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Abstract. We studied the robustness of a generalized Kitaev’s toric code with
ZN degrees of freedom in the presence of local perturbations. For N = 2, this
model reduces to the conventional toric code in a uniform magnetic field.
A quantitative analysis was performed for the perturbed Z3 toric code
by applying a combination of high-order series expansions and variational
techniques. We found strong evidence for first- and second-order phase
transitions between topologically ordered and polarized phases. Most
interestingly, our results also indicate the existence of topological multi-critical
points in the phase diagram.
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1. Introduction

The concept of topologically ordered quantum matter was introduced by Wen [1, 2] in
the context of high-temperature superconductivity and is crucial for characterizing fractional
quantum Hall states and topological insulators. The most striking property of topologically
ordered quantum phases is their dependence on non-local properties of the system. As a
consequence, such phases cannot be characterized by a local order parameter, so that the
celebrated Landau’s symmetry-breaking theory cannot be used.

More recently, topological order has attracted a great deal of interest in the field of
quantum information due to its weak sensitivity to any local perturbation [3–5]. Indeed, non-
local degrees of freedom associated with this exotic order have been shown to be (topologically)
protected against local sources of decoherence. This key idea is at the heart of topological
quantum computation [3, 6]. It is thus of importance to quantify precisely this protection when
perturbations are added. One prominent example where the effect of additional perturbations
has been extensively discussed is the case of Kitaev’s toric code [3]. The toric code is an
exactly solvable two-dimensional (2D) quantum spin model with a Z2 spin-liquid ground state
possessing gapped (Abelian) anyonic excitations. It can be considered as one of the simplest
models displaying topological order. Apart from the influence of temperature [7–11] and of
disorder [12, 13], several works have investigated the effect of an external magnetic field in this
model [14–20]. Interestingly, a very rich phase diagram containing first- and second-order phase
transitions, multi-criticality, self-duality and dimensional reduction has been found. Similar
phase transitions out of topologically ordered phases have been studied in the context of the
Levin–Wen model [21–23].
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Actually, the toric code model can be defined for any discrete Abelian or non-Abelian
group [3, 24, 25]. In this work, we present an extension of this model to ZN degrees of
freedom [26], which reduces to the conventional toric code for N = 2. Although excitations
are still Abelian, qualitative and quantitative analyses of this model in the presence of local
perturbations provide some insights for the understanding of topological phase transitions when
more complex degrees of freedom are involved.

The paper is organized as follows. In section 2, we describe an extension of Kitaev’s toric
code from Z2 to ZN degrees of freedom. Our starting point is Wen’s plaquette model [27] for
which a generalization to ZN can be written rather easily. The ZN plaquette model is then
mapped onto a ZN toric code, which is shown to display topological order and anyonic statistics.

To study the robustness of the topological order, we analyze the influence of local
perturbations in section 3. For N = 2, such perturbations correspond to a uniform magnetic
field. If the perturbations are strong enough, one expects conventional polarized phases that
are not topologically ordered. As a consequence, a phase transition between the topological
and the polarized phases must occur. Analyzing the breakdown of the topological phase is a
very challenging problem for general N . Nevertheless, as we shall see for special kinds of
perturbation, either exact mappings onto already known models exist or the model displays
self-duality and dimensional reduction.

In section 4, we focus on the case N = 3 and probe the robustness of the Z3

topological phase for simple perturbations. To this end, we use perturbative continuous unitary
transformations (pCUT) and a variational approach based on infinite projected entangled
pair states (iPEPS). Note that this combined pCUT +iPEPS method has already been used
successfully for the standard toric code (N = 2) in an arbitrary magnetic field [19]. After a
brief discussion on both methods and their combination, the results are presented for two types
of perturbation that can be viewed as natural generalizations of the N = 2 toric code either in a
parallel field or in a transverse field. In the simplest case when the perturbation commutes with
local charge (or flux) operators, we establish an exact mapping, valid at low energies, onto a
three-state clock model in a transverse field. For a ferromagnetic coupling, this model is known
to display a weakly first-order transition (see, e.g., [28]). However, the perturbation considered
here also leads us to study the antiferromagnetic three-state clock model in a transverse field,
which, to our knowledge, has never been discussed in the literature. In this work, we found
evidence for a second-order transition in this system (whose universality class remains to be
accurately determined). We then discuss the counterpart of an arbitrary parallel magnetic field
in the N = 2 model. For such a perturbation, we obtain a rich phase diagram containing first-
and second-order phase transition lines that form the boundary of the topological phase. Finally,
we study the transverse-field problem that displays dimensional reduction and self-duality, as
the N = 2 model [18]. The conclusions drawn and perspectives are presented in section 5.

2. Construction of the generalized ZN toric code

In the following, first we present the ZN -generalization of the plaquette model introduced
by Wen [27]. The main reason for doing so is that the plaquette model with ZN degrees of
freedom arises rather naturally from the Z2 conventional counterpart and is very simple to write
down. Afterwards, we perform a mapping to a generalized toric code model with ZN -Abelian
anyons [26].
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Figure 1. Left: a piece of the square lattice on which one defines Wen’s plaquette
model. Right: a piece of the four-colored square lattice on which one defines
Kitaev’s toric code model with ZN degrees of freedom. In Wen’s model, degrees
of freedom are located on the vertices of the lattice, whereas in Kitaev’s model,
they live on the bonds of the lattice.

2.1. The ZN plaquette model

We consider N -state degrees of freedom located on the sites i of a square lattice whose unit-cell
vectors n1 and n2 are shown in figure 1 (left). The associated orthonormal states are denoted by
|q〉i , where q ∈ ZN . Next, let us define the operators Z i and X i as

Z i |q〉i = ωq
|q〉i and X i |q〉i = |q − 1〉i , (1)

where ω = e2iπ/N . These unitary operators reduce to the conventional Pauli matrices σ z
i and σ x

i
for N = 2. On the same site, both operators obey the important ‘commutation relation’ (Weyl
algebra)

X i Z i = ωZ i X i , (2)

which generalizes the well-known anticommutation relation σ x
i σ

z
i = −σ z

i σ
x
i of Pauli matrices.

They obviously commute when acting on different sites.
The Hamiltonian of the ZN plaquette model is then defined by

Hplaquette = −J
∑

p

(
Wp + W †

p

)
, (3)

where Wp = ZD XR ZU XL. Sites D, R, U and L correspond to the four sites
(i, i + n1, i + n1 + n2, i + n2) of an elementary plaquette p of the square lattice (see figure 1).

Using (1) and (2), it is easy to check that

[Wp ,Wp′] = [Wp ,W †
p′] = 0 (4)

for all p and p′, so that all plaquette operators commute with the Hamiltonian. Furthermore,
it is important to note that these operators obey W N

p = 1. In other words, Wp’s are ZN

conserved quantities whose eigenvalues are simply {ωq, q ∈ ZN }. As for the standard Z2

plaquette model [27], this property ensures exact solvability of Hplaquette. In the following, we
map the plaquette model onto a generalized toric code [3, 26] as was already done for the
Z2 case [29, 30]. The main advantage of the toric code is that the quantum statistics of the
elementary excitations are simpler to identify. Additionally, it allows one to adopt an ad hoc
language reminiscent of lattice gauge theories with ZN degrees of freedom (see, e.g., [31, 32]).
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2.2. The ZN toric code

2.2.1. Mapping. In order to map model (3) onto a generalized toric code model [3], we
introduce a translationally invariant and four-colored lattice as depicted on the right side of
figure 1, where the N -state degrees of freedom of the plaquette model are placed on the bonds
of a square lattice. We then perform the following local, unitary transformations:

X i∈brown,magenta → Z i , X i∈yellow,green → X i ,

Z i∈brown,magenta → X †
i , Z i∈yellow,green → Z i .

(5)

As a consequence, the plaquette operators Wp become different on the red and blue stars s
and on the cyan and pink plaquettes p as illustrated in figure 1. To strengthen the analogy with
the conventional toric code, we relabel the various operators as follows:

W †
p∈red → As∈red = XD X †

R XU X †
L, Wp∈cyan → Bp∈cyan = ZD ZR ZU ZL,

Wp∈blue → As∈blue = X †
D XR X †

U XL, W †
p∈pink → Bp∈pink = Z †

D Z †
R Z †

U Z †
L.

(6)

Let us stress that the four-coloring of the lattice is mandatory if one wants to define Bp

with Z (or Z †) operators alone. Nevertheless, other choices with smaller unit cells are possible.
Finally, we obtain the Hamiltonian of the ZN toric code

HTC = −J
∑

s

(
As + A†

s

)
− J

∑
p

(
Bp + B†

p

)
. (7)

Let us note that this model has already been introduced in [26] but differs from the ZN

toric code discussed in [3] which involves projectors Ps and Pp instead of As + A†
s and Bp + B†

p
(see the next section for definitions). However, since both models are equivalent for N = 2, 3,
we shall (abusively) call them toric codes.

2.2.2. Ground states and topological degeneracy. A direct consequence of (4) is that all As

and Bp operators commute with HTC. Thus, the ground-state energy (per site) e0 is simply
obtained by choosing the (possibly degenerate) minimal eigenvalue of the local operators
−J (As + A†

s ) or −J (Bp + B†
p); namely, e0 = −2J cos(2πk/N ). For J > 0 and for any N , the

ground state is unique and is obtained for k = 0. However, for J < 0, the ground state is unique
for N being even (in this case, one chooses k = N/2) but is infinitely many degenerate for N
being odd since, locally, one can choose k = (N ± 1)/2. In the following, we will consider only
the simplest case J > 0.

Nevertheless, there are subtleties since the ground-state degeneracy also depends on the
surface’s topology as we shall now see in two simple examples. Let us first consider an infinite
open plane for which no constraint on As’s and Bp’s exists. In this case, the ground state is
unique and can be built as

|gs〉 =N
∏

s

Ps

∏
p

Pp |ref〉 , (8)

where N is a normalization constant and

Ps =
1

N

N−1∑
k=0

Ak
s , Pp =

1

N

N−1∑
k=0

Bk
p. (9)
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Figure 2. Left: possible choices of non-contractible loops Ck with k ∈ {1, 2, 3, 4}

for a system with periodic boundary conditions. Right: illustration of the semi-
infinite strings Ss and Sp used to define charge and flux states in (13) and (14).
An example of a counter-clockwise braiding contour for moving a charge qs

initially located on a red star s around a flux qp located on a cyan plaquette p is
represented in white (see the text for an explanation). The black circle locates the
site (numbered 8) where crossing between the braiding contour and the string Sp

of the flux occurs.

Operators Ps (Pp) project on subspaces with eigenvalue 1 of the corresponding As (Bp).
The reference state |ref〉 can be chosen arbitrarily provided that it leads to |gs〉 6= 0. For instance,
one may choose the fully polarized state |ref〉 =

⊗
i

|0〉i that already fulfills Pp |ref〉 = |ref〉
for all plaquettes p.

Next, let us consider the ZN toric code on a torus. In this case, there are two constraints∏
s

As = 1,
∏

p

Bp = 1, (10)

so that the number of independent eigenvalues of As and Bp operators is reduced by two.
However, as in the Z2 toric code, there exist conserved loop operators that can be chosen as

Z1 =

 ∏
i∈C1,green

Z i

 ∏
i∈C1,yellow

Z †
i

 , Z2 =

 ∏
i∈C2,magenta

Z i

( ∏
i∈C2,brown

Z †
i

)
,

X1 =

 ∏
i∈C3,green

X i

 ∏
i∈C3,yellow

X †
i

 , X2 =

 ∏
i∈C4,magenta

X i

( ∏
i∈C4,brown

X †
i

)
,

(11)

where Ck with k ∈ {1, 2, 3, 4} are the non-contractible loops of the torus depicted in figure 2
(left). All these operators commute with HTC, but only two of them can be chosen independently
since

[
Zµ,Xµ

]
6= 0 with µ ∈ {1, 2}. These two additional conserved quantities maintain the

exact solvability of HTC. Concretely, if we choose to label states with the eigenvalues zµ = {ωq
}

(q ∈ ZN ) of the operators Zµ, we will find that there exist N 2 ground states |gs, z1, z2〉 that can
be written as

|gs, ωq1, ωq2〉 =N ′
∏

s

Ps(X †
1 )

q1(X †
2 )

q2
⊗

i

|0〉i , (12)

where N ′ is a normalization constant. More generally, following [3, 26], one can show that for
a compact surface with genus g, each eigenstate is N 2g-degenerate (at least) so that the system
is indeed topologically ordered.

New Journal of Physics 14 (2012) 025005 (http://www.njp.org/)

http://www.njp.org/


7

ZX

Figure 3. Illustration of the action of operators X i (left) and Z i (right) on an
eigenstate of As and Bp operators. A diamond on a star or a plaquette, with a ‘±’
sign, denotes a multiplicative change by ω±1 of the corresponding eigenvalue.
The behavior depends on the site’s color.

2.2.3. Excitations and statistics. Excitations of the toric code correspond to states that violate
the condition that all eigenvalues of the As or Bp operators are equal to 1. In other words,
an elementary particle is a charge q on star s (a flux q on plaquette p) corresponding to an
eigenvalue ωq , with q ∈ ZN and q 6= 0, of As (Bp) (remember that q = 0 defines the ground
state). As As and Bp operators commute with HTC, charges and fluxes are static excitations.
Moreover, the form of the Hamiltonian implies that the energy of a many-particle state is simply
the sum of the single-particle energies. In other words, charges and fluxes do not interact.

In what follows, we give the explicit construction of single-particle states for general N
following the detailed construction given in [30] for N = 2. As was already the case in the Z2

toric code, there is no local operator creating a single excitation. This is illustrated in figure 3
where one can see that an X i (Z i ) operator creates two excitations on neighboring plaquettes
(stars).

However, for an infinite plane with open boundary conditions, it is possible to consider
single-particle states. Indeed, in such a system, a single excitation can be obtained by first
creating a pair of charges (fluxes) and by taking one of the particles to infinity, at least in
principle. It is clear that this is rather a gedankenexperiment that cannot be implemented
practically (for instance, in a computer). Nevertheless, one may always consider a state where
the two particles originating from the elementary pair-creation process are so distant that they
are eventually independent. Thus, a one-particle state |q〉α with charge (flux) q on α = s (p) can
be defined, for instance, as

|q〉s =

 ∏
i∈Ss ,green

Z i

 ∏
i∈Ss ,yellow

Z †
i

 |gs〉 , (13)

|q〉p =

 ∏
i∈Sp,magenta

X i

 ∏
i∈Sp,brown

X †
i

 |gs〉 , (14)

where the semi-infinite strings Sα are displayed in figure 2 (right).
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We shall now show with a specific but sufficiently general example that charges and fluxes
obey mutual anyonic statistics. Let us consider an eigenstate, denoted by |ψ〉, with a charge qs

and a flux qp at positions shown in figure 2 (right). One can braid the charge around the flux
along the counter-clockwise-oriented white path drawn in this figure, by acting on |ψ〉 with the
operator O = Z qs

10 · · · Z qs
7

(
Z qs

6

)†
Z qs

5 · · · Z qs
1 . This can be checked from the action of Z i operators

shown in figure 3 (right). Furthermore, from the definition of Bp operators given in (6), this
operator O is nothing but the product of all

(
B†

p

)qs operators for all plaquettes encircled by the
braiding contour. Given that |ψ〉 is an eigenstate of all plaquette operators with eigenvalue 1,
except for the plaquette p where the flux is located and for which Bp |ψ〉 = ωqp |ψ〉, one gets
O |ψ〉 = ω−qsqp |ψ〉. This non-trivial braiding phase is the signature of the mutual (ZN ) anyonic
statistics between charges and fluxes. It is similar to an Aharonov–Bohm phase, which explains
the terminology of charges and fluxes employed to describe the excitations. The same argument
allows one to show that a braiding of a charge (flux) around a charge (flux) leads to a trivial
phase that is reminiscent of the bosonic statistics of charges (fluxes). In addition, it is clear that
there is a hard-core constraint since one cannot create two particles on the same star or on the
same plaquette.

Let us end this discussion by showing that the phase can be obtained in another,
complementary way. One can write explicitly the state |ψ〉 as

|ψ〉 =

 ∏
i∈Ss ,green

Z i

 ∏
i∈Ss ,yellow

Z †
i

 ∏
i∈Sp,magenta

X i

 ∏
i∈Sp,brown

X †
i

 |gs〉 . (15)

Then, one can compute O |ψ〉 by commuting O with the operators appearing in the above
expression using (2) and O |gs〉 = |gs〉 since the ground state is flux-free. For the particular
braiding represented in figure 2 (right), the non-trivial phase will appear from the commutation
Z qs

8 X
qp

8 = ω−qsqp X
qp

8 Z qs
8 at site 8 where the braiding contour and the string of the flux Sp

intersect.

3. The ZN toric code in the presence of local uniform perturbations

In this section, we first define the general local perturbations for the ZN toric code model. The
presence of such perturbations destroys the exact solvability of the toric code model. As was
mentioned in the introduction, a phase transition has to take place when the perturbation strength
increases since, for J = 0, the ground state is fully polarized and thus not topologically ordered.
Thereafter, we focus on special examples that allow for a detailed investigation of this transition
for general N .

3.1. General structure of the perturbation

Here, we shall only consider perturbations that act locally on a site i . A basis of the space of
local unitary operators can be conveniently written in terms of the operators X i and Z i and their
powers. Hermitian combinations of these operators lead to the following general form of local
uniform perturbations:

Hl,m = −

∑
i

(
hl,m X l

i Zm
i + h.c.

)
, (16)
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Figure 4. Illustration of the action of the operator X l
i Zm

i on an eigenstate of
As and Bp operators. A diamond on a star or a plaquette, with a value k = ±l,
±m, denotes a multiplicative change by ωk of the corresponding eigenvalue. The
behavior depends on the site’s color.

where hl,m ∈ C, and (l,m) ∈ Z2
N with 06 l 6 N/2. The action of the operator X l

i Zm
i is

displayed in figure 4. As can be inferred from this figure, the perturbation violates the
local conservation of charges (fluxes) when m 6= 0 (l 6= 0) since it induces the creation and
annihilation of pairs of excitations as well as hopping processes. However, it violates neither the
conservation of the total charge

∑
s qs modulo N nor the conservation of the total flux

∑
p qp

modulo N (we recall that a star s (a plaquette p) is said to carry a charge qs (a flux qp) if As

(Bp) has eigenvalue ωqs (ωqp ), with qs and qp being defined modulo N ).
In fact, these conservation rules can be more conveniently rewritten as conservation rules

of ‘unphysical’ total charge and flux, belonging to Z and not to ZN (they will also prove
to be useful later on; see section 3.3). Let us denote the ‘unphysical’ charge (flux) at star s
(plaquette p) by q̂s (̂qp). They are related to the true/physical charge (flux) via the following
relations: qs = q̂s mod N (qp = q̂p mod N ). They can be defined non-ambiguously by ‘fixing
a gauge’ as we explain now (having in mind a purely computational perspective). Given one
eigenstate of HTC, it is possible to choose any value for the ‘unphysical’ charges and fluxes
(provided that they yield the correct physical charges and fluxes). Then, the full Hamiltonian
HTC +

∑
l,m Hl,m can be studied in the subspace of eigenstates of HTC, spanned by the repeated

action of the perturbation. Each of these states can be assigned unique values of q̂s and q̂p using
the rules shown in figure 4. It should be clear that

∑
s q̂s and

∑
p q̂p are the same for all states

in the generated subspace, which means that the Hamiltonian is block diagonal and the total
charge

∑
s q̂s and total flux

∑
p q̂p are conserved integers.

3.2. Simplest cases

Let us first discuss the case l = 0 for which the perturbation acts only non-trivially on charges
(which are no longer locally conserved), whereas fluxes remain static gapped excitations that
might be seen as the sources of Aharonov–Bohm-like phases for the moving charges. Of course,
the respective roles of fluxes and charges are exchanged if l 6= 0 and m = 0.

In this work, we are interested in transitions between the topological phase (existing for
small enough perturbations) and the polarized phase expected for J = 0. To get a first idea
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about of associated physics, let us consider the simplest perturbation corresponding to (l = 0,
m = 1) for which the Hamiltonian of the perturbed toric code reads

HTC + H0,1 = −J
∑

s

(
As + A†

s

)
− J

∑
p

(
Bp + B†

p

)
− hZ

∑
i

(Z i + Z †
i ), (17)

where we set h0,1 = hZ ∈ R. Since we are interested in the low-energy properties and since
[H0,1, Bp] = 0 for all p’s, we only consider the flux-free subspace where all Bp’s have
eigenvalue 1, in which the energy of the fluxes is minimal. Then, following the procedure
discussed in [14, 15] for the special case N = 2, let us denote by |q〉s the eigenstates of As’s with
eigenvalues ωq . From figure 3 (right), one can check that the action of Z i + Z †

i on a site i located
between two neighboring stars s and s ′ is equivalent to Xs X †

s′ + X †
s Xs′ , where, following (1),

we introduce the operator Xs defined by Xs|q〉s = |q − 1〉s . Thus, defining Zs = As (such that
Zs|q〉s = ωq

|q〉s), one can map Hamiltonian (17) onto the N -state clock model in a transverse
field [33]

Hclock = −2J Np − J
∑

s

(
Zs + Z †

s

)
− hZ

∑
〈s,s′〉

(Xs X †
s′ + X †

s Xs′), (18)

where 〈s, s ′
〉 denotes nearest-neighbor stars s and s ′. The term −2J Np arises from the

replacement of all Bp-operators by their eigenvalue 1 (Np denotes the total number of
plaquettes). It is important to stress that this mapping preserves neither the degeneracies of
the energy levels (hence the topological order) nor the quantum statistics. However, the zero-
temperature phase diagrams of HTC + H0,1 and Hclock are exactly the same.

Let us remark that the coupling term hZ in (18) stems from the local perturbation in (17)
that can be either positive or negative. When hZ > 0, the coupling between stars in Hclock

is ferromagnetic, whereas hZ < 0 leads to antiferromagnetic interactions. This distinction is
irrelevant for even N since, in this case (and for a bipartite lattice), one can always perform local
unitary transformations that map Hclock onto a ferromagnetic model. By contrast, for odd N , one
must distinguish between both signs that may lead to various types of transitions.

Unfortunately, a very few results are available in the literature concerning the 2D quantum
clock model in a transverse field except for N = 2 (the Ising model) where a second-order
transition occurs, for N = 3 (the Potts model) where a weakly first-order transition is expected
for hZ > 0 (see, e.g., [28]) and for N = 4 where the model is equivalent to two decoupled
transverse-field Ising models [23]. In such a context, the second-order transition found in
section 4 for N = 3 and hZ < 0 opens some interesting perspectives.

3.3. Self-duality

The Z2 toric code in a transverse field is known to be self-dual [18, 34]. We shall now show that
this property still holds for a general value of N provided that one chooses particular values of
l and m. Let us consider the Hamiltonian HTC + Hl,m (see (7) and (16)). This Hamiltonian will
be self-dual if its spectrum is symmetric (up to degeneracies) under the exchange J ↔ |hl,m|.
Roughly speaking, this will be ensured provided that the ‘roles’ of As and Bp operators can be
played by the operators X l

i Zm
i , when stars and plaquettes are exchanged with sites, i.e. when

considering the dual lattice illustrated in figure 5.
In the limiting cases J = 0 and hl,m = 0, self-duality imposes that spectra of HTC and Hl,m

are the same (up to degeneracies). Setting hl,m = |hl,m|eiφl,m , this means that eiφl,m X l
i Zm

i must
have the same spectrum as As (or Bp). Since this spectrum is {ωq, q ∈ ZN }, this leads to two
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Figure 5. Transformation of the original lattice (left) to the dual lattice (right).
Plaquettes and stars become sites and vice versa.

Bp∈cyan

Bp∈pink

As∈red

As∈blue

−l
−l −l

+l

+l+l

+m

+m

−m −m

−m

−m
+m+m

−l

+l

Figure 6. Illustration (on the dual lattice defined in the right part of figure 5)
of the action of the operators As and Bp on an eigenstate of X l

i Zm
i operators

for all sites i . As in figure 4, a diamond on a star or a plaquette, with a
value k = ±l,±m, denotes a multiplicative change by ωk of the corresponding
eigenvalue. The behavior depends on the site’s color (so on the star and plaquette
types on the original lattice).

constraints: (i)
(
eiφl,m X l

i Zm
i

)N
= 1 and (ii)

(
eiφl,m X l

i Zm
i

)n
6= 1, ∀n ∈ {1, . . . , N − 1}. Noting that

(X l
i Zm

i )
n
= ωlm n(n+1)

2 X ln
i Zmn

i , the first constraint reads

eiNφl,mωlm N (N+1)
2 = 1, (19)

whereas the second one can be rephrased as

l n 6= 0 mod N or m n 6= 0 mod N , ∀n ∈ {1, . . . , N − 1}. (20)

The third and most stringent condition is that the action of Hl,m on eigenstates of HTC, i.e.
of all As and Bp operators (see figure 4), is the same as the action of HTC on eigenstates of Hl,m ,
i.e. of all X l

i Zm
i operators (see figure 6). After noting that the numbers of minus signs, as well

as their exact positions, can be made the same in both figures by exchanging the roles of X l
i Zm

i
and its Hermitian conjugate on magenta and green sites (or on yellow and brown sites), this last
condition reads

m = l or m = N − l. (21)
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For N = 2, one recovers the model studied in [18] (up to a factor of 2). Indeed, the only
solution to the above equations is l = m = 1 and φ1,1 = ±π/2. Thus, the perturbation reads
±2h y

∑
i σ

y
i , while the toric code Hamiltonian can be simplified to −2J (

∑
s As +

∑
p Bp) since

the star and plaquette operators are Hermitian for N = 2. Note that the present analysis also
shows that the sign of the field term is irrelevant.

For the case N = 3, to which the whole next section is devoted, condition (19) is fulfilled
for eiφl,m = 1, ω and ω2, whereas (20) and (21) are fulfilled for (l = 1, m = 1) and (l = 1, m = 2).
The six corresponding perturbations yield the same spectrum so that, for simplicity, we shall
only consider H1,1 with φ1,1 = 0.

To conclude this discussion, let us show that self-duality in these models is also responsible
for additional symmetries, as was already observed for the special case N = 2 [18]. Consider
figure 4 with m = l (the same discussion holds for m = N − l). It is clear that the sum of the
numbers appearing in the diamonds, on diagonals or anti-diagonals, is 0, 2l or −2l, which
is always even. This allows one to define conserved parity operators such as, for example,
(−1)

∑
s∈red q̂s +

∑
p∈pink q̂p , where the sum runs overs red stars and pink plaquettes forming a given

diagonal. In order for this parity operator to be conserved when N is odd, one has to consider
the charge and flux numbers q̂s and q̂p belonging to Z, introduced at the end of section 3.1
instead of qs and qp that belong to ZN . Of course, a dual discussion can be given by working on
the dual lattice and in the eigenbasis of X l

i Zm
i operators. As in the Z2 toric code in a transverse

field, the conservation of these parity operators constrains the dynamics, and the model displays
dimensional reduction. This dimensional reduction was originally discussed in the Xu–Moore
model [35–37], which has the same spectrum as theZ2 toric code in a transverse field. A detailed
discussion of these issues can be found in [38].

4. Perturbing the Z3 toric code

4.1. Model

In this section, we focus on the case N = 3 and we study the robustness of the Z3 toric code
with respect to simple perturbations. To this end, and for the sake of simplicity, we consider the
following Hamiltonian:

H(hX , h⊥, hZ)= HTC + H1,0 + H1,1 + H0,1 (22)

= −
1

3

∑
s

(As + A†
s )−

1

3

∑
p

(Bp + B†
p)− hX

∑
i

(X i + X †
i )

−h⊥

∑
i

(X i Z i + Z †
i X †

i )− hZ

∑
i

(Z i + Z †
i ), (23)

where we choose J = 1/3 in order to set the elementary excitation gap of the unperturbed
Hamiltonian HTC to unity. In addition, we restrict our discussion to real parameters and set
h1,0 = hX , h1,1 = h⊥, h0,1 = hZ . For N = 2, this Hamiltonian (with the proper phase factor for
H1,1 discussed in section 3.3) corresponds to the Z2 toric code in a uniform magnetic field
studied in [19] so that this choice is well suited for a comparison between both systems. In the
following, we adopt a language similar to that used for N = 2. Thus, H1,0 and H0,1 (H1,1) will
be considered as ‘parallel’ (‘transverse’) perturbations.
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The determination of the full 3D phase diagram of the Hamiltonian H(hX , h⊥, hZ) is a
difficult problem. Therefore, as was done initially for the Z2 case [17, 18], we will study parallel
and transverse cases separately, but let us first discuss the methods used.

4.2. Methods

As was already discussed, the system has to undergo phase transitions when perturbed with local
operators. As in the perturbed Z2 toric code, one expects first- and second-order transitions in
the phase diagram [19]. In order to analyze the breakdown of the topological phase, we combine
the pCUT method and the variational iPEPS algorithm. This approach is motivated by the fact
that the pCUT gives reliable estimates for second-order phase transitions, whereas the iPEPS
algorithm, as a variational tool, is especially sensitive to first-order transitions.

4.2.1. pCUT. The method of continuous unitary transformations has been introduced in [39],
and general aspects of its perturbative variant pCUT can be found in [40]. In what follows,
we focus on points that are specific to the application of the pCUT method to a topologically
ordered phase [17–19].

To apply the pCUT, it is essential that the unperturbed Hamiltonian (here HTC) possesses
an equidistant spectrum6 that is bounded from below [40]. These two constraints are satisfied
in the Z3 toric code as long as gaps of charges and fluxes are identical. In this case, one can
interpret the toric code as a counting operator Q of charges and fluxes in the system

HTC = −
2

3

(
Ns + Np

)
+ Q, (24)

where Ns (Np) denotes the total number of stars (plaquettes). Therefore the constant term
represents the ground-state energy (remember that we set J = 1/3).

It is then possible to rewrite the local perturbations as
∑

n Tn, where Tn changes the
particle number in the system by n, i.e. [Q, Tn] = n Tn. The pCUT maps, order by order in
the perturbation, the Hamiltonian H onto an effective Hamiltonian H eff, unitarily equivalent
to H (the same spectrum but different eigenstates), which reads as follows in the eigenbasis of
the bare Hamiltonian HTC:

H eff
= −

2

3

(
Ns + Np

)
+ Q +

∞∑
k=1

∑
m1+···+mk=0

C (m1, . . . ,mk) Tm1 · · · Tmk . (25)

As explained in [40], the coefficients C(m1, . . . ,mk) are model-independent rational
numbers. An essential property of the effective Hamiltonian is that

[
H eff, Q

]
= 0. As a

consequence, the number of quasiparticles (QPs) in the system, i.e. eigenstates of Q, is a good
quantum number. In the perturbed toric code, QPs are dressed anyons adiabatically connected
to the corresponding bare charges and fluxes.

To determine the zero-temperature phase diagram, we focus on the low-energy spectrum
of H eff. Essentially, one must study H eff in the zero-QP subspace (to compute the ground-
state energy) and in the one-QP subspace (to obtain the low-energy gap 1). We emphasize that
computing the low-energy gap from the one-QP subspace is meaningful as long as there are no

6 We would like to stress that the spectrum of theZN model studied in this paper is only equidistant for N = 2, 3, 4,
so that one cannot use this machinery for other values of N . However, it could be applied to Kitaev’s ZN toric
code [3] whose spectrum is equidistant for all N .
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bound states with lower energies. This is a working hypothesis that is crucial in what follows.
As discussed in section 2.2.2, for open boundary conditions, the ground state is non-degenerate
and the ground-state energy is nothing but the expectation value of H eff on the ground state of
the bare Hamiltonian

E0 = 〈gs| H eff
|gs〉 . (26)

The structure of the one-QP subspace is less trivial. Indeed, for N = 3 there are four
different kinds of excitations: charges (qs = 1) and anti-charges (qs = −1 = 2 mod 3) living on
stars, as well as fluxes (qp = 1) and anti-fluxes (qp = −1 = 2 mod 3) living on plaquettes. The
associated subspaces are not connected by H eff because of the symmetry ensuring that the total
charge and the total flux are conserved (modulo N = 3 when working with the physical charge
and flux). Thus H eff is a one-QP hopping Hamiltonian in each of these sectors and is therefore
easily diagonalized once the hopping amplitudes are determined. One then obtains dispersion
relations for the four kinds of excitation which only give two different energies because charges
and anti-charges, as well as fluxes and anti-fluxes, play symmetric roles. Finally, one can
compute the gap 1 as the minimum over all momenta of these two energy bands.

Let us point out that the major challenge, in both the zero-QP and one-QP sectors, lies
in the computation of matrix elements of H eff. Indeed, one has to take into account the non-
trivial braiding phases coming from virtual fluctuations of the excitations. Although the method
yields results in the thermodynamical limit, the linked-cluster theorem (see, e.g., [41, 42] and
references therein) allows one to compute the hopping amplitudes by considering finite-size
clusters (although one needs a growing number of them when the order of the perturbation
increases).

At the end of the day, one obtains a high-order series expansion of the ground-state energy
E0 and of the one-QP gap 1. The extrapolation of 1 with standard resummation techniques
(see, e.g., [43]) allows a reliable determination of second-order phase transition points and thus
of the boundaries of the topological phase (assuming that bound states of elementary QPs are
not relevant and do not have an energy smaller than that of a single QP).

Unfortunately, as already stated, series expansions are not adapted to detect possible first-
order phase transitions (in particular when having series in one phase only) so that one needs a
complementary tool which we now describe.

4.2.2. iPEPS. The so-called iPEPS algorithm [44] is a variational method that, as such, is
aimed at approximating the ground state of 2D quantum lattice systems by employing a tensor-
network approach. Details of this method have already been discussed extensively in the
literature [44–48]. For completeness, however, we explain some of the basic features of the
algorithm, focusing on those that are relevant to the study of the perturbed Z3 toric code.

In the iPEPS algorithm, the quantum state |9〉 of the infinite square lattice is represented by
a projected entangled pair state (PEPS) [44, 49]. In the present problem, we choose a PEPS with
four tensors denoted by P , Q, R and S per unit cell (see figure 7). Each of these tensors depends
on O(d D4) complex coefficients, where d = N = 3 is the dimension of the local Hilbert space
at each site, and D is the so-called bond dimension of the PEPS. This bond dimension controls
the maximum amount of entanglement carried by the PEPS wave function and consequently
the accuracy of the ansatz. Following the discussion in [50] for N = 2, one can show that the
ground state of the (non-perturbed) ZN toric code is a (D = N )-PEPS. Obviously, for J = 0 the
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Figure 7. Schematic representation of the (translation-invariant) PEPS
considered in this study with four different tensors (P , Q, R and S) per unit cell.
Tensors are represented by circles, and their indices by lines. Lines that connect
different circles correspond to bond indices shared by two tensors and can take
up to D different values. Open lines correspond to physical indices, which take
d = N = 3 values (dimension of the local Hilbert space on each site).

fully polarized ground state is also a (trivial) PEPS (D = 1). Consequently, at least in these two
limiting cases, PEPS are exact ground states of the Hamiltonian.

In practice, for a given D, the goal is to find the coefficients of tensors P , Q, R and S that
best approximate the ground state of H . These coefficients can be determined by an imaginary-
time evolution driven by the Hamiltonian, since

|9gs〉 = lim
τ→∞

e−τH
|90〉

‖ e−τH |90〉 ‖
, (27)

where |9gs〉 is the ground state of H and |90〉 is any initial state that has a non-vanishing
overlap with the ground state. The approximation of this evolution is performed in a similar
way as explained, for instance, in [44, 47].

(i) The whole evolution is split into small imaginary-time steps δτ by using a Suzuki–Trotter
expansion of the evolution operator e−τH. More precisely, writing the Hamiltonian as a sum
of four-body terms h[i j kl],

H =

∑
i j kl

h[i j kl], (28)

we consider, at each time step, the action of the four-site operator

g[i j kl]
≡ e−δτh[i j kl]

. (29)

New Journal of Physics 14 (2012) 025005 (http://www.njp.org/)

http://www.njp.org/


16

(ii) At each imaginary-time step the state is approximated by some PEPS with the considered
structure and bond dimension D. For instance, if at step τ we have a PEPS |9(τ)〉, then the
evolved state |9̃(τ + δτ)〉 ≡ g[i j kl]

|9(τ)〉 is also approximated by a new PEPS |9(τ + δτ)〉
with the same structure. Practically, this approximation is achieved by minimizing the
distance ‖ |9̃(τ + δτ)〉 − |9(τ + δτ)〉 ‖

2 with respect to the coefficients of the tensors
P , Q, R and S of the new PEPS. In our case, we have carried out this minimization
simultaneously over the four tensors by using a standard conjugate-gradient algorithm.

Quite importantly, step (ii) as well as the evaluation of expectation values of local
observables involves the contraction of an infinite 2D tensor network. This contraction can
be approximated by various schemes [44, 47, 51]. Here, we choose the Directional Corner
Transfer Matrix Approach introduced in [47] that can be easily adapted to deal with different
types of 2D tensor networks [48], including those considered here. An important parameter in
these manipulations is the so-called bond dimension of the environment χ which controls the
accuracy of the approximations involved at this step.

Thus, according to the discussion above, there are four possible sources of error in the
iPEPS algorithm.

(i) The size and the shape of the considered unit cell. The error is reduced when the unit cell
gets larger.

(ii) The bond dimension D of the PEPS. The error is reduced when D gets larger.

(iii) The imaginary-time step δτ . The error is reduced when δτ gets smaller.

(iv) The bond dimension of the environment χ . The error is reduced when χ gets larger.

In this study, we have fixed D = 3, χ = 30, δτ = 10−3, and the aforementioned ‘four-
site’ unit cell. We checked that the increase of precision obtained by varying the values of
the parameters is within the error bars obtained by the pCUT approach. Therefore, this choice
of parameters turns out to be sufficient for our purposes.

4.2.3. pCUT +iPEPS. To determine the boundaries of the topological phase, we combine the
results from pCUT and iPEPS algorithms as explained below. To simplify the discussion, let us
assume that we have only one control parameter h > 0.

Let us recall that a second-order transition is associated with the closure of the low-energy
gap. Assuming that the relevant gap comes from the one-QP sector, the critical point hc is
then defined by 1(hc)= 0. As already mentioned, this point can be efficiently computed with
the pCUT method by extrapolating the high-order series expansion of 1. Typically, with the
maximum orders reached in this study, one can determine hc with a relative precision of the
order of 10−2–10−3. However, if some level crossing occurs, one faces a first-order transition
that cannot be captured by the criterion 1= 0. That is why it is crucial to use the iPEPS
algorithm for computing, variationally, the ground-state energy. Indeed, denoting by epCUT

0 and
eiPEPS

0 the ground-state energies calculated by both methods and assuming the existence of a
point h? where eiPEPS

0 < epCUT
0 , two cases must be considered. If h?> hc, it means that the iPEPS

algorithm does not detect any level crossing for the ground state before the critical point and
hence a second-order transition is likely taking place at hc. By contrast, if h?< hc, then it means
that a level crossing definitely occurs before the critical point hc and we conclude that a first-
order transition takes place at h?.
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Of course, this reasoning would be exact (i) if one would have an infinite precision in both
methods, which is clearly not the case, and (ii) if no bound-state with lower energy exists (see
discussion above). The accuracy of this combined pCUT+iPEPS approach is limited by several
sources. Firstly, the series expansion is performed up to a finite maximum order and the error
of resummation schemes such as the dlog-Padé extrapolation is hard to quantify. Secondly,
the variational iPEPS algorithm is limited by the values of the parameters D, χ , δτ as well
as the structure of the tensor network itself (see section 4.2.2). Additionally, it is numerically
challenging to extract the global minimum of the variational ground-state energy. Reasonably,
one can state that the combined pCUT+iPEPS approach works well as long as the error bars
of both methods when determining the values h? and hc are small compared to the difference
|h? − hc|. As explained above, in the present work, this relative error on h? and hc is of the order
of 10−2–10−3.

4.3. Results

Let us now present our results concerning the perturbed Z3 toric code H(hX , h⊥, hZ) (see (22))
for several limiting cases.

4.3.1. The case hX = h⊥ = 0. As was already mentioned in section 3.2, the low-energy
physics of the perturbed toric code H(0, 0, hZ) corresponds to the N -state clock model in a
transverse field (18). For N = 3, this model is also equivalent to the three-state Potts model in
a transverse field. The extension of the topological phase can therefore be obtained by directly
analyzing this model, which is simpler since one only has to consider charge degrees of freedom
that live on stars of the square lattice. Indeed, one must keep in mind that fluxes are frozen
(conserved) and even absent in the low-energy sector.

As a first step, apart from the pCUT+iPEPS analysis, let us perform a standard mean-field
calculation that, as we shall see, already captures the main qualitative aspects of the phase
diagram although it relies on a trivial (non-entangled) variational state. To this aim, let us
consider the following trial wave function:

|9〉 =

⊗
s∈blue

|ψb〉s

⊗
s∈red

|ψr〉s , with
∣∣ψb,r

〉
s

= ab,r |0〉s + bb,r |1〉s + cb,r |2〉s , (30)

where the coefficients ab,r, bb,r and cb,r are chosen such that the local wave functions
∣∣ψb,r

〉
s

are normalized and minimize 〈9|H |9〉. Introducing different wave functions on red (r) and
blue stars (s) is necessary to take into account ferromagnetic order and anti-ferromagnetic
order (expected for hZ > 0 and hZ < 0, respectively). For the clock model, the sublattice
magnetization

Mb,r (hZ)=
(〈
ψb,r

∣∣ Xs

∣∣ψb,r

〉 〈
ψb,r

∣∣ X †
s

∣∣ψb,r

〉)1/2
(31)

is a proper order parameter. The topological phase of the perturbed Z3 toric code corresponds to
the disordered (symmetric) phase of the three-state clock model characterized by Mb,r = 0. This
phase is obtained for |hZ | � J = 1/3. By contrast, an ordered (broken) phase with Mb,r 6= 0 is
expected for large perturbations |hZ | � J = 1/3. Once again, let us emphasize that the sign of
hZ is important for N = 3. Indeed, for large positive hZ , a polarized phase (with all stars in the
same state) is stabilized, whereas for large negative hZ a ‘staggered’ order arises.

Our results for the mean-field order parameter are summarized in the upper panel of
figure 8. For hZ > 0, we find a first-order transition at h1,MF

Z = 1/9. At this point, the order
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Figure 8. Comparison of pCUT, iPEPS and mean-field results for the N = 3
clock (Potts) model in a transverse field hZ (J = 1/3). At order 11, all dlog-
Padé approximants agree within the width of the black lines. Vertical dashed
lines indicate the position of hc

Z defined by 1(hc
Z)= 0. Vertical dotted lines

indicate the position of h?Z beyond which eiPEPS
0 < epCUT

0 . Upper panel: sublattice
magnetizations Mb,r as a function of hZ . The central panel: one-QP gap 1 as a
function of hZ . Lower panel: ground-state energy per site e0 as a function of hZ .
Inset: zoom of e0 close to the critical point for negative hZ .

parameter jumps discontinuously from 0 to 1/2. For hZ > h1,MF
Z , the system is uniformly

polarized (Mr = Mb) and limhZ →+∞Mb,r = 1, as it should. For hZ < 0, we obtain a continuous
quantum phase transition at h2,MF

Z = −1/8. As discussed above, the ordered phase found for
hZ < h2,MF

Z < 0 spontaneously breaks the translation symmetry of the system, i.e. Mb 6= Mr.
In the mean-field approximation, both (sublattice) order parameters Mr and Mb vanish as
(h2,MF

Z − hZ)
βMF

with βMF
= 1/2. Furthermore, as can be shown by a simple first-order

perturbation theory in J/hZ , one has limhZ →−∞Mb = 1 and limhZ →−∞Mr = 1/2 (or vice versa).
To go beyond this mean-field analysis and to obtain more quantitative results, let us now

turn to the pCUT+iPEPS analysis. As the Hamiltonian (18) only contains one-site and two-site
terms, the evaluation of effective matrix elements in the pCUT calculation can be performed
using a full graph decomposition [43, 52] that allowed us to reach order 11 (see appendix A).
The iPEPS algorithm also considerably benefits from the absence of four-site terms in Hclock. As
can be seen in figure 8, the PCUT+iPEPS method is in qualitative agreement with the mean-field
treatment since it also predicts a first-order transition for hZ > 0 and a second-order transition
for hZ < 0. However, for hZ > 0 where our results match those given in [53] for the Potts
model (up to a rescaling), we found h?Z ' 0.126 and hc

Z ' 0.129. Thus, within the combined
pCUT+iPEPS scheme, we are led to conclude that a (weakly) first-order phase transition occurs
at h?Z ' 0.126 in agreement with the results given in [28, 46]. As can be seen from figure 8
(upper panel), the calculation of the order parameter using the iPEPS algorithm confirms a
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first-order behavior (jump of the magnetization). Note also that the relative difference between
h?Z and h1,MF

Z is about 12%.
The situation is different for hZ < 0. In this case, we found h? ' −0.204 and hc

Z ' −0.195
(see table A.1 for more details). Let us stress that we observed very good agreement between
iPEPS and PCUT calculations with a relative error between both ground-state energies smaller
than 10−4 for hc

Z < hZ < 0. We therefore conclude that, within our scheme, a second-order
phase transition occurs at hc

Z ' −0.195. In this parameter region, the discrepancy between hc
Z

and h2,MF
Z = −1/8 is larger than 35%. To the best of our knowledge, this second-order phase

transition has never been discussed in the literature and it is therefore very desirable to further
characterize its universality class. Unfortunately, the iPEPS calculation of the critical exponent
β associated with the order parameter is known to be specially sensitive to finite-D effects. As
shown in the 1D Ising model in a transverse field [54], this exponent also eventually reaches
its mean-field value 1/2 for any finite D when approaching the critical point. Nevertheless, the
exact value (1/8 in the latter problem) can be observed in a field range near the critical point
whose size increases with D. In a 2D system, it is very difficult to increase D in order to conduct
a similar study. For the problem at hand, our fixed bond dimension D = 3 only allowed us to
see an exponent different from βMF

= 1/2 in a very small region, and this was not sufficient for
determining a reliable value.

Alternatively, dlog-Padé extrapolations of high-order series expansion of 1 allows one
to determine the exponent driving the closure of the gap at the critical point. More precisely,
denoting by z the dynamical exponent and by ν the correlation length exponent, one has
1∼ |h − hc

|
z ν for h near hc (see, e.g., [55]). At order 11, we found z ν ' 0.71 but, as can be

seen in table A.1, it is clear that this value is poorly converged. However, to roughly estimate the
error, one may draw a parallel with the N = 2 problem (i.e. the Ising model in a transverse field)
for which series expansion of the gap has been computed up to order 13 in [56]. There, using
the order 11 results, one gets an exponent z ν ' 0.645 that differs by only a few per cent from
the commonly accepted values z = 1 and ν = 0.630(1). Hopefully, for N = 3, we are also close
to the asymptotic value but one clearly needs a more quantitative study to clarify the nature of
this quantum phase transition. In that respect, Monte Carlo simulations could provide valuable
insights.

4.3.2. The case h⊥ = 0. Let us now turn to the case when both perturbations H0,1 and H1,0 are
present so that neither charges nor fluxes are locally conserved anymore. Thus, one has to treat
charges and fluxes at the same level and to carefully take their mutual statistics into account in
the virtual braiding processes. This constraint strongly reduces the maximum order that can be
reached in the pCUT calculation. Instead of order 11, we only computed e0 and 1 up to order 7
for this case (see appendix A). The iPEPS calculation becomes more involved as well since one
now has to deal with four-body interactions (instead of two-body interactions in the three-state
clock model). In other words, our results are less accurate when a more complex perturbation is
considered, as expected.

In figure 9 (left), we display the phase diagram obtained by combining pCUT and iPEPS
algorithm following the same procedure as previously but for arbitrary directions in the (hX , hZ)

plane. As can be seen, the shape of the topological phase is symmetric under the exchange
of hX ↔ hZ . This is due to the fact that the perturbation H0,1 + H1,0 respects the ‘charge-flux
symmetry’ present in HTC. The transition lines that mark the boundaries of this phase are found
to be either first-order or second-order lines.
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Figure 9. Left: zero-temperature phase diagram of H(hX , 0, hZ) obtained by
the pCUT +iPEPS approach. Cyan (black) lines denote first-order (second-
order) phase transitions. The first-order (second-order) phase transitions for the
ferromagnetic (anti-ferromagnetic) three-state clock model in a transverse field
are marked by cyan (black) diamonds. Magenta squares locate the crossings
between first- and second-order transition lines while the crossing of the two
second-order lines is taking place at the green triangle. Right: plot of the
gap exponent zν as a function of hc

X along the horizontal second-order phase
transition line (see the left part). The black solid line is the result obtained from
the order seven expression of the one-QP gap. The black square is our best
estimate of zν for the simpler case of one parallel perturbation using the order 11
series expansion obtained for the three-state Potts model in a transverse field (see
section 4.3.1).

Let us start with a discussion of the (two symmetric) first-order (cyan) lines that are directly
connected to the weakly first-order transition points (cyan diamonds) of the three-state clock
model in a (positive) transverse field. Near these points, hc and h? are found to be very close so
that it is challenging to clearly decide whether the transition is first or second order. However,
given the precision reached and the existence of some well-identified first-order points (not
shown in figure 9) away from the cyan diamonds, it seems reasonable to argue that the two lines
are likely first order.

The situation is different for the other part of the topological phase whose boundaries
are connected to the second-order points (black diamonds) of the three-state clock model in a
(negative) transverse field. Here, the pCUT +iPEPS approach is always clearly consistent with
a second-order phase transition.
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In this region, the intersection of the two second-order transition lines (green triangle) is
reminiscent of the phase diagram of the perturbed Z2 toric code in a parallel magnetic field
where a multi-critical point was found [16, 17]. In the latter case, this crossing point is also
connected to a finite-length first-order line that lies outside the topological phase. For the present
problem (N = 3), we have not performed a small-J perturbation theory likely to reveal a similar
feature. Nevertheless, we computed the gap exponent zν along the second-order (black) lines.
As can be seen from figure 9 (right), the behavior of this exponent is rather flat (the same values
as for hX = 0 or hZ = 0) except at its extremities where it increases significantly. This may
indicate a different universality class at the crossing points (green triangle and magenta squares)
as was also found in the N = 2 problem. Anyway, let us stress that there are some limitations
of our approach for the current problem. Firstly, the perturbative expansion at order 7 is not
sufficient to determine the gap exponent zν accurately. Secondly, the finite width in hc

X where
the gap exponent differs from the value at hc

X = 0 is likely an artifact of the finite-order series.
Indeed, we rather expect that all points except crossing points belong to the same universality
class as the anti-ferromagnetic clock model in a transverse field, but one cannot exclude other
scenarios. Once again, to obtain more quantitative results, it would be very valuable to perform
numerical simulations of this model by means of alternative methods.

4.3.3. The case hX = hZ = 0. To conclude this analysis, let us consider the case of a
‘transverse’ perturbation that, as discussed in section 3.3 for general N , leads to a self-
dual spectrum for H(0, h⊥, 0). Since J > 0 and N is odd, one must also have h⊥ > 0.
A convenient parameterization for this problem consists in setting J =

1
3 cos θ and h⊥ =

1
3 sin θ

with θ ∈ [0, π/2]. The unperturbed toric code corresponds to θ = 0, whereas for θ = π/2 the
Hamiltonian is purely local. The self-dual point is located at θ = π/4 (J = h⊥) so that the
spectrum is symmetric under the transformation θ ↔ π/2 − θ . Thanks to self-duality, one can
determine directly the nature of the transition by studying the singularity of the ground-state
energy. Note that we could not use this criterion in previous cases since we did not have reliable
information outside the topological phase. As can be clearly seen in figure 10 (lower panel), the
ground-state energy displays a kink at the self-dual point ( ∂e0

∂θ
|θ=π/4 is discontinuous) so that a

first-order transition occurs there.
As explained in section 3.3, the parity conservation rules constrain the dynamics. In

particular, they prevent a single QP to move in the presence of such a perturbation. Consequently
the one-QP energy level of the toric code (θ = 0) does not give rise to dispersive bands but
is simply renormalized when h⊥ 6= 0. The corresponding gap 1 is shown in figure 10 (upper
panel) and does not vanish at the self-dual point. However, this observation is compatible with
the existence of a first-order transition that is due to level crossings which cannot be captured
by analyzing low-energy levels. This situation is exactly the same as that one discussed in [18]
for the Z2 toric code in a transverse field. As in [18], two-QP bound states are either pinned or
mobile in only one dimension, while the simplest 2D dispersing object is a four-QP bound state.

5. Conclusion and perspectives

In this paper, we have introduced exactly solvable models with ZN (Abelian) anyons that
generalize Kitaev’s famous toric code [3] or, equivalently, Wen’s plaquette model [27]. Our main
motivation was to probe the robustness of ZN>2 topologically ordered phases following recent
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Figure 10. Lower panel: ground-state energy per site e0 of H(0, h⊥, 0) as a
function of θ (with J =

1
3 cos θ and h⊥ =

1
3 sin θ ). Inset: zoom of the kink at

θ = π/4 indicating the presence of a first-order phase transition. Upper panel:
one-QP gap 1 as a function of θ computed by pCUT. At order 7, other dlog-
Padé approximants of 1 are very close to that shown here.

works on the case N = 2 [14–19]. This question is crucial since such phases are believed to be
protected against external perturbations up to an order proportional to the typical system size.
In addition this robustness has recently been proven for any local perturbation [4, 5]. However,
as noted earlier by Kitaev in his seminal paper [3]: ‘Of course, the perturbation should be small
enough, or else a phase transition may occur’.

To investigate the limits of the standard aforementioned perturbative argument, we added
local perturbations to this ZN toric code and we obtained several important results. First of
all, for specific choices of the perturbation, the perturbed ZN Hamiltonian can be mapped
onto the 2D N -state quantum clock model in a transverse field. This mapping generalizes
the correspondence between the Z2 toric code in a parallel field and the transverse-field Ising
model [14, 15] to arbitrary N . For N = 3 and antiferromagnetic couplings, we found evidence
for a second-order phase transition, but we have not been able to determine accurately its
universality class. Let us simply note that our estimate of the critical exponent z ν is compatible
with that of the 3D classical XY model describing the 3D three-state classical antiferromagnetic
Potts model (see, e.g., [57]). Secondly, we have also shown that for N = 3, multi-critical points
are likely present in the phase diagram of H(hX , 0, hZ) (defined in (22)) although, here again,
it would be important to analyze them with complementary tools. In particular, numerical
simulations would be as valuable as for N = 2 [16]. In addition, as already observed for the
N = 2 case [18], we have shown that self-dual Hamiltonians may arise provided the perturbating
operators satisfy some constraints that we derived for arbitrary N . In this case, the self-duality
is associated with a dimensional reduction and, for N = 3, we found that a first-order transition
occurs at the self-dual point (as was the case for N = 2).
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From a methodological point of view, the combination of high-order perturbation theory
(pCUT) and variational techniques (iPEPS) has been shown to be very efficient in a domain
where few alternative approaches exist. In that respect, let us mention that improvement of the
variational ansatz could certainly be achieved by taking into account the gauge symmetry in the
tensor network as discussed recently in [20, 58, 59].

To conclude, we would like to mention related problems that would be worth investigating
in order to deepen our understanding of topological phases’ fragility. In the simplest case N = 2,
it would already be worthwhile considering a perturbed toric code on a lattice that is not self-
dual such as, for instance, the honeycomb lattice. Indeed, in this case, the role of charges
and fluxes degrees of freedom cannot be exchanged by a simple lattice transformation and
it is likely that such a model could lead to a non-trivial phase diagram in the presence of a
uniform magnetic field. One may also directly perturb Wen’s plaquette model with arbitrary
local perturbations. Indeed, as shown in [60] for N = 2, although Wen’s and Kitaev’s models
are (almost) the same in the absence of perturbation, they display very different properties in
the presence of a uniform magnetic field. To go beyond N = 2, we believe that the study of
the breakdown of ZN topological phases initiated here would greatly benefit from a large-N
analysis that might be performed in a field-theoretical framework. Although it is clearly beyond
the scope of this paper it may shed light on several issues such as, for instance, the universality
class that can be met at the boundaries of topological phases. Let us mention that recent studies
suggested the possibility that conformal quantum critical points may describe these phase
transitions (see, e.g., [61, 62]). Finally, the most important step certainly consists in analyzing
the robustness of non-Abelian topological phases [22, 63] which are of direct interest for
topological quantum computation, but undoubtedly, these quantum objects are much more tricky
to handle.
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Appendix A. Series expansion in the limit |hZ| � J for hX = h⊥ = 0

Setting J = 1/3, the series expansion at order 11 of the ground-state energy per site of
H(0, 0, hZ) reads

e0 = −
2

3
− 2 h2

Z − h3
Z −

17

2
h4

Z −
847

36
h5

Z −
18 407

144
h6

Z −
15 290

27
h7

Z −
995 278 817

311 040
h8

Z

−
19 860 676 421

1166 400
h9

Z −
113 666 455 562 393

1119 744 000
h10

Z −
9 981 578 694 811 559

16 796 160 000
h11

Z .

(A.1)

New Journal of Physics 14 (2012) 025005 (http://www.njp.org/)

http://www.njp.org/


24

Table A.1. Table of critical values and gap exponents obtained from dlog-Padé
[n,m] extrapolation of the one-QP gap 1. Defective approximants, i.e. those
with spurious poles between zero and hc

Z , are marked with an asterisk. For
hc

Z > 0 we do not give the corresponding exponent since, in this case, a first-
order transition occurs at h? < hc

Z .

[n,m] hc
Z hc

Z zν [n,m] hc
Z hc

Z zν

[1, 2] 0.1322 −0.1982 0.791 [1, 8] 0.1286 −0.1947 0.716
[2, 3] 0.1296 −0.1989 0.796 [1, 9] 0.1285 −0.1947 0.715
[3, 4] 0.1296∗

−0.1970 0.771 [2, 2] 0.1284 −0.1996 0.806
[4, 5] 0.1287 −0.1944 0.706 [3, 3] 0.1295 −0.2053∗ 0.802∗

[1, 3] 0.1286 −0.1996 0.806 [4, 4] 0.1240 −0.1943 0.702
[2, 4] 0.1295 −0.2071∗ 0.786∗ [5, 5] 0.1283 −0.1942∗ 0.700∗

[3, 5] 0.1262 −0.1945 0.708 [3, 2] 0.1301 −0.1977 0.776
[4, 6] 0.1284 −0.1945 0.707 [4, 3] 0.1290 −0.1951 0.726
[1, 4] 0.1299 −0.1976 0.776 [5, 4] 0.1283 −0.1944 0.705
[2, 5] 0.1288 −0.1953 0.731 [4, 2] 0.1292 −0.1957 0.739
[3, 6] 0.1282 −0.1944 0.706 [5, 3] 0.1293 −0.1970∗ 0.748∗

[1, 5] 0.1294 −0.1958 0.743 [6, 4] 0.1283 −0.1946 0.713
[2, 6] 0.1213 −0.1966∗ 0.751∗ [5, 2] 0.1291 −0.1953 0.729
[3, 7] 0.1285 −0.1947 0.715 [6, 3] 0.1286 −0.1946 0.712
[1, 6] 0.1291 −0.1954 0.734 [6, 2] 0.1287 −0.1947 0.714
[2, 7] 0.1285 −0.1947 0.715 [7, 3] 0.1289∗

−0.1946 0.713
[1, 7] 0.1288 −0.1949 0.720 [7, 2] 0.1286 −0.1946 0.713
[2, 8] 0.1279 −0.1947 0.715 [8, 2] 0.1285 −0.1946 0.713

The series expansion at order 11 of the one-QP gap reads

1= 1 − 4 |hZ | − 4 hZ |hZ | − 6 hZ
2
− 5 hZ

2
|hZ | − 155 hZ

3
|hZ | −

965

6
hZ

4

+
6469

18
hZ

4
|hZ | +

1273

3
hZ

5
−

222 718

27
hZ

5
|hZ | −

597 005

72
hZ

6

+
17 397 799

432
hZ

6
|hZ | +

54 071 671

1296
hZ

7
−

8607 425 885

15 552
hZ

7
|hZ | −

595 589 309

1080
hZ

8

+
956 588 586 169

259 200
hZ

8
|hZ | +

8712 501 685 859

2332 800
hZ

9
−

736 434 737 832 197

17 496 000
hZ

9
|hZ |

−
46 950 055 731 802 549

1119 744 000
hZ

10 +
277 183 060 218 266 393

839 808 000
hZ

10
|hZ |

+
61 908 400 265 234 507

186 624 000
hZ

11. (A.2)
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Appendix B. Series expansion in the limit |hX|, |hZ| � J for h⊥ = 0

Setting J = 1/3, the series expansion at order 7 of the ground-state energy per site of
H(hX , 0, hZ) reads

e0 = −
2

3
− 2 S2 − S3 −

17

2
S4 +

3

2
P4 −

847

36
S5 +

21

16
P4S1 −

18407

144
S6 +

33

32
P6

+
933

40
P4S2 −

15290

27
S7 +

1477 451

19 200
P4S3 +

72 039

3200
P6S1, (B.1)

with Sn = hn
X + hn

Z and Pn = hn/2
X hn/2

Z .
For N = 3 and for non-vanishing hX and hZ , the one-QP gap is defined as1= min(1c,1f)

where1c (1f), denotes the charge (flux) gap. The series expansion at order 7 for the charge gap
reads

1c = 1 − 4 |hZ | − 4hZ |hZ | − 6hZ
2
− 5 |hZ |

3 + 3hX
2
|hZ |

−155hZ |hZ |
3
−

965

6
hZ

4 + 5hX
2hZ |hZ | + 7hX

2hZ
2 + 3hX

3
|hZ |

+
15

2
hX

4 +
6469

18
|hZ |

5 +
1273

3
hZ

5 +
85

6
hX

2
|hZ |

3
−

109

24
hX

2hZ
3

+
13

3
hX

3hZ |hZ | +
151

24
hX

3hZ
2 +

107

4
hX

4
|hZ | +

71

3
hX

5

−
222 718

27
hZ |hZ |

5
−

597 005

72
hZ

6 +
337 873

720
hX

2hZ |hZ |
3

+
676 969

1440
hX

2hZ
4 +

521

36
hX

3
|hZ |

3
−

1043

144
hX

3hZ
3 +

2471

36
hX

4hZ |hZ |

+
12 887

90
hX

4hZ
2 +

811

9
hX

5
|hZ | +

9373

48
hX

6 +
17 397 799

432
|hZ |

7

+
54 071 671

1296
hZ

7
−

6698 749

4320
hX

2
|hZ |

5
−

160 743 271

86 400
hX

2hZ
5

+
2281 303

4800
hX

3hZ |hZ |
3 +

8944 457

19 200
hX

3hZ
4 +

7637 683

43 200
hX

4
|hZ |

3

+
415 247

14 400
hX

4hZ
3 +

20 635

108
hX

5hZ |hZ | +
41 043 187

86 400
hX

5hZ
2

+
1191533

1728
hX

6
|hZ | +

8947

9
hX

7. (B.2)

The flux gap 1f is simply obtained from 1c by exchanging hX and hZ .
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Appendix C. Series expansion in the limit 0 < h⊥ � J for hX = hZ = 0

Setting J =
1
3 cos θ , h⊥ =

1
3 sin θ , and denoting t = tan θ = h⊥/J � 1, the series expansion at

order 7 of the ground-state energy per site of H(0, h⊥, 0) reads

e0

cos θ
= −

2

3
−

1

18
t2

−
1

216
t3

−
599

272 160
t4

−
209

259 200
t5

−
896 417

2204 496 000
t6

−
7184 765 443

33 331 979 520 000
t7. (C.1)

The series expansion at order 7 of the one-QP gap reads

1

cos θ
= 1 −

4

27
t2

−
5

162
t3

−
617

34 992
t4

−
26 773

2624 400
t5

−
24 667 735 793

3888 730 944 000
t6

−
2975 252 249 029

699 971 569 920 000
t7. (C.2)

Since this model is self-dual, the corresponding quantities in the opposite limit h⊥ � J > 0
are obtained by changing θ into π

2 − θ .
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[47] Orús R and Vidal G 2009 Phys. Rev. B 80 094403
[48] Corboz P, White S R, Vidal G and Troyer M 2011 Phys. Rev. B 84 041108
[49] Verstraete F and Cirac J I 2004 arXiv:cond-mat/0407066
[50] Verstraete F, Wolf M M, Perez-Garcia D and Cirac J I 2006 Phys. Rev. Lett. 96 220601
[51] Gu Z-C, Levin M and Wen X-G 2008 Phys. Rev. B 78 205116
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