was shaved and a fragment was cut. This fragment was directly 
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embedded in cryomatrix placed in plastic cryo-molds in a vertical position to the base of 

the mold.  

To analyze morphology of EBs, they were transferred from culture into 15 ml conical 

tubes and allowed to settle by gravity and the supernatant was removed. Then they 

were re-suspended in 10 ml PBS, allowed to settle by gravity and then the supernatant 

was again removed. They were kept in the fixation solution (4% PFA in PBS, freshly-

prepared) for 30 minutes, transferred into 7,5% sucrose in PBS for 3 hours at RT, 

followed by overnight incubation at 4°C in 15% sucrose. Next day, sucrose solution was 

replaced by cryomatrix and the samples were frozen (Montanez et al., 2007). 

Frozen samples were kept at -80°C. Before cutting, they were warmed to -20°C. Cryo-

embedded specimen was cut using a cryotome into 8µm or 10µm thick sections and 

collected on glass slides. These slides were kept at -20°C. Before using for further 

applications, they were air-dried for 1 hour. 

3.2.3 Hematoxylin/Eosin (H&E) staining 

It is a widely-used histological method that allows visualizing several different tissue 

structures. The color properties of the section stained with hematoxylin depend on 

oxidation product Hematein. It stains basophilic molecules such as DNA and RNA and 

other acidic structures in blue. Eosin, on the other hand, stains cytoplasmic structures 

and connective tissue in pink. 

To perform an H&E staining, paraffin sections were deparaffinized by xylol treatment for 

2 x 5 minutes. Then, they were rehydrated in 100%, 95%, 90%, 80% and 70% ethanol 

series for 2 minutes, each. The slides were then treated with hematoxylin (Mayers 

hemalaun) for 1 minute and after that with tap water. Subsequently, samples were 

treated with Eosin for 1 minute and after that with tap water and dehydrated in 70%, 

90%, 95% and 100% ethanol series for 2 minutes, each. Finally, they were washed in 

xylol for 2 x 5 minutes and mounted in Entellan. 

4. Immunological methods 

4.1 Material immunological analyses 

NAME COMPANY CATALOG NO SOURCE 
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PINCH BD Transduction 
Lab 

612711 Mouse 

Actin Sigma A2066 Mouse 

Phalloidin- 
Alexa488 

Invitrogen A12379  

Phalloidin- 
Alexa488 

Invitrogen A22287  

Beta Catenin SIGMA C7207 Mouse 

Bromodeoxyuridine Roche 1 202 693 Mouse 

Cleaved Caspase3  Cell signaling 9661 Rabbit 

EPLIN Bethyl labs   

Nidogen Chemicon MAB1946 Rat 

Keratin14 Covance PRP-155P Rabbit 

plakoglobin Santa Cruz Sc-7900 Rabbit 

GAPDH Calbiochem CB1001 Mouse 

GATA-3 Santa Cruz Sc268 Mouse 

MAPK SIGMA M-5670 Rabbit 

MAPK SIGMA M-8159 Mouse 

ILK Cell Signaling 3862 Rabbit 

Integrin α6-FITC Pharmingen 555735 Rat 

Integrin β1 Chemicon  MAB1997 Rat 

Akt Cell Signaling 9272 Rabbit 

P-Akt(Ser473) Cell Signaling 9277 Rabbit 

ERK1/2 Cell Signaling 9103 Rabbit 

pERK1/2 Cell Signaling 4376 Rabbit 

ILK BD Transduction 
Lab 

611802 
6118031 

Mouse 

FAK Upstate #06-543 Rabbit 

Paxillin Sigma V9131 Mouse 

Secondary 
antibodies 

   

α-mouse HRP Bio-Rad 170-6516 Mouse 

α-rabbit HRP Bio-Rad 170-6515 Rabbit 

α-rat HRP Jackson Labs 712-035-150 Rat 

α-rabbit Alexa488 Invitrogen A11008 Rabbit 

α-rabbit Alexa647 Invitrogen A21244 Rabbit 

α-rat Alexa488 Invitrogen A11006 Rat 

α-rat Alexa647 Invitrogen A21247 Rat 

α-mouse FITC Jackson Labs 115-095-075 Mouse 

α-rabbit Cy3 Jackson Labs 711-165-152 Rabbit 

α-mouse Cy3 Jackson Labs 115-165-146 Mouse 
 

Each immunostaining was finalized with 5 minutes staining with 4’, 6-Diamidino-2-

phenylindole (DAPI, 1:10000 in PBS) in order to visualize the nuclei. 
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Elvanol: 12 g Mowiol 4 – 88 (Roth, #0713) dissolved in 30 ml 87% glycerol, 60 ml Tris-

HCl pH 8.5 and 30 ml H
2
O.  

DAPI: Sigma, Biochemica, #32670 

4.2 Immunohistochemistry (IHC) of sections 

To detect intracellular proteins tissue sections were permeabilized with 0.1% Triton X-

100 in PBS for 10 minutes at RT prior to blocking in 3% BSA in PBS for 1 hour at RT. 

After blocking, sections were incubated overnight with indicated primary antibodies 

(diluted in blocking solution) at 4°C in a humidified chamber. Next day, slides were 

washed 3 x 10 minutes in PBS and incubated with the indicated secondary antibodies 

(diluted in blocking solution) for 2 hours at RT in the dark. After three washes with PBS 

(10 min each, in the dark), the sections were mounted with Elvanol. 

4.3 3, 3’-Diaminobenzidine (DAB) staining of sections  

3, 3’-Diaminobenzidine is a substrate for peroxidase. A brown precipitate is formed 

when the two react with each other. Therefore, when peroxidase-conjugated antibodies 

are bound to epitopes they can be specifically stained by application of DAB. It is 

necessary to block the endogenous peroxidase activity by a H2O2
 
treatment prior to the 

DAB staining. To perform a DAB staining, slides were prepared as in the H&E staining 

protocol and then incubated for 10 minutes in a 0.3% H2O2
 
/ methanol solution. After a 5 

minute wash in PBS, they were blocked in 5% goat serum in PBS-T for 1 hour at RT. 

Then sections were incubated with the indicated primary antibody (diluted in blocking 

solution) overnight at 4°C in a humidified chamber. The following day, they were 

washed 3 x 10 minutes with PBS-T before the incubation with the indicated (peroxidase-

conjugated) secondary antibody (diluted in blocking solution) for 1 hour at RT. 

Subsequently, they were washed 3 x 10 minute with PBS. Then the staining reaction 

was initiated via the addition of DAB solution containing 0.03% H2O2. When the staining 

was intense enough, the reaction was stopped by washes under tap water. Lastly, a 

Hematoxylin stain was performed for 30 seconds to obtain a better contrast of the 

sample. Then the slides were subjected to dehydration and mounting with Entellan. 

4.4 Electron microscopy 
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Electron microscopy analyses were performed by Dr. Wilhelm Bloch at the Department 

of Molecular and Cellular Sport Medicine, German Sport University Cologne, Germany. 

Small pieces of back skin were cut into fragments of about 1mm3 fixed overnight in 2% 

paraformaldehyde/2% glutaraldehyde in 0.1 M cacodylate buffer pH 7.2, washed in 0.1 

M cacodylate buffer and stained in 1% uranyl acetate. Subsequently, they were 

incubated in 70% ethanol for 8 hours, and then exposed to an ethanol series for 

dehydration. Finally, they were embedded in araldite resin. Semi-thin sections (1 μm) 

were cut with a glass knife using an ultramicrotome (Reichert, Bensheim, Germany) and 

stained with Methylene Blue. Ultra-thin sections (30-60 nm) for electron microscopy 

observation were cut on the same microtome with a diamond knife and placed on 

copper grids. The transmission electron microscopy was performed with a Zeiss 902A 

electron microscope (Zeiss, Oberkochem, Germany) (Grose et al., 2002). 

4.5 Immunofluorescence (IF) of adherent cells 

All immunostainings of adherent cells were performed on glass coverslips (Menzel-

Gläser). Coverslips were coated with coating medium either overnight at 4°C or 1 hour 

at 37°C. 5 - 10 x 10
4 

cells were allowed adhere and spread overnight. After indicated 

times of culture in the cell incubator and indicated treatments, cells were washed once 

with PBS, fixed with ice cold PFA for 15 min at RT, rinsed in PBS 3 x 5 minutes and 

permeabilized in permeabilization solution (0,05% Triton X-100 in PBS). Subsequently, 

they were blocked for 1 hour in blocking solution at 37°C, incubated with indicated 

primary antibodies (diluted in blocking solution) for 1 hour at 37°C, washed with PBS for 

3 x 10 minutes and then incubated with the appropriate secondary antibodies (diluted in 

blocking solution) for 45 minutes at 37°C. Finally, coverslips were washed in PBS for 3 x 

10 minutes and incubated in a DAPI-containing solution for 5 minutes before being 

washed and mounted in Elvanol. 

Coating medium:  

25ml MEM(sigma #M8167) 

2.5ml BSA (Fratction V, 1mg/ml Stock) 

0.5ml Hepes pH7.3  
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0.25ml Vitrogen 100 collagen (Cohesion FXP-019) 

0.25ml Fibronectin (1 mg/ml Stock, Invitrogen #33016-015) 

Blocking solution: 

3% BSA and 5% goat serum in PBS 

4.6 TUNEL staining of adherent cells 

The hallmark of apoptosis is DNA fragmentation. When the DNA is cleaved, single- or 

double-stranded DNA is produced with nick ends. The fragmented DNA can be 

visualized by labeling the free 3’-OH ends with fluorescent-dUTP. This labeling reaction 

occurs via terminal deoxnucleotidyl transferase (TdT). Therefore this method is called 

TdT-mediated dUTP nick end labeling (TUNEL). 

For TUNEL staining, adherent cells were seeded on glass coverslips, grown at indicated 

time points in an incubator, then fixed with ice cold 4% PFA in PBS for 15 minutes, 

rinsed with PBS for 3 x 5 minutes and blocked with 3% H2O2 in methanol for 10 minutes 

at RT followed by rinsing with PBS for 3 x 5 minutes. Subsequently, cells were 

permeabilized in 0,1% sodium citrate containing 0,1% Triton X-100 for 2 minutes on ice, 

rinsed with PBS for 5 minutes and treated with TUNEL solution from In situ Cell Death 

Detection Kit (Roche Diagnostics, #11 684 817 910). Manufacturer’s instructions were 

followed. 

5. Cell culture methods 

5.1 Cell culture material 

5, 10, 25 ml pipettes: Corning, Costar Stripette, #4487, #4488, #4489  

Multi-well plates (Corning): 96 well: #3799, 24 well: #3524, 6 well: #3046  

15, 50 ml conical tubes: Corning, CentriStar, #430791, #430829  

Cryogenic vial: Corning, #430489  

60, 100 mm dishes: Falcon, Easy Grip, #353004, #353003  

140 mm dish: NUNC, #168381  

P/S: PAA, Penicillin / Streptomycin (x 100), #P11-010 

Trypsin: Trypsin / EDTA (10x), Gibco, 15400-054 
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5.2 Keratinocyte culture  

5.2.1 Keratinocyte isolation from mice  

Mice were sacrificed, shaved and washed in an ethanol solution, distilled water and 

PBS (~1 minute in each), respectively. After cutting off limbs, the skin was peeled off 

and placed in a sterile Petri dish. The subcutaneous fat layer was scraped off with a 

scalpel. Then skin was cut into long, narrow strips and placed (epidermis down) in a 

Petri dish that containing a solution with antibiotics for 5-10 minutes. Subsequently, the 

skin was transferred (epidermis up) to a new Petri dish containing 25 ml of 0.8% trypsin 

in PBS (Trypsin 1:250; Invitrogen #27250-018) and incubated for 50 min at 37°C. 

Following the incubation, skin was transferred into a bacteriological plate containing 

keratinocyte growth medium (KGM), the epidermis was separated from the dermis, 

mechanically disassembled by a forceps and the resulting suspension was then filtered 

through a 70 μm cell strainer (BD Biosciences) to collect the cells. Then cells were 

centrifuged and washed once in KGM (5 minutes, 500g). Finally, cells were counted and 

plated on 10 cm dishes coated with FN and collagen I-containing coating medium (4.5) 

at the density of 6 x 106.  

Antibiotic solution: 

PBS      500 ml 

Penicillin/streptomycin (100x)  10 ml (PAA Laboratories #P11-010) 

Nystatin (10000 U/ml)   10 ml (Sigma #N1638) 

Fungizone (250 μg /ml)   10 ml (Gibco # 15290-026) 

5.2.2 Culture of keratinocytes 

Primary keratinocytes were seeded on a plastic or glass surface, coated with coating 

medium, and cultured in a special medium at 37°C. The medium was changed every 2-

3 days. Keratinocytes were grown without splitting until control cells became fully 

confluent (1 week). 

Keratinocyte Growth Medium (KGM): 
MEM      500 ml (Sigma #M8167) 

Chelated FCS    40 ml (8%) 

Insulin (5 mg/ml in 4 mM HCl)  500 μl (5 μg/ml) (Sigma #I5500) 

EGF (200 μg/ml)     5 μl (10 ng/ml) (Sigma #E9644) 

Transferrin (5 mg/ml)    1000 μl (10 μg/ml) (Sigma #T8158) 

10 mM Phosphoethanolamine  500 μl (10 μM) (Sigma #P0503) 
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10 mM Ethanolamine*   500 μl (10 μM) (Sigma #E0135) 

Hydrocortisone (5 mg/ml in EtOH) 36 μl (0.36 μg/ml) [Calbiochem #386698] 

200 mM L-Glutamine (100x)  5 ml (Gibco # 25030-024) 

Penicillin/streptomycin (100x)  5 ml (PAA Laboratories #P11-010) 

 
The complete medium was sterile filtered (0.22 μm). 

FCS (Gibco #10270-106) was chelated to deplete the Ca++ ions, which induce 

differentiation of keratinocytes. To do this, Chelex resin (Biorad #142-2832) was 

suspended in 5 l ddH2O (40 g/l) and adjusted to pH 7.4. Then the suspension was 

filtered through a paper filter (Schleicher&Schuell #314856) and the resin was stirred 

with 500 ml of a heat inactivated FCS, O/N at 4°C. Chelex beads were removed by 

filtering and subsequent centrifugation (5 min, 8000 rpm). FCS was sterilized with a 

vacuum filter system (Corning #431097), aliquoted (40 ml) and stored at -20°C. 

To store keratinocytes long term, they were frozen by resuspending in freezing medium after 

trypsinization, at -80°C. They were stored in liquid nitrogen (-196°C) for longer periods. 

When keratinocytes were thawed, the cryovials were placed in a 37°C water bath and 

as soon as the freezing medium had thawed, the cells were added into a 10 ml KGM- 

containing conical tube and centrifuged at 900rpm for 5 minutes. The cell pellet was re-

suspended in growth medium and seeded on appropriate plates. 

5.2.2 Immortalization and cloning of primary keratinocytes 

Keratinocyte immortalization was performed using a spontaneous immortalization. 

Isolated primary keratinocytes were grown until 100% confluency and then split into two 

10 cm dishes at 1:1 ratio. No special treatment was conducted, instead the cells were 

kept in standard culture conditions and the growth medium was changed every 2-3 

days. Besides extensive cell death, small colonies of keratinocytes formed and grew 

larger. When these colonies reached a certain size, consisting of 1 x 105 cells, they 

were split and further cultured. Thereby, the keratinocytes were spontaneously 

immortalized. 

To isolate single clones, first the feeder cell layer was prepared. Either keratinocytes or 

NIH3T3 cells were seeded in a 10 cm plate. After reaching a 50-60% confluence, they 

were treated with mitomycin C (Sigma, #4287) (diluted in KGM, 4µg/ml) for 4 hours. 

Next, cells were washed with PBS and made ready to be used as feeder cells. To 



58 
 

obtain single clones, cells were seeded in very low densities on 10 cm dishes (100, 200, 

400 cells per dish) on mitomycin-treated feeder cells and cultured in KGM for 2-3 weeks 

until single colonies were visible. Colonies were picked under a microscope by placing a 

cloning cylinder around to isolate them from the surrounding cells. Then 100μl 

prewarmed 2 x Trypsin/EDTA was added into the cylinder and the clones were 

incubated for 15-20 minutes. After the incubation, the colonies were sucked off with a 

200μl pipet and transferred into 24-well plates containing 1 ml KGM. Finally, clones 

were grown for approximately 1 week in 24- wells until they were confluent.  

5.2.3 Spreading assay and time-lapse imaging of keratinocytes 

Live cell imaging of freshly isolated and immortalized keratinocytes was performed with 

a Zeiss Axiovert 200 M microscope equipped with a motor-controlled CCD camera 

(OrcaER, Hamamatsu). Snapshots from the cells were captured every 20 minutes for 

20 hours (at 37°C, 5% CO2). The first snapshot was taken 30 minutes after 

keratinocytes were seeded on the coated plastic (6-well) dishes. The cell spreading at 

each indicated time point during the assay was analyzed by measuring the pixel area of 

50-60 randomly selected cells. Metamorph software (Universal Imaging Corporation) 

was used to quantify and process the images. 

5.3 Embryonic stem cells (ES cells) culture 

ES cells derive from the inner cell mass of the blastocyst and they are pluripotent, 

meaning that they can give rise to all differentiated cell types. Therefore, they serve as 

an excellent model to study the molecular and cellular events during differentiation into 

different cell lineages (Montanez et al., 2007). 

ES cells form colonies and any change in the shape or color of the colonies may 

indicate that they undergo differentiation. Therefore, a special care should be taken to 

keep ES cells in an undifferentiated state. 

5.3.1 ES cell culture material 

Cell growth media: Gibco, DMEM (#31966-021),  

Non-essential amino acids (NEAA): Gibco, MEM NEAA x 10, #11140  

Fetal bovine serum (heat inactivated for 30 minutes at 65°C): Gibco, #10270-106  

Trypsin: Gibco, Trypsin / EDTA (x 10), #15400-054  
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P/S: PAA, Penicillin / Streptomycin (x 100), #P11-010 

Leukocyte inhibitory factor (LIF): ESGro, Gibco  

5.3.2 ES cell culturing 

ES cells were seeded on a subconfluent feeder cell layer consisting of mitotically 

arrested primary mouse embryonic fibroblasts (MEFs) and grown in ES cell medium. 

Feeder cells release nutrients and produce LIF important for keeping ES cells in an 

undifferentiated state. LIF was also supplemented in the medium to secure the 

concentration. Medium was changed every day. 

ES cell medium: 

D-MEM   400 ml  

FCS    100 ml  

NEAA   5 ml  

LIF    500 μl  

5.4 Embryoid bodies (EBs) 

When ES cells are kept in suspension, their aggregates form multicellular 3-dimensional 

structures called EBs. They recapitulate the peri-implantation stage of mouse embryo 

development and follow the molecular cues that regulate embryonic implantation. First, 

the outer layer of EBs differentiates into primitive endoderm cell layer (hypoblast) that 

forms the first BM. Upon formation of BM, adjacent ES cells different into columnar 

epithelium (epibast or primitive ectoderm). The rest of the ES cells, which have no 

contact with BM, undergo apoptosis leading to the formation of a central cavity 

(Montanez et al., 2007). 

5.4.1 Preparation and culturing of EBs 

The best moment to start preparing EBs from ES cells is when ES cell colonies reach a 

70% confluency of a 10 cm dish. The medium is removed from the dish, cells are rinsed 

with 2 x 10 ml prewarmed PBS, then 3 ml of 0.25% Trypsin/0.53 mM EDTA is added 

into the dish for 2 to 3 min at RT to detach the colonies from feeder cells. The 

trypsinization is stopped by addition of medium once the ES cell aggregate detached 

from the underlying feeder cells. The cell suspension is collected in a 15 ml conical 

tube, is allowed to settle by gravity for 10 minutes at RT, the supernatant is discarded 

and the pellet is resuspended in 1 ml EB growth medium (ES cell medium lacking LIF). 
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After resuspension, the ES cell aggregates are passed through a 2µM-thick glass 

Pasteur pipette to separate them and to create EB precursors. This process is repeated 

until all cell aggregates are separated. Then the EB precursors are plated in a cell 

culture dish with 8 ml EB medium for 30-40 minutes to remove the feeder cells. 

Afterwards the EB precursors are plated in a bacterial plate to keep them in suspension. 

The medium is not changed during the first 3 days, and then it is changed every other 

day. At the 7th day of EB differentiation, a high percentage of EBs forms an inner layer 

of columnar epithelial cells and a cavity. They are called cystic EBs. 

After 7-8 days of differentiation, EBs were collected in a conical tube, centrifuged at 

900rpm for 5 minutes at RT, resuspended in appropriate amounts of EB medium and 

pipetted up and down several times. Afterwards, they were allowed to stand at RT for 

15-20 minutes to let the EBs settle by gravity. The supernatant, containing the isolated 

endoderm cells was collected and plated on 6-well plates coated with 10µg/ml FN. 

5.5 Drug treatments of cells 

Keratinocytes were treated with 5nM HGF (Peprotech) for 1 hour, 25µM Y-27632 

(Calbiochem) for 1 hour and 25µM blebbistatin for 15 minutes and endoderm cells were 

treated with 10µM JNK inhibitor (SP600125, Calbiochem) for 45 minutes when 

necessary. 

HGF: Peprotech, #100-39 

Y-27632: Calbiochem, #688000 

SP600125: Calbiochem, #420119 

Blebbistatin: Sigma, #030M1246 

6. Biochemical methods 

6.1 Materials biochemical methods 

Protease inhibitor cocktail: Roche, Complete Mini / EDTA free, #12740900  

Phosphatase inhibitor cocktails 1 & 2: Sigma, #P2850, #P5726  

Microtip Sonicator: Branson, #B-12  

Precision Plus ProteinTM
 

CaleidoscopeTM
 

Standards: BioRad, #161-0375  

Centrifuge: Beckman-Coulter, GS-15R 
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6.2 Preparation of protein lysates 

6.2.1 Preparation of protein lysates from mouse epidermis 

Keratinocytes from mice were obtained as described previously (5.2.1) except for the 

last step, which was modified. After filtering the cells through a 70 μm cell strainer (BD 

Biosciences) they were collected and washed once with ice cold PBS. Pelleted cells 

were resuspended in an ice-cold lysis buffer, incubated for 30 minutes on ice, the 

suspension was then transferred into a microcentrifuge tube and centrifuged at 

14000rpm for 15 minutes at 4°C. Cleared lysate was aliquoted and stored at -80°C.  

Lysis buffer: 150mM NaCl, 1mM NaF, 1mM Na3VO4, 1mM EDTA, 1% Triton X-100 in 

50mM Tris-HCl pH 7.6, protease inhibitor cocktail: 1 tablet  / 10 ml 

6.2.2 Preparation of protein lysates from EBs 

EBs were prepared from ES cells as described previously (5.4.1). After 7-8 days of 

differentiation, EBs were not plated but lysed in appropriate amounts of lysis buffer on 

ice for 10 minutes, collected in a microcentrifuge tube, sonicated at 4°C (2 x 10 seconds 

at intensity 4) and centrifuged at 14000rpm for 5 minutes at 4°C. Then the supernatant 

was collected in a separate microcentrifuge tube and the protein concentration was 

determined using a BCA protein assay (6.3.1). The lysates were either stored at -80°C, 

or used directly for SDS-PAGE (6.4). 

Cell lysis buffer (RIPA): 150 mM NaCl, 1 mM EDTA, 1% Na-deoxycholate, 0.1% SDS, 

1% Triton X-100, 10 mM NaF, 1 mM Na3VO4
 
in 50 mM Tris-HCl pH 7.8, protease 

inhibitor cocktail: 1 tablet  / 10 ml 

6.2.3 Preparation of protein lysates from adherent cells  

The adherent cells were washed once with ice-cold PBS and then the appropriate 

amount of cell were incubated with the lysis buffer for 10 minutes on ice. Afterwards, 

they were scraped off using a rubber cell scraper (Costar), transferred into a 

microcentrifuge tube, sonicated at 4°C (2 x 10 seconds at intensity 4) and centrifuged at 

14000rpm for 5 minutes at 4°C. The supernatant was transferred into a new 

microcentrifuge tube and the protein concentration was determined using a BCA protein 

assay (6.3.1). The lysates were either stored at -80°C, or directly used for SDS-PAGE 

(6.4). 
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Cell lysis buffer (RIPA): 150 mM NaCl, 1 mM EDTA, 1% Na-deoxycholate, 0.1% SDS, 

1% Triton X-100, 10 mM NaF, 1 mM Na3VO4
 
in 50 mM Tris-HCl pH 7.8, protease 

inhibitor cocktail: 1 tablet  / 10 ml 

4 x SDS sample buffer (SDS-SB): 16 ml 20% SDS, 0.32 ml 0.5 M EDTA, 16 ml 87% 

glycerol, 0.001% bromphenol blue in 50 mM Tris-HCl pH 6.8  

6.3 Determination of protein concentration 

Protein concentration was determined by two methods: 1. BCA assay (6.3.1), and 2. 

Bradford assay (6.3.2). BCA assay was preferred when a lysis buffer was used 

containing SDS whereas the Bradford assay was used when the lysis buffer did not 

contain any SDS. 

6.3.1 BCA assay 

In alkaline conditions, proteins can reduce Cu2+, which is called Biuret-reaction. Cu+ is 

detected by bicinchoninic acid that is chelated by cuprous ions forming a complex with 

high spectro-photometric absorbance at 562 nm. The assay was performed according 

to the manufacturer’s instructions.  

BCA Protein Assay Kit: Pierce, #23225 

6.3.2 Bradford assay 

The Bradford assay is a fast and based on the coomassie brilliant blue G-250 dye that 

binds arginine, tryptophan, tyrosine, histidine and phenylalanine residues. The bound 

dye gives an absorbance maximum at 595nm. The assay was performed according to 

the instructions of the manufacturer. 

Bradford Reagent: Sigma, #B6916 

6.4 SDS-polyacrylamide-gelelectrophoresis (SDS-PAGE) 

SDS-PAGE is a commonly used method to separate proteins under denaturizing 

conditions. Proteins become negatively charged when they are in the SDS containing 

gel and can be separated by their electrical charge according to the molecular size and 

shape. Proteins were boiled in the presence of SDS before loading into the gel and 

when indicated, their disulfide bonds were reduced by addition of 2-mercaptoethanol or 

di-thiothreitol (DTT). The gel was prepared with two differently buffered layers; the 

stacking gel and the resolving gel. These two layers also have a different acrylamide 
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concentration. The stacking gel serves as a concentration layer for proteins, whereas 

the resolving gel separates proteins according to their molecular size and shape. 

Proteins were separated in a mini-gel system (73 x 83 x 1.5 mm) using a Mini Protean 

III System (BioRad, #165-3301). After the polymerization of the gel and assembly of 

electrophoresis system, samples were mixed with 4 x SDS sample-buffer (4 x SDS-SB), 

boiled for 5 minutes at 95°C and subsequently kept on ice. After a brief centrifuging the 

samples were loaded on the stacking gel. The electrophoresis module was filled with 1 

x SDS running buffer and the electrophoresis was carried out at 100V (for stacking gel) 

to 120V (for resolving gel). 

separating gel (10ml)  8%  10%  12%   15% 

H2O    4.6ml  4.0ml  3.3ml   2.3ml 

30% ProtoGel  2.7ml  3.3ml  4.0ml   5.9ml 

1.5M Tris-HCl pH 8.8 2.5ml   2.5ml   2.5ml   2.5ml 

10%SDS   0.1ml  0.1ml   0.1ml   0.1ml 

10% APS   0.1ml  0.1ml   0.1ml   0.1ml 

TEMED   0.006ml 0.006ml  0.006ml  0.006ml 

stacking gel (5ml)   5% 

H2O    3.4ml 

30% ProtoGel  0.83ml 

1M Tris-HCl pH 6.8  0.63ml 

10%SDS   0.04ml 

10% APS   0.04ml 

TEMED   0.004ml 

N,N,N',N'-Tetramethylethylenediamine (TEMED), Serva #35925 

ProtoGel (Ultra Pure), National Diagnostics, #EC-890 

6.5 Western blotting and immunodetection 

Western blotting is a method to detect and quantify proteins by using antibodies. It is 

based on separating the proteins on SDS-PAGE, transferring them onto a PVDF 

membrane and finally detecting them via immunodetection reagents. 

After the SDS-PAGE (6.4), the stacking gel was discarded and the separating gel was 

soaked into transfer buffer. After the gel as well as the methanol-activated PVDF 

membrane was equilibrated in transfer buffer, transfer was started via assembly of a 

transfer sandwich. 
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Proteins were then transferred either overnight with 25V at 4°C or for 1.5 hours with 

100V at 4°C. Then the transfer sandwich was disassembled, the membrane was 

stained with Ponceau S solution for 30 seconds to visualize the protein bands and then 

washed in H2O. The membrane was then blocked for 30 minutes at RT in blocking 

buffer, the membrane was incubated with the primary antibody either overnight at 4°C 

or for 2 hours at RT, was washed 3 x 15 minutes with TBS-T and then the appropriate 

secondary antibody was added for 45 minutes at RT. After 3 x 15 minute washes with 

TBS-T, the membrane was subjected to a chemiluminescence-based detection kit (ECL 

kit). 

Western Blotting transfer buffer (1l) 

Tris-HCl  6g 

Glycine  28.8g 

Methanol  200ml 

10x TBS (1l) 

Tris-HCl  24.3g 

NaCl   80g 

TBS-T (1l) 

Tween-20  1ml 

10x TBS  100ml in H2O 

Blocking buffer 

skim milk powder  5% in TBS-T 

ECL kit: Millipore, Immobilon
TM 

Western, #WBKLS0500 

PVDF membrane: Millipore, ImmobilonTM
 

Transfer membranes, #IPVH00010 

Ponceau S solution: Sigma, #P3504 

6.6 Immunoprecipitation (IP) 

Immunoprecipitation is a commonly used biochemical method to detect the interaction 

between two or more proteins. It works either by pulling down endogenous proteins with 

the help of a specific antibody coupled to a protein A or G sepharose or by pulling down 

tagged proteins with a specific antibody recognizing the particular tag. In both methods, 

cells were washed once with ice-cold PBS before being lysed in IP lysis buffer 10 

minutes on ice. Cell lysates were collected via rubber cell scraper, sonicated for 2 x 10 

seconds at level 4, centrifuged at 14000rpm for 5 minutes at 4°C and the protein 

concentration was determined by BCA protein assay (6.3.1).  
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6.6.1 Endogenous protein pull-down 

For immunoprecipitation of endogenous proteins, rabbit serum containing the specific 

rabbit IgGs was incubated with the cell lysate for 30 minutes at 4°C (1μg antibody per 

IP) and then this mixture was incubated with 35µl (per sample) prewashed and 

equilibrated protein G sepharose beads for 2 hours at 4°C. Next, the beads were 

washed 1 x 800µl 0.05% Na deoxycholate in TBS and 3 x 800µl TBS, resuspended in 

35μl 2x SDS sample buffer  and boiled for 5min at 95°C. 

Protein G sepharose: Fast Flow, Sigma, #3296 

6.6.2 GFP pull-down for Western blotting 

For immunoprecipitation of GFP-tagged proteins, µMACS GFP isolation kit was used. IP 

was performed according to manufacturer’s instructions. The final eluates were loaded 

on a SDS gel (6.4) and Western blotting (6.5) was performed. 

µMACS GFP isolation kit: Miltenyi Biotech, #130-091-125 

6.6.3 GFP pull-down for Mass Spectrometry (MS) 

The same kit as in 6.6.1 was used and cell lysis and IP were performed as described 

(Hubner and Mann, 2011). Briefly, cells were lysed with a buffer containing 150 mM 

NaCl, 50 mM Tris pH 7.5, 5% Glycerol, 1% IGEPAL-CA-630, 1 mM MgCl2, and protease 

inhibitors. Lysates were incubated with 50 µl magnetic beads coupled to monoclonal 

mouse anti-GFP antibody (Miltenyi Biotec GmbH). After appropriate washes, proteins 

were pre-digested on column with trypsin, eluted from the column with DTT and trypsin 

and digested overnight. Peptides were purified on C18 StageTips before MS analysis.  

Trypsin: Promega, #5113 

C18 stage tips: Agilent technologies, #12145004 

6.7 Liquid chromatography (LC)-MS/MS analysis 

MS analysis was performed by Dr. Tamar Geiger from the Department of Signal 

Transduction of the Max Planck Institute for Biochemistry. Peptides were separated by 

reverse-phase chromatography coupled to LC-MS/MS analysis using an LTQ-Orbitrap 

Velos mass spectrometer (Thermo Fisher Scientific). Peptide separation was performed 

using an EASY-nanoLC system (Thermo Fisher Scientific) with a 180 min gradient from 

5% to 35% buffer B (80% acetonitrile, 0.5% acetic acid). In the MS method full scans 
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were acquired in the Orbitrap with a resolution of 60,000. The top 10 most intense ions 

were fragmented by CID, and MS/MS spectra were acquired in the LTQ. 

6.7.1 Data analysis 

Data analysis was also performed by Dr. Tamar Geiger from the Department of Signal 

Transduction of the Max Planck Institute for Biochemistry. The raw files from the MS 

were processed with the MaxQuant software version 1.0.13.13 (Cox and Mann, 2008). 

Data were searched against the forward and decoy database 

(pi.MOUSE.v3.62.decoy.fasta) using the Mascot search engine. Fixed modifications 

were carbamidomethylated cysteins and variable modifications were oxidation of 

methionine, and N-terminal acetylation. Maximum false discovery rates (FDR) were set 

to 0.01 both on peptide and protein levels. Proteins were quantified using the label-free 

algorithm in MaxQuant. 

To extract significant binders we performed a two-sample t-test between triplicates, with 

0.1 FDR. 

7. Molecular biological methods 

7.1 Material molecular biological methods 

Autoclave: KSG, KSG-112 

Centrifuge: Eppendorf, 5417C 

Centrifuge: Beckman Coulter, Avanti J-25 

Centrifuge rotor: Beckman Coulter J 14 / J 25.50 

Microwave: Daewoo, KOR 63D7 

Thermocycler: Biometra T3 

Thermomixer: Eppendorf 5350 

7.2 Phenol/chloroform extraction of tail DNA 

To isolate mouse genomic DNA, the tail tip was clipped, placed in a microcentrifuge 

tube and subjected to an overnight lysis reaction in 250 μl lysis buffer containing 

proteinase K at 55°C on a shaker. The next day, 250μl Phenol/Chloroform (1:1) was 

added to this mixture, briefly mixed, centrifuged for 5 minutes at 15000xg and then the 

upper phase was carefully removed and mixed with 1 ml of 100% ethanol and 20 μl of 3 
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M sodium acetate and centrifuged (2 minutes at 15000xg). The pellet was washed once 

with 200μl of 70% ethanol, air-dried and dissolved in 50 ddH2O. It was further used for 

genotyping PCRs. 

DNA lysis buffer 

NaCl    20mM 

Tris-HCl pH 7.6 100mM  

EDTA    5mM 

SDS    0.2% 

proteinase K  100μg/ml 

 

Phenol / Chloroform / Isoamyl Alcohol (25 : 24 : 1): Calbiochem, #KP31757 

7.3 Bacteriological tools 

Escherichia coli (E.coli) XL-1 Blue strain was cultured in lysogeny broth (LB) medium. 

Medium was prepared and autoclaved for 20min at 120°C. Antibiotics were added after 

the solutions were cooled to RT. LB plates were poured into 100mm Petri dishes and 

stored at 4°C. 

LB medium 

NaCl   10g 

Trypton  10g 

Yeast extract  5g 

filled up to 1000ml with H2O, autoclaved and stored at 4°C 

LB plates 

LB medium  1000ml 

Agar   15g 

autoclaved, poured into 100mm Petri dishes, stored at 4°C 

Antibiotics 

Ampicillin  50μg/ml 

Kanamycin  25μg/ml 

Tetracyclin  12.5µg/ml 

7.3.1 Preparation of competent E.coli  

XL-1 blue strain of E.coli was grown shaking at 180rpm overnight in Tetracyclin 

containing 10ml LB at 37°C. The next day, 2 ml of the overnight culture was inoculated 
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into 100ml of Tetracyclin containing LB and shaken until the desired optical density of 

0.5 at 550nm was obtained. 

The bacterial culture was chilled on ice for 10 minutes, centrifuged for 15 minutes at 4°C 

at 1000xg and the pellet was resuspended in 10ml TSS and 2.9ml glycerol (87%). The 

competent cells were aliquoted in 200μl volumes in microcentrifuge tubes, snap-frozen 

in liquid nitrogenand then stored at -80°C. 

TSS (500ml) 

polyethylenglycol   50g 

Tryptone   5g 

Yeast extract   2.5g 

NaCl    2.5g 

DMSO   25ml 

1M MgCl2    25ml 

filtered and stored at 4°C 

7.3.2 Transformation of competent E.coli 

For each transformation, 100μl of competent cells were thawed on ice, incubated with 

plasmid DNA on ice for 30 minutes, heat shocked at 42°C for 90 seconds and then 

incubated on ice for 2 minutes. Afterwards, 750μl prewarmed LB medium (no 

antibiotics) was added and cells were shaken for 1 hour at 37°C at 200rpm. After 

incubation, cells were pelleted by 30 second centrifugation at 4000xg, resuspended in 

100μl LB medium and innoculated on agar plates containing the appropriate antibiotic. 

Cells were grown overnight at 37°C. Colonies appeared after 12 hours. 

7.4 Preparation of plasmid DNA from bacterial cultures 

Bacterial colonies were inoculated into 5ml LB medium (with the appropriate antibiotics) 

overnight at 37°C. Plasmid DNA was isolated from 1ml of this culture by using the 

Qiagen Plasmid Mini Kit.  

When large amounts of plasmid DNA were needed, the same method was applied but 

with a larger amount of starting culture. In this case, Qiagen Plasmid Maxi Kit was used 

according to manufacturer’s instructions. Plasmid DNA was stored at -20°C. 

Qiagen Plasmid Mini Kit: Qiagen, #12125 

Qiagen Plasmid Maxi Kit: Qiagen #12162 

7.5 Molecular cloning of DNA 
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To generate DNA constructs, restriction enzymes are used. They bind palindromic DNA 

recognition sequences and cut them by hydrolyzing the two phosphodiester bonds. The 

end product of this reaction is a cleaved DNA with a phosphate group in 5’ prime and a 

hydroxyl group in 3’ prime. This allows the ligation of two DNA fragments that are 

cleaved by the same enzyme. 

7.5.1 Restriction enzyme digestion of DNA 

All restriction enzymes were purchased form New England Biolabs (NEB). 

Manufacturer’s instructions were followed. In principle, the digestion reactions were set 

in a total volume of 20 μl containing 10 U enzyme per 1 μg DNA dissolved in ddH2O. 

7.5.2 Dephosphorylation of 5’-ends of plasmid DNA 

Restriction enzyme digestions expose a 5’-prime phosphate group in the digested 

plasmid that forms an ester bond with the 3’- hydroxyl group of the same plasmid during 

ligation reactions. To prevent the self-ligation of digested plasmids, alkaline 

phosphatases are used to remove the 5’-phosphate group. We used shrimp alkaline 

phosphatase (sAP). 5μg digested plasmid DNA was treated with 5 U sAP in sAP buffer 

in a total volume of 30 μl for 60 minutes at 37°C. Afterwards, sAP was heat inactivated 

for 15 min at 65°C.  

Shrimp Alkaline Phosphatase: Roche, #11 758 250 001 

7.5.3 Ligation of DNA fragments 

In a ligation reaction, a phosphodiester bond is formed between a 3’-hydroxyl group and 

a 5’-phosphate group. To promote the formation of this bond, the ligation reaction was 

set as below. 

DNA ligation 

DNA vector   0.5-1μg (dephosphorylated) 

DNA insert   5μg PCR product or digested DNA 

ATP (10mM)    1.5μl 

Fast link ligase buffer  1.5μl 

Fast link ligase  1μl 

filled up to 15μl with H2O, incubated for 45 minutes at RT, then heat-inactivated for 

10min at 70°C. 

7.5.4 Sequencing of DNA 



70 
 

To sequence the cloned DNA, 500 ng DNA was used. It was mixed with 2 μl Big Dye 

terminator mixture and 1 μl of an appropriate sequencing primer (10 pmol) in a total 

volume of 10 μl. Then, a PCR reaction (7.6) was performed. The PCR product 

sequenced at the core-facility of the Max Planck Institute for Biochemistry. The 

sequence data was processed with the Chromas Lite 2.01 software 

(www.technelysium.com.au). 

7.6 Polymerase chain reaction (PCR) 

PCR is a commonly used method to amplify DNA fragments. Typically, a PCR reaction 

consists of a DNA template, two primers, dNTPs and a DNA polymerase. In a PCR 

reaction, firstly the DNA is denatured at 95°C, and then the primers are annealed to the 

DNA template at 55°C – 68°C, and finally the reaction terminates with DNA synthesis at 

68°C – 72°C. 

7.6.1 Oligonucleotides (primers) 

All oligonucleotides were purchased from Metabion International (Martinsried, 

Germany). siRNA oligonucleotides were purchased from SIGMA. 

NAME 5’-3’ Sequence Application 

Cre for  AAC ATG CTT CAT CGT CGG Genotyping 

Cre rev TTC GGA TCA TCA GCT ACA CC Genotyping 

ILK for GTC TTG CAA ACC CGT CTC TGC G  Genotyping 

ILK rev CAG AGG TGT CAG TGC TGG GAT G  Genotyping 

ILK rev (KO) CCA GGG TGA CGC CTG ACA AAT G  Genotyping 

PINCH-1 for CTA  GGC TGG TAA TGC AGG CC Genotyping 

PINCH-1 rev CCT GCC AAT GAT GAA TTC AC Genotyping 

PINCH-1 rev (KO) 
XhoI EPLIN for 

CGC AGT TGG CAC AGT TGA AG 
TCGA CTC GAG ATG GAA AAC TGT CTG 

Cloning EPLIN 
in pCHERRY 
and pEGFP (N1) 

HindIII EPLIN rev AGCT AAG CTT TGA TTC TTC ATC CTC  GTC 
 

Cloning EPLIN 
in pCHERRY 
and pEGFP (N1) 

XhoI Bcl-2 for TCGA CTC GAG ATG GCG CAA GCC GGG AG  
 

Cloning Bcl-2 in 
pEGFP (N1) 

HindIII Bcl-2 rev AGCT AAG CTT TGA CTT GTG GCC CAG GTA 
TGC 
 

Cloning Bcl-2 in 
pEGFP (N1) 

EPLIN siRNA1 GAAAUAGGUGCGGGUCAUU Transfection 

EPLIN siRNA2 CUGUAAGCCUCACUUCAAU Transfection 

All PINCH-2 constructs including pCLMFG-PINCH1 and pEGFP-PINCH1 (C1) were 

cloned as previously described (Braun et al., 2003; Stanchi et al., 2005; Stanchi et al., 

2009). 
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7.6.2 PCR reactions 

The following PCR reactions were performed in this study: 1) genotyping PCR using tail 

DNA and a standard Taq polymerase (Metabion) 2) cloning PCR using purified plasmid 

DNA (7.7.1) and high fidelity polymerase with a proof reading activity (Roche). 

Standard Taq polymerase: Metabion, #mi-E8001 

High Fidelity Taq polymerase: Roche, #3300242001 

Genotyping PCR (1)  

Isolated tail DNA    1 μl  

Primer 1 (100 pM)   0.5 μl  

Primer 2 (100 pM)   0.5 μl  

dNTPs (10 mM)   0.5 μl  

10 x PCR buffer   2 μl  

Taq polymerase    0.5 μl  

Filled up to 20 μl with ddH2O and subjected to PCR 

Cloning PCR (2)  

Plasmid DNA (~ 200 ng)   1 μl  

Primer 1 (100 pM)   1 μl  

Primer 2 (100 pM)   1 μl  

dNTPs (10 mM)    1 μl  

MgCl2
 
(50 mM)    1.5 μl  

10 x PCR buffer    5 μl  

High fidelity polymerase   1 μl  

Filled up to 50 μl with ddH2O and subjected to PCR 

7.6.3 PCR programs 

Following PCR programmes were used in this study: 

 

Genotyping PINCH-1 and Cre-PCR   Genotyping-ILK-PCR 

 

step.....time(sec) ....temp(°C)    step..... time(sec) ....temp(°C) 

1...............300 ..............95     1................300 ..............95 

2................30 ...............95     2.................30 ...............95 

3................30 ...............63     3.................30 ...............66 

4................60 ...............72     4.................60 ...............72 
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5................30 ...............95     5.................30 ...............95 

6................30 ...............55     6.................30 ...............58 

7................60 ...............72     7.................60 ...............72 

8...............300 ..............72     8................300 ..............72 

9................ ∞.................4     9..................∞................. 4 

PCR reactions were performed for 35 cycles (step 5-7). A touch down program was 

applied from 63°C-55°C (Cre and PINCH-1) and 66°C-58°C (ILK) in 9 cycles by 

sequential reduction of the annealing temperature (-1°C / cycle) (step2-4). 

Cloning PCR long 

step..... time(sec) ....temp(°C) 

1................300 ..............95 

2.................30 ...............95 

3.................30 ...............66 

4................120 ..............72 

5.................30 ...............95 

6.................30 ...............58 

7................120 ..............72 

8................300 ..............72 

9..................∞................. 4 

PCR reactions were performed for 35 cycles (step5-7). A touch down program was 

applied from 66°C-58°C in 9 cycles by sequential reduction of the annealing 

temperature (-1°C / cycle) (step2-4). 

7.7 Agarose gel electrophoresis 

Agarose gel electrophoresis is a widely used method for separation and purification of 

DNA fragments. To prepare agarose gels an appropriate amount of Ultra pure Agarose 

was dissolved in 150 ml 1 x TAE buffer, boiled in a microwave, supplemented with 10 μl 

of ethidium bromide solution after boiling and then poured into a previously-prepared 

casting tray and allowed to set at RT. When the gel was ready to be loaded it was 

transferred into an electrophoresis chamber. Before loading onto the agarose gel, the 

DNA sample was mixed with 6 x DNA loading buffer. Samples were subjected to gel 

electrophoresis in 1 x TAE buffer at 70 – 120 V at RT. A 1 kb DNA ladder was used as a 
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size marker. After completing the electrophoresis, DNA samples were visualized under 

the 366 nm UV-light.  

TAE buffer (50x) 

Tris-base    242g 

EDTA     37.2g 

Glacial acetic acid  57.1ml 

filled up to 1000ml with H2O 

Agarose: Invitrogen, #15510-027 

Ethidiumbromid: Roth #2218.1  

Agarose: Invitrogen, UltraPureTM Agarose, #15510-027  

Ethidium bromide: Roth, #2218.1  

1 kb Ladder: Invitrogen, #15615-016 

7.7.1 Gel extraction of DNA from agarose gels 

DNA bands were excised and extracted from the agarose gels for cloning purposes. 

The excised DNA band was used to extract the DNA from the agarose gel using a 

Qiagen Gel Extraction Kit according to the manufacturer’s instructions.  

Qiagen Gel Extraction Kit, Qiagen, #20021 

7.8 Generation of Bcl-2 expression constructs 

A Bcl-2 cDNA with HindIII/XhoI restriction sites was amplified from wild type 

keratinocyte cDNA (kindly provided by Dr Katrin Lorenz-Baath) with the appropriate 

primers (7.6.1) and inserted in pEGFP (N1) vector (Clontech). 

7.9 Generation of EPLIN expression constructs 

An EPLINα cDNA with HindIII/XhoI restriction sites was amplified from wild type 

keratinocyte cDNA (kindly provided by Dr Katrin Lorenz-Baath) with the appropriate 

primers (7.6.1) and inserted in both pEGFP (N1) vector (Clontech) and pCHERRY (N1) 

vector. pCHERRY (N1) vector was kindly provided by R.Y. Tsien. 

7.10 Plasmids and cDNAs 

cDNA   backbone  provided by   reference 

RSU-1   pEGFP (N1)  Dr. M. Lou Cutler   (Dougherty et al., 2005b) 

PINCH-1  pEGFP (C1)  Dr. R. Fässler 

PINCH-1  pCLMFG  Dr. R. Fässler    
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Name  approach   resistance   source 

pCLMFG expression   ampicillin   Dr.Pfeifer (Bonn, Germany) 

pEGFP  expression  kanamycine  Clontech  

pCherry expression  kanamycine  Dr. Tsien 

   

7.11 Preparation of retrovirus 

All retrovirus preparations were performed in collaboration with Prof. Dr. Alexander 

Pfeifer (University of Bonn, Germany) and conducted by Hildegard Reiter. To produce 

VSV-G pseudotyped retroviral vectors, HEK293T were transiently transfected with the 

pCLMFG vector (7.10), packaging plasmids (encoding HIV gag, pol and rev) and a 

plasmid encoding for the envelope of the vesicular stomatitis virus G by a calcium 

phosphate method. The supernatant containing the VSV-G pseudotyped retrovirus was 

collected, centrifuged and directly used for infection of keratinocytes. 

7.12 Lipofectamine transfection of keratinocytes and endoderm cells  

Prior to transfection, both cell types were seeded on 6-well plates and grown overnight. 

When they reached 50-60% confluency, they were transfected with 1 µg (per well) 

indicated plasmid DNAs by using LipofectamineTM transfection reagent according to 

manufacturer’s instructions. 

LipofectamineTM transfection reagent: Invitrogen, #11668-019 

8. Microscopy 

8.1 Confocal microscopy 

Confocal images were taken using a confocal microscope (Leica, DMIRE2) with 

immersion oil objectives HCX PL APO 100 x/1.4-0.70, HCX PL APO 63 x/1.4-0.60 and 

a HC PL 40 x/0.70 dry objective. Images were acquired, and processed by Leica 

Confocal Software (version 2.5, Build 1227). 

8.2 Light microscopy of living cells 

Images of living cells were taken using an inverted light microscope (Zeiss, Axiovert 40 

CFL) equipped with a A – PLAN 10 x / 0.25 objective and a LCD camera (Prosilica). 

8.3 Light microscopy of histological sections 
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Images of histological sections were taken by a light microscope (Zeiss, Axioskop) 

equipped with a 5 x / 0.15 and 10 x / 0.30 objective (Zeiss, Plan-NEOFLUAR) and a 

LCD camera (Leica, DCC500). 

8.4 Total internal reflection fluorescence (TIRF) microscopy 

TIRF images were taken with an Axiovert 200M inverted microscope (Zeiss) with a 100× 

oil objective and a CoolSnap HQ CCD camera (Photometrics). Acquisition was 

controlled by Metamorph Software (Molecular Devices).  
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Results 

1. Analysis of PINCH-1 function in cell survival 

PINCH-1 depletion in mice leads to embryonic lethality shortly after implantation (Li et 

al., 2005). To elucidate the role of PINCH-1 in early embryonic development, ES cells 

were kept in suspension to generate EBs. EBs are multicellular three-dimensional 

structures that closely mimic the peri-implantation stage of development. The outer 

layer of the ES cell aggregates differentiates into primitive endoderm (PrE) cells that 

secrete the initial embryonic BM components. Subsequently, the cells adjacent to BM 

differentiate into columnar epithelium termed epiblast. The ES cells that have no contact 

with BM undergo apoptosis and form the central cavity (Montanez et al., 2007).  

PINCH-1-deficient embryos display an abnormal epiblast polarity, impaired cavitation, 

detachment of PrE and epiblast cells from the BM, and severe apoptosis of the 

endoderm cells (Li et al., 2005; Liang et al., 2005). PINCH-1 was also identified as an 

important survival factor in ES cell-derived EBs (Li et al., 2005). Besides, PINCH-1 was 

also reported to be a survival factor for tumor cells by enhancing the activities of the 

pro-survival proteins ERK1/2 and AKT (Chen et al., 2008; Eke et al., 2010; Sandfort et 

al., 2010). However, it remains elusive how PINCH-1 regulates cell survival in PrE. 

Therefore, we aimed at understanding the role of PINCH-1 in PrE cell survival. 

1.1 PINCH-1 is dispensible for endoderm differentiation  

Integrin-mediated signaling is important for the differentiation of PrE (Liu et al., 2009). It 

is not known whether PINCH-1 acts downstream of integrins to regulate PrE 

differentiation. To elucidate role of PINCH-1 in regulation of PrE differentiation we 

generated EBs from wild-type (wt) and PINCH-1-/- ES cells to investigate endoderm 

differentiation (Montanez et al., 2007). After 7 days wt (PINCH-1+/+) EBs consisted of an 

outer layer of endoderm cells, an inner layer of columnar pseudostratified epiblast cells, 

a thin and continuous BM between epiblast and endoderm, and a central cavity (Fig. 

1A). Immunostaining with antibodies against endoderm markers revealed that PrE cells 

expressed α-fetoprotein (AFP) and disabled homolog 2 (Dab2) in their cytoplasm and 

the endoderm-specific transcription factor GATA4 in their nuclei (Fig. 1A and data not 

shown). In line with previous observations, PINCH-1-/- EBs displayed abnormal epiblast 
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polarity, a discontinuous BM, detached PrE cells and impaired cavitation (Fig. 1A). In 

addition, DAPI staining showed condensed and fragmented nuclei in PrE cells of all 

PINCH-1-/- EBs analyzed (Fig. 1B). However, we found no apparent defects in the 

expression and localization of PrE markers such as AFP, GATA-4 and Dab-2 in PINCH-

1-/- endoderm cells (Fig. 1A and data not shown). 

 

Figure 1: PINCH-1 is dispensible for endoderm differentiation, but necessary for 

cell survival.  

(A) Immunostaining of endoderm markers GATA4 and disabled-2 (Dab-2) of 7 day old 

wt and PINCH-1-/- EBs. BM was visualized with LN and nucleus with DAPI. Scale bar: 

30 µm. (B) PINCH-/- endoderm cells showed condensed and fragmented nuclei 

(arrows). 

It has previously been reported that expression of GATA4 is sufficient for ES cells to 

differentiate into PrE (Fujikura et al., 2002). We expressed GATA4 in wt and PINCH-1-/- 

ES cells (Fig. 2A) and monitored the expression of the PrE markers AFP and variant 

Hepatocyte Nuclear Factor 1 (vHNF1) by RT-PCR. We found similar levels in wt and 

PINCH-1-/- cells (Fig. 2B). Collectively, these results indicate that PINCH-1 is 

dispensable for PrE differentiation, but required for its survival. 

A B 
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Figure 2: GATA4 expression is sufficient to induce PrE differentiation. 

(A) Western blot of the protein level of GATA4 in protein lysates of wt ES cells and 

GATA4 vector transfected cells. Tubulin serves as a loading control. (B) RT-PCR of the 

endoderm marker α-fetoprotein (AFP). GAPDH serves as a loading control. 

1.2 Loss of PINCH-1 triggers intrinsic apoptosis pathway of PrE cells 

The condensed and fragmented nuclei suggests a role for PINCH-1 in PrE cell survival. 

To test this, we analyzed EBs for apoptosis by TUNEL assay and anti-active caspase-3 

immuno-staining. In wt EBs, apoptotic cells were mainly observed at the center of EBs 

where cells are eliminated to create the pro-amniotic-like cavity and occasionally within 

the epiblast and very rarely in PrE cells (Fig. 2A). In contrast, PrE cells were undergoing 

apotosis in PINCH-1-/- EBs (Fig. 2A). Quantification of TUNEL-positive PrE cells 

showed a 3-fold increase of apoptotic cells in PINCH-1-/- EBs in comparison to wt EBs 

(Fig. 2B). These results suggest that PINCH-1 depletion leads to caspase-3-dependent 

apoptosis. 

Next we sought the mechanism by which PINCH-1 regulates apoptosis. It was 

previously reported that the unligated integrins of adherent cells can recruit caspase-8 

to the cell membrane that further triggers apoptosis (Fujikura et al., 2002). To test this, 

we immunostained wt and PINCH-1-/- EBs with an active caspase-8 antibody and 

demonstrated that both wt and PINCH-1-/- EBs have activated caspase-8 at the central 

cavity and very rarely at the epiblast or PrE cells (Fig. 3C). To elucidate whether 

mitochondrial apoptosis pathway is involved in the apoptosis of PINCH-1-/- PrE cells, 

we immunostained wt and PINCH-1-/- EBs using the 6A7 Bax antibody that recognizes 

activated Bax. PINCH-1-/- PrE cells displayed a strong and punctate active Bax staining 

in the cytoplasm (Fig. 2C), which strongly co-localized with the mitochondrial marker 

Mitotracker (Fig. 2D), suggesting that mitochondrial dysfunction is involved in apoptosis. 

Interestingly, almost all active Bax-positive PrE cells were still attached to the BM 

A B 
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indicating that apoptosis occurs before cell detachment (Fig. 2C). 

 

 

   

Figure 3: Loss of PINCH-1 leads to the activation of intrinsic apoptotic pathway. 

(A) Apoptosis assessed in wt and PINCH-1-/- EBs by TUNEL assay and cleaved-

caspase 3 immunostaining. BM was visualized with LN and nucleus with DAPI. Scale 

bar: 30 µm. (B) Quantification of TUNEL-positive endoderm cells in EBs. Data is 

presented as mean of number of positive cells/total from PINCH-/- endoderm cells and 

compared with that of the wt cells (normalized to 1). (C) Immunostaining of active 

caspase-8 and active-Bax in wt and PINCH-1-/- EBs. BM was visualized with LN and 

nucleus with DAPI. Scale bar: 30 µm. (D) Colocalization of active-Bax with a 

mitochondrial marker (Mitotracker) in PINCH-/- endoderm cells. Scale bar: 10 µm. 

1.3 Signaling pathways involved in increased apoptosis of endoderm cells 

A B 

C D 



80 
 

To study which signaling pathways are involved in the regulation of apoptosis in PINCH-

1-/- PrE cells, we tested several pathways that were previously shown to be important in 

cell survival regulation. 

1.3.1 PINCH-1 deletion leads to increased JNK activation 

PINCH-1 blocks Bax-dependent apoptosis of tumor cells via regulating Bim and ERK1/2 

activity (Chen et al., 2008). Furthermore, it was shown that PINCH-1 protects tumor 

cells from apoptosis through phosphorylation and activation of AKT (Eke et al., 2010). 

To test whether PINCH-1 also regulates phosphorylation of ERK1/2 and AKT in PrE 

cells, we measured their phosphorylation levels in lysates of wt and PINCH-1-/- PrE 

cells cultured on FN. PINCH-1-/- endoderm cells showed similar phosphorylation levels 

of ERK1/2 and AKT-Ser473 as wt cells, excluding a role for these two signaling 

molecules in the regulation of Bax levels (Fig. 4A and 4B). To test whether Bim is 

involved in apoptosis in PINCH-1-/- PrE cells, we checked total and phosphorylated Bim 

levels with a specific antibody that gives rise to a mobility shift when Bim is 

phosphorylated. Our results demonstrated that total and phospho-Bim levels were 

unaltered (Figure 4A). Collectively, these results rule out a role for ERK1/2, AKT and 

Bim in the regulation of apoptosis in PINCH-1-/- PrE cells. 

JNK signaling is important for embryo development. A prolonged activation of JNK can 

also induce intrinsic apoptotic pathway (Ip and Davis, 1998). To understand whether 

PINCH-1 loss affects JNK signaling, we checked phosphorylation levels in cell lysates 

of wt and PINCH-1-/- PrE cells. The phosphorylation levels of JNK in PINCH-1-/- cells 

remained high in comparison to control cells (Fig. 4A).  

To test whether increased JNK activity is responsible for higher active Bax levels, we 

applied JNK inhibitor (SP600125) on the PINCH-1-/- PrE cells. As anticipated, DMSO 

(vehicle)-treated cells had high active JNK levels, whereas inhibitor-treated PINCH-1-/- 

cells displayed decreased activeJNK levels upon inhibition. However, inhibition of JNK 

phosphorylation did not alter active Bax levels, indicating that blocking JNK signaling is 

not affecting Bax activity in PINCH-1-/- PrE cells (Fig. 4C).  
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Figure 4: Bim/ERK and AKT pathways are not but JNK pathway is altered upon 

PINCH-1 loss  

(A)Western blot of the protein levels of total and phospho-ERK and Bim in protein 

lysates of endoderm cells collected from wt and PINCH-1-/- EBs and cultured on FN for 

24 and 48 hours. GAPDH serves as a loading control. (B) Western blot of the proteins 

levels of phospho-ERK, phospho-AKT and phospho-JNK in protein lysates of endoderm 

cells collected from wt and PINCH-1-/- EBs and cultured on FN for 48 hours. ERK, AKT 

and JNK total protein levels serves as a loading control. (C) Western blot of the protein 

levels of total-JNK, phospho-JNK and (active) Bax in protein lysates of endoderm cells 

collected from PINCH-1-/- EBs, cultured on FN and treated with JNK-inhibitor 

(SP600125). JNK total protein levels and GAPDH serve as a loading control. 

1.3.3 PINCH-1-deficient PrE cells fail to spread on ECM proteins and have decreased Bcl-

2 levels 

Integrins have been shown to be important for cell survival (Lee and Ruoslahti, 2005). 

We observed that neither Bim/ ERK pathway nor JNK pathway is responsible for 

increased active Bax levels in PINCH-1-/- PrE cells. Bax activity can be decreased by 

Bcl-2 which can be regulated by FN-induced α5β1 integrin signaling. Therefore, we 

tested integrin-mediated cell signaling. To this end, we isolated PrE cells from wt and 

PINCH-1-/- EBs (Montanez et al., 2007) and cultured them on fibronectin (FN) and LN-

111. After plating, wt endoderm cells spread on FN and LN-111 and formed focal 

adhesions (FAs) and actin stress fibers, as revealed by  phalloidin staining(Fig. 5A). In 

contrast, PINCH-1-/- PrE cells failed to spread on both substrates and developed very 

few FAs and stress fibers (Fig. 5A and 5B). Moreover, PINCH-1-/- PrE cells developed 

multiple membrane blebs associated with apoptosis (Fig. 5B). 

A B C 
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Figure 5:  PINCH-1 loss leads to impaired cell spreading and formation of 

membrane blebs 

(A) Phase contrast micrographs of wt (upper panel) and PINCH-1-/- (lower panel) PrE 

cells cultured on FN for 16 hours. The cells were fixed and immunostained for PINCH-

1/2 and GATA4. F-actin was stained with phalloidin-TRITC. Scale bar: 80 µm. (B) 3D 

reconstruction of wt and PINCH-1-/- PrE cells cultured on FN for 16 hours. 

In line with previous reports, we demonstrated that decreased integrin function is 

responsible for the reduced Bcl-2 levels.To further confirm this, we immunostained wt 

and PINCH-1-/- EBs with Bcl-2 antibody and observed that Bcl-2 levels were decreased 

upon PINCH-1 loss (Fig. 6A). We also compared Bcl-2 levels in wt and PINCH-1-/- EB 

and PrE cell lysates and found that Bcl-2 levels were decreased both in PINCH-1-/- EBs 

and FN-adhered PrE cells (Fig. 6B and 6C). To test whether reintroducing Bcl-2 in 

PINCH-1 deficient endoderm cells would rescue cell survival defect, we tried to 

overexpress a GFP-tagged Bcl-2 cDNA. Although overexpression was successful, our 

attempts to quantify these cells failed due to the very few number of transfected PrE 

cells on glass coverslips. 

Together these results indicate that PINCH-1 supports integrin binding to FN and Bcl-2 

expression in the PrE cells. 

A B 
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Figure 6: Impaired Bcl-2 signaling in PINCH-1-deficient EBs and endoderm cells  

(A) Immunostaining of Bcl-2 in wt and PINCH-1-/- EBs. BM was visualized with LN and 

nucleus with DAPI. Scale bar: 30 µm. (B) Western blot analysis of the protein levels of 

Bcl-2 in protein lysates of EBs. (C) Western blot of the protein levels of Bcl-2 in protein 

lysates of endoderm cells collected from wt and PINCH-/- EBs. GAPDH serves as a 

loading control. 

1.3.4 Loss of PINCH-1 leads to reduced levels of RSU-1 

We demonstrated that JNK inhibition does not alter Bax levels (Fig. 4C). To determine 

whether the sustained JNK activity is involved in the apoptosis of PINCH-1-/- PrE cells, 

we treated PINCH-1-/- cells with the specific JNK inhibitor SP600125 or DMSO (vehicle) 

and assayed apoptosis after 48 hours. Blocking JNK reduced the apoptosis rate of 

PINCH-1-/- PrE cells by around 40-50%, (Fig. 7) indicating that JNK plays a prominent 

role in PINCH-1-dependent survival of endoderm cells. 

A 

B C 
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Figure 7: JNK inhibiton partially recues apoptosis of PINCH-1-/- endoderm cells 

Quantification of the percentage of TUNEL-positive cells/total in PINCH-/- endoderm 

cells cultured on FN and treated with the JNK inhibitor SP600125 (10 μM) or DMSO 

(vehicle). 

We next determined the mechanism by which PINCH-1 regulates JNK signaling. 

PINCH-1 was shown to interact with and regulate the expression of RSU-1, which is a 

negative regulator of JNK signaling in flies (Kadrmas et al., 2004; Dougherty et al., 

2008). To determine the subcellular distribution of RSU-1 during peri-implantation, we 

performed immunostaining of 7 day-old EBs using a specific antibody against RSU-1. 

Staining revealed that RSU-1 is highly expressed in PrE, where it partially colocalizes 

with LN, and absent in the epiblast (Fig. 8A). To determine whether RSU-1 colocalizes 

with PINCH-1 in PrE cells, we expressed GFP-tagged PINCH-1 cDNA in wt PrE cells 

and stained them with RSU-1 antibody, and found that PINCH-1 and RSU-1 colocalize 

at the FA (Fig. 8B). Interestingly, PINCH-1-/- PrE cells displayed a weak RSU-1 staining 

when compared to wt PrE cells (Fig. 8A). In line with these findings, WB analysis of PrE 

cells showed that the protein levels of RSU-1 were significantly reduced in PINCH-1-/- 

PrE cells in comparison to wt cells (Fig. 8C). 
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Figure 8: RSU-1 localizes to BM in EBs and to FAs in endoderm cells 

(A) Immunostaining of RSU-1 in wt and PINCH-1-/- EBs. Scale bar: 30 µm. BM was 

visualized with LN and nucleus with DAPI. (C) Immunostaining of RSU-1 in endoderm 

cells transfected with GFP-tagged PINCH-1 cDNA (D) Western blot of the protein level 

of RSU-1 in protein lysates of endoderm cells collected from wt and PINCH-1-/- EBs 

and cultured on FN for 48 hours. Tubulin serves as a loading control. 

Next, we overexpressed a GFP-tagged RSU-1 cDNA in PINCH-1-/- cells (Fig. 9A) and 

monitored JNK phosphorylation. We found that the overexpression of RSU-1 reduced 

the levels of phosphorylated JNK in PINCH-1-/- PrE cells to wt levels (Fig. 9B).  

Together these results indicate that PINCH-1 stabilizes RSU-1 and in turn regulates 

JNK signaling in PrE cells. 

 

A B C 
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Figure 9: Overexpression of GFP-tagged RSU-1 reduces increased JNK levels 

(A) Western blot of RSU-1 in protein lysates of wt, PINCH-/- cells, and PINCH-/- cells 

transfected either with GFP or with RSU-1GFP. GAPDH serves as a loading control. (B) 

Western blot of total-JNK and phospho-JNK in protein lysates of endoderm cells. 

A B 
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2. Analysis of PINCH-1 function in cell-cell adhesions of keratinocytes 

Mice that lack PINCH-1 die early during pre-implantation stage of development due to 

abnormal epiblast polarity, impaired cavitation, detachment of endoderm and epiblast 

cells from the BM and severe apoptosis of the endoderm cells (Li et al., 2005; Liang et 

al., 2005). Interestingly, PINCH-1 ablation also leads to endoderm survival defects and 

cell-cell adhesion defects of endoderm and epiblast that are not observed in ILK and β1 

integrin knock-out mice (Fassler and Meyer, 1995; Sakai et al., 2003). However PINCH-

1 is not known to have a function in cell-cell adhesions thus far. To elucidate the role of 

PINCH-1 in cell-cell adhesions and to understand the underlying molecular 

mechanisms, we depleted PINCH-1 specifically in epidermal and HF keratinocytes. 

2.1 Loss of PINCH-1 in epidermis leads to impaired cell-ECM and cell-cell 

adhesions 

To study PINCH-1 in the epidermis, we crossed mice with a loxP-flanked PINCH-1 gene 

(PINCH-1fl/fl) (Li et al., 2005) and mice expressing the Cre recombinase under control of 

the K5 promoter (K5-Cre) (Ramirez et al., 2004) to produce PINCH-1K5Cre mice. PINCH-

1fl/wt mice were used as a wild type control. Western blotting (WB) of epidermal lysates 

and immunostaining of back skin confirmed the absence of PINCH-1 in the PINCH-

1K5Cre epidermis (Fig. 10B). Since the antibody used in this study recognizes both 

PINCH-1 and PINCH-2, we conclude that PINCH levels are increased only in the 

keratinocytes of postnatal day 56 (p56) PINCH-1K5Cre mice (Fig. 10A), which may 

suggest that PINCH-2 is de novo expressed in p56 PINCH-1K5Cre keratinocytes. 

However, the mice used for our experiments were never older than p14. On the other 

hand, loss of PINCH-1 expression was accompanied by a reduction of ILK protein levels 

(Fig. 10A and 10B). 
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Figure 10: PINCH-1 is efficiently deleted in epidermis 

(A) PINCH and ILK protein levels in epidermal lysates of PINCH-1 Co and PINCH-

1K5CRE mice at P0, P7, P14 and P56. (B) PINCH and Nidogen immunostaining on skin 

sections from P0 back skin. Note that PINCH is totally absent in the epidermis of 

PINCH-1K5Cre mice. Scale bar: 50µm. 

PINCH-1K5Cre animals were normal at birth. While control mice developed a smooth hair 

coat, PINCH-1K5Cre animals had a scattered hair coat with areas of alopecia by p14 (Fig. 

11A). At 8 weeks of age, when the first postnatal hair cycle was completed in control 

mice, PINCH-1K5Cre animals were almost bald. Skin histology revealed that IFE of 

PINCH-1K5Cre mice was hyperthickened and contained blisters at the dermal-epidermal 

junctions (DEJ) (arrow in Fig. 11B), suggesting defects in the intact BM and had 

flattened keratinocytes and aberrant HFs at p14.  
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Figure 11: Keratinocyte-specific deletion of PINCH-1 leads to skin abnormalities 

(A) Control (PINCH-1 control) and PINCH-1K5Cre animals at 2 and 7 weeks of age. (B) 

Hematoxylin-eosin staining of back skin sections of 2 week old PINCH-1 control and 

PINCH-1K5Cre mice. PINCH-1K5Cre skin contains hyperplastic hair follicles that have 

reached the subcutis or shortened and developmentally arrested hair follicles. PINCH-

1K5Cre epidermis is hyperthickened and often detached from the underlying dermis 

(arrow); bar represents 100µm. Epidermis (E); dermis (D); panniculus carnosum (PC); 

subcutis (SC). 

The hyperthickened IFE was not due to increased proliferation of basal keratinocytes; 

as the number of proliferating cells was similar in control and PINCH-1K5Cre epidermis. 

While the proliferation was restricted to the basal cell layer in control epidermis, 

proliferating cells were frequently observed in suprabasal cells of the PINCH-1K5Cre 

epidermis (Fig. 12B). In control mice, HF morphogenesis was completed at p14 with all 

HFs residing deep in the subcutis. In contrast, PINCH-1K5Cre animals possessed two 

types of HFs: fully developed HFs, which reached the subcutis and contained a 

hyperthickened ORS; and short HFs, which resided in the dermis with an abnormal 

shape and with either a distorted or no DP (Fig. 12A). 

 A 
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Figure 12: PINCH-1 deletion leads to abnormal hair follicles and suprabasal 

proliferating cells in skin 

(A) High magnification of hematoxylin-eosin stained hair follicles from P14 back skin. 

PINCH-1K5Cre HFs either have multilayered outer root sheath (ORS) and a condensed 

dermal papilla (DP) or show premature growth arrest with a malformed or absent DP. 

(B) Ki67 staining on back skin of P7 mice. Note the presence of suprabasal proliferating 

cells in PINCH-1K5Cre epidermis. Scale bar represents 50µm. 

Ultrastructural analyses revealed that PINCH-1K5Cre epidermis displayed prominent cell-

cell adhesion defects with extensive intercellular spaces between cells, whereas control 

skin had tightly sealed cell-cell adhesions (arrowheads in Fig.13A). Despite these 

enlarged intercellular spaces, E-cadherin, F-actin, Desmoplakin and Plakoglobin 

localized to cell-cell junctions (Fig. 13B and data not shown).  These findings 

demonstrate that PINCH-1 stabilizes cell-matrix and cell-cell adhesions in the 

epidermis. 
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Figure 13: PINCH-1 deletion leads to increased intercellular spacing 

(A) Electron microscopic images of back skin from 2 week old mice. Both, PINCH-1 

control and PINCH-1K5Cre skin form desmosomal contacts. Intercellular spaces are 

increased in the PINCH-1K5Cre epidermis (arrowheads). Left scale bar represents 0.1 µm 

and right scale bar represents 0.2 µm. (B) Immunohistochemistry on 2 week-old skin 

sections of control and PINCH-1K5Cre animals. Localization of E-cadherin is not impaired 

in the absence of PINCH-1. Scale bar represents 50µm.  

2.2 PINCH-1 is required for keratinocyte adhesion and spreading but not for the 

formation of cell-cell junctions 

To test cell-ECM adhesion and spreading we cultured control and PINCH-1-/- primary 

keratinocytes on fibronectin (FN) and Collagen I (Col-I). Control cells adhered and 

spread, but PINCH-1-/- primary keratinocytes grew in poorly-spread colonies (Fig. 14A). 

PINCH-1-/- cells achieved a 4.3-fold smaller spreading area than control cells over a 

time period of 20 hours (Fig. 14B).  

A 

B 



92 
 

 

Figure 14: PINCH-1 deletion leads to a spreading defect 

(A) Brightfield images of control and PINCH-1-/- primary keratinocytes. Cells were 

cultured for 6 days. PINCH-1-/- keratinocytes form clusters of small and round cells. 

Scale bar represents 100µm. (B) Spreading quantifications of primary control and 

PINCH-1-/- cells plated on a mixture of collagen I and fibronectin. Spreading of more 

than 100 cells was determined at indicated times (error bars indicate the 95% CI of 

mean values). 

We next immunostained primary cells for ILK, F-actin and Paxillin.  Control cells formed 

stress fibers that attached to FAs containing ILK and Paxillin. In contrast, PINCH-1-/- 

cells failed to form FAs containing ILK and Paxillin, and no stress fibers were observed 

(Fig. 15A).  

Next, we analyzed cell-cell adhesion formation by differentiating control and PINCH-1-/- 

primary keratinocytes with Ca2+ and immunostaining them for E-cadherin. Although they 

remained small, round and poorly-spread, PINCH-1-/- keratinocytes were able to 

assemble cell-cell junctions containing F-actin and E-cadherin, comparable to the 

control cells (Fig. 15A). Importantly, the architecture of epithelial sheets of PINCH-1-/- 

cells displayed an increased thickness when compared to control cells, most likely due 

to the spreading defect (Fig. 15B).  
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Figure 15: Ablation of PINCH-1 leads to impaired FAs, but does not affect 

formation of cell-cell junctions 

(A) Immunostaining of primary control, PINCH-1-/- keratinocytes for ILK, F-actin and 

paxillin. PINCH-1-/- cells are poorly spread, displaying only few FAs. Scale bar 

represents 50µm. (B) Immunostaining of primary control and PINCH-1-/- keratinocytes 

differentiated with 1mM CaCl2. E-cadherin localizes to cell-cell junctions in differentiated 

control and PINCH-1-/- keratinocytes. Left panels show a perpendicular view of a 

confocal Z-stack. Note the increased thickness of PINCH-1-/- keratinocytes. Scale bar 

represents 50µm. 

Taken together, these data indicate that PINCH-1 supports integrin-dependent functions 

but is not required for the formation of cell-cell adhesions.  

2.3 PINCH-1 localizes to cell-cell adhesions in a ROCK-dependent manner 

Our findings with TEM analysis as well as previous reports (Li et al., 2005) demonstrate 

that PINCH-1 is required to maintain cell-cell adhesions. We therefore investigated the 

localization of PINCH-1 to cell-cell junctions. PINCH-1 localization to cell-cell junctions 

was enhanced after increasing intracellular tension by HGF treatment (Fig. 16A). 

Treating cells with the myosin inhibitor blebbistatin dramatically reduced PINCH-1 

localization to cell-cell junctions while leaving E-cadherin localization unaltered (Fig. 

16B). Consistent with other reports (Yamada and Nelson, 2007), inhibition of ROCK 

disassembled cortical actin bundles, but the cell-cell contacts remained intact and it also 

abolished the localization of PINCH-1 to cell-cell junctions, suggesting that the tension 

required for PINCH-1 localization to cell-cell junctions originated in a ROCK/myosin-II-

A B 



94 
 

dependent manner (Fig. 16B). Expression levels of PINCH-1 and E-cadherin were not 

altered upon HGF treatment (Fig. 16C).  

 

 

Figure 16: PINCH-1 localizes to cell-cell junctions in a tension-dependent manner 

(A) Immunostaining of EGFP-tagged PINCH-1 rescued keratinocytes for PINCH-1, E-

cadherin and F-actin. Cells were differentiated overnight and tension was then induced 

by 50ng/ml HGF treatment for 1 hour. (B) PINCH-1 localizes to cell-cell junctions after 

HGF treatment, and either with 25µM blebbistatin treatment for 15 minutes or 10µM Y-

27632 for 1 hour removes PINCH-1 from cell-cell junctions. Scale bar represents 50µm. 

(C) WB analysis of EPLIN, F-actin and E-cadherin after HGF treatment. Scale bar 

represents 50µm. 

These results indicate that PINCH-1 localization to cell-cell junctions is controlled by 

force which is established by ROCK-mediated myosin-II phosphorylation. 

2.4 PINCH-1 interacts with a novel partner, EPLIN 

To understand how PINCH-1 regulates cell-cell adhesion maintenance in the epidermis, 

we screened for novel interaction partners for PINCH-1 by performing label free pull-

down experiments with EGFP-tagged PINCH-1 expressed in immortalized PINCH-1-/- 

(PINCH-1 Rescue) keratinocytes followed by mass-spectrometric analyses. WB of cell 

lysates from PINCH-1-/- cells showed that they are totally devoid of PINCH and that the 

expression levels of ILK and parvins decrease upon PINCH-1 loss and are restored by 

reconstitution of GFP-tagged PINCH-1 (Fig. 17A). Primary and immortalized PINCH-1-/- 

keratinocytes share the same spreading, adhesion and actin distribution defects; which 



95 
 

were fully rescued upon re-expression of EGFP-PINCH-1 (Fig. 17B and 17C and data 

not shown).  

 

 

Figure 17: Generation of immortalized PINCH-1 control, PINCH-1-/- and PINCH-1 

rescue cells 

(A) Western blot analysis of protein lysates from PINCH-1 Co, PINCH-1-/- and EGFP-

tagged PINCH-1 rescued keratinocytes. PINCH-1-/- keratinocytes express lower levels 

of ILK and parvins. (B) Spreading quantification of PINCH-1 control, PINCH-1-/- and 

EGFP-tagged PINCH-1 rescued cells. Reintroducing EGFP-tagged PINCH-1 rescues 

the spreading defect. (C) Immunostaining of immortalized and cloned control, PINCH-1-

/- and EGFP-tagged PINCH-1 rescued keratinocytes. EGFP-tagged PINCH-1 localizes 

to FAs and rescues the spreading defect of PINCH-1-/- cells. 

Among the binding partners, there were known PINCH interacting proteins such as ILK, 

and novel PINCH binding partners such as EPLIN (Fig. 18A). Consistent with the 

A 
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proteomics data, EPLIN was readily detected in GFP-PINCH-1 immunoprecipitates of 

PINCH-1 Rescue keratinocyte lysates (Fig. 18B) and PINCH-1 was detected in GFP-

EPLIN immunoprecipitates of GFP-EPLIN expressing but not of only GFP expressing 

keratinocyte lysates (Figure 18B).  

 

Figure 18: EPLIN is a novel PINCH-1 interacting protein 

(A) Volcano plot of label-free mass spectrometry performed with control and PINCH-1-/- 

cells rescued with EGFP-tagged PINCH-1 following GFP-IP. EPLIN is identified as a 

new interacting protein of PINCH-1. (B) GFP-IP of EGFP-tagged PINCH-1 and control 

cells. Note that EPLIN can only be co-IPed when GFP-tagged PINCH-1 is present. 

In addition, α-catenin, which has previously been shown to directly associate with 

EPLIN (Abe and Takeichi, 2008), was detected in the EPLIN immunoprecipitates of 

PINCH-1 expressing keratinocyte and PINCH-1-/- keratinocyte lysates (Fig. 19A) 

indicating that the interaction between EPLIN and α-catenin occurs independent of 

PINCH-1. Moreover, EPLIN can also be detected in endogenous PINCH-1 

immunoprecipitates of PINCH-1 control cell lysates (Fig. 19B).  
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Figure 19: Confirmation of the interaction between PINCH-1 and EPLIN 

(A) GFP-IP with immortalized PINCH-1 Co and PINCH-1-/- cells, transfected either with 

EPLIN-GFP or GFP alone. Note that the interaction between EPLIN and PINCH-1 can 

only be observed when cells express PINCH-1 and GFP-tagged EPLIN. (D) PINCH-1 

immunoprecipitation of control cells, blotted for EPLIN and PINCH. Note that rabbit 

serum is used as a control and co-IP of EPLIN is only observed when PINCH-1 serum 

is used. 

Immunostainings revealed that EPLIN and PINCH-1 co-localized with vinculin at FAs 

(Figure 20). However, in PINCH-1-/- keratinocytes EPLIN failed localize to FAs, 

indicating that PINCH-1 is necessary to recruit EPLIN to FAs. 
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Figure 20: EPLIN localizes to FAs  

Immunostaining of control, PINCH-1-/- and EGFP-tagged PINCH-1 rescued cells for 

EPLIN and vinculin. EPLIN colocalizes with vinculin in control and EGFP-tagged 

PINCH-1 rescued keratinocytes. In PINCH-1-/- keratinocytes EPLIN fails to colocalize 

with PINCH-1 in FAs. Scale bar represents 50µm. 

2.5 PINCH-1 and EPLIN cooperation is essential both for cell-ECM and cell-cell 

adhesion maintenance 

Having found that EPLIN localization is altered upon loss of PINCH-1, we investigated 

total expression levels of EPLIN in control, PINCH-1-/- and PINCH-1 Rescue 

keratinocytes and found that EPLIN expression is decreased in the PINCH-1-/- cells 

(Fig. 21A). To determine whether ectopic EPLIN expression would rescue the spreading 

failure, we overexpressed Cherry-tagged EPLIN in PINCH-1 Rescue and PINCH-1-/- 

keratinocytes and found that overexpression of EPLIN in PINCH-1-/- cells was not 

sufficient to rescue the spreading failure (Fig. 21B), suggesting that both PINCH-1 and 

EPLIN should be present at FAs to mediate cell spreading.  
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Figure 21: Overexpression of EPLIN is not sufficient to rescue the spreading 

defect of PINCH-1-/- cells 

(A) Western Blot analysis of EPLIN in undifferentiated control, PINCH-1-/- and PINCH-1 

Rescue cells. Tubulin shows equal amounts of loading. (B) Overexpression of Cherry 

tagged EPLIN on PINCH-1 Rescue and PINCH-1-/- cells. Note that EPLIN 

overexpression is not sufficient to rescue spreading defect of PINCH-1-/- cells. Scale 

bar represents 50µm. 

EPLIN was also detected in AJs, mediating the linkage of the cadherin-catenin complex 

to F-actin (Abe and Takeichi, 2008). We confirmed that EPLIN colocalized with E-

cadherin at AJs of differentiated control keratinocytes (Fig. 22A). Interestingly, in the 

absence of PINCH-1, although E-cadherin localization was not altered, EPLIN was no 

longer detected in AJs (Fig. 22A). To further support the hypothesis that PINCH-1 is 

necessary for EPLIN localization to AJs, we analyzed PINCH-1 control and PINCH-

1K5Cre back skin sections of p14 animals. We found that EPLIN was localized to cell-cell 

junctions in control skin whereas it was distributed in a more diffused manner in the 

cytoplasm of the keratinocytes of PINCH-1K5Cre mice (Fig. 22B). 
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Figure 22: EPLIN localizes to AJs in a PINCH-1 dependent manner 

(A) Immunostaining of immortalized control and PINCH-1-/- keratinocytes after 

differentiation. E-cadherin localizes to cell-cell junctions in control keratinocytes. EPLIN 

localization is impaired in PINCH-1-/- keratinocytes. (B) Immunohistochemistry of EPLIN 

and E-cadherin on control and PINCH-K5 skin. Note that in PINCH-1K5Cre skin, EPLIN is 

not localizing to cell cell-cell junctions, but rather has a diffused localization pattern. 

Scale bar represents 50µm; scale bar in the insert represents 25µm. 

2.5.1 EPLIN localization to FAs and AJs in ILK deficient cells is not impaired 

As a core component of the IPP complex, the lower ILK expression levels in PINCH-1-/- 

cells may be responsible for absence of EPLIN in the FAs. Therefore, we tested 

whether EPLIN localization would be altered upon ILK loss. EPLIN localized to FAs in 

both control and ILKK5Cre cells. These results demonstrated that ILK is not necessary to 

recruit EPLIN to FA sites (Fig. 23A). 

We further investigated whether ILK depletion would lead to absence of EPLIN from the 

AJs. EPLIN immunostaining on control and ILKK5Cre primary keratinocytes revealed that 

loss of ILK did not alter localization of EPLIN to AJs, suggesting that EPLIN cooperates 

specifically with PINCH-1 to maintain stable AJs (Fig. 23B).  

A B 
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Figure 23: ILK depletion does not alter EPLIN localization to FAs and AJs  

(A) Immunostaining for EPLIN on undifferentiated ILK control and ILK-/- primary cells. 

Note that EPLIN can localize to FAs in ILK control cells. Vinculin staining shows the 

FAs. Absence of ILK does not disturb EPLIN localization. (B) Immunostaining for EPLIN 

on differentiated ILK control and ILKK5Cre primary cells. Note that EPLIN is observed at 

the adhesion junctions. E-cadherin staining clearly points out the cell-cell junctions. In 

the ILKK5Cre cells, EPLIN is still present at cell-cell junctions.  

Our results as well as others’ (Legate et al., 2006) have confirmed that protein levels of 

PINCH are decreased in the absence of ILK. However, it remains elusive if PINCH is 

able to localize to FA sites when ILK is depleted. To investigate this, we overexpressed 

GFP-tagged PINCH-1 as well as Cherry-tagged Paxillin and performed total-internal 

reflection fluorescence microscopy (TIRF). When ILK is depleted, GFP-tagged PINCH-1 

can localize to FAs which are marked by paxillin (Fig. 24), indicating that in the absence 

of ILK, the remaining amounts of PINCH-1 is not only sufficient to for self-recruitment 

but for EPLIN recruitment to FA sites.  
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Figure 24: PINCH-1 is able to localize to FAs in the absence of ILK 

Snaphots of live ILKK5Cre cells overexpressing GFP-PINCH-1 and Paxillin-Cherry taken 

by TIRF microscope. Scale bar represents 50µm.  

2.5.2 ILK can go to cell-cell junctions of PINCH-1 deficient keratinocytes 

ILK was reported to localize to AJs in differentiating keratinocytes (Vespa et al., 2003). 

We next studied ILK localization by overexpressing GFP-tagged ILK in control and 

PINCH-1-/- cells. Our results showed that GFP-tagged ILK can be recruited to AJs even 

in the absence of PINCH-1 (Fig. 25A and 25B).  
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Figure 25: ILK is able to localize to cell-cell junctions, but not sufficient to recruit 

EPLIN in the absence of PINCH-1 

(A) Immunostaining for ILK-GFP, F-actin and E-cadherin on differentiated PINCH-1 

control and PINCH-1-/- cells. E-cadherin marks the AJs. (B) Immunostaining for EPLIN 

and E-cadherin on differentiated PINCH-1 control and PINCH-1-/- cells. Note that 

EPLIN is not able to localize to AJs when ILK is overexpressed (bar represents 50µM). 

Taken together, our data indicate that in the absence of PINCH-1, EPLIN 

overexpression is not sufficient to rescue the spreading defect of PINCH-1-/- 

keratinocytes and that PINCH-1, but not ILK, is essential for the recruitment of EPLIN 

both to cell-matrix interfaces and AJs. 

2.6 PINCH-1 localization to cell-cell junctions is not dependent on EPLIN 

To understand whether EPLIN is required for the localization of PINCH-1 to cell-cell 

junctions, we transiently silenced EPLIN in control cells with two different siRNA 

oligonucleotides. EPLIN knockdown reduced the presence of PINCH at the FAs without 

affecting PINCH protein levels (Fig. 26A and 26B).  
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Figure 26: EPLIN depletion leads to less PINCH-1 localizing to FAs 

(A) Immunostaining of PINCH and EPLIN. siRNA-mediated knock down of EPLIN was 

performed by using two different siRNA oligos. In control keratinocytes, EPLIN knock 

down leads to aberrant cell spreading and impaired localization of PINCH to FAs. (B) 

Western blot analysis of protein lysates from control keratinocytes transfected with 

either siControl or siEPLIN oligos. EPLIN knock-down has no effect on protein 

expression levels, but alters their localization. 

EPLIN modulates stability of cell-cell junctions by regulating accumulation of E-cadherin 

at cell-cell junctions (Abe and Takeichi, 2008). Our data are in line with the previous 

observations that silencing EPLIN leads to irregular accumulation of E-cadherin at cell-

cell contact sites (Fig. 27A and 27B).  

  

Figure 27: EPLIN depletion leads to irregular AJs 

(A) Immunostaining of EPLIN and E-cadherin in differentiated control keratinocytes 

upon siRNA-mediated EPLIN depletion. E-cadherin localizes to cell-cell junctions in 

keratinocytes transfected with control siRNA, while EPLIN silencing leads to zipper-like 

cell-cell junctions. Scale bar represents 50µm. (B) Western blot analysis of protein 
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lysates from differentiated control keratinocytes transfected with either siControl or 

siEPLIN oligos.  

Since PINCH-1 localization to AJs is a tension-dependent process, we treated cells with 

HGF following EPLIN silencing and differentiation. Upon tension increase, PINCH-1 

expression levels stayed the same and PINCH-1 was observed at AJs. Moreover, 

PINCH-1 recruitment to AJs appeared to be independent from the presence of EPLIN 

(Fig. 28A and 28B). 

  

Figure 28: EPLIN depletion does not alter tension-dependent PINCH-1 localization 

to AJs 

(A) Immunostaining of PINCH-1 control cells for PINCH and EPLIN after siRNA-

mediated EPLIN depletion. PINCH-1 localizes to cell-cell junctions independent of 

EPLIN. (B) Western blot analysis of protein lysates from differentiated control 

keratinocytes transfected with either siControl or siEPLIN oligos after HGF treatment. 

Scale bars represent 50µm. 

Taken together, these data suggest that, although PINCH-1 is required for the 

localization of EPLIN to FAs and cell-cell junctions in keratinocytes, EPLIN is not crucial 

for PINCH-1 localization to cell-cell junctions and is only partially important for FA 

targeting of PINCH-1. 
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Discussion 

1. The role of PINCH-1 in PrE cell survival 

Genetic deletion of PINCH-1 gene in mouse leads early embryonic lethality and 

embryos display abnormal epiblast polarity, impaired cavitation, and detachment of 

endoderm and epiblast cells from the BM and severe apoptosis of the endoderm cells. 

How PINCH-1 is involved in cell survival regulation is not understood.  

In this study we demonstrate that PINCH-1 is dispensable for the differentiation of 

extraembryonic endoderm however it is essential for its survival. We demonstrated that 

loss of PINCH-1 results in apoptosis of endoderm cells, giving rise to increased active 

Bax levels, caused by impaired integrin signaling that leads to reduced Bcl-2 levels. We 

also observed sustained levels of phosphorylated JNK leading to apoptosis via a Bax-

independent mechanism. Moreover, we showed that the protein levels of PINCH-

interacting protein RSU-1 that is a negative regulator of JNK signaling are reduced in 

the absence of PINCH-1.  

1.1 Bcl-2 family proteins in the regulation of apoptosis in PINCH-1-deficient PrE 

cells 

Apoptosis can occur either following the extrinsic or the intrinsic pathway. In our study, 

we showed that caspase-8 was not differentially-regulated in PINCH-1-/- PrE cells in 

comparison to the wt PrE cells, ruling out the possible extrinsic apoptotic pathway as 

cause for the apoptosis of the PrE. Therefore, we tested the intrinsic apoptotic pathway. 

The mitochondrial intrinsic apoptotic pathway is regulated by the balance between anti-

apoptotic and pro-apoptotic members of the Bcl-2 family proteins (Tait and Green, 

2010). The activity of these proteins is highly regulated at multiple levels such as at 

transcriptional, post-transcriptional and post-translational levels (Tait and Green, 2010). 

ERK protects cells from intrinsic apoptosis by phosphorylating and leading to 

proteasomal degradation of Bim (Ley et al., 2005). Moreover, it was previously shown 

that PINCH-1 protects cancer cells from Bax-dependent apoptosis by regulating the 

ERK/Bim pathway (Chen et al., 2008). Furthermore, deletion of PINCH-1 in tumor cells 

also leads to a reduced phosphorylation of the Ser473 residue from the pro-survival 
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protein AKT, which increases the apoptosis rate of PINCH-1-deficient tumor cells (Eke 

et al., 2010; Sandfort et al., 2010). We found that deletion of the PINCH-1 gene in PrE 

cells does not affect ERK or AKT activation. Moreover, we also found normal total Bim 

expression and phosphorylation levels in PINCH-1-deficient PrE cells.  

These results indicate that increased active Bax levels in the PINCH-1 null PrE cells are 

regulated neither by Bim/ERK nor by AKT pathway. These data underline that 

regulation of cell survival by PINCH-1 acts via a different mechanism in PrE cells in 

comparison to tumor cells. 

1.2 Integrin signaling and its role in apoptosis 

β1 integrins are highly expressed in the early mouse embryo and are essential for PrE 

differentiation (Fassler and Meyer, 1995; Fassler et al., 1995; Liu et al., 2009). β1 

integrins induce the nuclear translocation of the PrE-specific transcription factor GATA4, 

that in turn triggers the expression of BM proteins and regulates endoderm maturation. 

β1 integrins are also essential for the stable adhesion and spreading of PrE cells on the 

BM (Liu et al., 2009).  

Deletion of β1 integrin gene arrests mouse development at the peri-implantation stage 

(Fassler and Meyer, 1995). On the other hand, deletion of the PINCH-1 gene also leads 

to embryonic lethality at peri-implantation stage associated with impaired cell adhesion 

just as β1 integrin (Li et al., 2005; Liang et al., 2005). We observed that cell spreading is 

impaired in PINCH-1-/- PrE cells, indicating that PINCH-1 acts downstream of integrins 

to mediate spreading of PrE cells. In addition to the cell spreading defect, PINCH-1 

deletion also gives rise to increased apoptosis in PrE cells (Li et al., 2005). Since our 

results indicated unaltered active caspase-8 levels in PINCH-1-/- PrE cells, we tested 

intrinsic apoptotic pathway. We found that loss of PINCH-1 selectively activates the 

intrinsic apoptotic pathway in PrE cells via increased Bax levels. We excluded that the 

increased Bax levels are controlled by ERK or AKT pathways. 

The anti-apoptotic protein Bcl-2 inhibits intrinsic apoptotic pathway either by directly 

blocking Bax activation or by sequestering BH3-only proteins from Bax (Tait and Green, 

2010). The α5β1 integrin is highly expressed in PrE (Liu et al., 2009) and it regulates 
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cell survival by up-regulating Bcl-2 expression (Zhang et al., 1995). In line with this 

report we observed reduced Bcl-2 protein levels in PINCH-1-/- PrE cells indicating that 

PINCH-1 acts downstream of α5β1 integrin to regulate Bcl-2 expression. How PINCH-1 

exactly regulates Bcl-2 expression needs to be further addressed.  

FA localization and the function of PINCH-1 require the interaction with ILK and parvin 

(Fukuda et al., 2003; Zhang et al., 2002b). ILK-deficient mice also die at peri-

implantation stage of development (Sakai et al., 2003). Furthermore, ILK-deficient PrE 

cells have reduced PINCH-1 levels and are unable to spread on FN (Liu et al., 2009); 

(Montanez and Fässler, unpublished observation). However, deletion of ILK in EBs or 

PrE cells, does not give rise to apoptosis. The remaining protein levels of PINCH-1 are 

apparently sufficient to prevent apoptosis of ILK-/- PrE cells, suggesting a role for 

PINCH-1 in cell survival regulation that is independent of the IPP complex. On the other 

hand, deletion of the α-parvin gene leads to embryonic lethality between E11.5 and 

E14.5 and mice lacking β- or γ-parvin show no obvious embryonic phenotypes (Chu et 

al., 2006; Montanez et al., 2009); (Thievessen and Fässler, unpublished observation), 

suggesting that the parvin isoforms can compensate each other during peri-implantation 

development. 

1.3 JNK signaling in apoptosis of PINCH-1 null endoderm cells 

JNK signaling is important to regulate cell survival during embryo development (Davis, 

2000). A transient JNK activation leads to cell survival, whereas a sustained activation 

gives rise to apoptosis (Ip and Davis, 1998). In agreement with this, we found that 

PINCH-1 loss leads to a sustained activation of JNK in PrE cells. When JNK signaling 

was blocked, the number of apoptotic PINCH-1-/- PrE cells was reduced, suggesting 

that the JNK pathway is important in the regulation of apoptosis in PINCH-1-/- PrE cells. 

This observation is also in line with previous data reporting that PINCH modulates JNK 

activity by binding and recruiting RSU-1, which is known to negatively regulate JNK 

(Kadrmas et al., 2004). Interestingly, we found high expression of RSU-1 specifically in 

the PrE cell layer of EBs and in isolated PrE cells where it co-localizes with PINCH-1 at 

the FAs. Moreover, RSU-1 levels were reduced when PINCH-1 is absent in PrE cells. A 

similar co-dependence of RSU-1 and PINCH-1 protein levels has also been reported for 
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human embryonic kidney cells (Dougherty et al., 2005). How the two proteins stabilize 

each other needs to be addressed in future studies. 

Taken together, our results show that PINCH-1 regulates JNK activity and Bcl-2 levels 

downstream of integrin signaling. These two pathways are important in the regulation of 

PrE cell survival. This cell survival mechanism of PrE cells is different than the 

previously-reported mechanism in tumor cells. 
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2. The role of PINCH-1 cell-cell adhesions 

PINCH-1 ablation in mice leads to lethality in early embryonic development. PINCH-1-

deficient embryos display an abnormal epiblast polarity, impaired cavitation, detachment 

of endoderm and epiblast cells from the BM (Li et al., 2005; Liang et al., 2005) all which 

resemble the phenotypes observed in ILK and β1 integrin knock-out mice (Fassler and 

Meyer, 1995; Fassler et al., 1995; Sakai et al., 2003). Surprisingly, deletion of PINCH-1 

also leads to cell-cell adhesion defects of PrE and epiblast that are neither observed in 

the ILK- nor β1-null mice. How PINCH-1 regulates maintenance and stability of cell-cell 

junctions is not understood. To elucidate how PINCH-1 is involved in this process, we 

used skin as a model and to this end disrupted PINCH-1 gene specifically in epidermal 

and hair follicle keratinocytes. 

In this part of the study, we show that deletion of PINCH-1 gene in keratinocytes of 

mouse epidermis and hair follicles gives rise to several phenotypes including epidermal 

hyperplasia, detachment of epidermis from the underlying dermis and abnormal HF 

formation. These phenotypes are also observed upon deletion of ILK or β1 integrin 

genes in epidermis, suggesting that PINCH-1 acts downstream of integrins and has IPP 

complex-dependent functions in skin (Brakebusch et al., 2000; Lorenz et al., 2007; 

Vespa et al., 2005). Interestingly, deletion of PINCH-1 in epidermal and hair follicle 

keratinocytes also leads to increased intercellular spaces between neighboring cells in 

epidermis. This defect was not present in ILK- or β1 integrin-null epidermis, suggesting 

that PINCH-1 also plays IPP complex-independent role to regulate cell-cell adhesions.  

It has been reported previously that conditional deletion of the AJ molecule α-catenin in 

keratinocytes leads to intercellular gaps observed at ultrastructural level (Vasioukhin et 

al., 2001). The increased intercellular spaces in epidermis observed upon PINCH-1 loss 

appear morphologically similar to the α-catenin null epidermis. Besides, a study by Li et 

al. (2005) reported a cell-cell adhesion defect in primitive endoderm of PINCH-1 null 

EBs at the ultrastructural level (Li et al., 2005), suggesting a novel role for PINCH-1 at 

cell-cell junctions. However, cell-cell adhesion defect upon PINCH-1 depletion has 

never been further addressed. As the formation of cell-cell junctions was not perturbed 

in the absence of PINCH-1 in epidermis, we suspected that the increased intercellular 
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spaces may be due to impaired stability and/or maintenance of AJs. Therefore we first 

studied the molecular composition of cell-cell junctions in PINCH-1-/- keratinocytes by 

immunstainings of several cell-cell junction markers including both AJ and desmosome 

proteins such as E-cadherin, Plakoglobin and Desmoplakin. Although, ultrastructural 

analysis revealed impaired cell-cell junction morphology in PINCH-1 null skin, the 

localization of markers were unaltered, suggesting that either a novel or a non-studied 

protein is crucial to regulate the stability and maintenance of cell-cell junctions together 

with PINCH-1. 

2.1 PINCH-1 localization to cell-cell adhesions 

It remains elusive until now whether PINCH-1 per se can localize to cell-cell adhesions. 

Since the attempts to show PINCH-1 at cell-cell adhesions by immunostainings with 

available antibodies failed, we used GFP-tagged PINCH-1 rescued cells that express 

wild type levels of GFP-PINCH-1. This allowed us to demonstrate that a small fraction of 

GFP-tagged PINCH-1 is targeted to cell-cell junctions. When cells are treated with 

hepatocyte growth factor (HGF) the level of PINCH-1 increased at cell-cell junctions. 

HGF is a cell scattering agent and is used to apply force on cell-cell junctions without 

decreasing the function of E-cadherin. This treatment therefore increases the tension on 

cell-cell junctions as reported by (de Rooij et al., 2005; le Duc et al., 2010). We could 

demonstrate for the first time that PINCH-1 is a component of cell-cell junctions whose 

recruitment is mainly mediated by tension. 

Stability of cell-cell junctions is crucial for normal embryonic development as well as for 

avoiding cancer formation (Costa et al., 1998; Larue et al., 1994; Tepass et al., 1996; 

Thiery, 2002). Recently, cell-cell junction molecules have been reported to sense the 

force that is applied to the cell. For instance, it has been shown that vinculin is essential 

for the cell-cell junction integrity by regulating the cytoskeletal response to E-cadherin 

mechanosensing when it is recruited to cell-cell junctions in a force-dependent manner 

(de Rooij et al., 2005; le Duc et al., 2010; Peng et al., 2010). Here, we report that in 

addition to vinculin, also the localization of another FA protein, namely PINCH-1 

increases at cell-cell junctions upon force generation.  
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Recently, LIM domain-containing proteins have been shown to be important for 

mechanosensory functions at FAs (Kuo et al., 2011; Schiller et al., 2011). A mass-

spectrometry approach was used to define the molecular composition of FAs in the 

presence and absence of the myosin-II inhibitor blebbistatin. Interestingly, recruitment of 

LIM-domain containing proteins to FAs was highly dependent on myosin-II, suggesting 

that LIM domains may act as tension sensors. No experimental evidence suggesting a 

role for LIM domain-containing proteins in tension sensing at cell-cell junctions has been 

available thus far. Recently, a LIM domain containing protein EPLIN has been identified 

as a mechanotransducer functioning at AJs (Taguchi et al., 2011). This data may serve 

as the first evidence that LIM domain proteins are also important members of 

mechanotransduction machinery at cell-cell junctions. Moreover, we report that PINCH-

1 is able to target cell-cell junctions in a tension-dependent manner and therefore we 

suggest that LIM domain-containing proteins may play a role in tension sensing at cell-

cell junctions.  

When the myosin-II inhibitor blebbistatin was applied to differentiated keratinocytes 

treated with HGF to reverse the high HGF-mediated tension at cell-cell junctions, 

PINCH-1 no longer located to the cell-cell junctions, suggesting that myosin-II-

dependent contractility is involved in the mechanosensory role of PINCH-1. Activation of 

actomyosin contractility requires phosphorylation of Rho-associated protein kinase 

(ROCK) (Yamada and Nelson, 2007). We therefore inhibited ROCK in HGF-treated 

keratinocytes with Y-27632. The results of this treatment demonstrated that disruption 

of myosin phosphorylation also leads to abolishment of PINCH-1 from cell-cell junctions. 

Thus, we propose that PINCH-1 is recruited to cell-cell junctions in a force-dependent 

manner, which is mechanistically regulated by ROCK-dependent myosin light chain 

phosphorylation. 

PINCH-1 forms a complex with ILK and parvins that is termed the IPP complex. ILK and 

parvins have been reported to negatively regulate RhoA-ROCK signaling in vascular 

smooth muscle cells (Kogata et al., 2009; Montanez et al., 2009). Furthermore, when 

ILK is depleted in primary fibroblasts it leads to a defect in wound closure that is 

associated with elevated RhoA levels (Blumbach et al., 2010). Nevertheless, none of 
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the IPP complex members have been suggested to function as a tension regulator at 

cell-cell junctions until now. Therefore, our results identify the IPP complex member 

PINCH-1 as a mechanosensory protein important for cell-cell junction stability and 

maintenance. Yet, PINCH-1 exerts this role via an IPP complex-independent 

mechanism. This will be further discussed in the following sections.  

2.2 EPLIN, a novel PINCH-1 interacting molecule 

To better understand how PINCH-1 is involved in cell-cell junction stability and 

maintenance, we searched for new binding partners of PINCH-1. To this end, we 

performed an interaction screen by performing pull-down experiments with GFP-tagged 

PINCH-1 followed by mass-spectrometry and identified EPLIN as a novel PINCH-1-

interacting protein. To validate the proteomics data, we performed pull-down 

experiments. First, we took the same approach as our mass-spectrometry experiments 

and confirmed by WB that EPLIN can indeed be detected in GFP-PINCH-1 

immunoprecipitates of GFP-PINCH-1 rescued keratinocytes. Second, we 

overexpressed either only GFP or GFP-tagged EPLIN in control and PINCH-1-/- 

keratinocytes and validated that PINCH-1 is only co-immunoprecipitated in the lysates 

of GFP-EPLIN expressing, but not GFP expressing control cells. Finally, we were able 

to confirm the interaction between EPLIN and PINCH-1 by detecting EPLIN in the 

endogenous PINCH-1 immunoprecipitates of wild type keratinocytes. Taken together, 

all our pull-down experiments confirmed that PINCH-1 and EPLIN are interacting with 

each other. Unfortunately, recombinant expression of PINCH-1 is not feasible. 

Therefore, we cannot conclude whether the expression is direct or indirect. 

To study the subcellular localization of EPLIN we performed immunostainings on 

undifferentiated and differentiated keratinocytes. The results showed that EPLIN 

localized to FAs of PINCH-1 control and GFP-PINCH-1 rescued keratinocytes. 

Interestingly, EPLIN was missing in FAs of PINCH-1-null keratinocytes. Moreover, we 

found that EPLIN targeting to cell-cell junctions was also abolished in differentiated 

PINCH-1-null keratinocytes. Similar results were also observed in the epidermis of 

PINCH-1K5Cre mice.  
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EPLIN is an adaptor protein consisting of LIM and F-actin binding domains. The F-actin 

binding domain crosslinks and bundles actin filaments and also maintains the 

circumferential actin filaments via interacting with α-catenin (Abe and Takeichi, 2008; 

Maul and Chang, 1999; Maul et al., 2003). Recently, EPLIN was shown to be a 

mechanosensitive regulator of adherens junction remodeling, by cooperating with 

vinculin (Taguchi et al., 2011). In our study, the in vitro results from immunostainings of 

wild type and PINCH-1-null keratinocytes showed that EPLIN recruitment to FAs is 

dependent on PINCH-1. Moreover, the immunostainings of differentiated PINCH-1 

control and null keratinocytes as well as the in vivo results from the PINCH-1K5Cre mice 

revealed that PINCH-1 is also required to stabilize EPLIN at cell-cell adhesion 

structures. 

EPLIN has one LIM domain and two actin-binding domains (Han et al., 2007; Maul et 

al., 2003). The actin binding domains mediate the link between EPLIN and actin and 

mediate the cytoskeletal rearrangements (Han et al., 2007). Mass-spectrometry 

approaches identified EPLIN as a component of FAs (Kuo et al., 2011; Schiller et al., 

2011). Our study confirms that EPLIN is indeed a bona fide FA protein. The lack of 

reports showing evidence for EPLIN in FAs may be due to differences in cell culturing 

conditions. The cells in our study have been cultured on FN and collagen I. The ECM 

proteins bind to and cluster integrins resulting in robust FA formation. 

How EPLIN is recruited to FAs is not clear. Our results showed that FA targeting of 

EPLIN is dependent on PINCH-1. To address whether the direct interaction between the 

two proteins is responsible for EPLIN dependency on PINCH-1, we tried to express 

recombinant proteins. However, we were unable to express a recombinant PINCH-1 

due to its cysteine-rich primary structure which in turn leads to formation of disulfide 

bonds. Whether EPLIN and PINCH-1 interact directly remains an open question. We 

also show that stress fiber formation is severely impaired in PINCH-1-/- keratinocytes. 

EPLIN as an actin crosslinking and bundling protein may be abolished from FAs due to 

the impaired stress fiber formation in PINCH-1-/- cells. However, the exact molecular 

mechanism regulating EPLIN targeting to FAs and its dependency on PINCH-1 clearly 

needs to be further investigated. 
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Since FA targeting of EPLIN has not been demonstrated until now, the role of EPLIN at 

FAs remains unclear. To understand the role of EPLIN at FAs and to elucidate whether 

loss of EPLIN results in a PINCH-1-like phenotype, we depleted EPLIN in control 

keratinocytes using specific siRNAs. Our findings showed that siRNA-mediated EPLIN 

silencing leads to an impaired spreading of keratinocytes. Moreover, PINCH-1 targeting 

to FAs is partially perturbed when EPLIN is silenced. These results confirmed that 

EPLIN knock-down gives rise to a spreading defect in keratinocytes that is reminiscent 

of PINCH-1-/- cells. Silencing of EPLIN diminished protein levels by 70-80%. The 

remaining 20-30% of total EPLIN protein level may be responsible for the less-

pronounced spreading defect of EPLIN knock-down keratinocytes in comparison to 

PINCH-1-/- keratinocytes. Taken together, these data demonstrate that EPLIN is a FA 

protein and its presence is crucial for the regulation of cell spreading. Whether EPLIN 

also regulates other PINCH-1 properties such as adhesion, migration, proliferation and 

survival needs further elucidation. 

EPLIN has been observed at cell-cell junctions of epithelial and endothelial cells (Abe 

and Takeichi, 2008; Chervin Petinot et al., 2012; Taguchi et al., 2011). However, EPLIN 

targeting at cell-cell junctions has not been addressed in keratinocytes until now. We 

demonstrate that EPLIN is also recruited to the cell-cell junctions of keratinocytes upon 

Ca2+-induced differentiation. To understand the role of EPLIN at cell-cell junctions, we 

performed siRNA-mediated EPLIN silencing in control keratinocytes. Our results 

showed that upon EPLIN loss, cell-cell junctions display irregular accumulation of E-

cadherin. We further studied whether EPLIN silencing would alter tension-dependent 

PINCH-1 recruitment to cell-cell junctions. Our findings demonstrate that silencing 

EPLIN in HGF-treated differentiated keratinocytes has no effect on PINCH-1 targeting to 

cell-cell junctions. Altogether, our results indicate that presence of PINCH-1 is crucial for 

EPLIN recruitment to cell-cell junctions whereas PINCH-1 is not dependent on EPLIN to 

target cell-cell junctions.  

The actin binding domains of EPLIN are responsible for mediating the actin linkage 

(Han et al., 2007). However, the function of the LIM domain of EPLIN has not been 

studied so far. EPLIN has recently been demonstrated to play a role in 
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mechanotransduction. On the other hand, if LIM domain-containing proteins are 

involved in mechanotransduction machinery at the cell-cell junctions, it is possible to 

speculate that mechanosensory function of EPLIN is exerted via its LIM domain. 

Moreover our results indicate that LIM-domain only protein PINCH-1 is also involved in 

mechanosensing. Therefore it is probable that EPLIN and PINCH-1 collaborate to 

maintain stable cell-cell junctions.  

We observed by TEM studies that mouse skin displays disrupted cell-cell junctions.  

However, localization of most cell-cell junction markers remains unaltered. This 

discrepancy may be explained by the different force generation in skin in comparison to 

cultured keratinocytes. Skin is frequently subjected to external mechanical stimuli and 

therefore should dynamically respond to them. The higher tension levels present in skin 

in vivo, but not in cultured keratinocytes may be the reason for disruption of cell-cell 

junctions in PINCH-1 null skin. Given that EPLIN has been reported to be a 

mechanosensing protein (Taguchi et al., 2011) and that our results reveal PINCH-1 as a 

force sensor, it is possible that PINCH-1 and EPLIN are collaborating 

mechanotransducers that respond to force-induced mechanical changes in skin. 

Cadherin receptors respond to mechanical stimuli by force-induced changes in protein 

conformation that can lead to downstream functional responses (Gomez et al., 2011a). 

It has been shown that α-catenin can recruit vinculin to cell-cell junctions in a force-

dependent manner by providing a binding site for vinculin that is exposed only under 

tension (Yonemura et al., 2010). On the other hand, recent work has demonstrated that 

EPLIN cooperates with vinculin to maintain AJs (Taguchi et al., 2011). Based on our 

result that PINCH-1 is also involved in this process, one intriguing possibility to maintain 

the cell-cell junction stability in a force-dependent manner could be that vinculin, 

PINCH-1 and EPLIN act in concert.  

EPLIN binds the vinculin homology (VH3) domain only, or VH3 domain plus the C-

terminal region of α-catenin, whereas vinculin binds the VH2 domain of α-catenin (Abe 

and Takeichi, 2008; Kobielak and Fuchs, 2004). The vinculin binding site on α-catenin is 

only exposed when force changes the conformation of α-catenin (Yonemura et al., 

2010). It is tempting to speculate that the force, which induces the binding of vinculin to 
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α-catenin also exposes cryptic binding sites for PINCH-1, and thereby mediates a 

similar force-dependent localization of PINCH-1 to cell-cell junctions. Another possible 

way for PINCH-1 to localize to cell-cell junctions in a force-dependent manner might be 

via interacting with vinculin. Although our results confirmed that EPLIN is capable of 

binding to α-catenin even in the absence of PINCH-1, yet its recruitment to cell-cell 

junctions depends on PINCH-1. The PINCH-1 dependent recruitment of EPLIN to cell-

cell junctions could indeed be easily explained through an interaction with vinculin or 

with an unknown protein. Since we did not find vinculin in our PINCH-1 interaction 

screen we currently favour the interaction with an unknown protein. 

2.3 ILK involvement in PINCH-1 and EPLIN cooperation  

The stability of IPP-complex members is dependent on the interaction with each 

constituent. Depletion of one complex member leads to the degradation of the other 

members (Legate et al., 2006). Consistent with previous studies, we observed that loss 

of PINCH-1 leads to reduced levels of ILK and parvins (Fukuda et al., 2003; Zhang et 

al., 2002b) and ILK depletion gives rise to low PINCH-1 expression levels (Lorenz et al., 

2007). Interestingly, however, we found that the remaining PINCH-1 levels upon ILK 

depletion are sufficient to target PINCH-1 to FA sites and are sufficient to localize 

EPLIN both to FAs and the cell-cell junctions. Furthermore, no major cell adhesion 

defects were observed in the skin of ILK-deficient mice, suggesting that PINCH-1 plays 

an IPP complex-independent role in the maintenance and stability of cell-cell junctions. 

Since small amounts of PINCH-1 are sufficient to recruit EPLIN to FAs and cell-cell 

junctions, it is possible that a similar cell-cell junction defect is prevented in the skin of 

ILK-null mice by the remaining low levels of PINCH-1. 

ILK was reported to be present on AJs (Vespa et al., 2003). We were unable to 

immuno-localize ILK in Ca2+-treated control cells with available ILK antibodies. 

Overexpression of a GFP-tagged ILK in control and PINCH-1 null cells, however, 

demonstrated that GFP-ILK does indeed localize to cell-cell junctions in both cells. 

Importantly, GFP-ILK is not able to support EPLIN recruitment to cell-cell junctions in 

PINCH-1-/- cells, underscoring the importance of the PINCH-1-EPLIN interaction.  
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In conclusion, we show that conditional PINCH-1 deletion in epidermal and hair follicle 

keratinocytes leads to epidermal hyperplasia, blister formation at dermal-epidermal 

junctions, and abnormal hair follicle formation all of which are also observed upon ILK 

and β1 integrin gene deletion. This suggests that PINCH-1 functions in an IPP complex-

dependent manner in skin. In addition, PINCH-1 ablation also gives rise to impaired cell-

cell adhesion morphology in skin that has not been observed in mice conditionally 

lacking ILK or β1 integrin in skin. This suggests that PINCH-1 exerts this function via an 

IPP complex-independent mechanism. Our findings suggest that PINCH-1 and EPLIN 

act together to maintain stable FAs and cell-cell junctions in keratinocytes. Moreover, 

localization of PINCH-1 to FAs and cell-cell junction is regulated in a tension-dependent 

manner. Although the main cell-cell junction components remain unaltered, 

keratinocytes of PINCH-1K5Cre mice lack EPLIN in both adhesion structures, which 

suggest that the severe cell-matrix and cell-cell adhesion defects of PINCH-1K5Cre mice 

may in part be explained by an impaired PINCH-1-EPLIN interaction.  
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