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Abstract. Cavity-optomechanical cooling via radiation pressure dynamical
backaction enables ground-state cooling of mechanical oscillators, provided the
laser exhibits sufficiently low phase noise. In this paper, we investigate and
measure the excess phase noise of widely tunable external cavity diode lasers,
which have been used in a range of recent nano-optomechanical experiments,
including ground-state cooling. We report significant excess frequency noise,
with peak values of the order of 107 rad2 Hz near 3.5 GHz, attributed to the
diode lasers’ relaxation oscillations. The measurements reveal that even at
GHz frequencies diode lasers do not exhibit quantum-limited performance. The
associated excess backaction can preclude ground-state cooling even in state-of-
the-art nano-optomechanical systems and can, moreover, lead to noise-induced
sideband asymmetries.
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1. Introduction

In recent years, the mutual coupling of optical and mechanical degrees of freedom has been
observed in a plethora of systems and it gives rise to a variety of phenomena (Kippenberg and
Vahala 2008, Favero and Karrai 2009, Marquardt and Girvin 2009, Aspelmeyer et al 2010).
This parametric radiation pressure coupling (Braginsky and Manukin 1977) enables sensitive
measurements of the mechanical oscillator’s position with an imprecision at (Anetsberger et al
2009) and below (Teufel et al 2009, Anetsberger et al 2010) the standard quantum limit,
amplification (Carmon et al 2005, Kippenberg et al 2005, Rokhsari et al 2005, Teufel et al
2008) and cooling (Arcizet et al 2006, Gigan et al 2006, Schliesser et al 2006) of mechanical
motion via dynamical backaction, optomechanical normal mode splitting (Dobrindt et al 2008)
and strong coupling (Groblacher et al 2009), optomechanically induced transparency (Weis et al
2010, Safavi-Naeini et al 2011) and quantum coherent coupling (Teufel et al 2011, Verhagen
et al (2012) of optical and mechanical degrees of freedom, mechanically mediated quantum
state transfer (Wang and Clerk 2012) of optical and microwave fields, and optomechanical
entanglement. Of particular interest has been the objective to achieve ground-state cooling of
a macroscopic mechanical oscillator using the technique of optomechanical resolved-sideband
cooling (Marquardt et al 2007, Wilson-Rae et al 2007, Schliesser et al (2008).

Previous experiments and theoretical analysis (Diósi 2008, Schliesser et al 2008, Rabl et al
2009, Yin 2009, Abdi et al 2011, Ghobadi et al 2011, Phelps and Meystre 2011) have shown,
however, that optomechanical experiments in general, and sideband cooling in particular, are
sensitive to excess phase noise of the employed laser. In atomic laser cooling, the limit of cooling
arises from the stochastic nature of the spontaneous emission process of the atom and can be
insensitive to phase noise of the cooling laser. In cavity optomechanical cooling, the quantum
limit (Marquardt et al 2007, Wilson-Rae et al 2007) arises from the quantum fluctuations of the
intracavity field, i.e. the driving laser itself. This makes optomechanical cooling very sensitive to
phase noise, as pointed out early in Diósi (2008) and Schliesser et al (2008). A laser that exhibits
excess (classical) phase noise will lead to an additional contribution to the final occupancy.
Excess phase noise not only impacts optomechanical sideband cooling, but can also lead to
noise-induced sideband asymmetries (Harlow et al 2012, Khalili 2012) when performing noise
thermometry (Safavi-Naeini et al 2012).

For this reason, optomechanical experiments necessitate the use of filtering cavities
(Arcizet et al 2006) or low-noise solid-state lasers (Schliesser et al 2008) such as Ti:Sa
and Nd:YAG lasers, which offer quantum-limited performance for sufficiently high Fourier
frequencies (typically >10 MHz). Diode lasers, in contrast, exhibit significant excess phase
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noise in this frequency range (Zhang et al 1995) and its impact has been observed in
optomechanical cooling experiments of a 75 MHz radial breathing mode (Schliesser et al 2008).
Moreover, there exists an additional, well-known contribution (Wieman and Hollberg 1991)
to the excess phase and amplitude noise at high Fourier frequencies (>1 GHz), which is
fundamentally linked to damped relaxation oscillations caused by the carrier population
dynamics (Piazzolla et al 1982, Vahala et al 1983, Vahala and Yariv 1983, Yamamoto et al
1983). These relaxation oscillations cause primarily excess phase noise, whose magnitude is in
close agreement with theoretical modeling (Ritter and Haug 1993, Ahmed and Yamada 2004).
Interestingly, optical feedback (such as provided by an external cavity)—while reducing
noise at low frequency—can even lead to an enhancement of this relaxation oscillation noise
(Chen 1984).

Quantitative measurements of the high-frequency excess phase noise (at GHz frequencies)
for modern widely tunable external cavity diode lasers, however, are scarce. Measurements of
the high-frequency phase noise have, however, become increasingly important, as diode lasers
have been used in optomechanical experiments that involve nano-optomechanical systems such
as one-dimensional nanobeams (Eichenfield et al 2009) and two-dimensional photonic crystals
(Gavartin et al 2011, Sun et al 2012) as well as microdisc cavities (Ding et al 2010, 2011, Xiong
et al 2012) with GHz mechanical modes. Here diode lasers provide an advantage due to their
frequency agility and large piezo-scan range, compared to, e.g., low-noise fiber lasers in the
1550 nm range.

As such, a quantitative characterization of extended cavity diode laser phase noise in the
GHz domain and evaluation of its impact on quantum optomechanical experiments is highly
desirable. Here we present such a characterization of several commonly employed widely
tunable external cavity diode lasers, which are identical in geometry and manufacturer to the
model used in recent optomechanical ground-state cooling experiments (Chan et al 2011). Our
results indicate that, as expected, significant excess phase noise is indeed present in such lasers
at GHz frequencies whose magnitude can impact optomechanical sideband cooling of nano-
optomechanical systems.

2. Theory

Radiation pressure optomechanical sideband cooling allows cooling of a mechanical oscillator
to a minimum occupation (Marquardt et al 2007, Wilson-Rae et al 2007) of n̄f = κ2/16�2

m � 1,
where �m is the mechanical frequency and κ is the optical energy decay rate. This limit arises
from the quantum fluctuation of the cooling laser field. Excess classical phase or amplitude
noise causes a fluctuating radiation pressure force noise that increases this residual occupancy.
Of particular relevance is phase noise, whose heating effect has been observed in experiments
employing toroidal optomechanical resonators (Schliesser et al 2008).

To quantitatively analyze the effect of phase noise on a cavity-optomechanical system, we
consider the influence of a phase modulated pump laser interacting with an optical cavity, which
exhibits a mechanical mode with resonance frequency �m. It is instructive to first consider
(in complex notation) a coherent phase modulation at a frequency �m (coinciding with the
mechanical oscillator frequency) of the laser’s input field,

sin(t) ≈ exp(−i(ωt + δφ sin(�mt)))sin. (1)
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For weak phase modulation, the input field is well approximated by two sidebands, i.e.

sin(t) ≈

(
1 +

δφ

2
e−i�mt

−
δφ

2
e+i�mt

)
sin e−iωt . (2)

Using standard input–output coupling theory (Haus 1984, Gardiner and Collett 1985,
Gorodetsky and Ilchenko 1998, Kippenberg and Vahala 2007), the intracavity field amplitude
a(t) is determined by the equation of motion

d

dt
a(t) = (−κ/2 − iωc)a(t) +

√
ηκs(t), (3)

where ωc denotes the cavity resonance frequency, κ denotes the total cavity decay rate and
η = κex/κ denotes the ratio of cavity coupling κex to its feeding mode compared to total
cavity losses κ . Pumping the cavity with this phase modulated input field (which is assumed
to exhibit a linewidth that is much smaller than the modulation frequency, i.e. satisfying
the resolved sideband condition �m � κ) on the lower sideband, i.e. with the laser detuning
1 = ω − ωc = −�m, yields therefore an intracavity field of

a(t) ≈

(
1

i�m
+

δφ

2

1

κ/2
e−i�mt

)
√

ηκsin e−iωt . (4)

Thus, the intracavity field contains the off-resonant pump field and the resonantly coupled upper
phase modulation sideband. The lower phase modulation sideband can be neglected, due to the
resolved sideband regime.

Thus, the modulation sideband is resonantly enhanced by the cavity instead of being
suppressed by a putative cavity filtering effect. The simultaneous presence of carrier and
modulation sideband leads consequently to a radiation-pressure force (cf Kippenberg and
Vahala 2007),

F(t) = h̄G|a(t)|2 =
G P

ω

2ηδφ

�m
sin(�mt) + F̄,

where F̄ is a (for the present analysis irrelevant) static force, P = h̄ω|sin|
2 is the launched input

power and G = ∂ωc/∂x is the frequency pull parameter of the optomechanical system. The
variance of the force fluctuations at the mechanical resonance frequency is correspondingly

〈δF2
〉 = 〈F2

〉 − F̄2
=

4η2G2 P2

ω2�2
m

1

2
δφ2. (5)

These considerations carry over directly to phase fluctuations of the cooling laser field described
by a (symmetrized, double-sided) phase noise spectral density S̄φφ(�) (expressed in rad2 Hz−1),
which denotes the random phase fluctuations per unit bandwidth, that is, S̄φφ corresponds to
〈δφ2

〉. Analogously, S̄FF corresponds to 〈δF2
〉. Alternatively, such fluctuations may be described

in terms of laser frequency noise with the corresponding frequency noise spectral density
S̄ωω(�) = S̄φ̇φ̇(�) = S̄φφ(�)�2 (expressed in rad2 s−2 Hz−1), and we use both descriptions
interchangeably (Riehle 2004). The resulting force fluctuations in this case are given by the
expression (Schliesser et al 2008, Schliesser 2009)

S̄L
FF(�) ≈

4η2G2 P2

ω2�2

S̄ωω(�)

�2
(6)

in the resolved-sideband regime. To derive from this excess force noise the residual occupation
of the mechanical oscillator, one can consider the laser as providing an additional bath with
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a temperature kBTLaser ≈ h̄�mn̄L with an equivalent force noise spectral density S̄L
FF(�) =

2meff0mn̄Lh̄�m. The effective occupancy n̄L of the cold bath that the laser field is providing
is consequently given by n̄L ≈ S̄L

FF(�m)/2meff0mh̄�m, where the laser force spectral density
is given by equation (6). This additional residual occupancy can be derived by comparing
it with the Langevin force fluctuations of the thermal bath S̄th

FF(�) = 2meff0mn̄thh̄�m with
n̄th ≈ kBT/h̄�m. The final occupancy of the oscillator in the presence of sideband cooling is
then given by nf ≈ (n̄L + n̄th) 0m/0cool, with 0cool ≈ 2ηG2 P/meff�

3
mω in the resolved-sideband

regime (Schliesser et al 2008). This yields an excess occupancy due to frequency noise of
(Schliesser et al 2008, Rabl et al 2009)

n̄excess
f ≈

n̄p

κ
S̄ωω(�m), (7)

where n̄p ≈ ηκ P/h̄ω�2
m is the intracavity photon number in the resolved-sideband regime.

For an optimized cooling power, the lowest occupancy that can be reached in the presence of
frequency noise is given by

n̄min
f ≈

√
n̄th0m

g2
0

S̄ωω(�m), (8)

where we have used the vacuum optomechanical coupling rate (Gorodetsky et al 2010) g0 =

G
√

h̄/2meff�m and neglected quantum backaction5.

3. Measurement of the diode laser phase noise

Laser phase noise is frequently modeled by a (Gaussian) random phase φ(t) which obeys the
simple noise model 〈φ̇(t)φ̇(s)〉 = γc0Le−γc|t−s|, where 0L is the laser linewidth, and γ −1

c is a
correlation time, leading to a low-pass-type frequency noise spectrum

S̄ωω(�) =
20Lγ

2
c

�2 + γ 2
c

(9)

with a white noise model in the limit γc → ∞ (Diósi 2008, Rabl et al 2009, Ghobadi et al
2011, Phelps and Meystre 2011). In practice, the relation between the laser linewidth and the
frequency noise spectrum does not follow this simple model, as there are several contributions
of different physical origin to the phase noise of a diode laser: the laser’s linewidth is mostly
dominated by acoustic fluctuations occurring at low Fourier frequencies, leading to a typical
short-term linewidth of ∼300 kHz for unstabilized external-cavity diode lasers. In addition,
relaxation oscillations6 occur in diode lasers (due to the fast cavity decay rate and short carrier
lifetime) at high (>1 GHz) Fourier frequencies, which are not described by the above model.
Therefore, it is important to measure the frequency-dependent phase noise spectrum S̄φφ(�).

To this end, an optical cavity is employed for quadrature rotation (Zhang et al
1995, Riehle 2004), converting phase to amplitude fluctuations which are measured with a
photodetector (cf figure 1). In principle, a high-resolution spectrum of the optical field can

5 For comparison with Rabl et al (2009) note that we use energy decay rates κ instead of field decay rates
κ ′

≡ κ/2, and we denote with 0m the mechanical energy dissipation rate instead of the mechanical decoherence
rate 0′

m ≡ (kBT/h̄�m)0m, which we refer to as γ here.
6 Relaxation oscillations are fundamental to any laser and result from the nonlinear nature of the coupled photon
and population rate equation (Siegman 1986).
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Figure 1. The setup to measure diode laser phase noise at GHz frequencies.
DUT: device under test; FPC: fiber polarization controller; EOM: electro-optic
modulator; WGM: whispering gallery mode of a low-Q disc microcavity; ESA:
electronic spectrum analyzer.

also be used for phase noise measurement, in which case the relaxation oscillations appear as
sidebands around the carrier (cf e.g. Ritter and Haug 1993, Riehle 2004).

The devices under test are three 1550 nm extended cavity diode lasers in Littman–Metcalf
configuration of the most commonly used models7. Care is taken to introduce proper optical
isolation of the laser diode to avoid optical feedback. The quadrature rotating cavity is a fiber
coupled silica microcavity (a disc featuring purposely a broad linewidth of κ/2π ≈ 2 GHz,
facilitating cavity locking) and the transmission is detected by a fast photodetector (New Focus)
whose photocurrent is fed into a spectrum analyzer (ESA). Similar to the approach presented
in Zhang et al (1995) the transduction of frequency noise S̄ωω(�) into power fluctuations at the
output of the cavity (I denotes photon flux) is calculated to be given by (Schliesser 2009)

(h̄ω)2 S̄fn
II (�) =

4(h̄ω)2
|sin|

4η212κ2
(
(1 − η)2κ2 + �2

)
S̄ωω(�)(

12 + ( κ

2 )
2
) (

(1 − �)2 + ( κ

2 )
2
) (

(1 + �)2 + ( κ

2 )
2
) . (10)

Here, 1 is the laser detuning from the cavity resonance and � is the analysis frequency.
We note that the optomechanical response of the microdisc cavity is neglected in the above
analysis. This is absolutely justified as the well-coupled, fundamental mechanical modes of the
microdisc (exhibiting frequencies <100 MHz ) are far below the frequency range in which we
are interested to measure the diode laser (>1 GHz).

The noise equivalent power of the employed photodetector is ∼24 pW Hz−1/2 and therefore
not sufficient for detecting the quantum phase/amplitude noise for the power levels used in
this work (<1 mW), but does allow the detection of excess noise. (To detect the quantum
noise at GHz frequencies using this detector would require an average power exceeding
Pmin ≈ NEP2/h̄ω > 5 mW, where NEP denotes the noise equivalent power of the employed
photodiode.) Indeed, as shown in figure 2, we observe a peak at about 3.5 GHz in the detected
photocurrent fluctuations when the laser is detuned from the cavity resonance. This noise has
been reported previously (Piazzolla et al 1982, Vahala et al 1983, Vahala and Yariv 1983,
Yamamoto et al 1983, Ritter and Haug 1993, Ahmed and Yamada 2004) and is attributed to
relaxation oscillations, which because of the short carrier lifetime exhibit high frequencies
well into the GHz range. We confirmed that the noise is indeed predominantly phase noise,
by scanning the laser across the cavity resonance while keeping the analysis frequency fixed
(figure 3). The pronounced double-peak structure follows equation (10) and reveals that the
noise is predominantly in the phase quadrature.

To calibrate the measured noise spectra, we imprint onto the diode laser a known
phase modulation using an external (fiber-based) phase modulator following the method of
Gorodetsky et al (2010). In brief, the Vπ of the phase modulator (the voltage that needs to be

7 New Focus TLB-6328 (serial numbers 008 and 280) and TLB-6330 (serial number 043).
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Figure 2. Noise of a semiconductor laser with weak optical feedback from a
grating (Littman configuration). Shown is the power spectral density (PSD) of
photocurrent fluctuations, normalized to total photocurrent, when laser light is
directly detected (red), or tuned to the side-of-the-fringe of an approximately
4 GHz-wide optical cavity (blue). The yellow trace is the background signal in
the same normalization, which was subtracted from all traces.

Figure 3. Photocurrent PSD in a 1 MHz bandwidth at a Fourier frequency
of 3.5 GHz as a function of laser detuning (left panel). Red dots are
measured without any additional modulation, showing only the laser’s intrinsic
fluctuations; the blue line was measured with a strong external frequency
modulation at 3.5 GHz. The blue curve was rescaled by a factor of 44
and corresponds, in this normalization, to a frequency modulation PSD of
S̄ωω(2π 3.5 GHz) ≈ 1.6 × 107 rad2 Hz. The most striking deviation of these
measurements from the model of equation (10) (green dashed line) is the
asymmetry of the peaks, which can be explained by the asymmetric lineshape
of the employed cavity (right panel).

applied to achieve a π phase shift) is determined in independent measurements by scanning
a second diode laser over the phase modulated laser, in order to determine the strength of
the modulation sidebands. The measured Vπ and the manufacturer’s specifications differed by
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Figure 4. PSD of frequency fluctuations for three different lasers after
subtraction of the background signal. The sharp peak is due to external phase
modulation, which was used to calibrate the spectra.

typically less than 10%. In a second and independent measurement (to characterize the noise
level of a third laser), the phase modulator was characterized by scanning a phase modulated
laser over a narrow cavity resonance and recording the transmission spectrum. Calibration via
the modulation peak proceeds by using the relation S̄cal

ωω(�) ≡ �2δφ2/(4RSB), where RSB
is the resolution bandwidth of the recording with the electronic spectrum analyzer, δφ is
the modulation index and � is the modulation frequency. Figure 4 shows this calibration
procedure applied to the three lasers. The level of frequency fluctuations was measured for
a total of three devices and found to vary only slightly between the lasers (despite their
differing by 10 years in manufacturing date). The maximum frequency noise was in the range
of S̄max

ωω ≈O(107) rad2 Hz, corresponding to phase fluctuations about 30 dB above the quantum
noise limit S̄φφ(�) = h̄ω/4P of a P = 1 mW beam. This level of phase noise agrees well with
theoretical predictions (Ahmed and Yamada 2004).

4. Ground-state cooling limitations

In order to achieve ground-state cooling, only a certain amount of laser phase noise can be
tolerated, as the presence of the cooling light in the cavity leads to additional fluctuating
forces and an excess phonon number according to equation (6). For an optimum cooling laser
power, the residual thermal occupancy and the excess occupancy caused by radiation pressure
fluctuations are equal, and their sum can be below unity only if

S̄ωω(�m) <
g2

0

γ
=

g2
0

kBT/h̄Qm
, (11)

constituting a necessary condition for ground-state cooling (nmin
f < 1) (Rabl et al 2009).

Evidently, systems that exhibit large optomechanical coupling g0 and low mechanical
decoherence rate γ = kBT/h̄Qm (that is, low bath temperature T and high mechanical
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quality factor Qm) can tolerate larger amounts of laser frequency noise. However, even the
recently reported nano-optomechanical system (Chan et al 2011) with the record-high g0/2π =

0.91 MHz as well as T ≈ 30 K and Qm ≈ 50 000 requires S̄ωω(2π 3.68 GHz) < 4 × 105 rad2 Hz,
a value reached by none of the three lasers we have tested. The phase noise at the relaxation
oscillation frequency is found to exceed this value by a factor of ×10–50 for the three lasers
tested. Using the above thermal decoherence parameters, the noise at the relaxation oscillation

frequency corresponds to a minimum occupancy of n̄min
f ≈

√
(γ /g2

0)Sωω(�m) of n̄min
f ≈ 20–40

quanta (for the lowest and the highest measured noise, respectively).

5. Summary

We conclude that the widely employed frequency-tunable external cavity diode lasers should
not be expected to be quantum limited, but exhibit significant excess phase noise up to very
high (GHz) Fourier frequencies.

We have observed a peak in this noise at a frequency around 3.5 GHz. This observation
implies important limitations to optomechanical sideband cooling also for systems based on
microwave-frequency range mechanical oscillators if the laser noise is not suppressed. In
addition, this classical excess phase noise can give rise to sideband asymmetries which are
entirely classical in nature (Harlow et al 2012, Khalili 2012) masking the signatures that are
expected from a quantum mechanical description (Khalili et al 2012, Safavi-Naeini et al 2012).

The noise originating from high-frequency relaxation oscillations can be suppressed by
external filters with a narrow cavity linewidth (effective suppression, however, requires a free
spectral range exceeding the mechanical resonance frequency). Alternatively, the noise may
be mitigated by laser systems which exhibit relaxation oscillation frequencies at much lower
Fourier frequencies. In the telecommunication range, this can be achieved by fiber lasers, which
however lack the frequency agility of diode lasers (Hald and Ruseva 2005).
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