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Phänomenologie von sterilen Neutrinos an verschiedenen Skalen

Sterile Neutrinos sind eine sehr einfache Erweiterung des Standardmodells der Teilchen-
physik und führen dennoch zu Veränderungen in vielen physikalischen Beobach-
tungsgrößen. Da sie durch ihre Mischung mit den aktiven Neutrinos mit den anderen
Teilchen des Standardmodells wechselwirken, beeinflussen sie Prozesse der schwachen
Wechselwirkung. Die Art der Veränderungen hängt von der Masse der sterilen Neu-
trinos ab und von ihrer Mischung mit den aktiven Neutrinos. Zwei Massenskalen wer-
den in dieser Arbeit aufgegriffen: Für ein sehr leichtes steriles Neutrino, welches mit
den aktiven Neutrinos oszilliert, wird untersucht, ob diese Oszillation durch Wechsel-
wirkungen mit Materie verstärkt werden kann. Wenn die Mischung von den aktiven
und dem sterilen Neutrino groß ist, kann der Fluß atmosphärischer aktiver Neutrinos
um bis zu 80% verringert werden, wenn sie die Erde durchqueren. Der zweite Teil
dieser Arbeit befasst sich mit indirekten Effekten schwerer steriler Neutrinos auf elek-
troschwache Beobachtungsgrößen. Wenn sowohl Korrekturen nullter als auch erster
Ordnung einbezogen werden, können sich die Beiträge der sterilen Neutrinos in einigen
Parametern aufheben. Dadurch werden größere Mischungsparameter erlaubt, die dann
zu in Zukunft messbaren Effekten in anderen Prozessen führen können.

Phenomenology of sterile Neutrinos at different Scales

Sterile neutrinos are one of the most simple extensions of the Standard Model (SM),
but they can still have a rich variety of phenomenological implications on physical
observables. As they interact with other SM particles through their mixing with the
active neutrinos, they modify processes of the weak interaction. The signatures of
the sterile neutrinos depend on their masses and their mixing to the active neutrinos.
Two mass scales are picked up in this thesis: First, a very light sterile neutrino that
oscillates with the active neutrinos is considered and it will be analyzed, whether the
oscillations can be resonantly enhanced when interacting with a matter background.
For a large active–sterile mixing the deficit in the atmospheric active neutrino flux
after crossing the Earth could be up to 80%. In the second part indirect effects of
heavy sterile neutrinos on electroweak observables are examined. When tree-level and
one-loop effects are taken into account, a cancellation of the contributions of the sterile
neutrinos can be present in some observables. Therefore, a larger active–sterile mixing
is allowed that can then lead to sizeable influence on other processes, which can be
detected in the near future.
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CHAPTER 1

Outline

In the course of time, many descriptions of the laws of nature have been thought up and

discarded again. While some new theories just took the old ideas a few steps further,

others led to an entire new understanding of nature, changing the philosophical view on

its relations. General relativity, for example, redefined the understanding of space and

time, revising them from being mathematical concepts to being physical objects that are

influenced by the existence of matter. The basis of quantum mechanics, contradicting

the idea of determinism in the range of its validity, was even rejected by some great

minds for its philosophical implications.

These two theories, both revolutionary in their underlying assumptions, are the fun-

damentals of today’s physics. While general relativity describes the dynamics at large

scales, e.g. the evolution of galaxies, quantum mechanics was extended to quantum field

theory, describing mainly the physics at small scales. It is the basis of the Standard

Model (SM) of particle physics, one of the most successful theories so far. Numerous

experiments have been built in the last decades to test the SM, having reached an impres-

sive precision. Although there are hints for physics beyond the SM, most new theories

only extend the SM by new particles of new symmetry groups.

The most firmly established phenomenon in particle physics, which is clearly in need of

physics beyond the SM, is the oscillation of neutrinos. As will be explained in chapter 2,
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neutrinos must thus have tiny, but nonvanishing masses. In the SM, however, neutri-

nos are massless by construction. This motivates the introduction of so-called sterile

neutrinos, as this is the straightforward way to generate neutrino masses. These sterile

states are singlets under the SM gauge group and in the most general case Majorana

particles, meaning they are their own antiparticles. But they can actually have a rich

phenomenology. Via the Yukawa coupling – the coupling of the Higgs field to fermions

– they interact with the SM neutrinos. When the electroweak symmetry is broken and

the Higgs field acquires a vacuum expectation value, this leads to a mixing of the sterile

with the SM neutrinos. Through the mixing they then also couple to other SM particles.

Other hints to physics beyond the SM come for example from large scale observations,

from the dynamics of galaxies and stars. The incompatibilities with theory could most

easily be explained by the existence of one or more particles that do not interact elec-

tromagnetically, being therefore called “Dark Matter”. On the other hand, the SM also

fails to explain the baryon asymmetry of the universe, i.e. the fact that the universe is

made up of particles and not antiparticles.

Sterile neutrinos could also solve these other two problems. They could be a warm

dark matter candidate and heavy sterile neutrinos could provide a mechanism causing

a lepton asymmetry in the universe (called leptogenesis), which is then transferred to

baryons via sphaleron processes.

In this work the phenomenology of sterile neutrinos at different mass scales will be

discussed. The motivation for the introduction of sterile neutrinos will be revisited in

more detail in chapter 2. Chapter 3 is devoted to the possibilities of observing sterile

neutrinos in different processes and phenomena. These may vary depending on the

mass of the sterile neutrino. Some processes are only sensitive to light, others to heavy

sterile neutrinos, since the contribution of the sterile states can change depending on

their mass. In chapters 4 and 5 two mass scales are taken up. First, one very light

sterile neutrino with a mass at the eV scale is treated. This neutrino can oscillate with

the SM neutrinos and it will be analyzed whether the oscillation could be enhanced by

matter effects, thus facilitating their detection. The calculation will be done especially

for the oscillation of electron neutrinos to sterile neutrinos, as there are some hints to

the disappearance of electron (anti)neutrinos into a sterile state coming from reactor

experiments with electron antineutrinos and calibrations of detectors with radioactive

sources. Chapter 5 will turn to a discussion of heavy sterile neutrinos, whose masses are

above the Z boson mass. These neutrinos are not produced via weak interactions at tree-

level and leave a trace just by the non-unitarity of this effective theory. Since they may

however propagate in loops, they contribute to the oblique correction parameters. These
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two indirect effects – the non-unitarity and the loop contributions – are summarized

in corrections to electroweak precision observables. This analysis is motivated by e.g.

the NuTeV anomaly, where the ratios of neutral to charged current cross-sections in

(anti)neutrino–nucleon scattering were smaller than predicted and the measurement of

the Z decay width into invisible particles resulting in a number of neutrino species

slightly smaller than three. It will be examined, whether the agreement of the data

with the theoretical predictions can be improved by the introduction of heavy sterile

neutrinos as an addition to the SM. In chapter 6 the results will be summarized and an

outlook to future prospects of these topics is given.



CHAPTER 2

An Introduction to Sterile Neutrinos

Sterile neutrinos have been introduced as an extension of the Standard Model (SM) in

order to describe neutrino masses. Hints for the existence of neutrino masses have been

found only recently, so that in the formulation of the SM neutrinos are purely left-handed

and one cannot write down a mass term in the Lagrangian; neutrinos are thus massless.

In the following, the experimental evidence for massive neutrinos will be discussed and

mass terms in the Lagrangian introduced using sterile neutrinos.

Neutrino masses are so far only observed via neutrino oscillations. Oscillations can

occur when the mass eigenstates (propagating states) differ from the flavor eigenstates

(being the interacting states), disproving the hypothesis that neutrinos are massless.

First hints came from the Homestake experiment [1], which was taking data from 1970

to 1994, observing the electron neutrino flux from the Sun. The measured flux was

about 1/3 of the flux predicted by the Standard Solar Model; oscillations would give an

explanation of this deficit, as the electron neutrinos that are produced in the Sun could

oscillate to other flavors and would thus be missed by the detector, which was sensitive to

electron neutrinos only. The SNO experiment (Sudbury Neutrino Observatory, see [2])

measured the neutrino flux via neutral current interactions (being thus sensitive to all

three neutrino flavors) and ultimately confirmed the hypothesis of oscillating neutrinos

in 2001. How the observation of neutrino oscillations necessarily leads to the fact that
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they are massive, will now be explained in more detail.

Neutrinos are produced via a charged or neutral current interactions as flavor eigen-

states, but they propagate as mass eigenstates. For massless particles these states coin-

cide, otherwise one can write the flavor eigenstate α as a superposition of mass eigen-

states i and vice versa. The matrix transforming from flavor (α = e, µ, τ) to mass basis

(i = 1, 2, 3) of neutrinos is the so called PMNS matrix UP

αi (namend after Pontecorvo,

Maki, Nakagawa and Sakata). It is unitary in case of only three mass eigenstates νi:

|να〉 =
∑

i

UP ∗
αi |νi〉 . (2.1)

If at a time t = 0 the initial state |να〉 is produced, the evolution over a time interval t

is given by

|ν(t)〉 =
∑

i

e−i(Eit−pix)UP ∗
αi |νi〉 , (2.2)

where the propagation of the mass eigenstates can be described by a plane wave (see

for example [3] or [4]). Ei and pi are energy and momentum of the respective mass

eigenstate.

As neutrino masses are tiny (they have escaped direct detection so far), their velocity

is approximately the speed of light, meaning Ei ≫ mi (and one can identify distance

travelled with time x = t in natural units), so the momentum can be expanded to

pi =
√

E2
i + m2

i ≈ Ei −
m2

i

2Ei
. (2.3)

If assuming that the neutrino mass eigenstates have the same energy E, one can calculate

the probability P to find the neutrino that had flavor α at x = 0 (t = 0) to be of flavor

β at length x = L (time t = T ) using the orthogonality of the mass eigenstates:

P (να → νβ , T ) = |〈νβ |ν(T )〉|2 =

∣

∣

∣

∣

∣

∑

i

UP

βiU
P ∗
αi e−i

m2
i

2E
L

∣

∣

∣

∣

∣

2

. (2.4)

The probability is therefore a function of the mass squared differences ∆m2
ij = m2

i −m2
j ,

meaning that if an oscillation of two eigenstates is observed, one of them has to have a

nonzero mass. Thereby the mass splitting of the different states can be measured; the

current best fit values from solar and atmospheric neutrinos are (PDG [5])

|∆m2
⊙| = (7.58+0.22

−0.26
) × 10−5eV2 , (2.5)
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|∆m2
atm| = (2.35+0.12

−0.09
) × 10−3eV2 . (2.6)

By convention the mass eigenstate ν1 is defined to consist mostly of the flavor com-

ponent νe and the solar mass squared difference ∆m⊙ is identified with ∆m2
21. This

makes ∆m2
21 > 0, as the interaction of the neutrinos with matter in the Sun has to be

resonant (see introduction to the MSW – the Mikheyev–Smirnov–Wolfenstein – effect

in section 3.1). The sign of the atmospheric mass squared difference ∆m2
atm depends on

which mass eigenstate is the lightest, m1 or m3. The case of m1 < m2 < m3 is called

normal hierarchy (NH) and makes ∆m2
atm = ∆m2

31 > 0. In the inverted hierarchy (IH)

m3 < m1 < m2 and ∆m2
atm = ∆m2

32 < 0.

The observation of neutrino oscillations imply at least two massive neutrinos. This

motivates the introduction of sterile neutrinos νR, extending the particle content of

the SM to create neutrino masses analogously to the other fermion masses in the SM.

The right-handed neutrinos νR are called sterile as they cannot interact with other

SM particles via gauge interactions: They are electrically neutral (no electromagnetic

interactions), not strongly charged (no strong interactions) and do also not interact via

weak interactions with W± or Z bosons. The left-handed neutrinos of the SM are then

referred to as active neutrinos. In the SM, fermion mass terms arise from the coupling

of a left-handed SU(2)L-doublet with a Higgs SU(2)L-doublet Φ and a right-handed

SU(2)L-singlet, where the neutral component of the Higgs boson acquires a vacuum

expectation value (VEV) v after electroweak symmetry breaking. In order to formulate

such a mass term for neutrinos, one needs right-handed singlets νR. To satisfy the

observed mass squared differences there must be at least two such states, but there

could be more, say nR. The Dirac mass term in the Lagrangian then becomes

LDirac = −yabν̄RaΦ̃
†Lb + h.c. = −yab

v√
2

ν̄RaνLb + h.c. , (2.7)

where a is the index of the right-handed singlets νRa, a = 1, 2, ..., nR, Lb are the left-

handed lepton doublets, b = e, µ, τ , and yab are the Yukawa couplings, forming an

nR×3 matrix. In the broken phase the neutral component of the Higgs doublet acquires

a vacuum expectation value (VEV) v and the second expression is valid.

When only this neutrino mass term is present in the Lagrangian, the neutrinos are

Dirac particles like the other fermions of the SM.

But as the right-handed neutrinos νR are not charged under a symmetry, one can also
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write down additional mass terms

LMajorana = −1

2
MRabν

T
RaC

−1νRb + h.c. , (2.8)

where C is the charge conjugation operator. MRab can be taken as diagonal, since

the states νR do not couple to any SM gauge bosons, so any rotations among the νRa

necessary for a diagonalization of MR merely results in a redefinition of yab. For nonzero

MR, the right-handed neutrinos are Majorana particles, which means that they are their

own antiparticles, i.e. the mass eigenstates are self-conjugate fields. For charged SM

particles such mass terms would violate charge conservation and are thus forbidden. To

introduce a similar mass term for the left-handed neutrinos, which are also electrically

neutral, one would need an additional Higgs triplet ∆ to conserve isospin, as νL is part

of the lepton doublet L. The neutral component of the Higgs triplet acquires a VEV vT ,

analogous to the Higgs doublet. The mass term in the Lagrangian would be

Ltriplet = −1

2
fabL

T
a C−1iτ2∆Lb + h.c. = −1

2
fabvT νT

LaC
−1νLb + h.c. , (2.9)

where fab is the symmetric Yukawa coupling matrix to the triplet ∆ and τ2 the second

Pauli matrix acting on the SU(2) indices. Note that in this case one would not need

to introduce right-handed neutrinos, the active neutrinos become massive by their in-

teraction with the triplet. Such models (so-called type II seesaw, see next section) are

experimentally very restricted, as the well measured parameter

ρ =
M2

W

M2
Z cos2(θW )

, (2.10)

which is equal to one in the SM at tree level, is modified. This restricts the new VEV

vT . There arise also additional couplings between the Higgs doublet and triplet, see for

example [6] or [7] for an overview about the model and experimental bounds.

The right-handed neutrino fields are not charged under SM interactions and can there-

fore interact only via mixing to the active neutrinos and with the Higgs. The mass eigen-

states (which are the propagating states) are again connected to the flavor eigenstates

by a unitary mixing matrix U . The entries of the (3 + nR) × (3 + nR) matrix depend

on the Dirac and Majorana mass terms and their size will determine the mixing of the

neutrino states. The upper left 3× 3 part of U is again the PMNS matrix, which then is

non-unitary. The size of the entries describing the active-sterile mixing will fix the pos-

sibility of producing a sterile state in an interaction and the percentage of non-unitarity

of the PMNS matrix. Many experiments have restricted the active-sterile mixing for
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different mass ranges of the sterile neutrinos, see chapter 3.

In order to study the neutrino mass eigenstates theoretically, one can redefine the

fields

νM = νL + ν c
L , (2.11)

NM = νR + ν c
R , (2.12)

where the upper index M refers to Majorana fermions, as these fields are invariant under

charge conjugation, i.e. (νM)c = νM . Note that νM and NM are vectors of length 3 and

nR respectively. The three contributions from LDirac, LMajorana, and Ltriplet can be

combined to obtain

Lmass = −1

2
(ν̄M , N̄M)

(

ML mT
D

mD MR

)(

νM

NM

)

. (2.13)

The mass matrices ML and mD are generated by spontaneous symmetry breaking:

MLab
= fab · vT , (2.14)

mDab
= yab ·

v√
2

, (2.15)

where v ≃ 246 GeV is the Standard Model Higgs VEV and the triplet VEV vT is

restricted by experiments to be below ≈ GeV (see again [6] or [7]). The indices are

dropped in the following. The symmetric matrix

Mν =

(

ML mT
D

mD MR

)

(2.16)

is called the neutrino mass matrix, the entries ML, mD and MR being matrices them-

selves. Note that in this notation (where the neutrinos are written as Majorana fields)

the kinetic term acquires an additional factor 1/2:

Lkin =
1

2

(

ν̄Mi/∂νM + N̄Mi/∂NM
)

. (2.17)

The matrix U that diagonalises Mν gives the mass eigenstates νi (i = 1, ..., 3 + nR)

Mdiag
ν = UT MνU (2.18)

νM

i =

3
∑

b=1

Uibν
M

b +

3+nR
∑

c=4

UicN
M

c . (2.19)
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Here the indices of NM were renumerated, so that those in U are continuous.

Experiments show that active neutrino masses are tiny. They are still escaping direct

detection, apart from knowing the mass squared differences from neutrino oscillation

measurements. The Troitsk and the Mainz experiments only give upper bounds of

about 2 eV on the neutrino mass, using beta decay of tritium to measure the effective

mass of the electron antineutrino (see [8] and [9]). New experiments are being built

to improve these results; the Katrin experiment should be able to measure an effective

electron antineutrino mass of about 0.2 eV (see [10] for a rough overview over Katrin,

or [11] for a general summary of new experiments).

Compared to the other particles of the SM, the mass of the neutrinos is very small:

In case of pure Dirac masses the Yukawa coupling would have to be of the order of

y ≃ 10−12, whereas the electron, the next heaviest SM particle, has a coupling of 10−6.

This is somewhat unnatural; the right-handed neutrinos however allow for an elegant

mechanism to suppress the masses of the active neutrinos: the seesaw mechanism.

2.1 Generation of small Neutrino Masses – the Seesaw

Mechanism

The seesaw mechanism is mainly categorized in type I and II depending on the presence

of the Majorana mass term of the left-handed neutrinos, thus of the existence of a Higgs

triplet. In the type I seesaw there is no triplet and the left-handed Majorana mass

vanishes, ML = 0. There are in general nR sterile neutrinos, mixing with the active

ones via the Dirac mass term mD and having a Majorana mass MR. The type II seesaw

includes the Higgs triplet and thus gives the full neutrino mass matrix Mν that was

developed above. (This scenario is also called type I+II, then type II refers to the

presence of the triplet term only.) The type I seesaw mechanism was first introduced by

Minkowski [12] in 1977 and in [13], [14] and [15] in 1979. The seesaw II was motivated

by Grand Unified Theories (GUTs), see [16], [17] and [18].1

If MR is much larger than mD (meaning the eigenvalues of these matrices), the neu-

trino mass matrix Mν can be block-diagonalised, expanding in a series of M−1
R mD.

There are 3 + nR mass eigenstates νi (i = 1, ..., 3 + nR) that contain parts of all flavor

eigenstates (α = e, µ, τ, s1, s2, ..., snR
): νi =

∑

α U∗
iανα, where νe,µ,τ are the active

neutrinos and νsi
≡ Nsi

are the sterile neutrinos. The matrix Mν , being the mass matrix

in the flavor basis, can now be block-diagonalised so that there are three light states νlight,

containing almost only the active states, and nR heavy states νheavy, containing almost

1GUTs usually contain a left–right symmetry and therefore ML and MR are created by Higgs VEVs.
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only the sterile states (compare [19]).2 The matrix that block-diagonalises Mν is called

W :

(

νM

NM

)

= W

(

νlight

νheavy

)

, (2.20)

W T

(

ML mT
D

mD MR

)

W =

(

Mlight 0

0 Mheavy

)

, (2.21)

where W is unitary and Mlight (Mheavy) is a 3× 3 (nR × nR) matrix which is in general

not diagonal. The condition of the off-diagonal submatrices on the right hand side of

equation (2.21) being zero leads to 3 · nR degrees of freedom of W . One can therefore

make the ansatz

W =

(√
1 − BB† B

−B† √
1 − B†B

)

, (2.22)

where B is a 3 × nR matrix, being a function of ML, mD and MR. The square root of

the matrices has to be interpreted as a power series3

√

1 − BB† = 1 − 1

2
BB† − 1

8
BB†BB† − ... (2.23)

Putting the ansatz into equation 2.21, the vanishing off-diagonals give an equation

for B that can be solved by expanding in orders of m−1
R , where mR is the scale of the

eigenvalues of MR.

B = B1 + B2 + B3 + ... , (2.24)

where Bi ∝ m−i
R . At first order

B ≃ (M−1
R mD)† . (2.25)

The masses of the light neutrinos are given by

Mlight ≃ ML − mT
DM−1

R mD , (2.26)

2Note that the active–sterile mixing has to be small, it is constrained by experiments, as mentioned
before (see chapter 3).

3This is possible, since the eigenvalues of B are small, see later in the text.
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while the the first order contribution to the heavy states vanishes and at zero order

Mheavy ≃ MR . (2.27)

Note that the PMNS matrix is equal to the upper left part of W times the matrix

that diagonalises Mlight, say Ulight: UT
lightMlightUlight = Md

light. The PMNS matrix is

then given by

UPMNS =
√

1 − BB†Ulight ≈
(

1 − 1

2
BB†

)

Ulight . (2.28)

Since Ulight is a unitary matrix one can interpret BB† as the unitarity violating part

of the PMNS matrix. The non-unitarity of the PMNS matrix is therefore small in the

seesaw mechanism, B is at first order given by B† ≃ M−1
R mD.

Since

νM =
√

1 − BB†νlight + Bνheavy

the active-sterile mixing is proportional to B, so to M−1
R mD.

The necessary condition for this block-diagonalisation is that m−1
R is small. When

assuming ML ≡ 0, so no triplet Higgs in the theory, the (active) neutrino masses are

given by Mlight ≃ −mT
DM−1

R mD. Supposing for example, that the Yukawa couplings

of the neutrinos are of order one (so the scale of mD is about 102 GeV), and the scale

of MR were at 1015 GeV, the active neutrinos had masses of ≈ 10−2 eV. The Yukawa

couplings could also be smaller, then the scale of MR becomes lower in this scenario.

In summary one can state that in the seesaw mechanism, the possibly high scale of

the right-handed neutrino Majorana mass gives a reason for the smallness of the active

neutrino masses.

So far an overview over the contribution of sterile neutrinos to the mechanism of mass

generation for the neutrinos was given. But the existence of sterile neutrinos would

also manifest in the modification of the weak interactions. The weak neutral current

interaction with some fermion Ψf is given by the Lagrangian:

L
NC
I = − g

cos(θW )
Ψ̄fγµ

1

2

(

cf
V − cf

Aγ5

)

ΨfZµ + h.c. , (2.29)

where g is the weak coupling constant and θW the Weinberg angle. The vector and axial

couplings cV and cA are determined by the third component of the isospin If
3 and the
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charge Qf of the fermion:

cf
V = If

3 − 2 sin2(θW )Qf , (2.30)

cf
A = If

3 . (2.31)

For neutrinos (cV = cA = 1/2) one gets:

L
NC
int = − g

2 cos(θW )
ν̄αγµ

(

1 − γ5

2

)

ναZµ + h.c. (2.32)

The charged current interaction is given by

L
CC
int = − g√

2
ν̄αγµ

(

1 − γ5

2

)

ℓαW+µ − g√
2
ℓ̄αγµ

(

1 − γ5

2

)

ναW−µ , (2.33)

and changing to the mass basis gives:

L
NC
int = −

3+nR
∑

i,j=1

g

2 cos(θW )
U∗

αiν̄iγµ

(

1 − γ5

2

)

UαjνjZ
µ + h.c. , (2.34)

L
CC
int = −

3+nR
∑

i=1

g√
2

(

U∗
αiν̄iγµ

(

1 − γ5

2

)

ℓαW+µ + ℓ̄αγµ

(

1 − γ5

2

)

UαiνiW
−µ

)

. (2.35)

The coupling of the (mainly sterile) states νi, where i = 4, ..., 3+nR, depends thus on

the mixing elements Uαi and on the kinematics of the interaction, which are determined

by its mass.

The goal of this thesis is to explain how the phenomenology of sterile neutrinos varies

on different scales. The possibility of detecting these neutrinos depends on their mix-

ing to the active neutrinos (which can couple via the SM interactions), but also the

sterile mass scale plays an important role. The experimental signatures differ strongly

depending on whether the sterile states can be produced in an interaction or not.

For very small masses sterile neutrinos can oscillate with the active ones. This will be

discussed in section 3.1. Many experiments have been built to measure these oscillations

and there have even been indications for the existence of a light sterile neutrino.

In case the sterile states are too heavy and they can not produced in the observed

processes, so-called non-unitarity effects appear: the mixing matrix of the three active

neutrinos is not unitary in the presence of sterile neutrinos. The impact of these effects

depends on the mixing of the sterile neutrinos to the active ones, see section 3.2.

Already the oscillations between the active neutrinos induce flavor violating decays, for
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example µ → e γ, but the branching ratios are tiny and a detection almost impossible.

Sterile neutrinos could enhance this ratio, depending on their masses and mixing. This

will be analyzed in section 3.3.

A process that could determine the nature of neutrinos, i.e. whether they are Dirac

or Majorana particles, is the neutrinoless double-beta decay. If this decay should be

observed, lepton number is violated (by two units here) and neutrinos are of Majorana

type. The process also induces an effective mass for the neutrinos, independent of the

mechanism it is caused by4, though this mass might be very small (Schechter-Valle-

theorem [20]). The contribution of sterile neutrinos depends on their mass and mixing

to the active neutrinos and on whether their mass is smaller or bigger than the energy

scale of the process, see section 3.4.

Sterile neutrinos can also be produced in colliders, although they typically have only

small interactions with matter, producing certain signatures when they decay. Sec-

tion 3.5 will explain the collider signatures.

Finally, sterile neutrinos can propagate in loops, contributing to the self energies of

the gauge bosons. This is expressed through the oblique correction parameters S, T and

U , see section 3.6.

A subject that will not be touched in this work is the role of sterile neutrinos in

cosmology and astrophysics. A keV sterile neutrino could, for example, be a warm

dark matter candidate, but the mixing has to be very small, so that the life time is

bigger than the age of the universe (see e.g. [21]). Also, heavier sterile neutrinos can

cause leptogenesis (lepton-antilepton asymmetry), which can then transfer to baryons via

sphaleron processes and account for the matter–antimatter asymmetry in the universe.

Models combining sterile neutrinos as dark matter and for leptogenesis are for example

the νMSM ([22], [23]) or a model by Bezrukov, Kartavtsev and Lindner [24].

Light sterile neutrinos are also constrained by cosmology, as they contribute as radi-

ation to the cosmic microwave background (CMB). Assuming a specific model (e.g. the

cosmological Standard Model ΛCDM) one can constrain the number of light neutrinos

and their total mass (for an overview see [25]). As these bounds can only be obtained

when assuming a model, they are not as stringend as direct searches.

Although the role of sterile neutrinos in cosmology is a very interesting topic for itself,

it is beyond the scope of this work and will not be considered in detail. The following

chapter will give an overview on the above mentioned signatures of sterile neutrinos at

different scales.

4The neutrinoless double beta decay could be caused by the mechanism that generates neutrino masses,
but it could also be independent new physics.



CHAPTER 3

Signatures of Sterile Neutrinos at different Scales

The sections of this chapter will provide the basic principles that will be used in the

main parts of this work.

3.1 Neutrino Oscillations

Sterile neutrinos can oscillate with the active ones, when they have small masses. This

phenomenon is restrained by the necessary coherence: the neutrino mass eigenstates have

to be coherently produced and detected and also their propagation has to be coherent.

For the production and detection this means that the intrinsic quantum mechanical

energy uncertainty σE has to be big compared to the energy difference of the mass

eigenstates ∆Eij :

∆Eij ≈
∆m2

ij

2E
≪ σE (3.1)

If this is not fulfilled, the different mass eigenstates can be identified and the oscillation

is averaged out. Since the quantum mechanical energy uncertainty is determined by

Heisenberg’s uncertainty principle, the production and detection processes have to be

well localized.
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The different mass eigenstates propagate as wave packets with different group veloc-

ities and thus for long distances (long times) become separated and the interference is

destroyed. For ultrarelativistic neutrinos one can approximate

∆m2
ij

2E2
· L ≪ σx ≈ vg

σE
, (3.2)

where L is the travelled distance, σx the spacial width of the neutrino wave packets and

vg their group velocity.

This gives an upper bound on the mass squared difference for the oscillating neutrinos,

which depends on the production and detection setup and the travelled distance. The

second condition (coherent propagation) is usually satisfied unless the neutrinos are of

astrophysical origin (meaning e.g. from supernova; the distances then become huge). As

the (mostly active) neutrino masses are so small, in their case also the first condition

is always fulfilled, but for sterile neutrinos it depends on the mass squared difference

and on the experimental setup. The coherence conditions have been carefully examined

in [26], where a proper quantum mechanical approach is used.

In order to observe neutrino oscillations with a sterile neutrino, its mass must therefore

be in the eV range. There actually have been some hints to a sterile neutrino at a mass

of about one to two eV, but they are controversial and should be taken with great

care. These experiments will be discussed later in the section 3.1.2. First the formalism

of neutrino oscillations is introduced in more detail, then the experimental evidence is

summarized and finally oscillations in matter are discussed.

Neutrino oscillations were already mentioned in the beginning of this work, as os-

cillations between the active neutrinos led to the conclusion that neutrinos have to be

massive. In the following the theoretical background will be developed in more detail,

including also sterile neutrinos.

3.1.1 Theory of Neutrino Oscillations

In the introduction the general formula for the probability of a neutrino produced as

flavor α at t = 0 to be detected as flavor β at t = T was derived (equation (2.4)):

P (να → νβ , T ) = |〈νβ |ν(T )〉|2 =

∣

∣

∣

∣

∣

3
∑

i=1

UP

βiU
P ∗
αi e−i

m2
i

2E
L

∣

∣

∣

∣

∣

2

, (3.3)
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where UP is the PMNS mixing matrix. One can further develop this equation to clarify

the dependencies of the oscillations:

P (να → νβ, L) = δαβ − 4
∑

i>j

ℜ(UP ∗
αi UP

βiU
P

αjU
P ∗
βj ) sin2

(

∆m2
ijL

4E

)

+ 2
∑

i>j

ℑ(UP ∗
αi UP

βiU
P

αjU
P ∗
βj ) sin

(

∆m2
ijL

2E

)

. (3.4)

Depending on L/E, the ratio of the baseline of the experiment and the energy of the

neutrinos, one can thus investigate different mass squared differences ∆m2
ij. Usually,

at certain L/E, one can approximate this formula by a two flavor oscillation, when the

other mass squared differences are either small or big enough.

The former expression can also be derived from the Schrödinger equation, a notation

that will be useful when considering neutrino oscillations in matter. The evolution of

the neutrinos is determined by

i
d

dx
ν = Hν , (3.5)

where ν = (νe, νµ, ντ )
T and the Hamiltonian contains the energies of the flavor states

which can be rotated by the mixing matrix from the mass eigenbasis:

H = UP







E1 0 0

0 E2 0

0 0 E3






UP † ≈ U









p +
m2

1

2E 0 0

0 p +
m2

2

2E 0

0 0 p +
m2

3

2E









UP † . (3.6)

The neutrinos are ultrarelativistic, therefore one can approximate the energy by Ei ≈
p+ mi

2E , assuming all neutrino states to have the same momentum p and energy E. A term

proportional to the unit matrix in the Hamiltonian can be absorbed into a redefinition of

an overall phase of the neutrino states, which can be dropped because it is not physical.

Use this to substract p · 1:

H = UP









m2
1

2E 0 0

0
m2

2

2E 0

0 0
m2

3

2E









UP † . (3.7)

The evolution of the state ν can be expressed through the so-called S-matrix:

ν(x) = S(x, x0)ν(x0) , (3.8)
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i
d

dx
S(x, x0) = H · S(x, x0) , (3.9)

where the evolution of S is determined by the evolution of ν, see equation (3.5). Solving

equation (3.9) with the initial condition S(x0, x0) = 1 gives

S(x, x0) = e−iH·(x−x0) = UP











e−i
m2

1
2E

(x−x0) 0 0

0 e−i
m2

2
2E

(x−x0) 0

0 0 e−i
m2

3
2E

(x−x0)











UP † . (3.10)

The oscillation probabilities are now given by the entries of the S-matrix. Setting (as

before) x0 = 0 and x = L, this leads to the probability

P (να → νβ, L) = |Sβα(L)|2 =

∣

∣

∣

∣

∣

3
∑

i=1

UP

βiU
P ∗
αi e−i

m2
i

2E
L

∣

∣

∣

∣

∣

2

, (3.11)

as above. The S-matrix formalism will become especially useful later on to study the

propagation in matter.

The PMNS mixing matrix is usually written in terms of mixing angles θij and phases

δ and α1,2:

UP =







1 0 0

0 c23 s23

0 −s23 c23













c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13













c12 s12 0

−s12 c12 0

0 0 1













1 0 0

0 ei
α1
2 0

0 0 ei
α2
2







(3.12)

=







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13













1 0 0

0 ei
α1
2 0

0 0 ei
α2
2






,

(3.13)

with cij = cos(θij) and sine respectively. The phase δ is the so-called Dirac phase,

it is the only physical phase in case neutrinos are Dirac particles and the only phase

observable in neutrino oscillations (although not conclusively determined yet). α1,2 are

Majorana phases, which are physical if neutrinos are Majorana particles. As it is still

not known whether neutrinos are Majorana or Dirac type, the Majorana phases are

undetermined, too.

Many experiments have measured the values of the mixing angles and the mass squared
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Parameter best-fit (±1σ)

∆m2
⊙ (7.58+0.22

−0.26
) × 10−5eV2

|∆m2
atm| (2.35+0.12

−0.09
) × 10−3eV2

sin2(θ12) 0.312+0.018
−0.015

sin2(θ23) 0.42+0.08
−0.03

sin2(θ13) 0.0251 ± 0.0034

Table 3.1: Neutrino oscillation parameters, global best fit values from the PDG [5].

differences from neutrino oscillations in different setups. Table 3.1 quotes the global best

fit values from the Particle Data Group (PDG [5]).

The formula for the oscillation probability derived above describes neutrino oscilla-

tions, when only the three active neutrinos oscillate. In case there was an additional

heavy sterile state (that does not oscillate because of the large mass squared difference),

the PMNS matrix would be non-unitary. But the oscillation formula would essentially

stay the same, apart from an overall normalization factor. This leads to a so called

zero-distance effect, as even P (να → νβ, T ) at T = 0 could be nonzero (see section 3.2).

When the sterile neutrino is however light enough to oscillate with the active neutrinos,

new mass squared differences and mixing angles appear. The oscillation probability now

includes the sterile state s (α, β = e, µ, τ, s) and the mixing matrix is no longer the

PMNS, but the full 4 × 4 matrix U that diagonalises the 4 × 4 mass matrix Mαβ :

P (να → νβ, T ) =

∣

∣

∣

∣

∣

4
∑

i=1

UβiU
∗
αie

−i
m2

i
2E

L

∣

∣

∣

∣

∣

2

. (3.14)

This would introduce three additional mixing angles θi4 and mass squared differences

∆m2
4i (i = 1, 2, 3), two additional Dirac and one Majorana phase. There could also be

more light sterile neutrinos, then there are even more new parameters. More than two

light additional neutrinos would be disfavored by cosmology, which restricts the effective

number of light1 neutrinos Neff to about 3 to 5 (see e.g. [25]).

There have been by now a number of experiments that see hints for an oscillation with

a mass squared difference in the eV range, which cannot be due to an active neutrino.

These must therefore be taken as hints for the existence of (at least one) light sterile

neutrino that oscillates with the active neutrinos. In the following, the experimental

evidence will be summarized.

1For masses mν ≫ 10 eV, this bound is not valid.
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Figure 3.1: Combined analysis of the parameter space of LSND and KARMEN
(from [25]).

3.1.2 Experimental Hints

As there are many experiments that have investigated the parameter space of a possi-

ble sterile neutrino oscillating with the active ones, this will be only a short overview.

There are several experiments that have seen signs of an oscillation with a mass squared

difference that is too big to fit into the three flavor oscillation scheme. Among these are

LSND (Liquid Scintillator Neutrino Detector), MiniBooNE (Mini Booster Neutrino Ex-

periment), experiments with radioactive sources and short-baseline reactor experiments.

KARMEN (Karlsruhe Rutherford Medium Energy Neutrino experiment) and MINOS

(Main Injector Neutrino Oscillation Search), on the other hand, observe no oscillation in

that mass region. There is some tension between the results, which becomes clear when

a global fit to all data is performed. KARMEN and LSND will be treated in one para-

graph, as the experiments are similar, then the other experiments that were mentioned

above are summarized and finally a global fit is discussed.

LSND and KARMEN

The LSND experiment [27] uses pion decay to produce mainly muon antineutrinos via

π+ → µ+ νµ ⇒ µ+ → e+ νe ν̄µ, and investigates ν̄µ → ν̄e oscillations. KARMEN [28]

also looks for ν̄µ → ν̄e oscillations, but their baseline is slightly different, 30 m for LSND,

17.7 m for KARMEN. As the neutrino energies of both experiments are similar, the

parameter space is slightly different. LSND obtained a positive signal of oscillations with
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Figure 3.2: MiniBooNE results compared to the former experiments. On the left the neu-
trino mode, on the right the antineutrino mode, where the first seems to be inconsistent
with LSND data (taken from [32]).

over 3σ evidence [29], while KARMEN has seen no oscillations. A combined analysis

has been done in [30], the results are shown in figure 3.1.

KARMEN does not exclude the whole parameter space of the LSND best fit, but at

large mass squared differences ∆m2 the results are contradictory.

MiniBooNE

The MiniBooNE experiment [31] uses either a π+ and K+ or π− and K− beam. They

search for νµ → νe or alternatively for ν̄µ → ν̄e. The baseline is 541 m, but since the

neutrino energies are also larger than at LSND, approximately the same mass range can

be tested. Furthermore since the energies are different, MiniBooNE is an independent

cross-check of LSND.

They observed only an excess at low energies, at high energies the measurement was

consistent with the assumption of no oscillation in both the neutrino and antineutrino

mode. The excess at low energies differed: in the antineutrino mode the results are

consistent with LSND, which can be seen in figure 3.2. In the neutrino mode however

the magnitude of the excess is consistent with LSND, but the shape suggests a more
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Figure 3.3: χ2 analysis of the event deficit in the two Gallium detectors. Best fit values
correspond to sin2(2θ) = 0.50, ∆m2 = 2.24 eV2 (from [33]).

complicated picture than simple two neutrino oscillations. A difference in the neutrino

and antineutrino mode might be explained by oscillation structures that can include

CP violation; in order to get CP violation there have to be at least two relevant mass

squared differences, i.e. two sterile neutrinos.

The Gallium Anomaly

The two detectors GALLEX (Gallium Experiment) and SAGE (Soviet-American Gal-

lium Experiment) were built to measure solar neutrinos and have been calibrated by

radioactive sources (51Cr and 37Ar) that were placed inside the detectors. The electron

neutrinos were detected by the decay νe +71 Ga → 71Ge+e−. The activity of the source

was known very precisely and both experiments observed less events than expected. The

detection cross section has been calculated in two different ways with a similar outcome:

the measured rates have a deficit compared to the expected ones of about 3σ.2

2An important remark to make here is that when the detectors were used to measure the solar neutrino
parameters, their results were compatible with a number of other experiments.
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Figure 3.4: Flux of antineutrinos: former results compared to new analyses (from [34]).
The black curve is the former result, the colored curves are new analyses (see references
in [34]).

This electron neutrino disappearance could again be explained by an oscillation with

a mass squared difference of a few eV2. The fit (done in [33]) is shown in figure 3.3.

The best fit values correspond to sin2(2θ) = 0.50, ∆m2 = 2.24 eV2 and the oscillation

hypothesis is clearly favored compared to no oscillation at about 3σ.

The Reactor Anomaly

Nuclear reactors are an excellent source for electron antineutrinos with energies of a few

MeV. Various experiments have measured the rate of antineutrino events at different

reactors, they all agree quite well. There have also been analyses of the neutrino spectra

leading to the expected flux, which were consistent with the measurements.

However, the expected energy spectrum of the neutrinos has been reevaluated recently

(see e.g. [34]). The fission products have to be known very precisely: their β-decay

spectra have been calculated and were then converted to ν̄e spectra. Compared to the

old spectra (that were compatible with the measurements) the new predicted neutrino

flux is about 3% higher (see figure 3.4). The main excess is at high energies and one has

to note that especially the high energy part of the spectrum is difficult to estimate.

A 3% deficit in the antineutrino flux could point to an oscillation with a ∆m2 again

in the eV2 range. The χ2 analysis is shown in figure 3.5, it includes the two source

experiments GALLEX and SAGE. The no oscillation hypothesis is disfavored at almost

4σ. If an L/E-dependence would be observed, this would be a clear signal for oscillations.

The Nucifer experiment [35] is being constructed very close to a reactor in order to

measure a possible effect of the shorter baseline.
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Figure 3.5: χ2 analysis of the reactor anomaly with the assumption of one sterile neutrino
(from [25]).

MINOS

The MINOS experiment [36] has two detectors, one is 1.04 km and the other 735 km

away from the beam target. They can measure the neutrino flux in NC events and since

sterile neutrinos do not interact via NC, but all active neutrinos do, an oscillation of

active neutrinos to a sterile state would manifest as an energy dependent decrease of the

flux.

The data are compatible with the usual three neutrino picture. For a mass region of

0.3 eV2 < ∆m2
43 < 2.5 eV2 MINOS excludes a sterile neutrino at 90% confidence level

(but these limit were obtained assuming a certain model, see [25]).

The last paragraphs have shown that there is both evidence for and against the ex-

istence of a light sterile neutrino oscillating with the active neutrinos and the results of

different experiments partly contradict each other. The existing evidence is therefore

not compelling, but the hypothesis can also not be excluded so far. This summary has

been very short, for detailed information see the broad overview provided in [25] (and

references therein). The different results can be summarized in one model, performing

a global fit to all data (based here on the work in [37]).
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Figure 3.6: Constraints and allowed regions from the experiments mentioned in the text.
The green dashed line marks the results of the “old” reactor neutrino fluxes, the solid
line the new calculation. LSND and MiniBooNE favored regions (at 99% CL) are almost
completely ruled out (taken from [37]).

∆m2
41 |Ue4| |Uµ4| ∆m2

51 |Ue5| |Uµ5| δ/π χ2/dof
3+2 0.47 0.128 0.165 0.87 0.138 0.148 1.64 110.1/130

1+3+1 0.47 0.129 0.154 0.87 0.142 0.163 0.35 106.1/130

Table 3.2: Parameter values and χ2 at the global best fit points for 3+2 and 1+3+1
oscillations (∆m2 in eV2), taken from [37].

Global Fit

In the global fit from Kopp, Maltoni and Schwetz [37] the first analysis includes only

short baseline reactor experiments (thus fitting the reactor anomaly only). They find

that the no oscillation case is disfavored at about 98% in both a 3+1 and 3+2 scenario,

where 3+1 means that there are the three active neutrinos and one heavier sterile state,

in 3+2 there are two heavier steriles. In a second fit the results from LSND [29] and Mini-

BooNE [32] are included, as well as the constraints from KARMEN [30], NOMAD [38]

and CERN [39].

In the 3+1 scheme, figure 3.6 shows the regions at 90 and 99% confidence level (CL) for

LSND and MiniBooNE combined and the exclusion limits at 99% CL from disappearance

experiments (green line) and appearance experiments (blue line). Except for a spot at

∆m2 ≈ 1 eV2 one can find no agreement of the data in this scenario.

Furthermore they analyzed a 3+2 and 1+3+1 scheme, where in the latter one sterile
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Figure 3.7: Preferred region for the mass squared differences in 3+2 and 1+3+1 (taken
from [37]).

neutrino is lighter than the active neutrinos and one heavier. The 1+3+1 fit is slightly

better than 3+2 (see table 3.2), although it is in even more tension with cosmology

than 3+2, because of the large total neutrino mass (sum of light neutrino masses). Both

improve the results drastically compared to the 3+1 case, which is disfavored at 97% CL

compared to two steriles. The preferred mass-squared differences are shown in figure 3.7.

Overall there remains some tension between the data sets, even though there are many

hints to the existence of one or two light sterile neutrinos. New experiments can hopefully

clear up the view on these signs and maybe proof that there is a sterile neutrino mixing

with the active ones.

Some recent updates have been made since the discussed global fit. The MiniBooNE

collaboration has reanalyzed its data in [40], combining the analysis of the neutrino and

antineutrino appearance data. The former agreement of the antineutrino channel with

the LSND result becomes worse, the best fit regions now overlap only little in a region of

small mass-squared differences below 1 eV2. Moreover, the disagreement of the neutrino

and antineutrino channel almost vanishes and with it the indication for CP violation.

This supported the introduction of two sterile neutrinos, which is now not only in tension

with cosmology, but also no longer preferred by the MiniBooNE measurement.

Another experiment searching for νµ → νe oscillations is the ICARUS (Imaging Cosmic

And Rare Underground Signals) experiment. Their recent publication [41] placed strong

bounds on sterile neutrinos with large mixing, excluding the parameters space where

sin2(2θ) & 10−2, see figure 3.8. Note that global fits preferred exactly the parameter
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Figure 3.8: Exclusion limits from ICARUS including the new MiniBooNE analysis, taken
from [41].

space of large mixing. The νµ → νe oscillation data seems to become more and more

inconsistent.

3.1.3 MSW Effect

A mechanism one could use to detect a sterile state could be the interaction with mat-

ter, as it can significantly enhance mixing angles. Therefore, the MSW effect will be

explained in the following. In this section it will however be described only for the active

neutrinos, in chapter 4 the equations will be derived in case there is one additional sterile

neutrino. The formalism is introduced here and will be used later.

When neutrinos pass through matter they interact with the neutrons, protons and

electrons of the medium via neutral or charged currents. For neutrino oscillations inco-

herent scattering manifests as a decrease of the flux and can be described by a complex

damping term in the Hamiltonian. As it is proportional to the Fermi constant GF , the

contribution is negligible and will not be considered here. But in coherent elastic for-

ward scattering, contributions from different collisions can add up coherently and must

thus be considered although they are also proportional to GF (for the original papers

see [42], [43]). While only electron neutrinos can interact via charged currents (CC), as
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matter usually does not contain muons and tauons but electrons, all flavors, νe, νµ and

ντ , interact via neutral currents. The currents lead to interaction Hamiltonians.

For charged current (CC) interactions the Hamiltonian is given by

HCC =
GF√

2
[ēγµ(1 − γ5)νe][ν̄eγµ(1 − γ5)e] (3.15)

=
GF√

2
[ēγµ(1 − γ5)e][ν̄eγµ(1 − γ5)νe] , (3.16)

where from the first to the second line Fierz transformations were applied. The electron

contributions have to be averaged over the matter background:

〈ēγµ(1 − γ5)e〉 = 〈ē
((

γ0

γi

)

−
(

γ0γ5

γiγ5

))

e〉 . (3.17)

These terms give the following contributions:

The first one gives the electron density 〈ēγ0e〉 = 〈e†e〉 = Ne , the second term the mean

electron velocity 〈ēγie〉 = 〈ve〉 , which is zero in the rest frame of the considered medium.

The third term yields the mean helicity 〈ēγ0γ5e〉 = 〈σepe

Ee
〉 , which is negligible for a non-

relativistic medium. The last term gives the polarization of the medium 〈ēγiγ5e〉 = 〈σe〉 ,

which is also taken to be zero in the following.

As the active neutrinos are left-handed, the projection operator (1 − γ5) becomes a

factor 2 and the effective interaction Hamiltonian becomes

Heff
CC = 〈HCC〉 = ν̄e

√
2 GF Neνe = ν̄eVCCνe (3.18)

with VCC =
√

2GF Ne ≈ 7.63 · 10−14eV · ρ[
g

cm3
] · Ye , (3.19)

where Ye is the number of electrons per nucleon which is about 1
2 for media like e.g. the

Earth.

The calculation is analogous for neutral current (NC) interactions and gives:

VNC = −GF√
2
Nn , (3.20)

where Nn is the neutron density. Contributions from electrons and protons to NC

interactions cancel when assuming the medium to be electrically neutral, which is done

in the following. This makes

VNC = −GF√
2
Nn ≈ 1

2
· 7.63 · 10−14eV · ρ[

g

cm3
] · Yn (3.21)
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= 7.63 · 10−14eV · ρ[
g

cm3
] · 1 − Ye

2
, (3.22)

where Yn is the number of neutrons per nucleons, which is equal to 1 − Ye, since there

are as many electrons as protons, Ne = Np. The matter density ρ is in grams per cubic

centimeter. ρ and Ye contain the coordinate dependence of the potential: ρ = ρ(x),

Ye = Ye(x).

This section showed that there are various signs of a light sterile neutrino, but they

remain very contradictory and inconclusive. It is therefore an interesting topic to be

further investigated in order to find possibilities to detect such a sterile state. In chapter 4

a possible enhancement (due to the MSW effect) of the oscillation of the electron neutrino

with a sterile state is studied, where the mass of the fourth state is in the eV range.

Atmospheric neutrinos traversing the earth can have the right energies to undergo such

an enhancement and they could be detected at the IceCube experiment.

3.2 Non-Unitarity

In the presence of sterile neutrinos, the mixing matrix of the three light (mainly active)

neutrinos becomes non-unitary. If the sterile neutrinos are very light, they oscillate with

the active neutrinos and the phenomenology changes as described above. But also if

the sterile states are too heavy to oscillate or even be produced in the processes, they

affect the low energy observables. Since the complete theory has to be unitary, the

low energy part becomes non-unitary. This was already shown in section 2.1, where

the non-unitarity caused by the heavy sterile neutrinos in the seesaw mechanism was

calculated (see equation (2.28)). The non-unitarity of the PMNS mixing matrix then

changes the low-scale phenomenology and this effect could be observed in various elec-

troweak processes involving neutrinos. Different experiments, from neutrino oscillations

to electroweak precision measurements, constrain the size of the effect, as no clear sign

has been observed so far that would confirm that the PMNS matrix were non-unitary.

In this section the effects of non-unitarity on electroweak processes will be analyzed,

assuming there are only three light neutrinos and the sterile states are heavy, see [44].

When new physics are introduced at a scale M far beyond the scale that is tested

in experiments, usually meaning M ≫ MZ , one can treat it as an effective theory at

low energies. This means that parameters in the SM Lagrangian have to be corrected

and higher dimensional, non renormalizable operators are introduced, whose coefficients

are suppressed by the scale of new physics: ∝ 1/M . In the following, the effects of
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non-unitarity of the PMNS matrix are studied, thus only the corrections of the SM

parameters are considered.

In chapter 2 the Lagrangians for the neutral and charged current interaction were

introduced, including the possible presence of sterile neutrinos, see equations (2.34)

and (2.35). In this section the sterile states should not be considered, but instead an

effective Lagrangian, where the PMNS matrix UP becomes non-unitary. The interaction

Lagrangians then read

L
NC
int, eff = −

∑

α

3
∑

i,j=1

g

2 cos(θW )
UP ∗

αi ν̄iγµPLUP

αjνjZ
µ + h.c.

= −
3
∑

i,j=1

g

2 cos(θW )
ν̄iγµPL(UP †UP )ijνjZ

µ + h.c. (3.23)

L
CC
int, eff = −

∑

α

3
∑

i=1

g√
2

(

UP ∗
αi ν̄iγµPLℓαW+µ + ℓ̄αγµPLUP

αiνiW
−µ
)

, (3.24)

with the projection operator PL =
(

1−γ5

2

)

. In the neutral current the PMNS matrix

would cancel out if it were unitary. These modifications in the neutral and charged

current Lagrangians lead to modifications in electroweak processes. To give an example:

For one heavy sterile neutrino s with mixing Usi to the mass eigenstates, the non-unitary

contribution to the neutral current is given by

(UP †UP )ij =
∑

α=e,µ,τ

UP ∗
αi UP

αj =
∑

α=e,µ,τ,s

U∗
αiUαj − U∗

siUsj

= 1 − U∗
siUsj , (3.25)

where U is the full 4× 4 unitary mixing matrix (and UP its 3× 3 upper left corner) and

the indices i, j = 1, ..., 3 denote only the three light mass eigenstates.

Furthermore, the orthonormality of the flavor eigenstates is modified. The neutrino

states in case of a full theory are normalized and orthogonal to each other in the flavor

and mass basis. When the PMNS matrix UP becomes non-unitary, this is no longer

true. In the mass eigenbasis the states are still orthonormal:

〈νi|νj〉 = δij . (3.26)

The quantum states and fields have to be consistent, therefore the flavor eigenstates
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have the normalization

|να〉 =
(

(UP UP †)αα

)− 1

2

3
∑

i=1

UP ∗
αi |νi〉 , (3.27)

where UP UP † is not the unit matrix, as UP is assumed to be non-unitary. The flavor

eigenstates are then not orthonormal, but instead fulfill

〈να|νβ〉 =
(UP UP †)βα

√

(UP UP †)αα(UP UP †)ββ

. (3.28)

This affects the propagation of the flavor eigenstates and thus the oscillation probabili-

ties. The free propagation of mass eigenstates, meaning in the vacuum, is given by the

Hamiltonian H:

i
d

dt
|νi〉 = H|νi〉 , (3.29)

and the orthonormality of the mass eigenbasis gives

〈νj|H|νi〉 = δijEi , (3.30)

with the energy eigenvalues Ei of the Hamiltonian. One can then project onto the energy

eigenbasis:

i
d

dt
|νi〉 =

∑

j

|νj〉〈νj |H|νi〉 = Ei|νi〉 . (3.31)

Since the flavor eigenbasis is not orthonormal, the evolution in this basis becomes

i
d

dt
|να〉 = H|να〉 =

∑

j

|νj〉〈νj |H|να〉 =
∑

β

(UP ∗E(UP ∗)−1)αβ
√

(UP UP †)αα(UP UP †)ββ

|νβ〉 , (3.32)

where E is a diagonal matrix with entries Ej , the energy of the state νj. Therefore

the state produced as a flavor eigenstate |να〉 at t = 0 (L = 0) evolves after a time T ,

corresponding to the length L, to the state

|ν(L)〉 =
∑

i,γ

UP ∗
αi eiEiL(UP ∗)−1

iγ
√

(UP UP †)αα(UP UP †)γγ

|νγ〉 . (3.33)

The oscillation probability of the neutrino with flavor α at L = 0 to be found as flavor
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β at length L is then given by

P (να → νβ, L) = |〈νβ|ν(L)〉|2 =
|∑i UP ∗

αi eiEiLUP ∗
βi |2

(UP UP †)αα(UP UP †)ββ
. (3.34)

Comparing this result to the one obtained in chapter 2 and section 3.1 respectively (see

for example equation (3.3)) one obtains in the non-unitary case a so-called zero distance

effect. This means that the probability of a transition of flavor α to β is nonzero at

L = 0:

P (να → νβ, L = 0) =
|(UP UP †)βα|2

(UP UP †)αα(UP UP †)ββ
6= 0 . (3.35)

Also, the total probability does not sum up to one.

To correctly analyze oscillation data, also other effects have to be considered. As

the propagation of the neutrinos of a certain flavor changes, the fluxes get modified.

Furthermore, since the production and detection processes are charged or neutral current

interactions, the cross-sections differ also from the unitary ones.

For neutrinos travelling in a medium the interactions with the matter particles get

modified. This leads to a different interaction Hamiltonian. The calculation made in

section 3.1.3 remains valid, only when changing from the flavor to the mass basis the

responsible matrix is the non-unitary PMNS matrix and this again affects the propaga-

tion of the flavor eigenstates, analogously to the vacuum case. The non-unitarity of the

mixing matrix then leads to a non-diagonal effective potential. For details see [44].

The oscillation data can then be reanalyzed under the assumption of a non-unitary

PMNS matrix. One can derive constraints on the unitarity of the mixing matrix and

derive the values of the mixing matrix from the experiments. This has been done in [44],

yielding that UP has to be unitary up to the percent level.

Electroweak decays on the other hand cannot determine the PMNS mixing matrix

elements, as they are not sensitive to single neutrino eigenstates, but rather sums of

products of UP . They can however test the unitarity assumption through the zero

distance effect, since the cross sections of charged and neutral current processes are

modified by (UP UP †)αβ or (UP †UP )ij . In the following the decays of the W boson will

be treated exemplarily.

The decay width of the W boson into a neutrino and a charged lepton is given by

Γ(W → ℓανα) =
∑

i

Γ(W → ℓανi) =
GF M3

W

6
√

2π
(UP UP †)αα , (3.36)
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Figure 3.9: Lepton flavor violating decay µ → e γ .

where the mixing elements have been absorbed to the definition of the decay width in

the second step. GF is the Fermi constant and MW the mass of the W boson. Note that

the Fermi constant is usually measured by the muon decay µ → eν̄eνµ, and this process

also gets corrected by non-unitarity factors

GF =
Gµ

√

(UP UP †)ee(UP UP †)µµ

, (3.37)

Gµ being the constant measured in the muon decay. The measured decay width of the

W boson into different particles can therefore restrict the values of a combination of

non-unitarity factors.

The existence of heavy sterile neutrinos changes the low energy electroweak observ-

ables, even when they cannot participate in the processes due to their large mass. These

effects can be measured in various experiments, as for example in the LEP e+e− collider

(Large Electron–Positron collider) that was studying weak processes. This can have in-

teresting implications on for example the Z decay width, as its measured values at LEP

differed from the SM values at about 2σ. This will be treated in chapter 5.

3.3 Lepton Flavor Violation

In the SM, as neutrinos are massless, lepton flavor is conserved. Only in the quark

sector the quarks mix with each other and quark flavor is violated, but the quark-mixing

matrix (CKM matrix) is almost diagonal, so the flavor violation in the SM is small.

Already when considering the existence of active neutrino masses as the beyond SM

concept, lepton flavor violating decays, such as ℓα → ℓβ γ, are induced by the mixing of

the active neutrinos. The branching ratio however is tiny, as the mass squared differences

are so small and the PMNS matrix is unitary, the amplitudes of the three processes cancel
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out. A calculation of the process µ → e γ induced by the three light neutrinos can be

found in [45].

For light sterile neutrinos the same cancellation mechanism applies when their masses

are much smaller than the mass of the mediator, which is the W -boson in this case (see

figure 3.9b). The case for heavier sterile neutrinos will be treated in detail in section 5.4.1.

Their contribution is proportional to the active–sterile mixing and therefore usually tiny

for large masses (it is proportional to the mixing to the fourth power). Only when

cancellations allow for a sizeable mixing, lepton flavor violating decays would become

observable. This could be via a seesaw type II, where the triplet term cancels the

contribution of the heavy sterile neutrinos in the light neutrino mass matrix:

mν = ML − mT
DM−1

R mD , (3.38)

or in case there is a cancellation of contribution from different heavy sterile neutrinos in

the matrix

mν = −mT
DM−1

R mD (3.39)

in a seesaw type I.

A review on the experimental status can be found in [46] or from the PDG [47]. The

most stringend limits exist on the decay µ → e γ, coming from the MEG collabora-

tion [48], where

B(µ+ → e+γ) ≤ 2.4 · 10−12 (3.40)

at 90% confidence level.

3.4 Neutrinoless Double-Beta Decay

The neutrinoless double-beta decay ββ0ν is a process that is searched for to probe lepton

number violation (∆L = 2). The nucleus with mass and charge number (A,Z) decays

into a doubly charged nucleus and two electrons: (A,Z) → (A,Z+2) + 2 e−. For some

elements the simple beta decay is kinematically forbidden, but the double-beta decay

is allowed. Then the process, without the two neutrinos in the final state, could be

observed. The double-beta decay producing two neutrinos (so to say the SM process)

has already been measured, its half-life is about 1020 years, depending on the nucleus.

This is the main background for the process where the two neutrinos are missing in the
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Figure 3.10: Schechter-Valle diagram illustrating the contribution of ββ0ν decay to the
Majorana mass of the neutrino.

final state (compare [49]).

The rate of this process depends on the mechanism by which it is induced and can be

divided into different parts. The decay rate is given by

Γ(ββ0ν) = Gx(Q,Z)|Mx(A,Z)ηx|2 , (3.41)

where the x indicates the dependence on the mechanism. ηx depends on the particle

physics parameters which are involved in the decay, Mx is the nuclear matrix element,

describing the properties of the nucleus and Gx(Q,Z) is the phase space factor. A and

Z are again mass and charge number, Q is the value of energy that is released in the

process. One can calculate these values for different mechanisms.

If neutrinoless double-beta decay is observed, neutrinos have to be Majorana particles,

even though the process might be related to some other new physics beyond the SM

(not a Majorana mass term of the light neutrinos). The Schechter-Valle theorem [20]

states, that by a black-box diagram, ββ0ν decay necessarily leads to a Majorana mass for

neutrinos, though it might be tiny, as it is induced by a four loop process. The diagram

is shown in figure 3.10.

The so-called standard interpretation, the most investigated mechanism, is that ββ0ν

is caused by three light Majorana neutrinos, which make up the active neutrinos. The

Feynman diagram is shown in figure 3.11. Hereby one neglects possible other contribu-

tions from the physics that generate the light neutrino masses (e.g. heavy right-handed

Majorana neutrinos or a Higgs triplet). It is usually a good approximation, as for exam-

ple the right-handed neutrinos in the seesaw type I are typically very heavy and their

contribution then suppressed (which will be shown in the following). This means that

the masses of the exchanged neutrinos are much smaller than the scale of the momen-
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Figure 3.11: Feynman diagram for ββ0ν induced by Majorana neutrinos νi with mixing
Uei to the electron neutrino.

tum transfer, which is about 100 MeV. One can then make an approximation in the

amplitude of the process, which is proportional to the propagator:

A ∝ mi

q2 − m2
i

∝







mi

q2 m2
i ≪ q2 ,

1
mi

m2
i ≫ q2 .

(3.42)

This means that the decay rate becomes (index 3ℓ for three light neutrinos)

Γ3ℓ = G3ℓ(Q,Z)|M3ℓ|2
〈mee〉2

m2
e

, (3.43)

where mee is the effective electron neutrino mass, which is defined below. From the

Feynman diagram in figure 3.11, we can read off the full dependence of the amplitude

for the process in the V–A interaction:

A3ℓ ∝
3
∑

i=1

G2
F U2

eiγµPR
/q + mi

q2 − m2
i

γνPL =
3
∑

i=1

G2
F U2

ei

mi

q2 − m2
i

γµPRγν (3.44)

≈
3
∑

i=1

G2
F U2

ei

mi

q2
γµPRγν . (3.45)

GF is the Fermi constant, Uei the mixing element of the i-th neutrino of mass mi with

the electron neutrino and q2 is the average neutrino momentum. PL,R = 1
2(1 ± γ5) are

the left and right projection operators and γµ,ν the gamma matrices. This leads to an
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effective neutrino mass of

〈mee〉 =

∣

∣

∣

∣

3
∑

i=1

U2
eimi

∣

∣

∣

∣

=

∣

∣

∣

∣

m1|Ue1|2 + m2|Ue2|2eiα1 + m3|Ue3|2eiα2

∣

∣

∣

∣

, (3.46)

where α1,2 are the Majorana phases, compare equation (3.13). Depending on these

phases, the effective mass can therefore cancel to zero. This is only possible in the

normal hierarchy case; in the inverted hierarchy, there is a minimal value, as also in the

quasi-degenerate case, see [49].

The contribution of sterile neutrinos to the ββ0ν decay strongly depends on the scale

of their masses. For light sterile neutrinos one can make the same approximation as

before, light meaning m2
i ≪ q2, well below 100 MeV. These just add to the three light

(active) neutrinos that were considered before. For n light neutrinos (3 active and (n−3)

sterile states) this leads to

Γnℓ = Gnℓ(Q,Z)|Mnℓ|2
〈mee〉2

m2
e

, (3.47)

with

〈mee〉 =

∣

∣

∣

∣

n
∑

i=1

U2
eimi

∣

∣

∣

∣

. (3.48)

For heavy sterile states (m2
i ≫ q2) the Feynman diagram for the process is still the

same as in figure 3.11, but since the masses of these neutrinos are much bigger than the

momentum scale, the amplitude becomes inversely proportional to the mass:

Ah ∝ 1

mi
. (3.49)

The maximal rate for this process can actually be expected for masses at the momentum

scale, so around 100 MeV, since the decay rate is for small masses proportional to m2

and for large masses to m−2, meaning that there is a peak where the one approximation

takes over the other. For heavy sterile neutrinos the decay rate becomes proportional to

Γh ∝
∣

∣

∣

∣

∑

i

U2
ei

mi

∣

∣

∣

∣

2

, (3.50)

where Uei is here the active-sterile mixing, the mixing of the heavy mass eigenstates with

the electron neutrino, which is usually small. This and the dependency on the inverse
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Figure 3.12: Exclusion limit on the mixing |Ueh|2 of the heavy to the electron neutrino,
mh being its mass, from neutrinoless double-beta decay (dark shaded area). Also plot-
ted are limits from the supernova SN1987A, Big Bang nucleosynthesis and laboratory
searches. Taken from [50].

mass suppresses the contributions at higher sterile masses. The process here is of short

range and therefore sensitive to the form factors (the finite size) of the nucleons.

In [50], an exclusion limit on the mixing of the heavy to the electron neutrino is plotted

against the mass of the heavy state. The peak of the curve excludes mixing down to

|Uei|2 ≃ 10−8, see figure 3.12.

The seesaw type I contributes in two ways to the neutrinoless double-beta decay:

directly through the exchange of heavy right-handed neutrinos and indirectly through

the exchange of the light neutrinos. In case the right-handed neutrinos in the seesaw type

I are also lighter than the momentum scale of ββ0ν , the contributions cancel exactly, as

the sum gives exactly the (ML)ee-entry in the neutrino mass matrix (see equation (2.16)),

which is zero in a seesaw type I.

For a detailed review on neutrinoless double-beta decay and the contributions from

different beyond the SM processes, see [49].

Most recent limits on the ββ0ν lifetime come from the EXO collaboration [51] and

KamLAND-Zen [52], using 136Xe:

T ββ0ν

1/2 (136Xe) > 1.6 · 1025 yr (90% CL, EXO) , (3.51)

T ββ0ν

1/2 (136Xe) > 5.7 · 1024 yr (90% CL, KamLAND-Zen) . (3.52)
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Figure 3.13: Bounds on |Ue4|2 = |Ve4|2 for masses of the heavy neutrino M4 = m4 in the
range 10 MeV – 100 GeV from various experiments. Taken from [53].

In the standard interpretation this leads to an effective mass

〈mee〉 < 0.14 − 0.38 eV (90% CL, EXO) , (3.53)

〈mee〉 < 0.3 − 0.6 eV (90% CL, KamLAND-Zen) . (3.54)

3.5 Sterile Neutrinos at Colliders

The most stringend bounds on sterile neutrinos at colliders are found for steriles with

masses up to M4 . 3 GeV, where limits come from the decay of mesons. Also from Z

decay Z → N + ν upper limits can be found for M4 . MZ . The higher the mass of

the sterile state, the shorter its lifetime, therefore the signature reconstruction becomes

more difficult and the bounds weaker. The limits on the mixing elements squared |Uα4|2
go from 10−7 for small M4 to 10−3 and 10−1 for masses M4 . MZ . See [53] for a detailed

overview and references therein. In figure 3.13 the limits on the mixing of the heavy

neutrino to the electron neutrino are shown as an example.

There are not many experiments that can access higher masses. In the following,

searches at LEP, Tevatron and LHC are discussed, since these searches will become

relevant in section 5.4.2.

As the LEP collided e+e−, whereas Tevatron and LHC are hadron colliders, the de-

tection channels for heavy Majorana neutrinos differ in these cases. At LEP there were
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Figure 3.14: Processes of e+e− leading to a heavy (mostly sterile) neutrino N in the
final state.

two possible production channels for e+e− → ναN : via the s-channel, see figure 3.14a,

all mixing parameters Uα4 (α = e, µ, τ) to the fourth, heavy neutrino N could be mea-

sured. The t-channel however is only sensitive to the mixing to the electron neutrino

Ue4, see figure 3.14b. The heavy neutrino then decays into a W and a charged lepton or

a Z boson and an active neutrino. Below the Z boson mass the bounds are much more

stringend, but the L3 experiment at LEP also measured at higher energies and placed

limits up to masses of the heavy neutrino of about 200 GeV (see section 5.4.2).

At hadron colliders, the production and detection of heavy Majorana neutrinos can

occur via the two diagrams shown in figure 3.15. Both involve two leptons in the final

state of equal sign and two jets (for oppositely charged leptons the SM background is

significantly higher). In the s-channel the heavy neutrino is produced and subsequently

decays. This is by far the dominant channel. The t-channel is in complete analogy to the

ββ0ν Feynman diagram (compare the previous section 3.4). The theoretical calculation

and the resulting bounds on the mixing elements from searches at Tevatron are discussed

in [53]. For masses above the Z boson mass, the limits will be discussed in more detail

in section 5.4.2, including measurements from LEP and LHC.

3.6 Loop Effects

In section 3.2, indirect effects of new physics at a high scale on low energy observables

were described. The focus was on the non-unitarity of the theory, in this case the non-

unitarity of the PMNS matrix. The so-called oblique corrections also encode indirect

information arising from new physics. The effects can be seen in precision measurements,

especially weak interaction parameters, as these are measured to very high accuracy. For
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Figure 3.15: Feynman diagram for the detection of a heavy sterile neutrino at a hadron
collider.

example the rho parameter satisfies in the SM at tree level the relation

ρ =
M2

W

M2
Z cos2(θW )

= 1 , (3.55)

of the W and Z boson masses and the Weinberg angle θW . Loop corrections from SM

and new particles will alter this relation. Since the SM contribution has been calculated

very precisely, coming mainly from the top quark, new physics can be constrained by a

measurement of this relation. For example, as mentioned in chapter 2, a Higgs triplet

would shift the rho parameter. Such relations, as the one of the rho parameter, can

restrict new physics even if only present in loop diagrams.

When the external particles in the experiments are light and we consider only processes

of the weak interaction, one can neglect the vertex corrections and the box diagrams,

as they are suppressed by an additional factor of m2
f/M2

Z , where mf is the mass of the

external particle. One can therefore concentrate on the vacuum polarization effects,

the so-called oblique corrections (compare [54]). They can be quantified by the vacuum

polarization tensors that have the form

Πµν
xy (q2) = Πxy(q

2)gµν + (qµqν-terms) , (3.56)

where x and y are the in- and outgoing gauge bosons γ, W± and Z, which can combine

as (γγ), (Zγ), (ZZ) and (WW ), see figure 3.16. The qµqν-terms can be neglected in the

W and Z propagators, also because the external fermions are light and the contraction

with their currents suppress the terms by a factor m2
f/M2

Z . The qµqν-term of the photon

propagator does not contribute due to the Ward identity (see [55]).
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Figure 3.16: Self-energy contribution to the Z and W boson and the photon from fermion
loops.

Since SM processes also contribute to the vacuum polarization, one can write

Πxy(q
2) = ΠSM

xy (q2) + δΠxy(q
2) , (3.57)

where the new physics contribution is denoted as δΠxy(q
2). The Ward identity implies

also that the photon self energies have to vanish at zero momentum:

ΠZγ(0) = Πγγ(0) = 0 . (3.58)

In the on-shell scheme the self energies are renormalized by fixing the masses in the

propagator to be the physical masses. This gives (renormalized quantities are denoted

by a hat):

ℜ
(

Π̂WW (M2
W )
)

= ℜ
(

Π̂ZZ(M2
Z)
)

= Π̂Zγ(0) = Π̂γγ(0) = 0 . (3.59)

In the following all self energies are assumed to be real, as resonances and decay width

do not need to be considered in this context.

To parameterize the oblique corrections from the vacuum polarizations discussed

above, three parameters are introduced that are called S, T and U . The correction

residing purely in the electromagnetic sector is omitted, as only weak phenomena are con-

sidered. The parameters are defined in terms of the renormalized quantities as (see [56])

S =
4s2c2

M2
Z

(

Π̂ZZ(0) + Π̂γγ(M2
Z) − c2 − s2

cs
Π̂Zγ(M2

Z)

)

, (3.60)

T =
Π̂ZZ(0)

M2
Z

− Π̂WW (0)

M2
W

, (3.61)
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U = 4s2c2

(

1

c2

Π̂WW (0)

M2
W

− Π̂ZZ(0)

M2
Z

+
s2

c2

Π̂γγ(M2
Z)

M2
Z

− 2s

c

Π̂Zγ(M2
Z)

M2
Z

)

. (3.62)

Here, s and c are the sine and cosine of the Weinberg angle, respectively.

Since the relations of the bare and the renormalized quantities are as follows (also

see [56])

Π̂WW (q2) = ΠWW (q2) − ΠWW (M2
W ) + (q2 − M2

W )

[

c2

s2
R − Π′

γγ(0)

]

, (3.63)

Π̂ZZ(q2) = ΠZZ(q2) − ΠZZ(M2
W ) + (q2 − M2

Z)

[(

c2

s2
− 1

)

R − Π′
γγ(0)

]

, (3.64)

Π̂Zγ(q2) = ΠZγ(q2) − ΠZγ(0) + q2 c2

s2
R , (3.65)

Π̂γγ(q2) = Πγγ(q2) − q2Π′
γγ(0) , (3.66)

where

R =
ΠZZ(M2

Z)

M2
Z

− ΠWW (M2
W )

M2
W

− 2
s

c

ΠZγ(0)

M2
Z

, (3.67)

the parameters S, T and U are related to the bare self energies through the equations

S =
4s2c2

M2
Z

(

ΠZZ(0) − ΠZZ(M2
Z) + Πγγ(M2

Z) − c2 − s2

cs
ΠZγ(M2

Z)

)

, (3.68)

T =
ΠZZ(0)

M2
Z

− ΠWW (0)

M2
W

− 2
s

c

ΠZγ(0)

M2
Z

, (3.69)

U = 4s2c2

[

1

c2

(

ΠWW (0)

M2
W

− ΠWW (M2
W )

M2
W

)

−
(

ΠZZ(0)

M2
Z

− ΠZZ(M2
Z)

M2
Z

)

(3.70)

+
s2

c2

Πγγ(M2
Z)

M2
Z

− 2
s

c

ΠZγ(M2
Z)

M2
Z

]

.

Note that in order to properly renormalize these quantities, a full theory has to be

considered. This means for example that neutrino masses have to be introduced in a

consistent way (in case of a Majorana mass for the left-handed neutrinos the triplet has

to be taken into account, just as the doublet in the case of the Dirac mass). The neutrino

masses then also determine their mixing; masses and mixing can not be considered to

be independent.

The formalism of oblique corrections that was introduced can be applied to all types

of new physics. In particular, it can also account for the radiative correction of heavy

Majorana neutrinos. These can have interesting properties because of their Majorana
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nature. The results of the contribution of heavy Majorana neutrinos to the parameters

S, T and U will be quoted in section 5.1.1.

The last chapter has summarized the properties of sterile neutrinos at different scales.

Light sterile neutrinos are special as they can oscillate with the active neutrinos. But

also many other signatures differ a lot for light and heavy sterile neutrinos: For example

the neutrinoless double-beta decay can be calculated in two different approximations:

For neutrinos lighter or heavier than the momentum scale, which is at about 100 MeV.

Similar for lepton flavor violation. When the mass squared differences of all neutrinos

are very small, the amplitudes of the different diagrams contributing to the decays

cancel out almost completely and lepton flavor violation is suppressed. The signatures

of sterile neutrinos at colliders are better to identify, the smaller the masses are and

can be produced in more processes. Therefore the most stringend bounds on active–

sterile mixing can be placed at lower masses of the sterile states. An effect that is only

relevant for heavy neutrinos is the non-unitarity of the PMNS matrix. If the sterile

states cannot be produced in the considered processes, they nevertheless can be visible

by the non-unitarity of the effective theory that is observed. In the case of neutrinos,

the non-unitarity of the PMNS matrix is the strongest indicator of sterile neutrinos at

a higher scale. Loop effects are also only relevant for heavy sterile neutrinos. They are

an indirect measure of new physics and can be restricted because of the high precision

of the measurements of weak observables.

In the following, the first of the main parts of this work, chapter 4, will examine

the possibility of enhancing the active–sterile mixing in oscillations via the MSW effect.

Oscillations of the electron to the sterile neutrino are considered, since there are some

indications from short-baseline experiments pointing towards the existence of a fourth

neutrino with a mass in the eV range, leading for example to ν̄e disappearance in reactor

experiments (compare section 3.1.2). An enhanced mixing is obtained for a certain

combination of energy and masses of the neutrinos and a certain baseline and density

of the medium that is crossed. This combination can be found for atmospheric electron

neutrinos traversing the Earth mixing with a sterile neutrino with a mass at about one

to two eV.

In the second part, chapter 5, the effects of heavy sterile neutrinos on low energy

observables is studied. The non-unitarity of the PMNS matrix leads to tree-level effects

and via the vacuum polarization also loop effects are taken into account. Therefore, the
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contribution of heavy sterile Majorana neutrinos to the self energies of the W and Z

bosons have to be calculated. One can then summarize the contributions from tree-level

and loops on electroweak observables and perform a χ2-fit to the data to determine the

best fit values for the masses and mixing of the sterile neutrinos. These parameters have

to satisfy the constraints from above mentioned processes, like lepton flavor violating

decays, double-beta decay and collider physics. The measured mass-squared differences

and mixing of the active neutrinos have to be reproduced, too, which is ensured by

using the Casas-Ibarra parameterization (see section 5.5.1). The model could explain

the anomalous invisible decay width of the Z boson measured at LEP and the NuTeV

anomaly, where the ratios of charged to neutral current interactions of (anti)neutrinos

with nucleons were measured and did not agree with the SM predictions.



CHAPTER 4

Matter-enhanced Oscillation νe ↔ νs

As seen before in section 3.1.2, there are many hints to the existence of a sterile neutrino

with a mass in the eV range and significant mixing to the active neutrinos. Especially the

reactor neutrino anomaly motivates an oscillation of electron (anti)neutrinos to a sterile

state. We will investigate the possible effects of a sterile neutrino mixing in particular

to the electron neutrino on atmospheric neutrinos traversing the Earth. In this case, the

mixing can be resonantly enhanced by the MSW effect (see section 3.1.3) for neutrino

energies in the TeV range. Such oscillations could be observed by, for example, the

IceCube experiment.

There have been studies about possible detection of enhanced νµ ↔ νs oscillation

in IceCube by Smirnov and Razzaque ([57] and [58]). For the detection of oscillations

to a sterile neutrino, the limitations of the IceCube experiment have been analysed to

be in general restricted to systematic uncertainties [59]. In [60] a possible detection

of oscillations with the best fit values from the global fit of Kopp et al. [37], that was

discussed in section 3.1.2, with IceCube data is analysed.

The atmospheric electron neutrino flux after the neutrinos have traversed the Earth

is calculated in the following. The existence of a fourth, sterile neutrino νs with mixing

Uα4 to the active neutrinos is assumed, with a mass in the eV range.
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4.1 Evolution Equation

To understand the evolution of the system of four neutrino flavors α = e, µ, τ and s, its

evolution equation has to be solved. As the sterile neutrino does not interact with the

matter of the Earth, its interaction potential V vanishes. The electron neutrino interacts

via charged and neutral currents and the muon and tau neutrino only through neutral

current interactions. This leads to the following evolution equation

i
d

dx













νe

νµ

ντ

νs













=













1

2E
U













m2
1 0 0 0

0 m2
2 0 0

0 0 m2
3 0

0 0 0 m2
4













U † +













VCC+NC 0 0 0

0 VNC 0 0

0 0 VNC 0

0 0 0 0





































νe

νµ

ντ

νs













,

(4.1)

where VCC and VNC , the charged and neutral current potentials, depend on the matter

density and thus on the coordinate x. E is the energy of the neutrinos and mi are

their masses. U describes the mixing between the neutrino flavour eigenstates and is

parametrised by

U =













Ue1 Ue2 Ue3 Ue4

Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4













. (4.2)

The energy of the relativistic neutrinos was already approximated by Ei ≃ p+m2
i /2E

and the term p·1 subtracted by absorbing it in an overall phase of the neutrino state (see

section 3.1.1). One can repeat this for the neutral current potential VNC and subtract

also m2
1 · 1. This gives:

i
d

dx













νe

νµ

ντ

νs













=













U













0 0 0 0

0
∆m2

21

2E 0 0

0 0
∆m2

31

2E 0

0 0 0
∆m2

41

2E













U † +













VCC 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −VNC





































νe

νµ

ντ

νs













.

(4.3)

When solving the evolution equation, the terms including the mass-squared differences,
∆m2

4E L, will enter as phases. At the energies that will be considered (in the TeV range)

and as the travelled distance will be about 103 kilometers (1m ≈ 5/meV), the parameters
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∆m2
21

4E L,
∆m2

31

4E L are much smaller than one and negligible compared to
∆m2

41

4E L, as they

will appear as a very small phase shift (∆m2
41 ≫ ∆m2

31, ∆m2
21). Therefore we can

neglect the first two mass differences and set them to zero, thus obtaining a matrix with

only the 44-element nonzero, namely
∆m2

41

2E . One can abbreviate this as:

∆ ≡ ∆m2
41

2E
. (4.4)

By multiplying out this makes:

i
d

dx













νe

νµ

ντ

νs













=













|Ue4|2∆ + VCC Ue4U
∗
µ4∆ Ue4U

∗
τ4∆ Ue4U

∗
s4∆

Uµ4U
∗
e4∆ |Uµ4|2∆ Uµ4U

∗
τ4∆ Uµ4U

∗
s4∆

Uτ4U
∗
e4∆ Uτ4U

∗
µ4∆ |Uτ4|2∆ Uτ4U
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s4∆
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e4∆ Us4U
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µ4∆ Us4U

∗
τ4∆ |Us4|2∆ − VNC

























νe
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(4.5)

= H(x)ν(x) . (4.6)

Note that, as there now is only one mass-squared difference, any phase in the resulting

matrix can be absorbed in a redefinition of the neutrino states, so there is no possiblity

of CP-violation [61].

The second and third columns and lines contain each U
(∗)
µ or U

(∗)
τ and a factor, so one

can rotate the states νµ and ντ such that one of the new states decouples.

Define

ν ′
µ = cos(β)νµ + sin(β)ντ , (4.7)

ν ′
τ = cos(β)ντ − sin(β)νµ . (4.8)

This is equivalent to a rotation by the matrix V:

V =













1 0 0 0

0 cos(β) sin(β) 0

0 − sin(β) cos(β) 0

0 0 0 1













. (4.9)

The evolution equation then becomes

i
d

dx
ν(x) = H(x)ν(x) | V · (4.10)

i
d

dx
ν
′(x) = V H(x)V †

ν
′(x) = H ′(x)ν ′(x) , (4.11)
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where ν
′(x) = V ν(x) . (4.12)

As explained above, H(x) has the form:

H = U













0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ∆













U † +













VCC 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −VNC













. (4.13)

As the multiplication by V corresponds to a rotation in the 23-plane only, it commutes

with the second matrix containing VCC and VNC , so the Hamiltonian becomes

H ′ = (V U)













0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ∆













(V U)† +













VCC 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −VNC













. (4.14)

One can define a matrix U ′ that contains the rotation:

U ′ = V U =













Ue1 Ue2 Ue3 Ue4

U ′
µ1 U ′

µ2 U ′
µ3 U ′

µ4

U ′
τ1 U ′

τ2 U ′
τ3 U ′

τ4

Us1 Us2 Us3 Us4













(4.15)

with

U ′
µi = Uµi cos(β) + Uτi sin(β) , (4.16)

U ′
τi = Uτi cos(β) − Uµi sin(β) . (4.17)

This leads to

H ′ =













|Ue4|2∆ + VCC Ue4U
′∗
µ4∆ Ue4U

′∗
τ4∆ Ue4U

∗
s4∆

U ′
µ4U

∗
e4∆ |U ′

µ4|2∆ U ′
µ4U

′∗
τ4∆ U ′

µ4U
∗
s4∆

U ′
τ4U

∗
e4∆ U ′

τ4U
′∗
µ4∆ |U ′

τ4|2∆ U ′
τ4U

∗
s4∆

Us4U
∗
e4∆ Us4U

′∗
µ4∆ Us4U

′∗
τ4∆ |Us4|2∆ − VNC













. (4.18)

Therefore, in order for ν ′
τ to decouple from the evolution equation (to obtain only a
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three state system that is easier to solve), one has to set

U ′
τ4 ≡ 0 (4.19)

⇔ tan(β) =
Uτ4

Uµ4
. (4.20)

Now, the evolution equation involves only a three-state system:

i
d

dx
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νs






=







|Ue4|2∆ + VCC Ue4U
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µ4∆ Ue4U

∗
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∗
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s4∆

Us4U
∗
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(4.21)

=







Hee Heµ′ Hes

H∗
eµ′ Hµ′µ′ Hµ′s

H∗
es H∗

µ′s Hss













νe

ν ′
µ

νs






. (4.22)

In the framework of coherent elastic forward scattering, this describes the evolution of

the states νe, ν ′
µ and νs, the only approximations being the neglect of the mass-squared

differences ∆m21, ∆m31 and the expansion of the energy.

We have a system of three coupled differential equations:

i
d

dx
νe = Heeνe + Heµ′ν ′

µ + Hesνs , (4.23)

i
d

dx
ν ′

µ = H∗
eµ′νe + Hµ′µ′ν ′

µ + Hµ′sνs , (4.24)

i
d

dx
νs = H∗

esνe + H∗
µ′sν

′
µ + Hssνs . (4.25)

Since matter-enhanced νe ↔ νs oscillations shall be considered here, the energy range

will be the one where the corresponding resonance condition is fulfilled. In this region

the probability of oscillations from muon neutrino (primed) states to electron neutrinos

P (µ′ → e) is small: The resonance condition for νe ↔ ν ′
µ is fulfilled at comparatively

small energies. Its resonance energy is proportional to (|Uµ′4|2 − |Ue4|2), while νe ↔ νs

goes with (|Us4|2 − |Ue4|2) and |Uµ′4| , |Ue4| ≪ |Us4|. The same argument applies for

νs ↔ ν ′
µ oscillations, where the resonance condition is even only fulfilled for antineutrinos.

So taking into account that at the relevant energies (in the TeV range) the initial

atmospheric muon neutrino flux (ν ′
µ = cos(β)νµ + sin(β)ντ ) is much larger than the

electron neutrino flux (see e.g. [62], the factor is about 20) and the original flux of sterile

neutrinos is even zero1, one can neglect the oscillation of νe,s → ν ′
µ, but not ν ′

µ → νe,s.

1Sterile neutrinos are not produced in interactions, only via the oscillations from active neutrinos.
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This means that the evolution of νµ becomes independent of νe and νs and can be

solved independently:

i
d

dx
ν ′

µ = |Uµ′4|2∆ ν ′
µ (4.26)

⇒ ν ′
µ(x) = ν ′

µ(0)e−i|Uµ′4|2∆·x (4.27)

At the same time one can treat the conversion of ν ′
µ → νe,s as a source term for νe,s:

i
d

dx

(

νe

νs

)

=

(

Hee Hes

H∗
es Hss

)(

νe

νs

)

+

(

fe

fs

)

(4.28)

⇔ i
d

dx

(

ν̃e

ν̃s

)

=

(

Hee−Hss

2 Hes

H∗
es

Hss−Hee

2

)(

ν̃e

ν̃s

)

+ e(i/2)
R x

0
Hee(x′)+Hss(x′)dx′

(

fe

fs

)

, (4.29)

where

fe = fe(x) = Heµ′ν ′
µ(x) , (4.30)

fs = fs(x) = H∗
µ′sν

′
µ(x) , (4.31)

and the tilde marks a phase shift of the states. The Hamiltonian matrix was made

traceless by subtracting the trace (a term proportional to the unit matrix only results

in an overall phase marked by the tilde). In the following the tilde on the states is

neglected, as it is physically irrelevant. For simplicity in notation call

f̃e = e(i/2)
R x
0

Hee(x′)+Hss(x′)dx′

fe , (4.32)

f̃s = e(i/2)
R x

0
Hee(x′)+Hss(x′)dx′

fs . (4.33)

To solve this system of coupled differential equations it is usefull to introduce the

evolution matrix S(x, x0) of the homogeneous evolution equation (omitting the source

term f(x)).

4.1.1 Evolution Matrix

First some general properties of the evolution matrix are summarised.

One can express the evolution of a state ν(x) through a matrix S:

ν(x) = S(x, x0)ν(x0) . (4.34)
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Then the evolution of ν(x),

i
d

dx
ν(x) = H(x)ν(x) (4.35)

determines the evolution of S(x, x0):

i
d

dx
S(x, x0) = H(x)S(x, x0) (4.36)

with the initial condition

S(x0, x0) = 1 . (4.37)

As the states are normalised, the evolution matrix (S-matrix) must be unitary

S(x, x0)S
†(x, x0) = S†(x, x0)S(x, x0) = 1 . (4.38)

Additionally, it has to fulfill the following properties:

S(x, x0) = S(x, x1)S(x1, x0) for any x1 , (4.39)

S(x, x0) = S−1(x0, x) . (4.40)

Differentiating the equation ν(x) = S(x, x0)ν(x0) with respect to x0 gives, using

equations (4.36) and (4.35):

i
d

dx0
ν(x) = i

d

dx0
(S(x, x0)ν(x0)) (4.41)

=

{(

i
d

dx0
S(x, x0)

)

+ S(x, x0)H(x0)

}

ν(x0) . (4.42)

Since i d
dx0

ν(x) = 0, it has to follow

i
d

dx0
S(x, x0) = −S(x, x0)H(x0) . (4.43)

4.1.2 Solution of the Evolution Equation

To obtain the evolution of the simplified system of two flavors developed before (compare

equation (4.29)), the inhomogeneous differential equation has to be solved

i
d

dx
ν(x) = H(x)ν(x) + f̃(x) (4.44)
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⇔ i
d

dx

(

νe

νs

)

=

(

Hee−Hss

2 Hes

H∗
es

Hss−Hee

2

)(

νe

νs

)

+

(

f̃e

f̃s

)

. (4.45)

The homogeneous equation with its solution ν0

i
d

dx
ν0(x) = H(x)ν0(x) (4.46)

is solved by the evolution matrix we introduced above

ν0(x) = S(x, x0)ν0(x0) . (4.47)

The evolution matrix can be obtained by numerical integration of its differential equa-

tion.

Then one has to solve the full equation including the source term:

i
d

dx
ν(x) = H(x)ν(x) + f̃(x) . (4.48)

The solution ν(x) is a superposition of the solutions of the homogeneous (ν0(x)) and the

inhomogeneous equation (ν1(x))

ν(x) = ν0(x) + ν1(x) . (4.49)

This means that a solution of the inhomogeneous equation has to be found

i
d

dx
ν1(x) = H(x)ν1(x) + f̃(x) . (4.50)

One can make the ansatz (taking x0 = 0)

ν1(x) = S(x, 0)g(x) (4.51)

where S(x, 0) is the evolution matrix of the homogeneous equation and the function g(x)

has to be determined in the following. Equation (4.50) gives

i
d

dx
ν1(x) = i

{(

d

dx
S(x, 0)

)

· g(x) + S(x, 0) · d

dx
g(x)

}

(4.52)

= H(x)S(x, 0)g(x) + f̃(x) (4.53)

⇔ i
d

dx
g(x) = S−1(x, 0) · f̃(x) (4.54)

= S(0, x) · f̃(x) . (4.55)
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From the second to the third line the property

i
d

dx
S(x, x0) = H(x)S(x, x0)

was used and S−1 was multiplied from the left.

g(x) then becomes

g(x) = −i

∫ x

0
S(0, x′)f̃(x′)dx′ (4.56)

= −i

∫ x

0

(

See(0, x
′) Ses(0, x

′)

Sse(0, x
′) Sss(0, x

′)

)(

f̃e(x
′)

f̃s(x
′)

)

dx′ , (4.57)

where

f̃e = f̃e(x
′) = Heµ′ ν ′

µ(0) e(i/2)
R x′

0
(Hee(y)+Hss(y)−2Hµ′µ′ )dy , (4.58)

f̃s = f̃s(x
′) = Hµ′s ν ′

µ(0) e(i/2)
R x′

0
(Hee(y)+Hss(y)−2Hµ′µ′ )dy . (4.59)

This gives for ν1

ν1(x) = S(x, 0)g(x) (4.60)

= −iS(x, 0)

∫ x

0
S(0, x′)f̃(x′)dx′ (4.61)

= −i

∫ x

0
S(x, x′)f̃(x′)dx′ . (4.62)

The full solution for the evolution equation then is

ν(x) = ν0(x) + ν1(x) (4.63)

= S(x, 0)ν(0) − i

∫ x

0
S(x, x′)f̃(x′)dx′ , (4.64)

where one can identify ν0(0) = ν(0), as ν1(0) = 0.

Note that when calculating the flux of the electron (or sterile) neutrinos the two parts

of the solution do not add up coherently, as ν1 describes the conversion of muon to

electron (sterile) neutrinos and they are not produced coherently. The flux Φe(s) of

electron or sterile neutrinos, which is proportional to |ν(x)|2 is thus:

Φe(s) ∝ |ν0(x)e(s)|2 + |ν1(x)e(s)|2 , (4.65)
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where the index e indicates to take the first entry of the two-vector, s taking the second:

ν =

(

νe

νs

)

(4.66)

as the first (second) entry corresponds to the electron (sterile) neutrino component of

ν1 and ν0.

As explained in the beginning, the oscillation of atmospheric neutrinos crossing the

Earth shall be considered here, as these oscillations can be resonantly enhanced and a

deficit of electron neutrinos due to a new mass state that consist mainly of the sterile

state at about one to two eV could be detected. One therefore has to calculate the length

of the trajectories of the neutrinos through the Earth. The geometry of the Earth will

be approximated by dividing it into a core and a mantle with a constant density profile

in each region.

4.2 Solution for a Three-Layer Model of the Earth

4.2.1 Geometry

The density profile of the Earth can be approximated by dividing it into two regions,

a core and a mantle, in which the densities vary only little (see e.g. the PREM Earth

model [63]). Therefore, the neutrino trajectory traverses three layers: mantle, core and

then mantle again (provided the angle φN is small enough).

The length of the total passage of the neutrinos through the Earth (L) is given by the

length of a chord, where the angle of the trajectory is parametrized by the Nadir angle

ϕN , as shown in figure 4.1. With RE being the radius of the Earth, this makes:

L = 2RE cos(ϕN ) . (4.67)

The paths through the different layers for the core (l) and mantle (s) are given by the

law of cosines, compare figure 4.1:

s = RE cos(ϕN ) −
√

(RE cos(ϕN ))2 − (R2
E − R2

1) , (4.68)

l = 2
√

(RE cos(ϕN ))2 − (R2
E − R2

1) , (4.69)

where R1 is the radius of the core. The neutrino-trajectory crosses the three layers, if

the Nadir angle is smaller than ϕN < arcsin(R1/Re). Otherwise, it only crosses the

mantle at a length given by L.
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ϕN

mantle

core

EARTH

s

l

s

Figure 4.1: Trajectories through mantle (s) and core (l) of the Earth at Nadir angle ϕN

4.2.2 Solving the Two-Flavor System for a constant-Density Profile

First, the homogeneous equation for the evolution matrix in matter with constant density

will be solved, meaning one drops the source term in (4.29). Then one can change to

the eigensystem, diagonalising the Hamiltonian

H =

(

Hee−Hss

2 Hes

H∗
es

Hss−Hee

2

)

. (4.70)

Assuming H∗
es = Hes (since only one mass-squared difference is considered, this is al-

ways possible, as there are no physical CP-violating phases) and taking the diagonalising

matrix to be

W (θ) =

(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)

. (4.71)

Then, the mixing angle θ is then given by

tan(2θ) =
2Hes

Hss − Hee
, (4.72)

while the eigenvalues Ω1,2 of the Hamiltonian are

Ω1,2 = ±Ω , (4.73)
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Ω =
1

2

√

(Hee − Hss)2 + 4H2
es , (4.74)

W †HW =

(

−Ω 0

0 +Ω

)

= Hd . (4.75)

The evolution matrix is then given by (compare equation (3.10) in section 3.1.1):

S(x, x0) = We−iHd(x−x0)W † = W

(

eiΩ·(x−x0) 0

0 e−iΩ·(x−x0)

)

W † (4.76)

=

(

c2
θe

iΩ·(x−x0) + s2
θe

−iΩ·(x−x0) −cθsθ

(

eiΩ·(x−x0) − e−iΩ·(x−x0)
)

−cθsθ

(

eiΩ·(x−x0) − e−iΩ·(x−x0)
)

s2
θe

iΩ·(x−x0) + c2
θe

−iΩ·(x−x0)

)

(4.77)

=

(

cφ + ic2θsφ −is2θsφ

−is2θsφ cφ − ic2θsφ

)

, (4.78)

with the abbreviations

cθ = cos(θ) , sθ = sin(θ) , (4.79)

c2θ = cos(2θ) , s2θ = sin(2θ) , (4.80)

cφ = cos(φ) , sφ = sin(φ) , (4.81)

φ = Ω · (x − x0) . (4.82)

The solution of the inhomogeneous equation was given by (see equation (4.62))

ν1(x) = −i

∫ x

0
S(x, x′)f̃(x′)dx′ , (4.83)

where S(x, x′) is the S-matrix solving the homogeneous equation obtained above. For

matter of constant density one can also solve the integral in the source term f̃ analytically

(see appendix A).

The three-layer solution of ν0 and ν1 is given in the appendix A.

4.2.3 Three-Flavor Solution

In order to quantify the approximation in treating the muon neutrino flux as a source

term and neglecting the contributions from the conversions of electron and sterile neutri-

nos to muon neutrinos, one has to solve the three-flavor system numerically and compare

the outcome graphically.
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(a) Φe as a function of energy E at Nadir angle
ϕN = 0.2
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(b) Φe as a function of Nadir angle ϕN at energy
E = 8 TeV

Figure 4.2: Electron neutrino flux varying the energy or the Nadir angle. ∆m2
41 = 2.5

eV2, Uµ4 = 0.1 and Ue4 = 0.2, for values of the other parameters used in the calculation,
see table 4.1.

The system of equations (before the two-flavor approximation) is

i
d

dx







νe

ν ′
µ

νs






=







|Ue4|2∆ + VCC Ue4U
′∗
µ4∆ Ue4U

∗
s4∆

U ′
µ4U

∗
e4∆ |U ′

µ4|2∆ U ′
µ4U

∗
s4∆

Us4U
∗
e4∆ Us4U

′∗
µ4∆ |Us4|2∆ − VNC













νe

ν ′
µ

νs






(4.84)

=







Hee Heµ′ Hes

H∗
eµ′ Hµ′µ′ Hµ′s

H∗
es H∗

µ′s Hss













νe

ν ′
µ

νs






. (4.85)

In matter with constant density the S-matrix is obtained by diagonalising the Hamil-

tonian (Hd being diagonal). When W is the matrix diagonalising H:

Hd = W †HW , (4.86)

then the S-matrix is given by

S(x − x0) = We−iHd(x−x0)W † , (4.87)

As the elements of H depend on the energy and the density of the medium2, the S-

matrix differs for each layer. The electron neutrino flux entering the Earth is normalized

to one and thus the muon neutrino flux becomes 20. The parameter values of the Earth

and the entering neutrino flux are kept constant througout this work, see table 4.1. The

plots are always shown in pairs of two, were the same values of model-parameters (mixing

2The density dependence enters with the potentials VNC and VCC , ∆ carries the energy dependence.
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and mass-squared difference) are used and the flux is plotted against energy and Nadir

angle, as these are the two variables a detector could resolve. As the intention of this

work is to study an enhanced νe → νs transition, only the electron neutrino flux Φe is

considered.

In figure 4.2a the electron neutrino flux is plotted against the energy of the neutrinos in

the TeV range, where the resonance can be expected, at a fixed Nadir angle of ϕN = 0.2.

In this case, the trajectory crosses the core. One can see a resonant transition, missing

electron neutrinos, at an energy of about 8 TeV. Therefore, in figure 4.2b the electron

neutrino flux is plotted against the Nadir angle at a fixed neutrino energy of 8 TeV. At

ϕN ≈ 0.58 the trajectory no longer crosses the core of the Earth and the curve changes

drastically. The electron neutrino deficit is much stronger for trajectories crossing the

core, than for the ones that only cross the mantle.

Variable Value

∆m2

41
2.5 / 2 / 1 eV2

Ue4 0.2 / 0.1 / 0.05

Uµ4 0.1 / 0.15

Uτ4 0

ρm 4.5 g

cm3

ρc 11.5 g

cm3

Yem 0.49

Yec 0.467

RE 6371 · 0.506842 · 1010 eV

R1 3484 · 0.506842 · 1010 eV

νe(0) 1

νs(0) 0

νµ(0)
√

20

Table 4.1: Values of the parameters used in the simulation of the oscillations for two

and three flavors, index m for mantle, c for core.

4.2.4 Comparing the Two- and Three-Flavor Solutions

To solve the system of differential equations analytically, an approximation had to be

made: The muon neutrino flux was treated as a source term for the electron and sterile

neutrinos and oscillations from electron or sterile neutrinos to muon neutrinos were ne-

glected. This approximation should be valid, as the muon neutrino flux in the TeV range

is much higher than the electron neutrino flux and sterile neutrinos are not produced
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Figure 4.3: Electron neutrino flux with ∆m2
41 = 2.5 eV2 and Ue4 = 0.2. The black

curve is the three-flavor numerical calculation, the blue and red curves are the two-
flavor analytical calculation. (Note that the blue curve almost disappears behind the
black one.)

in the interactions. Then the evolution equation of the muon neutrinos could be solved

separately and one had to solve an inhomogeneous system of two coupled differential

equations, for the electron and sterile neutrinos. Compare section 4.1. To check this ap-

proach the two-flavor solution will be compared to the three-flavor one. The parameter

values are again given in table 4.1. It is to be expected that the approximation is valid

only for small mixing to the fourth neutrino state, as this is the transition that has been

neglected.

Figures 4.3a and 4.3b show that the approximation works very well for a mixing of

the muon neutrino with the fourth mass eigenstate of Uµ4 = 0.1; the black (three-flavor)

and blue curve (two-flavor) almost coincide. The red curve shows the two flavor ap-

proximation when taking the solution of the homogeneous and inhomogeneous equation

to be coherent. This ansatz is not correct, as already discussed before in section 4.1.2,

which is confirmed by the figure 4.3.
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(d) Φe as a function of Nadir angle ϕN at E = 7
TeV, ∆m2

41 = 2 eV2

Figure 4.4: Electron neutrino flux varying the parameter ∆m2
41, which is taken to be 1

and 2 eV2 respectively. (Uµ4 = 0.1 and Ue4 = 0.2, as before.)

When the mixing becomes larger, Uµ4 = 0.15, the black and blue curves move apart,

see figures 4.3c and 4.3d. For the approximation to two flavors to be valid, a small

mixing of the muon neutrino with the fourth mass eigenstate has to be assumed.

4.2.5 Parameter Dependence of the Three-Flavor System

To see how the analysis depends on the parameters of the model, its most important

parameters are varied here: the mass-squared difference ∆m2
41 and the mixing of the

electron to the fourth mass eigenstate, Ue4. This will be done for the three-flavor system.

Varying the mass-squared difference ∆m2
41 one can see that at higher ∆m2

41 the min-

imum in the electron neutrino flux Φe shifts to higher energies, compare figures 4.2

and 4.4. For ∆m2
41 = 1 eV2 the minimum is at about 3 TeV, for ∆m2

41 = 2 eV2 at about

6.5 TeV and for ∆m2
41 = 2.5 eV2 at about 8 TeV.

Varying the mixing parameter Ue4, the deficit in the electron neutrino flux decreases

with a smaller the mixing: In figures 4.2 and 4.5 one can see that for a mixing of
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(c) Φe as a function of energy E at ϕN = 0.2,
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(d) Φe as a function of Nadir angle ϕN at E = 8
TeV, Ue4 = 0.05

Figure 4.5: Electron neutrino flux varying the parameter Ue4, which is taken to be 0.1
and 0.05 respectively. (Uµ4 = 0.1 and ∆m2

41 = 2.5 eV2, as before.)

Ue4 = 0.05 the minimum is at only about 80% of the incoming electron neutrino flux,

while it went down to 20% for Ue4 = 0.2. Detecting the sterile neutrino via missing

electron neutrino flux becomes more difficult, the smaller its mixing with the active

neutrinos.

In this chapter the oscillation of the four-flavor system of the three active neutrinos

with one sterile state has been studied. A matter background was parametrized by

the charged and neutral current potentials in the framework of coherent elastic forward

scattering. The system could be simplified to three flavors by rotating the muon and tau

neutrino states. Atmospheric neutrinos were considered to traverse the Earth to enable

a resonant enhancement of the transition of νe → νs. Experiments such as the reactor

anomaly and source experiments have motivated an oscillation of electron to sterile

neutrinos at a mass-squared difference of a few eV2. Therefore this work studies the

possibility of an enhancement of exactly this transition by the interaction of neutrinos

with matter.
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It has been shown that the oscillation of electron to sterile neutrinos can be resonantly

enhanced at neutrino energies of a few TeV, when traversing the Earth. The deficit of

electron neutrinos can be as large as 80% of the original flux for a relatively large mixing

with the fourth neutrino Ue4 = 0.2. The oscillation is more difficult to observe the

smaller this mixing, but the resonance is only shifted, when a different mass-squared

difference is assumed. The direction to look for the deficit will be at small Nadir angle,

when the trajectory of the neutrinos crosses the highly dense core of the Earth.

At resonably small mixing of the muon neutrino with the fourth state Uµ4 of about 0.1

the three-flavor system can be approximated to a two-flavor system that can be solved

analytically. One can then treat the muon neutrino flux as a source term for the sterile

and electron neutrino.



CHAPTER 5

Sterile Neutrinos above the Electroweak Scale

In the sections 3.2 and 3.6 the effects of heavy sterile neutrinos on the weak interactions

were described. Depending on the masses of the sterile neutrinos and their mixing to the

active ones, sterile neutrinos could notably influence electroweak precision measurements

(the parameters of the weak interaction are known to a very high precision). In this

chapter the effect of sterile neutrinos that are heavier than the Z boson on low energy

observables will be calculated. These sterile states cannot be produced in the interaction,

therefore leading to non-unitarity effects. They also alter the self-energies of the W and Z

boson via loop diagrams, which is represented in the oblique corrections. The deviations

from the SM predictions will be calculated in detail for two observables, namely the

invisible decay width of the Z boson and the ratios of neutral to charged current events

for neutrino–nucleon scattering. These observables are chosen because there have been

experiments that found a deviation of the measured values compared to the expectations

from the SM. This could be explained by the existence of heavy sterile neutrinos.

The experiments will now be introduced and the possible contribution of heavy sterile

neutrinos will be calculated later, see sections 5.2 and 5.3. In section 5.1 the arising

corrections to the SM parameters will be introduced, followed by the calculation for

the two observables mentioned above. The constraints from other experiments are then

quoted in section 5.4. The sterile neutrinos generate masses for the active neutrinos,
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and thereby also their mixing, which is observed in neutrino oscillation experiments (see

section 5.5). Finally, in section 5.6, all the contributions are collected, so that a χ2-fit

can be performed. It can reveal whether the introduction of heavy sterile neutrinos does

lead to a better explanation of the measured parameters than the SM itself.

The LEP experiment tested the Standard Model with e+e− collisions, for collected

results see [64]. The Z decay width was thouroughly measured and the decays into

invisible channels determined. The measured ratio of invisible to leptonic decay width

was

Γinv

Γll
= 5.942 ± 0.016 . (5.1)

The SM prediction for the ratio of the partial decay width into neutrinos and charged

leptons is (for one neutrino species)

(

Γνν

Γll

)

SM

= 1.9912 ± 0.0012 , (5.2)

where MZ = 91.1875 GeV and the error comes from the uncertainties in the top mass

mt = 174.3± 5.1 GeV and the Higgs mass: 100 GeV ≤ mH ≤ 1000 GeV. This gives the

number of neutrino species (being the ratio of these two values)

Nν = 2.9841 ± 0.0083 , (5.3)

which is two sigma below the SM expected value of 3.

Introducing sterile neutrinos with masses higher than the one of the Z boson can

effectively reduce the value of neutrino species in the invisible Z decay width, as will

be demonstrated below. Since the mixing of active and sterile neutrinos also affects the

coupling of the W and Z bosons, sterile neutrinos also affect the NuTeV experiment and

could possibly explain the so called NuTeV anomaly.

In the NuTeV experiment [65] the ratios of NC to CC cross sections have been mea-

sured for neutrino and antineutrino scattering on nucleons, where N denotes the nucleons

and X the scattering products:

Rν =
σ(νN → νX)

σ(νN → l−X)
= (g2

L + rg2
R) , (5.4)

Rν̄ =
σ(ν̄N → ν̄X)

σ(ν̄N → l+X)
= (g2

L + r−1g2
R) , (5.5)
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where

r =
σ(ν̄N → l+X)

σ(νN → l−X)
≃ 1

2
. (5.6)

As the measurements were carried out with muon neutrinos, CC events were distin-

guished from NC events by their length: Muons are produced in CC events and thus

create much longer tracks. The ratios of short to long events were measured to be

Rν
exp = 0.3916 ± 0.0007 , (5.7)

Rν̄
exp = 0.4050 ± 0.0016 . (5.8)

When fitting the isoscalar combinations of effective1 neutral current quark couplings

geff
L,R to Rν and Rν̄ , (geff

L )2 is 3 sigma below the SM prediction:

(geff
L )2 = 0.30005 ± 0.00137 , (geff

L )2SM = 0.3042 , (5.9)

(geff
R )2 = 0.03076 ± 0.00110 , (geff

L )2SM = 0.0301 . (5.10)

This discrepancy arises because both ratios Rν and Rν̄ were smaller than expected,

meaning the NC events seemed suppressed compared to CC events.

A sterile neutrino that mixes with the active ones by ǫ would lead to a suppression of

(1 − ǫ2) in the Zνlνl coupling and only of (1 − ǫ2/2) in Wlνl, which would explain the

suppression of the ratios.

The effect of sterile neutrinos on the phenomenology of the two experiments will be

described in more detail in sections 5.2 and 5.3.

5.1 Corrections to SM Parameters

The existence of sterile neutrinos affects various electroweak SM observables. When they

involve neutrinos in their measurements, the corrections arise at tree-level, otherwise the

electroweak parameters are only changed through the vacuum polarization effects, mean-

ing the oblique corrections, that change the self-energies of the W and Z bosons. The

model including these heavy sterile neutrinos can be compared to the SM by performing

a χ2-fit. Therefore the “SM predictions” have to be calculated. This is done by choosing

well measured input parameters, usually the electromagnetic coupling constant αem, the

Fermi constant GF , the strong coupling constant αs, the Z boson mass MZ and the

1Effective couplings meaning those who describe the experimentally observed ones, when the neutral
current processes are calculated without electromagnetic radiative corrections.
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Figure 5.1: Feynman diagram of the muon decay

fermion masses mf . The parameters that will influence the weak interactions are αem,

MZ and GF . The first two remain unaltered by the intoduction of sterile neutrinos.

GF however is determined from the muon lifetime in the decay µ → eν̄eνµ and will be

corrected by non-unitarity effects, as already mentioned in section 3.2. The process is

shown in figure 5.1. This means that in the model including sterile neutrinos the value

measured in the muon decay Gµ is different from the Fermi constant GF :

GF =
Gµ

√

(UP UP †)ee(UP UP †)µµ

≈ Gµ

(

1 +
ε2
e + ε2

µ

2

)

, (5.11)

where the parameter εα is defined as

ε2
e = |Ue4|2 , ε2

µ = |Uµ4|2 , ε2
τ = |Uτ4|2 . (5.12)

When there are more sterile neutrinos, say nR, this changes to

ε2
α =

nR
∑

i=4

|Uαi|2 . (5.13)

These parameters are a measure of the non-unitarity of the PMNS matrix:

(UP UP †)αα = 1 − ε2
α . (5.14)

The sum of the ε2
α is defined as

ε2 =
∑

α=e,µ,τ

ε2
α =

∑

α=e,µ,τ

|Uα4|2 =

3
∑

i=1

|Usi|2 = 1 − |Us4|2 , (5.15)



5.1 Corrections to SM Parameters 67

where from the second equality on, this is only valid for one sterile neutrino.

All SM parameters that are calculated from GF then have to be corrected by this

factor coming from the non-unitarity of the PMNS matrix.

The observables of processes with neutrinos also get additional corrections. The in-

visible Z decay width has to be corrected by approximately

Γinv ≈ (Γinv)SM (1 − 2

3
ε2) (5.16)

and the NuTeV observables, the neutral current quark couplings g2
L and g2

R, get addi-

tionally corrected by a factor

g2
L,R =

(

g2
L,R

)

SM
· (1 − ε2

µ) , (5.17)

as will be shown in the sections 5.2 and 5.3.

The contributions of the heavy sterile neutrino(s) to the oblique parameters S, T

and U are also included in the considered corrections. See the next section 5.1.1 for

results. The relation of the oblique parameters to the electroweak observables can be

found in [66] and one can summarize tree-level and loop corrections to (compare [67]):

Γlept

[Γlept]SM
= 1 − 0.0021S + 0.0093T + 0.60 ε2

e + 0.60 ε2
µ , (5.18)

Γinv/Γlept

[Γinv/Γlept]SM
= 1 + 0.0021S − 0.0015T − 0.67 ε2

e − 0.67 ε2
µ − 0.67 ε2

τ , (5.19)

sin2(θlept
eff )

[sin2(θlept
eff )]SM

= 1 + 0.016S − 0.011T − 0.72 ε2
e − 0.72 ε2

µ , (5.20)

g2
L

[g2
L]SM

= 1 − 0.0090S + 0.022T + 0.41 ε2
e − 0.59 ε2

µ , (5.21)

g2
R

[g2
R]SM

= 1 + 0.031S − 0.0067T − 1.4 ε2
e − 2.4 ε2

µ , (5.22)

MW

[MW ]SM
= 1 − 0.0036S + 0.0056T + 0.0042U + 0.11 ε2

e + 0.11 ε2
µ , (5.23)

where θlept
eff is the lepton effective Weinberg angle, effective meaning that all processes

are calculated without radiative corrections and then fitted to the experimental results.
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Figure 5.2: Contribution of neutrinos to the W boson self-energy.

5.1.1 Oblique Corrections from Sterile Majorana Neutrinos

In section 3.6 the oblique corrections were introduced. Their connection to the SM

observables was described in the previous section 5.1. Here, the contribution to the

self energies of the neutrinos and charged leptons are quoted, as well as the resulting

parameters S, T and U . For details on the calculation, see [68].

The W boson self energy, see figure 5.2, is given by

Πµν
WW (x, y) =

e2

16π2 sin2(θW )

∑

α

∑

i

U †
iαUαi

(

qµqνP (q2,m2
Ni

,m2
α) − gµνQ(q2,m2

Ni
,m2

α)
)

.

(5.24)

The functions P and Q are defined in appendix B. mNi
is the mass of the i-th neutrino

mass eigenstate, mα the mass of the charged lepton ℓα. q is the external momentum of

the W boson. The qµqν–term can be neglected, as argued in section 3.6, therefore the

self energy takes the form

ΠWW = − e2

16π2 sin2(θW )

∑

α

∑

i

U †
iαUαiQ(q2,m2

Ni
,m2

α) . (5.25)

The contributions to the Z boson self energy are shown in figure 5.3a. Both the

neutrinos and the charged leptons have to be considered.

ΠZZ =
−e2

32π2 cos2(θW ) sin2(θW )





∑

i,j

∑

α,β

U †
iαUαjU

†
jβUβiQ(q2,m2

Ni
,m2

Nj
)

+
∑

i,j

∑

α,β

U †
iαUαjU

†
iβUβjmNi

mNj
B0(q

2,m2
Ni

,m2
Nj

)

+[(1 − 2 sin2(θW ))2 + (2 sin2(θW ))2]
∑

α

Q(q2,m2
α,m2

α)

+4 sin2(θW )(1 − 2 sin2(θW ))
∑

α

m2
αB0(q

2,m2
α,m2

α)

)

, (5.26)
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(a) Z boson self-energies from
neutrinos and charged leptons.
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(b) Photon and photon–Z self
energies, same as in the SM.

Figure 5.3: Self-energy contribution to Z boson and photon from neutrinos and charged
leptons.

where the first two lines correspond to the neutrino and the second two to the charged

lepton contribution.

Since neutrinos do not contribute to the self energy of the photon and the one of the

photon and Z boson, see figure 5.3b, these are the same as in the SM:

Πγγ(q) =
−e2

4π2

∑

α

(Q(q2,m2
α,m2

α) − m2
αB0(q

2,m2
α,m2

α)) , (5.27)

ΠZγ(q) =
4 sin2(θW ) − 1

4 cos(θW ) sin(θW )
Πγγ(q) . (5.28)

In order to obtain only the beyond the SM contribution to the self energies the SM

parts have to be subtracted. These are obtained by only considering the three massless

SM neutrinos in the finite parts of Q and B0, thus ensuring that the infinities still cancel

out. Note that the PMNS matrix does then not enter, since mass and flavor bases

coincide.

S, T, U Parameters

From these self energies one can now calculate the oblique correction parameters that are

defined as in section 3.6. The on-shell renormalization scheme is used and the divergences

cancel out (this has been checked), in the T parameter with the condition

|
∑

i

UαimiU
T
iβ|2 = 0 , (5.29)
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which is equivalent to the vanishing of ML = 0 in the neutrino mass matrix for a seesaw

type I.

The finite expression for T is

αemT =
e2

32π2 sin2 θW M2
W







∑

i,j

∑

α,β

U †
iαUαjU

†
jβUβi·

·1
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m2
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+ m2
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− 2
m4

Ni
ln(m2

Ni
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W ) − m4
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ln(m2
Nj

/M2
W )

m2
Ni

− m2
Nj

)

+

+
∑

i,j
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α,β

U †
iαUαjU

†
iβUβjmNi

mNj
·

·
(

1 −
m2

Ni
ln(m2

Ni
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W ) − m2
Nj
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/M2
W )

m2
Ni

− m2
Nj

)

−

−
∑

α

m2
α ln(m2
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W )−

−
∑

α,i

U †
iαUαi ·
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2

(

m2
Ni

+ m2
α − 2
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m2
Ni
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.

(5.30)

S and U can be calculated analogously, also yielding lengthy expressions. The result

will not be quoted here, see [68], for the entire expressions. Note that since S and U

are related to the derivatives of the self-energies of the W and Z boson, whereas T is

proportional to their difference, S and U are much smaller than T .

5.2 Z Pole

In this section the tree-level corrections of heavy sterile neutrinos to the Z decay width,

that was measured at LEP [64], will be calculated. To understand possible implications

of sterile neutrinos on this observable, one has to look at the interaction of the Z boson

with neutrinos.

In the flavor basis, the weak neutral current interaction with the neutrinos is given by

the Lagrangian:

L
NC
I = −

∑

α=e,µ,τ

g

4 cos(θW )
ν̄αγµ (1 − γ5) ναZµ . (5.31)

When now transforming from flavor to mass eigenstates the number of sterile neutrinos
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Z
ν̄

ν

Figure 5.4: Decay of Z into two neutrinos.

assumed in this model has to be fixed. Only one sterile state s will be considered at

first, so the following unitarity condition holds:

∑

α=e,µ,τ,s

U∗
αiUαj = δij . (5.32)

Writing then να =
∑

i Uαiνi in the Lagrangian gives

L
NC
I ∝

∑

α=e,µ,τ

4
∑

i=1

4
∑

j=1

U∗
αiν̄iLγµUαjνjL

Zµ

∝
∑

α=e,µ,τ





4
∑

i=1

U∗
αiUαiν̄iLγµνiLZµ +

4
∑

i6=j

U∗
αiUαj ν̄iLγµνjL

Zµ





∝
4
∑

i=1

ν̄iLγµνiLZµ (1 − U∗
siUsi) +

4
∑

i6=j

ν̄iLγµνjL
Zµ (0 − U∗

siUsj) . (5.33)

The process to be calculated here is the decay of the Z boson into neutrinos, see

figure 5.4. The decay width into neutrinos (invisible decay width) is proportional to the

amplitude squared of these processes |M|2. Since only the corrections to the SM are

relevant here, one can express the decay width in terms of the amplitudes of the decay in

two light neutrinos (Γ0), two heavy neutrinos (Γ4) and one light and one heavy neutrino

(Γ40) and just consider the extra factors from the mixing of active and sterile neutrinos.

This gives

Γinv = Γ0

3
∑

i=1

(

1 − |Usi|2
)2

+ Γ4

(

1 − |Us4|2
)2

+ Γ0

3
∑

i6=j

|U∗
siUsj|2

+ Γ40

3
∑

i=1

|U∗
siUs4|2 + Γ40

3
∑

j=1

|U∗
s4Usj|2
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= Γ0





3
∑

i=1

(

1 − |Usi|2
)2

+
3
∑

i6=j

|U∗
siUsj|2



+ Γ4

(

1 − |Us4|2
)2

+ 2Γ40

3
∑

i=1

|U∗
siUs4|2 .

(5.34)

Recall the definition

ε2 =

3
∑

i=1

|Usi|2 =
∑

α=e,µ,τ

|Uα4|2 = 1 − |Us4|2 . (5.35)

Use then

3
∑

i=1

|Usi|4 +
3
∑

i6=j

|U∗
siUsj|2 =

4
∑

i=1

|Usi|4 +
4
∑

i6=j

|U∗
siUsj|2 − |Us4|4 − 2

3
∑

i=1

|U∗
siUs4|2 (5.36)

together with the unitarity condition

1 =

4
∑

i=1

U∗
αiUαi =

(

4
∑

i=1

U∗
αiUαi

)2

=

4
∑

i=1

|Uαi|2
4
∑

j=1

|Uαj |2

⇒
3
∑

i=1

|Usi|4 +

3
∑

i6=j

|U∗
siUsj|2 = 1 − |Us4|4 − 2

3
∑

i=1

|U∗
siUs4|2

= 1 − |Us4|2
(

|Us4|2 + 2

3
∑

i=1

|Usi|2
)

= 1 − (1 − ε2)(1 − ε2 + 2ε2) = 1 − (1 − ε4) = ε4 , (5.37)

and the invisible Z decay width becomes

Γinv = Γ0(3 − 2ε2 + ε4) + Γ4ε
4 + 2Γ40 ε2(1 − ε2) . (5.38)

If the fourth (mainly sterile) neutrino is heavier than the Z boson, then the latter

cannot decay into two heavy neutrinos or in a heavy and a light neutrino, meaning Γ4

and Γ40 are kinematically forbidden and can thus be set to zero, and the decay width

becomes:

Γinv = Γ0(3 − 2ε2 + ε4)

≈ 3Γ0(1 − 2

3
ε2) . (5.39)

The value without any sterile neutrino would be Γinv = 3Γ0, the SM value. Note also
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that in case the fourth neutrino is as light as the three (active) ones, then the kinematics

would give Γ4 ≈ Γ40 ≈ Γ0 and as terms cancel out this also also leads to Γinv = 3Γ0.

Adding a heavy sterile state to the theory gives a negative contribution from non-

unitarity effects of the 3×3 PMNS mixing matrix. As said above the LEP experiment [64]

measured the number of active neutrinos to be smaller than three, Nν = 2.9841±0.0083,

whereas three would be the SM value. The existence of a sterile neutrino could therefore

be an explanation for this Z pole anomaly. But to reproduce the experimental value,

a large mixing of active and sterile neutrinos is required and one has to take care of

unitarity constraints and masses and mixing of the active neutrinos (to be treated in the

sections 5.4 and 5.5).

To compare the theoretical result to the LEP data one needs the ratio Γinv/Γlept of

the invisible and the leptonic decay width of the Z boson. In the SM (see also [64]) and

from the LEP experiment one gets

Γinv

Γlept SM

= 5.9736 ± 0.0036 , (5.40)

Γinv

Γlept LEP

= 5.942 ± 0.016 . (5.41)

When a heavy sterile neutrino is present, the invisible Z decay width gets shifted by

(1− 2
3ε2 + 1

3ε4), whereas the leptonic decay width stays the same, meaning that the ratio

of the two is shifted by the same factor:

Γinv

Γlept LEP

=
Γinv

Γlept SM

·
(

1 − 2

3
ε2 +

1

3
ε4

)

. (5.42)

One can now estimate the necessary mixing, which would explain the Z pole anomaly.

It is

ε2 =

3
∑

i=1

|Usi|2 =
∑

α=e,µ,τ

|Uα4|2 ≈ 0.008 . (5.43)

As the presence of a sterile neutrino also changes other SM observables, ε2 has to be

fitted to several measurements. This makes the above value really just an approximation.

5.3 NuTeV

The NuTeV experiment [65] produces neutrino and antineutrino beams to measure

the (anti)neutrino-nucleon cross sections and extracts the value of the Weinberg an-
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gle sin2(θW ). It compares the ratios of neutral to charged current cross sections via the

event rate:

Rν =
σ(νN → νX)

σ(νN → l−X)
, (5.44)

Rν̄ =
σ(ν̄N → ν̄X)

σ(ν̄N → l+X)
. (5.45)

The charged and neutral current interactions are described by the Lagrangians:

L
CC
int = − g√

2
ν̄αγµ

(

1 − γ5

2

)

ℓαW+µ − g√
2
ℓ̄αγµ

(

1 − γ5

2

)

ναW−µ (5.46)

L
NC
int = − g

4 cos(θW )
ν̄αγµ (1 − γ5) ναZµ (5.47)

Transforming from flavor to mass eigenstates and having one additional sterile neutrino

gives (constant factors are set aside):

L
CC
int ∝

4
∑

j=1

U∗
αj ν̄jγµPLℓαW+µ +

4
∑

i=1

ℓ̄αγµPLUαiνiW
−µ , (5.48)

L
NC
int ∝

4
∑

i=1

4
∑

j=1

U∗
αiν̄iLγµUαjνjL

Zµ . (5.49)

The experiment uses muon neutrinos, events from electron neutrinos are excluded or

contribute to the experimental error. Therefore, one does not sum over flavors as in the

invisible Z width, but rather has to consider only α = µ.

The cross sections are proportional to the corresponding amplitude squared |M|2 of the

process. As can be seen from the Lagrangians above, charged current events (indepen-

dent of the mediation via W+ or W−) get modified by a factor
∑

i |Uαi|2, while the neu-

tral current events contain two neutrinos and thus have a factor of
∑

i |Uαi|2
∑

j |Uαj |2.

|M|2CC ∝
4
∑

i=1

|Uµi|2 , (5.50)

|M|2NC ∝
4
∑

i=1

|Uµi|2
4
∑

j=1

|Uµj |2 . (5.51)

These factors still only come from converting to mass eigenstates, because of unitarity

they all give unity when omitting the kinematics. But when the sterile neutrino is too

heavy to be produced, the sum goes only from one to three and one can use the unitarity
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condition to write

3
∑

i=1

|Uαi|2 = 1 − |Uα4|2 (5.52)

⇒ σ±
CC ∝ (1 − |Uµ4|2) (5.53)

σNC ∝ (1 − |Uµ4|2)2 ≈ (1 − 2 |Uµ4|2) . (5.54)

To compare the NuTeV results to the SM predictions use the relation of the Weinberg

angle and the cross sections:

1

2
− sin2(θW ) =

σν
NC − σν̄

NC

σν
CC − σν̄

CC

(5.55)

⇒
(

1

2
− sin2(θW )

)

NuTeV

=

(

1

2
− sin2(θW )

)

SM

·
(

1 − |Uµ4|2
)

. (5.56)

In the NuTeV experiment sin2(θW ) was determined by Monte Carlo simulations to be

sin2(θW )NuTeV = 0.2277 ± 0.00135(stat) ± 0.00093(syst)

− 0.00022 ×
(

M2
top − (175GeV )2

(50GeV )2

)

+ 0.00032 × ln

(

MHiggs

150GeV

)

,

(5.57)

while the best fit value from other electroweak measurements is ([64], p. 154 and [65],

see references therein)

sin2(θW )other = 0.2227 ± 0.0004 . (5.58)

The NuTeV value thus differs from other (neutrino-nucleon excluding) measurements

by about 3σ. When assuming that the other measurements correspond to the SM value

and only NuTeV sees the influence of a heavy sterile neutrino, one can calculate the

mixing of muon to sterile neutrino that is required to explain the deviation (again only

an estimate):

|Uµ4|2 = ε2
µ = 0.018 . (5.59)

Note that later on a correction will be included, where next-to-next-to-leading order

effects in the quark distribution functions are taken into account.
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µ

νi

e

γ

W
W

Figure 5.5: Lepton flavor violating decay µ → e γ, possible diagram via neutrino mixing.

5.4 Constraints

5.4.1 Lepton Flavor Violating Decay

One of the most stringend bounds on the mixing of active to sterile neutrinos is the

experimental limit on the branching ratio of the decay µ → e γ, see section 3.3. It

depends on the product of the mixing parameters of the electron and muon neutrino

to the additional (mostly sterile) mass eigenstates U∗
eiUµi and on their masses Mi, i =

4, .., N .

The branching ratio of the µ → eγ decay is given by (see [69], p. 244 ff.):

B(µ → eγ) =
Σ(µ → eγ)

Σ(µ → eνν̄)
=

3αem

32π
δ2
ν , (5.60)

where δν = 2

N
∑

i=1

U∗
eiUµi g

(

M2
i

M2
W

)

(5.61)

with g(x) =

∫ 1

0

(1 − α)dα

(1 − α) + αx
[2(1 − α)(2 − α) + α(1 + α)x] . (5.62)

Since the masses of the active neutrinos are so small, one can approximate their contri-

bution by

M2
i

M2
W

≈ 0 ⇒ g

(

M2
i

M2
W

)

≈ g(0) =
5

3
for i = 1, 2, 3 . (5.63)

Assuming a fourth neutrino and using the unitarity relation one gets:

4
∑

i=1

U∗
eiUµi = 0 ⇒

3
∑

i=1

U∗
eiUµi = −U∗

e4Uµ4 . (5.64)
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Figure 5.6: Upper limit of |U∗
e4Uµ4| as a function of the mass of the fourth neutrino M4

in GeV.

Therefore

δν = 2

(

3
∑

i=1

U∗
eiUµi

)

g(0) + 2U∗
e4Uµ4g

(

M2
4

M2
W

)

= 2U∗
e4Uµ4

(

g

(

M2
4

M2
W

)

− 5

3

)

. (5.65)

This gives the limit for |U∗
e4Uµ4| when there is only a fourth neutrino. In case there

should be more the product is replaced by the sum over all products:

δν = 2U∗
e4Uµ4

(

g

(

M2
4

M2
W

)

− 5

3

)

→ 2

N
∑

i=1

U∗
eiUµi ·

(

g

(

M2
i

M2
W

)

− 5

3

)

. (5.66)

The MEG collaboration [48] has determined the most recent upper bound on the

branching ratio of µ → e γ to be

B(µ+ → e+γ) ≤ 2.4 · 10−12 , (5.67)

at 90% confidence level. This results in an upper limit for U∗
e4Uµ4 of about

|U∗
e4Uµ4| ≈ 6 · 10−5 , (5.68)

where

MW = 80.399GeV , (5.69)
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(c) Channel in hadron collider.

Figure 5.7: Feynman diagrams for the detection of heavy sterile neutrinos in colliders.
(a,b): Processes of e+e− leading to a heavy (mostly sterile) neutrino N in the final state.
(c): Feynman diagram for the detection of a heavy sterile neutrino at the LHC.

M4 . 1TeV . (5.70)

In Figure 5.6 the limit of |U∗
e4Uµ4| has been plotted against the mass of the fourth

neutrino M4. It converges for large masses to about |U∗
e4Uµ4| . 6 · 10−5.

5.4.2 Direct Collider Searches

Since sterile neutrinos with masses of order of the Z boson mass are considered here, there

are not many bounds from collider searches. Measurements for masses M4 & MZ come

from the L3 experiment at LEP [70]. The heavy (mostly sterile) neutrino is produced

via

e+e− → ναN . (5.71)

Active neutrino of any flavor α = e, µ, τ can be produced via the s-channel, but in the

t-channel there are only electron neutrinos, see figures 5.7a and 5.7b and section 3.5.

As the t-channel dominates, limits on |Ue4| are much stronger than on the other mixing

parameters and the production cross section via the s-channel even lies beneath LEP

sensitivity. Thus, only |Ue4| will be considered in the following.

Figure 5.8 shows the plot from the L3 experiment with upper limits for the mixing of

the electron to a fourth (mostly sterile) neutrino. It varies from about 10−3 at masses

M4 ≈ 100 GeV to about 10−2 around M4 ≈ 160 GeV.

The most recent limits from collider searches on the mixing parameter of muon and

electron neutrino, Ue4 and Uµ4, assuming no specific model (mixing and mass of the

fourth neutrino are free parameters), are from the CMS collaboration at the LHC [71].
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Figure 5.8: Upper bound of |Ue4|2 = |Ue|2) as a function of the mass of the fourth
neutrino M4 = mN in GeV as measured in L3 in the LEP experiment. Taken from [70].

The leading order Feynman diagram is shown in figure 5.7c, the charge conjugate process

contributes also (compare section 3.5). The event contains two equally charged leptons

µ or e (τ leptons are very difficult to reconstruct) and two jets in the final state.

The limits on Ue4 and Uµ4 are calculated under the assumption that the other two

mixing elements are zero. In other words, Uτ4 is always assumed to vanish. Figure 5.9

shows the plot from CMS.

In the region concerning this model here, at masses above the Z boson mass, the limit

is |Ue4|2 . 10−3 − 10−1 and |Uµ4|2 . 4 · 10−2. L3 imposed the best limits for Ue4 and

the only limits on Uµ4 come from CMS.

5.4.3 Lepton Universality

In the Standard Model the weak force is universal, meaning that the coupling constant

g is the same for all particles. In some beyond SM scenarios, for example when adding

sterile neutrinos that mix differently with the different active neutrinos, this relation

gets modified and the coupling becomes flavor dependent.

L
CC
int = −

∑

ℓ=e,µ,τ

gℓ√
2
ν̄ℓγµ

(

1 − γ5

2

)

ℓW+µ + h.c. (5.72)
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Figure 5.9: Limits on |Ue4|2(= |VeN |2) and |Uµ4|2(= |VµN |2) at 95% confidence level from
the CSM collaboration at LHC, taken from [71].

Processes Constraints

W → e ν̄e (gµ/ge)W = 0.999 ± 0.011
W → µ ν̄µ (gτ/ge)W = 1.029 ± 0.014
W → τ ν̄τ

µ → e ν̄eνµ (gµ/ge)τ = 0.9999 ± 0.0021
τ → e ν̄eντ (gτ/ge)τµ = 1.0004 ± 0.0022
τ → µ ν̄µντ

π → µ ν̄µ (gµ/ge)π = 1.0021 ± 0.0016
π → e ν̄e (gτ/gµ)πτ = 1.0030 ± 0.0034
τ → π ντ

K → µ ν̄µ (gτ/gµ)Kτ = 0.979 ± 0.017
τ → K ντ

Table 5.1: Limits on lepton non-universality from different decays, determined from the
ratios of the respective decay widths.
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ε2
e ≈ 0 ε2

µ ≈ 0

−0.02 ≤ ε2
µ ≤ 0.24 −0.24 ≤ ε2

e ≤ 0.02

−0.086 ≤ ε2
τ ≤ 0.0036 −0.0036 ≤ ε2

e − ε2
τ ≤ 0.086

−0.076 ≤ ε2
µ − ε2

τ ≤ 0.0128 −0.0128 ≤ ε2
τ ≤ 0.076

Table 5.2: Limits on the mixing parameters from lepton universality bounds.

The measurements of the decay widths constrain these scenarios. The lepton universality

constraints are summarized in table 5.1, which are taken from [67].

Combining these constraints gives for the three ratios

0.988 ≤ gµ

ge
≤ 1.01 , 0.9982 ≤ gτ

ge
≤ 1.043 , 0.962 ≤ gτ

gµ
≤ 1.0064 . (5.73)

The ratios of the flavor dependent coupling constants are related to the mixing param-

eters εα as follows:

gµ

ge
= 1 +

ε2
e − ε2

µ

2
,

gτ

gµ
= 1 +

ε2
µ − ε2

τ

2
,

gτ

ge
= 1 +

ε2
e − ε2

τ

2
. (5.74)

This gives

−0.24 ≤ ε2
e − ε2

µ ≤ 0.02 , (5.75)

−0.0036 ≤ ε2
e − ε2

τ ≤ 0.086 , (5.76)

−0.076 ≤ ε2
µ − ε2

τ ≤ 0.0128 . (5.77)

As has been argued in section 5.4.1, the product of |U∗
e4Uµ4| has to be very small to

satisfy the limit from the lepton flavor violating decay µ → e γ. Therefore either ε2
e

or ε2
µ have to be tiny and one can distinguish two scenarios: εe ≈ 0 or εµ ≈ 0. The

respective bounds on the remaining parameters are shown in table 5.2.

5.4.4 Non-Unitarity

In a theory with additional sterile neutrinos the mixing matrix of the active neutrinos,

the PMNS matrix, becomes non-unitary. One can constrain the non-unitarity from

measurements of oscillations of the active neutrinos. This was done in [44]. But as it

turns out these constraints are much less stringent than the lepton universality bounds

presented above (which can also be translated to bounds on non-unitarity, but this is of

no need here). These bounds are therefore not considered here.
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5.4.5 Neutrinoless Double-Beta Decay

Sterile neutrinos contribute to neutrinoless double-beta decay in two ways: Directly via

the exchange of the sterile neutrinos and indirectly by giving a Majorana mass to the

active neutrinos and those are then the mediator of the decay. This has been shown in

section 3.4.

The indirect contribution will be treated first. When considering the masses and

mixing of the active neutrinos listed in the next section 5.5, one can estimate the corre-

sponding contribution to the effective mass with the equation (3.46):

〈mee〉 =

∣

∣

∣

∣

3
∑

i=1

U2
eimi

∣

∣

∣

∣

=

∣

∣

∣

∣

m1|Ue1|2 + m2|Ue2|2eiα1 + m3|Ue3|2eiα2

∣

∣

∣

∣

. (5.78)

The masses are taken to be the same as in table 5.4 and the mixing as in table 5.3. Thus,

three different cases are treated, the normal and inverse hierarchy (NH, IH), each with

the lowest mass set to zero, and the degenerate case (DC), where all masses are at about

0.1 eV. One can estimate the largest possible contribution of each case, by assuming

that the Majorana phases vanish, α1 = α2 = 0. The values are

〈mNH
ee 〉max = 0.003 eV , (5.79)

〈mIH
ee 〉max = 0.048 eV , (5.80)

〈mDC
ee 〉max = 0.100 eV . (5.81)

Since the sensitivity of experiments now is at about 0.38 eV (EXO conservative bound,

see section 3.4), the contributions in the normal and inverse hierarchy cases can be ne-

glected. The maximal contribution in the degenerate case could be important, depending

on the direct contribution of the sterile neutrinos. One can also estimate the minimal

contribution to be 〈mDC
ee 〉min ≈ cos(2θ12) · m1 ≈ 0.04 eV (compare [49]). The Majorana

phases could also lead to a cancellation, making the active neutrino contribution in the

degenerate case negligible, too.

For heavy sterile neutrinos, meaning with masses well above the momentum scale of

about 100 MeV, the decay rate becomes proportional to

Γh ∝
∣

∣

∣

∣

∑

i

U2
ei

mi

∣

∣

∣

∣

2

, (5.82)

where mi are their masses and Uei their mixing to the electron neutrino (compare also

section 3.4). Because of the large mass of the mediator, the process is of short range and
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Figure 5.10: Bound on the mixing of one heavy sterile neutrino to the electron neutrino
from neutrinoless double-beta decay. Taken from [74].

therefore becomes sensitive to the finite size of the nucleons. The nuclear form factors

in this case become very sensitive to the mass of the sterile neutrinos, see e.g. [72].

In a seesaw type I, for a mass range of about 100 GeV to 1 TeV, one can nevertheless

approximate the direct contribution of the heavy sterile neutrinos to the effective mass:

|〈mee〉| ≈
∣

∣

∣

∣

∑

i

(UP D√
mν

R∗)2ei ·
m2

a

m2
i

f(A,mi)

∣

∣

∣

∣

, (5.83)

where the active sterile mixing is parameterized in the Casas-Ibarra form, see sec-

tion 5.5.1: UP is the PMNS matrix, D√
mν

a 3 × 3 matrix with the square roots of

the light neutrino masses on the diagonal. R contains parameters of the Dirac mass ma-

trix. ma is here a mass-parameter that has a value of about 0.9 GeV. f(A,mi) depends

on the mass number of the element and has a weak dependence on the mass mi. It can

be approximated by f(A,mi) . 0.08. For details see [73].

To illustrate the bound from neutrinoless double-beta decay on the mixing of the

heavy sterile neutrinos to the electron neutrino, a plot for the case of a single sterile

neutrino is shown in figure 5.10 (from [74]).
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5.5 Masses and Mixing Angles of the Active Neutrinos

In order to obtain a consistent model in the χ2-fit it has to be assured that the model

satisfies the bounds on active neutrino masses and reproduces their mass-squared differ-

ences and their mixing (the PMNS matrix).

As was mentioned in chapter 2 the light neutrino mass eigenstates can be normal

ordered m1 < m2 < m3 or inverse ordered m3 < m1 < m2 (also called normal or inverse

hierarchy):

(NH) m1 = mmin = m, m2 =
√

m2 + ∆m2⊙ and m3 =
√

m2 + ∆matm ,

(IH) m3 = mmin = m, m1 =
√

m2 + ∆m2
atm − ∆m2⊙ and m2 =

√

m2 + ∆m2
atm.

In the normal hierarchy, the atmospheric mass-squared difference corresponds to

∆m2
31, while in the inverse hierarchy it is ∆m2

32 (and negative). The best fit values

can also differ slightly. For the χ2-fit the masses and mixing of the active neutrinos

from [75] were used, they are quoted in table 5.3.

Parameter Value

∆m2
21 7.50 · 10−5eV2

∆m2
31 (NH) 2.47 · 10−3eV2

∆m2
32 (IH) −2.43 · 10−3eV2

sin2(θ12) 0.30

sin2(θ23) 0.41

sin2(θ13) 0.023

δCP 240◦

Table 5.3: Values of the parameters used in the χ2-fit, taken from [75].

The PMNS matrix UP is defined as in equation 3.12, with the angles as in table 5.3

this gives (the Majorana phases are neglected):

UP =







0.844 0.515 −0.076 + 0.131i

−0.379 + 0.067i 0.708 + 0.041i 0.591

0.363 + 0.090i −0.479 + 0.055i 0.793






. (5.84)

In the χ2-fit, three scenarios will be considered: The normal and inverse hierarchy

(NH and IH) where the smallest mass is set to zero and the so-called degenerate case

(DC), where all masses are of the same order, thus a lot bigger than the mass-squared

differences (the value for the mass in the degenerate case is taken from the PDG [5]).

The resulting values for the masses are listed in table 5.4
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m1 [eV] m2 [eV] m3 [eV]

NH 0 0.00866 0.0497

IH 0.0485 0.0493 0

DC 0.1 0.1004 0.11210

Table 5.4: Masses of the light neutrinos in the normal and inverse hierarchy (with the

smallest mass set to zero) and in the degenerate, also normal ordered, case. All values

are in eV.

The active neutrino masses will be generated in a seesaw type I scenario, where three

heavy right handed neutrinos are assumed. The right handed neutrinos have to be

heavier than the Z boson, thus have masses & 102 GeV. The specific values of the

masses will be determined in the χ2-fit. Note that the active–sterile mixing will be

quite large compared to “natural” seesaw expectation. When calculating the tree-level

contribution of the sterile neutrinos to the Z decay width and the neutral to charged

current event-ratios, a leading order expansion in the mixing was made. For example,

the sum over all active-sterile mixing parameters in the Z decay width was about

ε2 =

3
∑

i=1

|Usi|2 =
∑

α=e,µ,τ

|Uα4|2 ≈ 0.008 . (5.85)

This was calculated for one sterile neutrino, for more than one it has to be summed

over their contributions. One can now estimate the contribution that a 102 GeV heavy

sterile neutrino with this mixing makes to the light neutrino masses via the seesaw type

I. When the mixing to, say, the first mass eigenstate m1 is taken to be |Us1|2 ≈ 0.002,

this corresponds in the seesaw to (mD/MR)2. Since MR is at least 102 GeV and the

light neutrino masses are given by m1 ≈ m2
D/MR this gives:

m1 &
m2

D

M2
R

· MR ≈ 0.003 · 102 GeV ≈ 0.3 GeV . (5.86)

This means that in order to reproduce the measured parameters of the active neutrinos,

there must be a huge cancellation between the contributions of the different sterile states.

The model is thus very fine-tuned.

To ensure that the given parameters are met when performing the fit, the Casas-Ibarra

parameterization is used. It will be explained in the following.
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5.5.1 Casas-Ibarra Parameterization

A useful parameterization, first introduced in [76], isolates the remaining degrees of

freedom, when fixing the PMNS matrix of the active neutrinos and their masses, as well

as the masses of the sterile neutrinos in a seesaw type I scenario. These are parameters

in the Dirac mass matrix.

The Dirac mass term comes from the Yukawa coupling y (L̄〈φ〉νR), where L is the

lepton doublet, 〈φ〉 the VEV of the neutral component of the Higgs field and νR the

right-handed neutrino. The Dirac mass matrix is then given by

mD = y〈φ〉 .

Note that y is a matrix, whereas 〈φ〉 is a scalar. In the seesaw type I mechanism one can

integrate out the heavy sterile states and get the light neutrino mass matrix (compare

chapter 2)

Mlight = mT
DM−1

R mD = yT M−1
R y · 〈φ〉2 . (5.87)

One can choose a basis where MR is diagonal, MR = DMR
. Û is taken to be the matrix

diagonalising Mlight : ÛT MlightÛ = Dmν (the diagonal matrices are indicated by D, the

index marks the diagonal elements). From the seesaw formula one gets the connection

of Û to the PMNS matrix2:

UPMNS =
√

1 − BB†Û ≈ (1 − 1

2
BB†) Û . (5.88)

This means that at first order Û can be approximated to be the PMNS matrix. The

equation for the neutrino masses becomes

Dmν = ÛT yT DM−1

R
yÛ〈φ〉2 = ÛT yT Dq

M−1

R

Dq

M−1

R

yÛ〈φ〉2 , (5.89)

where Dq

M−1

R

is a diagonal matrix with the elements 1/
√

MRi
.

By multiplying with D√
m−1

ν

from left and right one obtains:1 =

[

Dq

M−1

R

yÛD√
m−1

ν

]T [

Dq

M−1

R

yÛD√
m−1

ν

]

〈φ〉2 . (5.90)

2Compare here section 2.1, equation (2.28). Note that the notation is slightly different: Û ≡ Ulight
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So one can write Dq

M−1

R

yÛD√
m−1

ν

〈φ〉 = R, where R is an orthogonal matrix, RTR = 1
and then the general form of the Yukawa matrix is:

y = 〈φ〉−1D√
MR

RD√
mν

Û † . (5.91)

The Yukawa couplings thus depend on the low energy parameters contained in mν and

Û , on the masses of the right handed neutrinos in MR and on the complex parameters

defining R. There are three complex parameters, when the number of sterile neutrinos

is taken to be three. R is then a 3× 3 matrix. When a different number of right handed

neutrinos is assumed, this changes the number of complex parameters in R and R is

then not a square matrix.

In the χ2-fit the number of right handed neutrinos is taken to be three. The orthogonal

matrix R is defined as a rotation around three complex angles θj = zj + i Zj , where

j=1,2,3. R then reads

R = R1(θ1)R2(θ2)R3(θ3) , (5.92)

where

R1 =







1 0 0

0 cos(θ1) − sin(θ1)

0 sin(θ1) cos(θ1)






, R2 =







cos(θ2) 0 − sin(θ2)

0 1 0

sin(θ2) 0 cos(θ2)






,

R3 =







cos(θ3) − sin(θ3) 0

sin(θ3) cos(θ3) 0

0 0 1






. (5.93)

Since the relevant parameters in this model are the values of the active-sterile mixing,

the form of the Casas-Ibarra parameterization will be changed. The active-sterile mixing

B is in the seesaw type I at first order given as

B = (M−1
R mD)† . (5.94)

In the above notation the Dirac matrix is

mD = iD√
MR

RD√
mν

Û † , (5.95)

where the formula for the light masses was changed to its correct form Mlight = −mT
DM−1

R mD

by introducing the factor i. By multiplying from the left with M−1
R , assuming it to be
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diagonal, thus equal to DM−1

R
, the active-sterile mixing is obtained:

DM−1

R
mD = iDq

M−1

R

RD√
mν

Û † (5.96)

⇔ B = (DM−1

R
mD)† = −iÛD∗√

mν
R†D∗

q

M−1

R

. (5.97)

When the masses of the neutrinos are real, one can drop the complex conjugation.

5.6 χ
2-Fit

The model that includes sterile neutrinos will be compared to the SM by performing a

χ2-fit to measured observables. A χ2-fit compares the predictions of a theory Ti(~x), that

vary with some parameters xi(i = 1, ..., p) → ~x, to the observed values in experiments

Di:

χ2(~x) =

N
∑

i=1

(

Di − Ti(~x)

σi

)2

, (5.98)

where σi is the error of the experimental values. The number of obervables that are fitted

is N . Then the best fit is found by minimizing χ2(~x) for the theoretical parameters xi.

When the theoretical predictions have errors σt
i , the formula changes to

χ2(~x) =

N
∑

i=1

(Di − Ti(~x))2

(σt
i)

2 + (σi)2
. (5.99)

This is valid when neglecting off-diagonal elements in the covariance matrix that are

describing the correlations of the errors.

A χ2 distribution is obtained (assuming no open theoretical parameters xi), when the

theoretical predictions Ti are the mean values of a Gaussian distribution, σi their errors

and Di random variables that are normally distributed. Then one gets a χ2 distribution

with N degrees of freedom (d.o.f.) and its value should be

〈χ2〉 ≈ N . (5.100)

When considering a theory depending on the parameters xi, the minimal χ2 should

follow a χ2 distribution with (N − p) d.o.f., where N is the number of observables and p

the number of parameters. Note that the central limit theorem states that for a sufficient

amount of observables N , the χ2 analysis is also valid even if the data is not normally
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Parameter exp. values SM pred.

Γlept [MeV] 83.984 ± 0.086 84.005 ± 0.015

Γinv/Γlept 5.942 ± 0.016 5.9721 ± 0.0002

sin2(θeff)lept 0.2324 ± 0.0012 0.23150 ± 0.0001

g2
L 0.3026 ± 0.0012 0.3040 ± 0.0002

g2
R 0.033 ± 0.001 0.0300 ± 0.0002

MW [GeV] 80.385 ± 0.015 80.359 ± 0.011

Table 5.5: Experimental values and SM predictions used for the χ2-fit.

distributed.

In the model considered here, the masses of the sterile neutrinos and their mixing to

the active neutrinos are the open theoretical parameters. Note, however, that masses

and mixing are not independent. The Casas-Ibarra parameterization separates the low-

energy from the high-energy parameters. When fixing the low-energy observables (active

neutrino masses and mixing), only the three masses of the sterile neutrinos and three

complex parameters are open in the fit. This would mean there are nine theoretical

parameters. In the corrections of the SM (section 5.1) it becomes however apparent,

that with S, T , U and εe, εµ and ετ only six independent parameters enter the fit. Of

these, S and U tend to be so small that they effectively do not change the observables

and one can thus count four effective physical parameters in the considered theory: εe,

εµ, ετ and T . Since six observables are fitted (see table 5.5), this leads to an effective

number of d.o.f of 6 − 4 = 2.

The best fits χ2
min are compared to the SM, where the χ2

SM is obtained by setting the

active–sterile mixing parameters to zero. The active neutrinos then become massless.

The number of d.o.f. of the SM fit is here equal to the number of observables, thus being

six. The improvement of the fit including the sterile neutrinos compared to the SM is

quantified by the change ∆χ2 per degree of freedom. This should be bigger than one.

The SM values are taken from the Gfitter group [77] and from the fit of the PDG [5].

They use as input values the electromagnetic coupling constant αem, the Fermi constant

GF , the strong coupling constant αs, the Z boson mass MZ and the fermion masses mf ,

compare [78]. Apart from the Fermi constant GF , these quantities remain unaltered by

the existence of additional sterile neutrinos, as they are measured in processes where no

neutrinos appear.

The measured values are taken from the PDG [5], except for gL and gR, where the
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NuTeV values [65] are used, which have been corrected in the form suggested in [79]3.

For the Weinberg angle on the other hand4 a value is chosen that was measured in

hadronic processes, so that it should not be influenced by the introduction of the sterile

neutrinos.

5.7 Summary

The value χ2
SM is obtained for negligibly small active-sterile mixing to be

χ2
SM ≃ 7.5 (5.101)

for six degrees of freedom. It is independent of the mass hierarchy of the light neutrinos.

Since in g2
L and g2

R and Γinv/Γlept the NuTeV anomaly and the smaller than expected

invisible decay width of the Z boson are fitted, the value is quite large.

In the χ2-fits including the sterile neutrinos, the different light neutrino mass scenarios

have different impact on the fit parameters.

5.7.1 Normal Mass Hierarchy

In figure 5.11, the fit parameters ε2
τ and ε2

µ and ε2
τ and ε2

e, respectively, are shown. The

color denotes the value of χ2, but only values for χ2 ≤ χ2
SM are chosen. The bound from

the decay µ → eγ implies that either ε2
e or ε2

µ must be very tiny. In figure 5.11a, the

mixing of the sterile neutrinos to the electron neutrino is negligible, while in figure 5.11b

this is the case for the mixing to the muon neutrino.

For almost vanishing mixing to the electron neutrino more points in the parameter

space are found. Larger mixing to the active neutrino is favored, resulting in a better

fit to the above mentioned anomalies. In the case where ε2
µ is suppressed, the largest

possible values are only at about 1.2 · 10−3, for higher values some or the constraints

are violated. Note that since the mixing to either the electron or muon neutrino has

to be negligibly small, the effective number of d.o.f. becomes three. The improvement

compared to the SM is then for the best points, with χ2 ≈ 4.5, about one per d.o.f.,

being not significant.

Note that the fit improves very much, wenn the W boson mass is not included, see

figure 5.12. The mean value of χ2 goes down to less than two and the improvement

3In this work next-to-next-to-leading order effects in the quark distribution functions are taken into
account, where charge and isospin violation are included.

4The Weinberg angle could also represent the NuTeV measurement, but here gL and gR are chosen and
θW should not be affected by the sterile neutrinos.
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Figure 5.11: Parameters ε2
α with χ2 ≤ χ2

SM for the case of the normal hierarchy of light
neutrino masses. The color denotes the value of χ2.

compared to the SM becomes almost two per d.o.f..

5.7.2 Inverse Mass Hierarchy

For the case of the inverse mass hierarchy of the light neutrinos, the case of negligibly

small ε2
µ leads to tiny mixings to the electron and tau neutrino as well, thus resulting in

the same fit as for the SM. Figure 5.13a therefore only shows the case of small mixing

to the electron neutrino, ε2
e ≈ 0. The smallest values of χ2 are ≈ 5.5, leading to no

improvement of the fit compared to the SM, as ∆χ2 per d.o.f. is smaller than one.

This changes again radically, if the mass of the W boson is not included in the fit, see

figure 5.13b. The best values of χ2 are ≈ 1.5, therefore the fit improves compared to the

SM by two per d.o.f..

5.7.3 Degenerate Masses

In the case of degenerate light neutrino masses, there are almost no points for non-

negligible mixing of the sterile neutrinos the the muon neutrino, thus ε2
µ ≈ 0 and

figure 5.14 shows only ε2
τ and ε2

e. The smallest values of χ2 are ≈ 5, leading to no

improvement of the fit compared to the SM, as ∆χ2 per d.o.f. is again smaller than one.

The fit does not improve when not including the mass of the W boson and it is therefore

not shown here.
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Figure 5.12: Parameters ε2
α with χ2 ≤ χ2

SM for the case of the normal hierarchy of light
neutrino masses. The color denotes the value of χ2. The W boson mass is not included
in the fit here.
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Figure 5.13: Parameters ε2
τ and ε2

µ with χ2 ≤ χ2
SM for the case of the inverse hierarchy

of light neutrino masses. The mixing to the electron neutrino is negligible, ε2
e ≈ 0. The

color denotes the value of χ2. In (b) the W boson mass is not included in the fit.
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SM for the case of degenerate light

neutrino masses. The mixing to the muon neutrino is negligible, ε2
µ ≈ 0. The color

denotes the value of χ2.

5.7.4 Masses of the heavy Neutrinos

In figure 5.15 the distribution of the masses of the heavy neutrinos is shown. The

points are fitted in the case of normal hierarchy of the light neutrino masses and almost

vanishing mixing of the sterile states to the muon neutrino. The masses of the heavy

neutrinos are all in the TeV range, and since M1 ≈ M3, their medium value is plotted.

5.7.5 Discussion

The mass hierarchy of the light neutrinos seems to have a big impact on the quality

of the fit. While for the inverse hierarchy and a degenerate mass spectrum the fit is

worse compared to the SM, in the case of normal hierarchy it is at least as good as the

SM. When omitting the mass of the W boson in the fit, the inclusion of heavy sterile

neutrinos can lead to an improvement compared to the SM of two per d.o.f..

Note that for all points with χ2 less than the SM value, the T parameter is quite

sizeable and negative (between −0.1 and −0.2). In this range, the negative T parameter

can screen the effect of the active-sterile mixing on parameters such as GF that are

measured at high precision and therefore constrain the mixing parameters. This interplay

of tree-level and loop effects has already been studied in [67], [80] and [81], where the

tree-level effects were induced by heavy sterile neutrinos, but the contributions to the

S, T , U parameters were assumed to originate from different beyond the SM physics5.

5They actually discussed the possibility of a negative T parameter coming from a very large Higgs
mass, MH ≫ 115 GeV. This scenario however is excluded by now.
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Figure 5.15: Masses M1, M2 and M3 of the heavy neutrinos, in the case of normal
hierarchy of the light masses and almost vanishing ε2

µ ≈ 0. Since the masses M1 and M3

are approximately equal, their medium value is plotted. The color denotes the value of
χ2.

Here all effects are induced only by adding sterile neutrinos to the particle content of

the SM.

But the fits show that the large negative T paramter is in conflict with the experi-

mental measurements of the W boson mass. The fits improve drastically, when MW is

omitted. This might motivate for example the introduction of a Higgs triplet, as it can

have a notable effect on the W boson mass and additionally lead to a cancellation of

contributions to the active neutrino masses.

Note also that some of the best fit values have quite a large contribution to neutrinoless

double-beta decay. The resulting effective electron neutrino mass is close to the current

bounds and could be detected in future experiments.

The type I seesaw extension of the SM can only improve the fits compared to the SM

when the experimental value of the W boson mass is omitted. Therefore it should be

investigated how the shift in the W boson mass could be compensated by additional

beyond the SM physics.



CHAPTER 6

Conclusions

In this work it has been shown that sterile neutrinos can have a wide spectrum of

phenomenological implications on observables in different processes. Although they are

sterile, i.e. singlets under the SM gauge groups, they interact through their mixing

to the active neutrinos. Given the current precision of experiments, the signatures of

sterile neutrinos could be observed, for example in electroweak precision measurements

or oscillation experiments.

The introduction of sterile neutrinos has been motivated by the observation that

neutrinos have tiny, but non-vanishing masses. As verified now in numerous experiments,

neutrinos oscillate into each other and thereby one can measure their mass-squared

differences. In addition to providing the mass term for neutrinos, sterile neutrinos can

have impact on various processes.

Very light sterile neutrinos, with masses at the eV scale, can oscillate with the SM

neutrinos, leading to new oscillation patterns and missing active neutrino flux. There

have even been some (controversial) observations that could be explained by the existence

of a light sterile neutrino. Neutrinoless double-beta decay is a process that can only

occur when lepton number is violated. It is forbidden in the SM and would thus be

a clear signature of beyond the SM physics. Sterile neutrinos can contribute to this

decay in two ways: They have a direct contribution that strongly depends on whether
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their masses are above or below the scale of momentum transfer (which is about 100

MeV). Furthermore, when they are responsible for the light neutrino masses, they have

an indirect contribution through the exchange of light Majorana neutrinos.

Other processes that are forbidden in the SM and could be induced by sterile neutrinos

are decays that violate lepton flavor. The muon decay µ → eγ has not been observed

so far and thus places strong bounds on the mixing of active and sterile neutrinos. In

colliders, sterile neutrinos can be observed in meson decays, when the masses of the

former are small enough. Up to masses of about 90 GeV they can still be produced via

the decay of W and Z bosons. At higher masses fusion processes and virtual gauge bosons

can produce sterile neutrinos. But the bigger the mass, the more difficult becomes the

observation. Therefore, bounds from collider physics above 150 GeV are not competitive

with indirect measurements. When the mass of a sterile neutrino is so big that it cannot

be produced in interactions, they leave indirect traces. The mixing matrix of the light

neutrinos becomes then non-unitary and electroweak cross-sections can be suppressed.

As virtual particles, the sterile neutrinos can propagate in loops, thus affecting the self-

energies of the W and Z bosons. This is represented by the so-called oblique corrections.

Since the precision in electroweak measurements has become so impressively high, even

these small effects could be detected.

In this thesis, two scales of sterile neutrino masses have been picked up. In chapter 4 a

very light sterile neutrino was considered. When the mass of the sterile state is at a few

eV, oscillation phenomena can be observed, as the state remains coherent with the active

neutrinos. Especially an oscillation of a sterile neutrino and the electron neutrino is

motivated by observations in reactor experiments and in calibrations of detectors, where

a deficit in the electron (anti)neutrino flux compared to (also controversial) theoretical

predictions has been observed. To detect this oscillation, the interaction of neutrinos

with matter could be used. Through the MSW effect, oscillations can be resonantly

enhanced by coherent forward scattering of neutrinos on the particles of the medium.

This effect depends on the baseline of the experiment, the energies of the neutrinos and

the matter density and relative abundance of electrons in the medium. It has been

investigated, whether such an enhancement of νe ↔ νs oscillation could be present for

neutrinos produced in the atmosphere that subsequently cross the Earth. The Earth

has herein been treated as an object with two different density regions, the core and the

mantle.

For quite a sizeable mixing of the electron and sterile neutrino of Ue4 = 0.2, the

oscillation could be enhanced such that the deficit in the electron neutrino flux is as large

as 80% at a neutrino energy of about 8 TeV and for trajectories that cross the core of the
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earth. For a smaller mixing, the deficit decreases rapidly, for Ue4 = 0.05 it is maximally

20% of the original electron neutrino flux. The deficit is however independent of the

mass of the sterile neutrino, the minimum in the flux is only shifted to lower energies

for smaller mass-squared differences.

Since the IceCube detector would be very suitable to look for these oscillations, in

future work one should take into account the energy and angular resolution of the detec-

tor to quantify whether the IceCube experiment could place competitive bounds on the

active–sterile mixing of a light sterile neutrino with the electron neutrino or even detect

the sterile state. This analysis has been done in [57] and [58] for the oscillation of muon

to sterile neutrinos.

In the second part of this work, indirect effects of heavy sterile neutrinos in electroweak

processes were studied. Tree-level effects are induced by the resulting non-unitarity

of the light neutrino (PMNS) mixing matrix, modifying electroweak observables that

are measured in processes including neutrinos. Sterile neutrinos propagating in loops

modify the self-energies of the W and Z boson. These have been calculated for Majorana

neutrinos and the S, T , U parameters have been summarized.

The study of these effects was motivated by the observations of two experiments.

The LEP experiments measured the decay width of the Z boson into invisible particles,

and the extracted number of neutrinos coupling to the Z boson was determined to be

smaller than three by 2σ. The NuTeV experiment measured the ratios of neutral to

charged current cross sections of (anti)neutrino–nucleon scattering. Since both ratios

were slightly smaller than expected, the extracted Weinberg angle differed from the

value measured in other experiments by 3σ. Since sterile neutrinos with masses above

the Z boson mass suppress the coupling of the SM neutrinos to the Z and W boson,

both of these effects could be caused by heavy sterile neutrinos.

To test this hypothesis, the corrections induced by the tree-level and one-loop effects

were summarized and a χ2-fit was performed on six electroweak observables. For a

sizeable mixing of active and sterile neutrinos, the fit could be improved by a ∆χ2 of

about two per degree of freedom it the mass of the W boson is not included. In this case,

however, the model becomes very fine-tuned, as the contributions of the sterile neutrinos

to the masses of the light neutrinos had to cancel at many orders of magnitude.

Models with a large mixing of the active neutrinos with heavy sterile neutrinos are in

general strongly constained by their impact on electroweak precision observables, such

as the Fermi constant GF . But when taking the self-energy corrections into account,

one can see that the tree-level effects could be “screened” by a sizeable negative T

parameter. This has already been investigated in [67], [80] and [81], but they assumed
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that the contributions to the S, T , U parameters came from some other beyond the

SM physics, rather than sterile neutrinos. In the analysis of the corrections from heavy

Majorana neutrinos, certain points in the parameter space of masses and mixing of the

sterile neutrinos were discovered, that led to a sizeable negative T parameter.

In future work it would be interesting to study the effect of a triplet Higgs on the

analysis. It can have notable effects on the mass of the W boson, the parameter that is

limiting the improvement of the χ2-fit in the scenario with only heavy sterile neutrinos.

Furthermore it could also lead to cancellations in the contributions to the light neutrino

masses. The model building aspect could also be interesting to explore. If a symmetry

would impose the cancellations in the light neutrino masses and the corrections to quan-

tities like GF , but would not affect the invisible decay width and the neutrino–nucleon

cross sections, this could lead to the above described phenomenology.



Appendices



APPENDIX A

Three-Layer Calculation for the Two-Flavor Approximation

A.1 Solution of the homogeneous Equation

ϕN

mantle

core

EARTH

y = 0

y = x0

y = x1

y = x2

Figure A.1: Definition of the points y = 0, x0, x1, x2 of the passage through the Earth.
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For the solution of the homogeneous equation

ν0(x) = S(x, 0)ν(0) (A.1)

use the multiplicative property of the evolution matrix. The points 0, x0, x1 and x2 are

defined as in Figure A.1. Therefore, for small enough angles ϕN , the neutrinos first pass

through the mantle from 0 to x0, then through the core from x0 to x1 and then through

the mantle again from x1 to x2. The density is taken to be constant in each of these

layers. As the parameters θ and φ in the S-matrix, see equation 4.78, both depend on

the density, the S-matrix depends on whether the neutrinos move through the core or

the mantle. These two possiblities are indicated by an index Sm for the mantle and Sc

for the core.

This gives then for y = x2:

ν0(x2) = Sm(x2, x1)Sc(x1, x0)Sm(x0, 0) · ν(0) . (A.2)

Note that for each constant-density layer the S-matrix

S(x, x0) = S(x − x0) (A.3)

depends only on the interval x − x0 and therefore the evolution of ν0 depends only on

the lengths of the passages that we called s = x2 − x1 = x0 − 0 through the mantle and

l = x1 − x0 through the core. With this one can write:

ν0(x2) = Sm(s)Sc(l)Sm(s) · ν(0) . (A.4)

The three-layer solution for the inhomogeneous equation will become more complicated

though, as here we have to integrate over the position y.

A.2 Solution of the inhomogeneous Equation

The solution ν1(x) of the inhomogeneous equation was given by (equation 4.62)

ν1(x) = −iS(x, 0)

∫ x

0
S(0, y)f̃(y)dy (A.5)

= −i

∫ x

0
S(x, y)f̃(y)dy , (A.6)
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where both the S-matrix and the source term f̃ depend on the density of the medium.

One has to be careful about the different densities in mantle and core, therefore the

notation in equation A.5 will be more useful.

Since the S-matrix is multiplicative and the integral adds up over different intervals

one gets for three layers (points 0, x0, x1 and x2 are defined as before):

ν1(x2) = −iSm(x2, x1)Sc(x1, x0)Sm(x0, 0) (A.7)
{∫ x0

0
S−1

m (y, 0)f̃m1(y)dy +

∫ x1

x0

S−1
m (x0, 0)S

−1
c (y, x0)f̃c(y)dy

+

∫ x2

x1

S−1
m (x0, 0)S

−1
c (x1, x0)S

−1
m (y, x1)f̃m2(y)dy

}

= −iSm(x2, x1)Sc(x1, x0)Sm(x0, 0) ·
∫ x0

0
S−1

m (y, 0)f̃m1(y)dy (A.8)

− iSm(x2, x1)Sc(x1, x0) ·
∫ x1

x0

S−1
c (y, x0)f̃c(y)dy

− iSm(x2, x1) ·
∫ x2

x1

S−1
m (y, x1)f̃m2(y)dy

= −iSm(x2, x1)Sc(x1, x0) ·
∫ x0

0
Sm(x0, y)f̃m1(y)dy (A.9)

− iSm(x2, x1) ·
∫ x1

x0

Sc(x1, y)f̃c(y)dy

− i ·
∫ x2

x1

Sm(x2, y)f̃m2(y)dy ,

where from the first to the second equation all S-matrices that do not depend on y were

pulled out of the integral, which then cancel with their inverse. The source terms f̃ are

for the three layers given by:

f̃m1(y) = Heµ′ν ′
µ(0)e(i/2)(Hm

ee+Hm
ss−2Hµ′µ′ )·y (A.10)

f̃c(y) = Heµ′ν ′
µ(0)e(i/2){(Hm

ee+Hm
ss−2Hµ′µ′ )·(x0−0)+(Hc

ee+Hc
ss−2Hµ′µ′ )·(y−x0)} (A.11)

f̃m2(y) = Heµ′ν ′
µ(0)e(i/2){(Hm

ee+Hm
ss−2Hµ′µ′ )·(x0+(y−x1))+(Hc

ee+Hc
ss−2Hµ′µ′ )·(x1−x0)} (A.12)

The indices m and c denote again the mantle and core regions and indicate those pa-

rameters that depend on the densities. Note that the points x0, x1 and x2 depend on

the Nadir angle ϕN

These are now the three-layer expressions for the homogenous and inhomogenous term

of the neutrino evolution in the two-flavor case.



APPENDIX B

One-Loop Integrals

The dimensionally regularized one-loop integrals for the one- and two-point functions

are quoted here. The metric gµν = (+,−,−,−) is used. The dimensions are d = 4− 2ǫ.

Note the difference between ǫ and ε. For original references, see [82] (note that the

metric is defined differently) and see [83].

(a) Tadpole diagram (one-
point function).

q q

p

p + q

(b) Two-point function

Figure B.1: Loop diagrams for the one- and two-point functions.
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B.1 One-Point Function

The scalar one-point function (see figure B.1a) is defined as

A(m) =
µ4−d

iπ2

∫

ddp
1

p2 − m2 + iε
. (B.1)

µ is here the renormalization parameter. In the limit ǫ → 0 this gives

A(m) = m2

(

∆ − ln

(

m

µ2

)

+ 1

)

, (B.2)

where ∆ is defined as

∆ =
1

ǫ
− C + ln(4π) (B.3)

and C = 0.577216 is the Euler constant.

B.2 Two-Point Functions

The two-point function is given by the integral

B(q,m1,m2) =

∫

ddp

(2π)d
pµqν + pνqµ + 2pµqν − gµν(p cot(p + q)) + gµνm1m2

(p2 − m2
1 + iε)((p + q)2 − m2

2 + iε)
, (B.4)

where m1 and m2 are the masses of the particles in the loop, with the respective momenta

p and p + q, see figure B.1b. For simplicity one divides this integral in different parts

and solves them individually.

B(q,m1,m2) =
iπ2

µ4−d

1

(2π)d

[

(qαBβ(q,m1,m2) + Bαβ(q,m1,m2))· (B.5)

(gµαgνβ + gµβgαν − gµνgαβ) + gµνm1m2B0(q,m1,m2)] (B.6)

=
iπ2

µ4−d

1

(4π)d
[

(B1(q,m1,m2) + B21(q,m1,m2))(2qµqν − gµνq2)+ (B.7)

B22(q,m1,m2)(2 − d)gµν + gµνm1m2B0(q,m1,m2)] (B.8)

=
iπ2

µ4−d

1

(2π)d
[qµqνP (q,m1,m2) + gµν(Q(q,m1,m2) + m1m2B0(q,m1,m2))] ,

(B.9)
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where

P (q,m1,m2) = 2B1(q,m1,m2) + 2B21(q,m1,m2) , (B.10)

Q(q,m1,m2) = (d − 2)B22(q,m1,m2) + q2[B1(q,m1,m2) + B21(q,m1,m2)] . (B.11)

The loop integrals are defined as

B0(q,m1,m2) =
µ4−d

iπ2

∫

ddp
1

(p2 − m2
1 + iε)((p + q)2 − m2

2 + iε)
, (B.12)

qµB1(q,m1,m2) =
µ4−d

iπ2

∫

ddp
pµ

(p2 − m2
1 + iε)((p + q)2 − m2

2 + iε)
, (B.13)

qµqνB21(q,m1,m2) + gµνB22(q,m1,m2) =
µ4−d

iπ2

∫

ddp
pµpν

(p2 − m2
1 + iε)((p + q)2 − m2

2 + iε)
.

(B.14)

B0 can be expanded in order of ǫ, using the Feynman parametrization

B0(q,m1,m2) = ∆ −
∫ 1

0
dx ln

(

x2q2 − x(q2 + m2
1 − m2

2) + m2
1 − iε

µ2

)

+ O(d − 4) ,

(B.15)

where ∆ is defined as before in equation (B.3). In the limit d → 3 this gives the following

identities (omitting imaginary parts):

B0(q, 0, 0) = ∆ − ln

( |q2|
µ2

)

+ 2 (B.16)

B0(0, 0,m) = B0(0,m, 0) = ∆ − ln

(

m2

µ2

)

+ 1 =
1

m2
A(m2) (B.17)

Useful relations between the above introduced quantities are

B1(q,m1,m2) =
1

2q2
[A(m1) − A(m2) + (m2

2 − m2
1 − q2)B0(q,m1,m2)] , (B.18)

B21(q,m1,m2) =
1

3q2

[

A(m2) − m2
1B0(q,m1,m2)− (B.19)

−2(q2 + m2
1 − m2

2)B1(q,m1,m2) −
1

2
(m2

1 + m2
2 − q2/3)

]

, (B.20)

B22(q,m1,m2) =
1

6

[

A(m2) − 2m2
1B0(q,m1,m2)+ (B.21)

+(q2 + m2
1 − m2

2)B1(q,m1,m2) + m2
1 + m2

2 − q2/3
]

. (B.22)
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