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Abstract

Terrestrial productivity in semi-arid woodlands is strongly susceptible to changes in pre-
cipitation, and semi-arid woodlands constitute an important element of the global water
and carbon cycles. Here, we use the Carbon Cycle Data Assimilation System (CC-
DAS) to investigate the mechanisms controlling ecological and hydrogical activities for5

a semi-arid savanna woodland site in Maun, Botswana. Twenty-four eco-hydrological
process parameters of a terrestrial ecosystem model are optimized against two data
streams either separately or simultaneously: daily averaged latent heat flux (LHF) de-
rived from eddy covariance measurement, and decadal fraction of absorbed photosyn-
thetically active radiation (FAPAR) derived from Sea-viewing Wide Field-of-view Sensor10

(SeaWiFS).
Assimilation of both LHF and FAPAR for the years 2000 and 2001 leads to improved

agreement between measured and simulated quantities not only for LHF and FAPAR,
but also for photosynthetic CO2 uptake. The closest agreement is found for each ob-
served data stream when only the same data stream is assimilated. The mean uncer-15

tainty reduction (relative to the prior) over all parameters is 16.1 % for the simultaneous
assimilation of LHF and FAPAR, 9.2 % for assimilating LHF only, and 7.8 % for assim-
ilating FAPAR only. Furthermore, the set of parameters with the highest uncertainty
reduction is similar between assimilating only FAPAR or only LHF. The highest un-
certainty reduction is found for a parameter describing maximum plant-available soil20

moisture for all three cases. This indicates that not only LHF but also satellite-derived
FAPAR data can be used to constrain and indirectly observe hydrological quantities.

1 Introduction

Terrestrial ecosystems are strongly interconnected with the climate system through the
hydrological cycle by various processes, such as infiltration, runoff, evaporation and25

transpiration. In particular, latent heat flux (LHF), resulting from the sum of evaporation
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and transpiration, is an essential component of the surface energy balance and needed
for understanding the global and local water balance. It is also a key quantity for un-
derstanding the physiological response of ecosystems to changes in climate, as LHF
is related to the terrestrial carbon cycle through stomatal function and leaf size. Infor-
mation on the latent heat fluxes of terrestrial ecosystems can improve our understand-5

ing of ecosystem functioning and its potential response to changes in the Earth’s cli-
mate through anthropogenic interference, such as an increased frequency of droughts
(IPCC, 2007).

To fill the gap between measurements of terrestrial ecosystem fluxes and eco-
physiological theory as embodied in terrestrial ecosystem models, data assimilation10

techniques are becoming more widely used in biogeochemistry. The main application
of such data assimilation systems is focussed on the optimisation of model process
parameters, primarily against observations of the carbon cycle, e.g. atmospheric CO2
concentration, carbon fluxes and pools (e.g. Rayner et al., 2005; Braswell et al., 2005;
Williams et al., 2005; Knorr and Kattge, 2005). These studies provide, besides param-15

eters optimized to fit model output to observations, a better understanding of the key
processes controlling the ecosystem behaviour with regard to eco-physiological func-
tioning and, closely related, ecosystem carbon cycling.

Here we use the fully variational Carbon Cycle Data Assimilation System (CCDAS).
It has been designed to estimate process parameters through assimilation against ob-20

servations, mainly atmospheric CO2 concentration from ground-based measurement
stations and fraction of absorbed photosynthesically active radiation (FAPAR) from
satellite on a global scale (Rayner et al., 2005; Scholze et al., 2007; Kaminski et al.,
2011). CCDAS is based on a variational approach and makes use of the availability of
the adjoint (1st derivative) model to optimize parameters. Furthermore, CCDAS is able25

to calculate posterior parameter uncertainties through use of the Hessian matrix (2nd
derivative of the misfit function between model and data) and propagate these uncer-
tainties through the model to diagnostic and prognostic quantities of interest, e.g. the
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net carbon flux. CCDAS has so far been applied for assimilation of atmospheric CO2
concentration and FAPAR observations.

In this study, CCDAS is extended to assimilate LHF and to estimate further param-
eters related to the hydrological part of the model. LHF is calculated in conjunction
with terrestrial carbon fluxes by the land surface model BETHY (Biosophere Energy-5

Transfer Hydrology; Knorr 2000) and match, within the assimilation scheme, to LHF
measured with eddy covariance (EC) systems. The aim of this work is thus to broaden
the capability of CCDAS, and make it applicable at further temporal and spatial scales,
and opening up its application to the study of eco-hydrological processes.

Savannas are climatically characterized by a distinct seasonality of rainfall, i.e. a10

combination of a severe dry season and a moderate wet season. Therefore, Savanna
vegetation is adapted to dry conditions and usually composed of sparse trees and
grasses, whose canopy does not close. These regions are potentially at risk from large
changes in the seasonality of water availability as well as the total amount of available
water caused by climate change. For example Wang (2005) showed that the models15

consistently predicted less rainfall and consequently drier soils at the end of the 21st
century over much of subtropical and temperate regions including savannas.

Recent model studies have analysed the importance of various processes on
the hydrological conditions in savanna ecosystems. For example, Kleidon and
Heimann (1996) and later Ichii et al. (2009) highlighted the importance of rooting depth20

within land surface models, which deal with both LHF and carbon fluxes, assuming that
ecosystems are maximizing their productivity under water-limited conditions.

To investigate eco-hydrological dynamics of ecosystems as a whole, the eddy co-
variance (EC) technology has been applied in various terrestrial ecosystems (Aubinet
et al., 2000; Baldocchi et al., 2001) as a reliable way of measuring the in-situ energy,25

water and carbon fluxes. Compared to closed-forest ecosystems in the Northern Hemi-
sphere, however, little attention has been given to savanna ecosystems, even though
they cover approximately 17×106 km2 globally (around 20 % of terrestrial surface),
more than either temperate or boreal forests (Veenendaal et al., 2004). Recent efforts
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in conducting eddy covariance observations in savanna regions (Veenendaal et al.,
2004) enable us to greatly improve our modelling capabilities, and to better understand
eco-hydrological functioning in open canopy woodlands.

In this study, we extend the original CCDAS to be able to assimilate eddy-covariance
measurements of LHF and optimise model process parameters included in all compo-5

nents (energy, carbon and water balance, phenology) of the BETHY model. We apply
CCDAS to simultaneously assimilate eddy-covariance LHF and remotely-sensed FA-
PAR observations at a single point for a semi-arid savanna site at Maun, Botswana. To
our knowledge, this is so far the first attempt to consistently assimilate these two differ-
ent data streams into a terrestrial ecosystem model using the adjoint-based gradient10

approach.

2 Materials and methods

2.1 Site description and measurement data

We have selected a Mopane tree woodland area at Maun, Botswana (23◦33′ E,
19◦54′ S; 950 m a.s.l.; Veenendaal et al., 2004). With a canopy cover of 30–40 %,15

the plant community at the flux measurement site is dominated by the mopane tree
(Colophospermum mopane), and the marginal under-story consists of grasses with
a canopy cover of at most 15 %, dominated by Panicum maximum, Schmidtia pap-
pophoroides and Urochloa trichopus. The mean maximum and minimum temperatures
of the warmest and coldest month and annual precipitation are 33.6 and 7.1 ◦C and20

464 mm, respectively. There is a distinct dry season during the winter months from
May to September. Substantial amounts of rainfall are normally limited to between De-
cember and March.

LHF and CO2 flux measurements are conducted by the EC method using a 12.6 m
high tower in the middle of a homogeneous tall mopane tree stand with a maximum25

canopy height of about 8 m (Veenendaal et al., 2004). Three-dimensional wind speed,
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humidity, and CO2 concentration were logged with a frequency of 20 Hz, and fluxes are
integrated into half hour means with the EdiSol software (Moncrieff et al., 1997). More-
over, air temperature, shortwave radiation, and precipitation are also measured at the
same tower, and are used to calibrate the climate input data, which is extracted from a
global data set as described in the following paragraph. In this study, data from 20005

and 2001 are used for assimilation. Missing data due to unfavourable meteorological
or instrumental conditions, have been replaced by a gap-filling scheme (see Appendix
A of this paper). Due to missing half-hourly data, only 223 points of daily averaged LHF
data out of 731 days for two years would be available for assimilation if we restricted
ourselves to complete diurnal measurement cycles. To get both a sufficient number10

of data points and avoid biases in daily averaged LHF values from the gap-filling pro-
cedure, we include data points where up to four points of 48 half-hourly values were
gap-filled within one day (see Appendix A for the gap-filling scheme used). This yields
a total of 464 daily data points for the two selected years 2000 and 2001.

Input data of daily precipitation, daily minimum and maximum temperatures and in-15

coming solar radiation at the site are derived from a global gridded climate data set,
generated through a combination of available monthly gridded and daily station data
(R. Schnur, personal communication, 2008) by a method by Nijssen et al. (2001), us-
ing gridded data from the Summary of the Day Observations (Global CEAS), National
Climatic Data Center and the latest updates of gridded data by Jones et al. (2001) and20

Chen et al. (2002). These data are then corrected using the local climatology measured
at the eddy flux tower (Lloyd et al., 2004). This is done by deriving linear regression
equations between daily minimum and maximum temperatures and incoming solar ra-
diation from the global data set and the local measurements. Daily precipitation from
the global data set is adjusted by multiplying the global data with a constant factor such25

that the total rainfall matches that of the local rainfall data.
The assimilated FAPAR observations are derived from the Sea-viewing Wide Field-

of-view (SeaWiFS) of the National Aeronautics and Space Administration NASA at a
spatial resolution of 1.5 km (Gobron et al., 2006). The FAPAR data are provided every
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10 days as representative values over the period giving a total of 70 data points over
the two-year study period. 3 by 3 pixel scenes centred around the position of the Maun
flux site are used here.

We have chosen the Maun site for several reasons. First, two years of flux data, both
LHF and carbon fluxes, measured by the EC technique during the SAFARI2000 cam-5

paign are available (Lloyd et al., 2004). Second, a flat topography and homogeneous
land cover increase the accuracy of EC data and also of the FAPAR satellite observa-
tions. There are also significantly fewer cases of cloudy conditions at a savanna site
as compared to e.g. tropical forest sites. Third, the dominant land cover types with
Mopane trees, understory grasses, and patchy bare ground, which change their rela-10

tive coverages seasonally, are potentially responsible for large amplitudes and distinct
seasonality in LHF and other related quantities. This environment thus provides a wel-
come opportunity for testing and enhancing the capability of CCDAS (improving model
formulation and parameter settings) in an area with water-limited conditions and low
productivity.15

2.2 Carbon Cycle Data Assimilation System

In its original version, CCDAS combines the land biosphere model BETHY (Knorr,
2000) with the atmospheric tracer transport model TM2 (Heimann, 1995) and some
background fluxes not computed by BETHY (fossil fuel and land use change emis-
sions and ocean-atmosphere exchange fluxes) to simulate the terrestrial carbon cycle20

globally along with atmospheric CO2 concentrations. It uses first and second deriva-
tives to optimize internal model process parameters and subsequently derive poste-
rior uncertainties on these parameters. In this study, we modify the version of CC-
DAS as described in Knorr et al. (2010), to assimilate LHF and FAPAR at the Maun
savanna site. BETHY calculates ecosystem energy, water and CO2 fluxes using the25

before-mentioned climate input data. Two plant functional types (PFTs), namely trop-
ical broadleaf deciduous tree with a warm-deciduous phenology and C4 grass (rec-
ognized as PFT 2 and 10, respectively, in the original BETHY model), are simulated
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for the Maun site with a fractional coverage of 0.7 and 0.3 for PFT 2 and 10, respec-
tivly. Detailed information about BETHY is given in the Appendix B in the Supplement.
Differences between simulated LHF and FAPAR values and the observed data are min-
imized by optimizing model process parameters. Here we only briefly summarise the
main methodological aspects. For detailed information on the CCDAS methodology we5

refer to Scholze et al. (2003), Rayner et al. (2005), and Scholze et al. (2007).

2.3 Cost function and observational uncertainties

The cost function J (p) (p denotes the parameter vector) expresses the differences
between simulated and observed quantities normalised by the uncertainty of each of
the contributing observations, LHF and FAPAR, under the assumption of a Gaussian10

probability density distribution. It is formulated in a Bayesian form:

J(p) =
1
2

[
p − p0

]T
C

−1
p0

[
p − p0

]
+

1
2

[
e(p) − e0

]T
C

−1
e0

[
e(p)−e0

]
+

1
2

[
a(p) − a0

]T
C

−1
a0

[
a(p)−a0

]
(1)

Where p is the parameter vector, p0 is the prior parameter vector (0 denotes the prior
value), Cp0 the uncertainty for the prior parameter vector p0 in the form of a covari-15

ance matrix. e (p) and a (p) are modeled LHF and FAPAR values as a function of the
parameter set p, e0 and a0 are the observations of LHF and FAPAR, and Ce0 and Ca0

express the uncertainties of the observations e0 and a0. T and −1 denote the trans-
pose and inverse of matrices. J is minimized iteratively using derivative information
calculated by the adjoint model.20

The Hessian matrix, the second derivative of J with respect to the parameters, is
used to estimate posterior parameter uncertainties, using the mathematical property
that the inverse of the Hessian matrix at the cost function minimum approximates the
posterior parameter error covariance matrix. All derivative code is derived efficiently
from the models’ source code (see Kaminiski et al., 2003) by applying the automatic25
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differentiation tool TAF (Transformation of Algorithms in Fortran; Giering and Kaminski
1998).

The uncertainty of observational LHF is taken as the higher of either 10.0 W m−2 or
23 % of measured LHF. The 23 % threshold was derived from the energy imbalance
at this site, which was calculated as the underestimation of the sum of daily averaged5

sensible and latent heat flux (SHF + LHF) compared to the sum of net radiation, Rn,
and soil heat flux, G, (Rn + G) in the regression line: SHF + LHF = 0.77 (Rn + G) −
12.2 W m−2, r2 = 0.79. As in Knorr et al. (2010) the uncertainty of observational FAPAR
is set to a constant value of 0.1 for all observations.

2.4 Eco-hydrological parameters10

We select 24 parameters to be optimized against observed LHF and FAPAR data (Ta-
ble 2). 18 of the 24 parameters are related to the model’s physiology and phenology,
and have been optimized with CCDAS in previous works (e.g. Knorr et al., 2010). The
prior mean and uncertainty values for these 18 parameters are the same as those used
in previous studies (Scholze et al., 2007; Knorr et al., 2010). The six new parameters15

describe the water balance or the interaction between water and carbon fluxes. They
are f ciC3 and f ciC4, the ratio of CO2 concentration inside and outside leaf tissues for
C3 and C4, respectively (Eq. (A21) in the Supplement); CW, the ratio of maximum wa-
ter supply rate from the roots relative to plant available soil moisture (Eq. (A24) in the
Supplement); h0, a scaling factor of the relative dryness of air (Eq. (A35) in the Supple-20

ment); ĥ, a scaling factor of the relative humidity of air (Eq. (A34) in the Supplement);
and Wmax, the maximum plant-available soil moisture (Eq. (A24) in the Supplement).
The former five parameters have been first introduced in Knorr and Heimann (2001)
and further information is given in the Supplement. The parameter Wmax scales the
maximum amount of plant-available soil moisture. A decreasing value of this parame-25

ter is reflected in a decline of relative soil wetness, leading to less evapotranspiration,
in BETHY. These six parameters control stomatal aperture, energy balance, and water
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balance processes in BETHY. They are important for eco-hydrological functioning un-
der semi-arid conditions in savanna ecosystems.

2.5 Experimental set-up

To investigate the impact of multiple data streams on the assimilation results, we
perform three assimilation experiments: (1) assimilating only LHF data, (2) assimi-5

lating only FAPAR data, and (3) assimilating LHF and FAPAR data simultaneously.
Prior/posterior simulations with only LHF, with only FAPAR, and with a combination of
both data will be noted as prior/posterior experiment 1, 2, and 3, hereafter. The assim-
ilation experiment with only LHF data considers the first and second terms in Eq. (1),
that with only FAPAR considers the first and third terms, and that with both types of10

data combined considers all three terms.

3 Results

3.1 Optimization and parameter uncertainty

The optimization takes 27, 29, and 41 iterations to converge to a minimum for exper-
iments 1, 2 and 3, respectively. The total value of the cost function could be reduced15

substantially (see Table 2). Also, the gradient of the cost function was reduced from 82,
93, 170 for experiments 1, 2 and 3, respectively, to a final value close to zero (of the
order of 10−2 to 10−7, see Table 1).

Table 2 and Fig. 5 show the posterior parameter values and their uncertainty reduc-
tion relative to the prior (defined as 1 − σposterior/σprior) for all three experiments along20

with their prior values and uncertainties. For all experiments, the parameter Wmax de-
creases substantially from the prior value of 1500 mm, to 332 mm, 86 mm, and 129 mm,
for experiments 1, 2, and 3, respectively.

Relative parameter uncertainties are reduced by more than 20 % for three, four, and
six of the 24 parameters for experiments 1, 2, and 3, respectively. Note that the largest25

3625

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/3615/2012/bgd-9-3615-2012-print.pdf
http://www.biogeosciences-discuss.net/9/3615/2012/bgd-9-3615-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 3615–3643, 2012

Simultaneous
assimilation of

satellite and eddy
covariance data

T. Kato et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

uncertainty reductions always occur in experiment 3 where we simultaneously assimi-
late both data streams. The parameters with high uncertainty reductions differ slightly
among the experiments (Table 2 and Fig. 5). In general, parameters showing con-
siderable uncertainty reductions are: the maximum catalytic capacity of rubisco (V 25

max;
parameters 1 and 2), the expected length of drought periods tolerated before leaf shed-5

ding (τW; parameters 17 and 18), the standard ratio of CO2 concentration inside and
outside the leaf tissus for C3 plant (f ciC3; parameter 19), and the maximum plant-
available soil moisture (Wmax: parameter 24). Also, the change in parameter values
appears to be large for the above six parameters (Table 2). On the other hand, some
of the remaining 18 parameters, for which the uncertainty reduction is less than 20 %,10

also show relatively large deviations (in relation to their prior uncertainty) from their
prior parameter value (Table 2). More specifically, they are related to the activation
energies and Michaelis-Menten constants of the temperature dependency of further
enzyme kinetics, EVmax and K 25

C , as well as the efficiency of electron transport, αq for
C3, and the linear growth constant in LAI , ξ (see Supplement for a more specific ex-15

planation of the parameters). For the other 14 parameters, both the posterior value and
the uncertainty hardly change compared to the respective prior values.

3.2 LHF and FAPAR

Compared to the measurements, the simulated prior LHF values have a too small sea-
sonal amplitude with lower values during the wet season (except for some scattered20

points between November to April) and slightly higher values than the observations
during the dry period (Fig. 2). Experiments 1 and 3 show a reasonable seasonality of
LHF with high values in the wet season gradually declining during the dry season, start-
ing from April and ending in October, with slightly lower values than the observations.
However, experiment 2 gives lower LHF values than the observations over almost the25

entire simulation period although with some scattered high values in the wet season.
This results in the highest root mean square error (RMSE) of 26.5 W m−2 compared to
RMSE values of 14.6, and 21.5 W m−2 for experiments 1 and 3, respectively.
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Prior FAPAR values are nearly constant around a high value of 0.94 (averaged prior
value over the 2 yr, see Fig. 3), however, the observations show much lower values with
a distinct seasonality ranging between 0.11 and 0.39. In experiment 1, the modeled
FAPAR values during the wet season are similar to those from the prior run, with high,
nearly constant values, but with the difference that they decrease to about 0.6 in the5

dry season. Modelled FAPAR values in experiment 2 show a good agreement with the
observations indicated by a small RMSE of 0.06. Here, the simulated FAPAR values
fall within the uncertainty range of the observed values over almost the entire period. In
experiment 3, the modeled FAPAR values have a distinct seasonality with values larger
than the observations during the wet period, but showing a good agreement with the10

observations at the end of the dry period in October. The RMSE for experiment 3 is as
low as 0.20, while those for the prior simulation and experiment 1 are 0.73 and 0.68,
respectively.

4 Discussion

4.1 Constraint of parameters by eddy water flux and satellite FAPAR data15

Wmax is consistently constrained to a relatively small value in all three experiments (86
to 332 mm) in contrast to the general belief that rooting depth would be large in such
dry conditions, leading to a large value for the maximum plant-available soil water. For
example, Schenk and Jackson (2002) suggested that dry tropical savannas have on
average a rooting depth of 1.44 m containing 95 % of the total ecosystem roots. In20

fact, Veenendaal et al. (2008) showed that the tall and short mopane trees rooted at
least deeper than 1.0 m by field measurement in the field measurement at Maun site,
However, they also indicated that total root density of both type mopanes as well as
fine root dentisity of short mopane were concentrated in the upper soil fraction up to
20 cm depth. That suggests that active layer for soil water uptake would be in shallow25

soil layer, partly supporting the small Wmax in our simulations.
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The posterior error covariance matrixes of the 24 parameters show values of less
than 0.1 for the error covariances of Wmax with all other parameters (Figs. A1, A2, A3),
suggesting that Wmax can be independently constrained by LHF and FAPAR observa-
tions. It is also surprising that all three experiments yield essentially the same result for
Wmax. This also means that by assimilating FAPAR observations only, we can constrain5

maximum plant available soil moisture, a key parameter of the soil water balance, and
thus quantify the hydrological state of the ecosystem. The slightly larger Wmax value
in experiment 1 simply relates to the larger simulated LAI values, which require larger
transpiration rates driven by enhanced root water uptake that leads to a large rooting
depth.10

Although the optimized value of Λmax (parameter for the environmental limitation
of maximum LAI) does not differ among three experiments, the modeled maximum
leaf area index (LAI) differs largely. Compared to the observed annual maximum in
LAI between 0.9 and 1.3 (Mantlana, 2002; Veenendaal et al., 2008), experiment 2
and 3 show relatively reasonable simulated annual maximum LAI values of 0.99 and15

2.92, respectively. However, experiment 1 gives a value of 5.20, which is close to the
environmental limitation given by the parameter value of 5.22 for Λmax (Table 2). In
addition, the modelled LAI shows only a small seasonal amplitude similar to modelled
FAPAR in experiment 1 (Fig. 3). Therefore assimilating only LHF data leads to too high
LAI values with a poor seasonality, although the simulated LHF fit the observations very20

well in experiment 1. We assume that the small τW value for PFT 2 of 10 days could
be a potential cause for the large and constant LAI value. In contrast to experiment
1, τW shows much higher posterior values of 186 days and 94 days in experiments 2
and 3, which possibly leads to a larger seasonality and also a lower LAI. Recall that
τW represents the expected length of drought periods tolerated before leaf shedding25

(Knorr et al., 2010). Such a small τW value reflects the plant’s water reserves to be
sufficient for continued plant growth, and thus induces growth of LAI when there is a
certain level of soil water. The high reduction in the relative parameter uncertainty of
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τW for PFT 2 and 10 by more than 30 % suggests a strong constraint by the FAPAR
observations on the phenology component of BETHY, as expected.

The relative uncertainty reduction for parameter V 25
max for C3 (42 %) as well as for

parameters ξ (14 %) are substantially larger in experiment 3 than in experiments 1
and 2 with relative uncertainty reductions for these parameters between 0 % (ξ) and5

3 % (V 25
max and ξ, see Table 2 and Fig. 5). This suggests that each data stream carries

complementary information on photosynthesis and phenology such that the combined
assimilation has the apparent strong constraint on specific paramters of plant produc-
tivity and leaf phenology. Interestingly, in experiment 3 the V 25

max parameter show fairly
high negative error covariances with the respective f ci parameter (ratio of CO2 con-10

centration inside the leaf tissue to the outside concentration) of −0.43 for C3 trees and
−0.25 for C4 grass as shown in Table A3 in the Supplement. This together with the
increased f ciC3 value explains at least to some extent the small posterior V 25

max value of
34 for PFT 2 in experiment 3 because a higher f ciC3 value increases the CO2 uptake
of plants by photosynthesis.15

It is interesting to note that posterior magnitudes of the absolute values in LHF, FA-
PAR and also the photosynthetic CO2 uptake flux (Gross Primary Production, GPP, see
also next section) show a somewhat intermediate value in experiment 3 when assimi-
lating both data streams simultaneously as compared to their values in experiments 1
and 2 when assimilating only one of the two data streams at a time as can be seen20

in Figs. 2–4: experiment 1 yields the largest values, experiment 2 the smallest and ex-
periment 3 somewhat intermediate values. This suggests that the posterior parameter
values are a compromise as the optimization is not capable of simultaneously fitting
each of the two data stream as good as in the experiments 1 and 2 in which only one
of the two data streams is assimilated.25

4.2 Simulation of carbon fluxes

Figure 4 displays the Gross Primary Production (GPP), which is the total amount of
CO2 that is taken up by plants by photosynthesis, simulated by BETHY. Experiment
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1 gives the highest GPP among the three experiments, which is mainly an effect of
the simulated large LAI values. Experiment 2 shows much lower simulated GPP than
the observations and the simulated GPP is in fact the lowest among the three experi-
ments. However, FAPAR is quite well reproduced compared to the satellite data (Fig. 3)
suggesting that simulated GPP should be much closer to the observations. This dis-5

crepancy leads us to the assumption that the FAPAR observations are possibly biased
towards lower values than true ground data would suggest due to cloud contamination
during the wet season (see also below).

Besides a good fit of LHF in experiment 3, the simulated GPP also shows a moder-
ately good fit in seasonality, which is reflected in a lower RMSE than in experiment 2.10

This somehow balanced result in terms of fitting independent observations such as the
gross carbon flux in experiment 3 is similar to results from Barbu et al. (2011). They
showed that when assimilating LAI observations in addition to assimilating soil wet-
ness index observations, the root mean square error of simulated net ecosystem CO2
fluxes with observed fluxes was reduced by about 5 % for a grassland site in south-15

west France. We suppose that the reduced RMSE for GPP in our case for experiment
3 is caused by changes in multiple parameters: larger f ciC3 and f ciC4 than in experi-
ment 1 and 2, and an increased value for τW for PFT 2 as compared to the prior value
(Table 2). Larger f ciC3 and f ciC4 increase the transpiration rate and also the carbon
exchange per unit leaf area by increasing stomatal aperture. Larger τW, as explained20

above, adjusts the seasonality in FAPAR and LAI, and partly also the seasonality in
GPP.

4.3 Simultaneous assimilation of multiple data sets

Experiments 1 and 2 show that we are able to adequately simulate the data stream
(LHF in experiment 1 and FAPAR in experiment 2) separately but at the expense of an25

inferior fit to the respective other data stream. On the other hand, the simultaneous as-
similation of LHF and FAPAR observations in experiment 3 indicates a good agreement
with both observations. It is noteworthy to point out that FAPAR observations contribute
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to the reduction of parameter uncertainty of the hydrological parameter, V 25
max for C3

even in experiment 3, demonstrated by the fact that uncertainty reduction for these
parameters is higher in experiment 3 than in experiment 1. FAPAR alone also helps
to constrain Wmax in experiment 2. This finding that FAPAR is able to constrain hy-
drological parameters is confirmed by Kaminski et al. (2011). They showed that the5

assimilation of FAPAR in CCDAS was able to constrain not only hydrological parame-
ters on a global scale, but also estimates of soil moisture and evapotranspiration, alone
or in combination with atmospheric CO2 concentrations.

Comparing the results from all three experiments reveals the potential problem in FA-
PAR. In experiment 3 both seasonality and magnitude of LHF are simulated adequately10

(similar to the results in experiment 1) but here the model is not able to simulate the low
FAPAR observations during the wet season. However, experiment 2 shows a very good
fit to the FAPAR observations over the entire period, but the model underestimates the
amplitude in LHF during the wet season (Fig. 2). From these results we believe that
the mismatch between simulated and observed FAPAR in experiment 3 during the wet15

period is caused by a bias towards lower values in the FAPAR observations during
the wet seasons (as already mentioned above). We think that there is the possibility
that spatial resolution of the FAPAR product may be too coarse. Negative observed
GPP from eddy covariance data in November 2000 (Fig. 4) also indicate inadequate
data processing in terms of the estimated daytime ecosystem respiration for calculating20

GPP by subtracting NEE from it or the gap-filling procedure for missing data.

5 Conclusions and implications

We present the first study that simultaneously assimilates latent heat fluxes as mea-
sured by the eddy covariance technique and satellite derived FAPAR, in CCDAS, here
for the savanna site at Maun, Botswana. Simulated LHF and FAPAR show a reason-25

able seasonality for the case of assimilating the two data streams together. For as-
similation of only one data stream, the seasonality of the other is slightly improved in
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comparison with observations. The optimization against both data streams leads to
an average relative reduction in parameter uncertainty of more than 16.1 % for the 24
eco-hydrological parameters in CCDAS. This compares to only 9.2 % and 7.8 % for the
single-data stream assimilation with LHF or FAPAR, respectively. Thus, assimilation
of multiple observational data streams provides a greater potential to improve model5

accuracy and by reducing parameter uncertainty.
We further find that assimilation of either LHF oder FAPAR, or both, consistently

constrain the key parameter in CCDAS that describes the water balance in semi-arid
ecosystems, namely the maximum plant available soil moisture. Since FAPAR data
from satellites is available with global coverage, this result offers (as demostrated by10

Kaminski et al., 2011) the potential of using FAPAR to constrain parameters related soil
moisture, a quantity that is very difficult to observe on large spatial scales.

The approach of simultaneous assimilation of multi-data streams as presented here
can be extended to include additional remote sensing products, for example using the
surface soil moisture product from the Soil Moisture and Ocean Salinity (SMOS) mis-15

sion (Kerr et al., 2001). This would allow a rigorous assessment of the consistency of
multiple data streams (as done here for FAPAR and LHF). More importantly, the com-
bined assimilation of FAPAR data with surface soil moisture from SMOS in CCDAS
would lead to a more complete description of the hydrological properties than with just
a dedicated soil moisture mission alone.20

Supplementary material related to this article is available online at:
http://www.biogeosciences-discuss.net/9/3615/2012/
bgd-9-3615-2012-supplement.pdf.
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T., Mélin, F., Privette, J. L., Sandholt, I., Taberner, M., Turner, D. P., Verstraete, M. M.,
and Widlowski, J.-L.: Evaluation of Fraction of Absorbed Photosynthetically Active Radiation
Products for Different Canopy Radiation Transfer Regimes: Methodology and Results Using
Joint Research Center Products Derived from SeaWiFS Against Ground-Based Estimations,5

J. Geophys. Res.-Atmos., 111, D13110, doi:10.1029/2005JD006511, 2006
Heimann, M.: The TM2 tracer model, model description and user manual, Technical Report No.

10, ISSN 0940-9327, Deutsches Klimarechenzentrum, Hamburg, 47 pp., 1995.
Ichii, K., Wang, W., Hashimoto, H., Yang, F., Votava, P., Michaelis, A. R., and Nemani, R. R.: Re-

finement of rooting depths using satellite-based evapotranspiration seasonality for ecosys-10

tem modeling in California, Agr. Forest Meteorol., 149, 1907–1918, 2009.
IPCC: Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to

the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and
Miller, H. L., Cambridge University Press, Cambridge, UK, 2007.15

Jones, P., Osborn, T., Briffa, K., Folland, C., Horton, B., Alexander, L., Parker, D., and Rayner,
N.: Adjusting for sampling density in grid-box land and ocean surface temperature time se-
ries, J. Geophys. Res., 106, 3371–3380, 2001.

Kaminski, T., Knorr, W., Scholze, M., Gobron, N., Pinty, B., Giering, R., and Mathieu, P.-P.:
Consistent assimilation of MERIS FAPAR and atmospheric CO2 into a terrestrial vegetation20

model and interactive mission benefit analysis, Biogeosciences Discuss., 8, 10761–10795,
doi:10.5194/bgd-8-10761-2011, 2011.

Kleidon, A. and Heimann, M.: Simulating root carbon storage with a coupled carbon-water cycle
root model, Phys. Chem. Earth, 21, 499–502, 1998.

Kerr, Y. H., Waldteufel, P. Wigneron, J.-P., Martinuzzi J., Font, J., and Berger M.: Soil moisture25

retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. Geoscience and
Remote Sensing, IEEE T. Geosci. Remote, 39, 1729–1735, 2001.

Knorr, W.: Annual and interannual CO2 exchanges of the terrestrial biosphere: Process based
simulations and uncertainties, Glob. Ecol. Biogeogr., 9, 225–252, 2000.

Knorr, W. and Heimann, M.: Uncertainties in global terrestrial biosphere modeling, Part I: a30

comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme,
Global Biogeochem. Cy., 15, 207–225, 2001.

3634

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/3615/2012/bgd-9-3615-2012-print.pdf
http://www.biogeosciences-discuss.net/9/3615/2012/bgd-9-3615-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2005JD006511
http://dx.doi.org/10.5194/bgd-8-10761-2011


BGD
9, 3615–3643, 2012

Simultaneous
assimilation of

satellite and eddy
covariance data

T. Kato et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Knorr, W., Kaminski, T., Scholze, M., Gobron, N., Pinty, B., Giering, R., and Mathieu, P.-P.:
Carbon Cycle Data Assimilation with a Generic Phenology Model, J. Geophys. Res. Atmos,
115, G04017, doi:10.1029/2009JG001119, 2010.

Knorr, W. and Kattge, J.: Inversion of terrestrial biosphere model parameter values against eddy
covariance measurements using Monte Carlo sampling, Global Change Biol., 11, 1333–5

1351, 2005.
Lloyd, J., Kolle, O., Veenendaal, E., Arneth, A., and Wolski, P.: SAFARI 2000 Meteorological

and Flux Tower Measurements in Maun, Botswana, 2000. Data set, available at: http://daac.
ornl.gov/ from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge,
Tennessee, USA doi:10.3334/ORNLDAAC/760, 2004.10

Mantlana, B. K.: Physiological characteristics of two forms of Colophospermum mopane grow-
ing on Kalahari sand. M.S. Thesis, University of Natal, Durban, South Africa, 2002.

Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat,
P., Scott, S, Sogaard, H., and Verhoef, A.: A system to measure surface fluxes of momentum,
sensible heat, water vapour and carbon dioxide, J. Hydrology, 188–189, 589–611, 1997.15

Nijssen, B., Schnur, R., and Lettenmaier, D.: Retrospective estimation of soil moisture using the
VIC land surface model, 1980–1993, J. Climate, 14, 1790–1808, 2001.

Rayner, P., Scholze, M., Knorr, W., Kaminski, T., Giering, R., and Widmann, H.: Two decades
of terrestrial Carbon fluxes from a Carbon Cycle Data Assimilation System (CCDAS), Global
Biogeochem. Cy., 19, GB2026, doi:10.1029/2004GB002254, 2005.20

Schenk, H. J. and Jackson, R. B.: The global biogeography of roots, Ecological Monographs,
72, 311–328, 2002.

Scholze, M.: Model studies on the response of the terrestrial carbon cycle on climate change
and variability, Examensarbeit, Max-Planck-Institut für Meteorologie, Hamburg, Germany,
2003.25

Scholze, M., Kaminski, T., Rayner, P., Knorr, W., and Giering, R.: Propagating un-
certainty through prognostic CCDAS simulations, J. Geophys. Res., 112, D17305,
doi:10.1029/2007JD008642, 2007.

Veenendaal, E. M., Kolle, O., and Lloyd, J.: Seasonal variation in energy fluxes and carbon
dioxide exchange for a broad-leaved semi-arid savanna (Mopane woodland) in Southern30

Africa, Global Change Biol., 10, 309–317, 2004.

3635

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/3615/2012/bgd-9-3615-2012-print.pdf
http://www.biogeosciences-discuss.net/9/3615/2012/bgd-9-3615-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2009JG001119
http://daac.ornl.gov/
http://daac.ornl.gov/
http://daac.ornl.gov/
http://dx.doi.org/10.3334/ORNLDAAC/760
http://dx.doi.org/10.1029/2004GB002254
http://dx.doi.org/10.1029/2007JD008642


BGD
9, 3615–3643, 2012

Simultaneous
assimilation of

satellite and eddy
covariance data

T. Kato et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Veenendaal, E., Mantlana, K. B., Pammenter, N. W., Weber, P., Huntsman-Mapila, P., and Lloyd,
J.: Growth form and seasonal variation in leaf gas exchange of Colophospermum mopane
savanna trees in northwest Botswana, Tree Physiol., 28, 417–424, 2008.

Wang, G.: Agricultural drought in a future climate: Results from 15 global climate models par-
ticipating in the IPCC 4th Assessment, Clim. Dynam., 25, 739–753, 2005.5

Williams, M,, Schwarz, P. A., Law, B. E., Irvine, J., and Kurpius, M. R.: An improved analysis of
forest carbon dynamics using data assimilation, Glob. Change Biol., 11, 89–105, 2005.

3636

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/9/3615/2012/bgd-9-3615-2012-print.pdf
http://www.biogeosciences-discuss.net/9/3615/2012/bgd-9-3615-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
9, 3615–3643, 2012

Simultaneous
assimilation of

satellite and eddy
covariance data

T. Kato et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Cost function contributions from parameters (Param.), latent heat flux (LHF), and frac-
tion of absorbed photosynthetically active radiation (FAPAR) as well as the total cost function
value and final value of the gradient for the total cost function.

Run Cost function

Param. LHF FAPAR Total Gradient

Prior 0 470 1825 470 (LHF), n.d.∗

1825 (FAPAR),
2295 (Combined)

Experiment 1 (LHF) 11 302 1576∗∗ 313 1.5 × 10−2

Experiment 2 (FAPAR) 19 1199∗∗ 13 32 5.4 × 10−7

Experiment 3 (Combined) 20 746 141 908 4.6 × 10−6

∗ n.d. is no data, ∗∗not counted for total cost function.
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Table 2. List of parameters in prior run, and posterior runs assimilating LHF, FAPAR, and
combination of LHF and FAPAR. Uncertainty reduction (unc. red.) is calculated as posterior
minus prior uncertainty divided by prior uncertainty. Top rows: physiology, middle: phenol-
ogy, bottom: energy and water budgets. Units of parameters are: Vmax in µmol(CO2) mt2 s−1,
k in µmol(air) m−2 s−1, αΓ,T in µmol(CO2)mol(air)−1◦C−1, KC in µmol(CO2)mol(air)−1, KO in

mol(O2)mol(air)−1, activation energies E in J mol−1, τW in days, CW0 in mm hour−1, Wmax in
mm, others unitless. Prior uncertainty represents one standard deviation, except for the log-
normally distributed parameters denoted by (∗), for which the analogous difference between
mean and upper 67 %-tile is given.

Num. PFT Parameter Prior Experiment 1 (LHF) Experiment 2 (FAPAR) Experiment 3 (Combined)

value unc. value unc. red. [%] value unc. red. [%] value unc. red. [%]

1 2 V 25
max 90 18 75 2 78 3 34 42

2 10 V 25
max 8 1.6 6 19 8 2 6 56

3 2 aJ ,V 1.99 0.10 1.99 0 1.99 0 2.01 0
4 10 k25 140 28 140 0 140 0 140 0
5 All ERd 45 000 2250 45 021 0 44 992 0 45 088 0
6 All EVmax 58 520 2926 58 429 1 58 430 0 54 748 0
7 2 EKO 35 948 1797 35 924 0 35 952 0 35 732 0
8 2 EKC 59 356 2967 59 228 1 59 367 0 60 958 0
9 10 Ek 50 967 2548 50 966 0 50 966 0 50 959 0
10 2 αq 0.280 0.04 0.280 0 0.282 0 0.288 4
11 10 αi 0.040 0.002 0.040 0 0.040 0 0.041 0
12 2 K 25

C 460 23 463 0 463 0 470 1
13 2 K 25

O 0.33 0.02 0.33 0 0.33 0 0.33 0
14 2 αΓ,T 1.70 0.09 1.70 0 1.69 0 1.68 1
15 All Λmax 5.00 0.25 5.20 13 5.03 1 5.05 3
16 All ξ 0.50 0.10 0.50 0 0.50 3 0.61 14
17 2 τ∗W 30 15 10 43 186 43 94 87
18 10 τ∗W 30 15 11 36 22 37 14 56
19 2 f ciC3 0.650 0.065 0.589 10 0.653 22 0.695 22
20 10 f ciC4 0.370 0.037 0.360 4 0.371 0 0.379 4
21 All CW 0.500 0.005 0.500 0 0.500 0 0.502 0
22 All h0 0.490 0.005 0.490 0 0.490 0 0.488 0
23 All ĥ 0.960 0.010 0.959 0 0.961 0 0.953 0
24 All Wmax 1500 1500.0 332 90 86 75 129 95
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Fig. 1. Schematic diagram of the CCDAS structure. Ovals represent input and output data, and
boxes represent calculation steps. Diagnostics are quantities of interest such as carbon fluxes
computed by CCDAS. Unc. stands for uncertainty and param. for parameters.
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Fig. 2. Observed and simulated latent heat flux (LHF; W m−2) for the years 2000–2001. The er-
ror bar for observed LHF (Obs) represents the data uncertainty used in CCDAS. Prior, Posterior
LHF, Posterior FAPAR, and Posterior combined are prior, posterior runs with LHF, FAPAR, and
combined of LHF and FAPAR, respectively. Root mean square errors (RMSEs) of simulated
LHF against observation are 17.2, 14.6, 26.5 and 21.5 W m−2 for prior, experiment 1, 2 and 3,
respectively.
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Fig. 3. Observed and simulated fraction of absorbed photosynthesically active radiation (FA-
PAR; nodim) for the years 2000–2001. Observed FAPAR is derived from the SeaWiFS instru-
ment from the National Aeronautics and Space Administration (NASA). The error bar of ob-
served FAPAR (Obs) represents the data uncertainty used in CCDAS. Prior, Posterior LHF,
Posterior FAPAR, and Posterior combined are prior, posterior runs with LHF, FAPAR, and com-
bined of LHF and FAPAR, respectively. Root mean square errors (RMSEs) of simulated FAPAR
against observation are 0.727, 0.676, 0.062 and 0.202 for prior, experiment 1, 2 and 3, respec-
tively.
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Fig. 4. Observed and simulated gross primary production (GPP) for the years 2000–2001. Ob-
served GPP (Obs), based on eddy covariance data, is estimated by subtracting net ecosystem
exchange (NEE) from ecosystem respiration during daytime. Daytime ecosystem respiration is
estimated from the relationship between nighttime ecosystem respiration and soil temperature.
Prior, Post LHF, Post FAPAR, and Post combined are prior, posterior runs with LHF, FAPAR,
and combined of LHF and FAPAR, respectively. Root mean square errors (RMSEs) of simu-
lated GPP against observation-based values are 1.40, 0.95, 1.61 and 1.14 g C m−2 day−1 for
prior, experiment 1, 2, and 3, respectively.
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Fig. 5. Relative reduction (%) in parameter uncertainty after optimization.
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