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Abstract

Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance
and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective
antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever
model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as
high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all
promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior
immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel
findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live
Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their
vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition
of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In
conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar
coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular
pathogens.
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Introduction

Enteric fever caused by systemic Salmonella infection causes

tremendous morbidity and mortality worldwide [1]. Current

control strategies become increasingly inefficient as a result of

increasing antimicrobial resistance [2,3] and emergence of

Salmonella serovars that are not covered by currently available safe

vaccines [4,5]. This situation generates an urgent medical need for

novel Salmonella vaccines with broad serovar coverage.

Early killed whole-cell vaccines containing mixtures of different

serovars provide broad protection, but cause unacceptable adverse

reactions [1]. As an alternative to whole-cell vaccines, subunit

vaccines containing a few defined Salmonella components could

minimize adverse reactions. Indeed, vaccines containing the

capsular polysaccharide Vi antigen provide moderate protection

and excellent safety [1]. On the other hand, serovars Paratyphi A

and non-typhoidal Salmonella (NTS) that cause an increasing

number of invasive salmonelloses [6], lack the Vi antigen and are

therefore not covered by Vi vaccines [5]. Apart from Vi, few

Salmonella antigens have been identified, and all of these provide at

best moderate levels of protection against challenge infection with

virulent Salmonella strains in the commonly used mouse typhoid

fever model. Moreover, antigens such as flagellin [7] and OmpD

[8] are poorly conserved among relevant serovars.

For extracellular pathogens with antibody-mediated immunity,

protective antigens must be surface-exposed [9], and this enables

an effective strategy for priorization of antigen candidates [9].

Humoral response to surface antigens can also contribute to

immunity to intracellular pathogens such as invasive Salmonella

[10]. Indeed, Vi which induces protective antibody responses in

human vaccinees, forms an extracellular capsule around Salmonella

Typhi [11]. Two additional antigens that confer partial immunity

in the mouse typhoid fever model, flagellin [7] and SseB [12], are

also part of Salmonella surface structures (flagella, translocon

complex of a type III secretion system). Furthermore, outer

membrane preparations (but not the outer membrane component

lipopolysaccharide) have been suggested to mediate protective

humoral immune responses against extracellular Salmonella bac-
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teremia [13] and attenuated Salmonella strains in the mouse model

[8,14]. A number of porins such as OmpC, OmpD, and OmpF

are highly abundant in such outer membrane preparations

suggesting that they might represent the actual protective antigens

[8,14,15].

However, immunity to Salmonella critically depends also on CD4

T cells [10]. Unfortunately, protective T cell antigens seem to be

rare, and priorization of candidates is difficult since relevant

antigen properties for CD4 T cell responses remain unclear

[9,16,17]. One key precondition for protective responses is

expression of the respective Salmonella antigen during infection

[18], and some data suggest that highly abundant antigens might

be particularly well recognized by CD4 T cells [12,19]. Antigen in

vivo expression can be deduced from various complementary

approaches including screening of promoter trap libraries [20,21],

proteomics [22], serum antibody response [23–26], as well as

mutant virulence phenotypes.

In addition to antigen expression, antigen immunogenicity

could play a major role. Antigen detection by cognate CD4 T cells

requires antigen processing and presentation of the resulting small

peptides by major histocompatibility (MHC) class II molecules.

Peptide sequence properties that are characteristic for well

recognized epitopes, can be used for genome-wide prediction of

promising antigens [27]. However, a large number of non-

protective antigens contain putative high-score epitopes [16,18,28]

which could compromise the discriminatory power of this

approach.

Experimental detection of immune responses to an antigen in

convalescent individuals that have survived infection, demon-

strates that this antigen was expressed in vivo and could be

recognized by the immune system [23–25]. Indeed, this approach

has been recently shown to facilitate identification of protective

Chlamydia antigens [29]. On the other hand, many immunodomi-

nant antigens in convalescent individuals lack protective efficacy,

while a number of protective antigens may induce immune

responses below the detection threshold during natural infection

[17].

Another antigen property that can affect CD4 T cell responses

is antigen localization. In particular, secreted or surface-associated

antigens might induce particularly strong cellular immune

responses because of superior processing, kinetic advantages

compared to internal antigens, and/or physical association with

pathogen-associated molecular patterns (PAMP) such as lipopoly-

saccharide that provide potent stimuli for innate and adaptive

immunity [14,30–36]. Indeed, secretion/surface localization has

been widely used to prioritize candidates for antigen identification.

However, antigens with likely internal localization can also induce

specific CD4 T cell responses that mediate protection against

various intracellular pathogens [37,38].

Taken together, relevant antigen properties for CD4 T cell

mediated immunity to intracellular pathogens remain poorly

characterized, and this impairs antigen priorization for vaccine

development. To address this issue, we compared here 37 diverse

Salmonella antigens in a mouse model that closely mimics human

typhoid fever [39]. The results suggested that recognition of

surface-associated antigens might be necessary to detect and

combat live intracellular Salmonella, whereas recognition of internal

antigens would mediate futile non-protective attack of already

dead Salmonella. In conclusion, we propose a similar crucial role of

surface-associated antigens for immunity to both extracellular and

intracellular pathogens.

Results

Immune responses to Salmonella antigens in
convalescent individuals

To determine immune responses to Salmonella antigens, we

selected 21 broadly conserved Salmonella proteins. We selected

several subunits of the SPI-2 type III secretion system since the

putative translocon subunit SseB of this system showed promising

protectivity in previous studies [12,26]. We also included several

porins since a previous study had shown that OmpD conferred

protection against an attenuated Salmonella mutant [8]. To explore

the role of antigen localization we selected additional proteins

localized in Salmonella cytosol, inner membrane, periplasm, and

outer membrane/surface. To explore the role of antigen

abundance, we determined absolute quantities of more than

1100 Salmonella in infected mouse spleen. Specifically, we purified

Salmonella from infected mouse spleen using flow cytometry as

described [22]. We determined absolute protein quantities in these

ex vivo purified Salmonella using shot-gun proteomics with 30

isotope labeled reference peptides and the iBAQ quantification

method [40] (for detailed description see Materials and Methods

section). From these data, we selected additional antigens with a

large range of abundances (Tab. 1).

To determine potential cross-protection between different

serovars, we cloned the corresponding genes from Salmonella

enterica serovar Typhi (except for OmpD which was obtained from

serovar Typhimurium since it is absent in serovar Typhi). We

expressed the proteins as C-terminal His6-fusions in E. coli

followed by Ni-affinity chromatography purification. We purified

the control antigen GFP-His6 using the same protocol.

We determined immune responses to these antigens in

genetically resistant, convalescent mice that had survived infection

with virulent Salmonella enterica serovar Typhimurium. We detected

antigen-specific CD4 T cells in spleen using a sensitive CD154

assay [41] and measured serum IgG antibody responses using

ELISA. All tested antigens were recognized by CD4 T cells

(Fig. 1A; Tab. 1), many of which secreted IFNc or IL-17 upon

stimulation. Both cytokines play crucial roles in immunity to

Salmonella [10]. Frequencies of responsive CD4 T cells were in the

same range as for flagellin, which has been considered an

immunodominant antigen [42]. These data suggested that

Salmonella infection elicited a broad cellular immune response

Author Summary

Salmonella infections cause extensive morbidity and
mortality worldwide. A vaccine that prevents systemic
Salmonella infections is urgently needed but suitable
antigens remain largely unknown. In this study we
identified several antigen candidates that mediated
protective immunity to Salmonella in a mouse typhoid
fever model. Interestingly, all these antigens were associ-
ated with the Salmonella surface. This suggested that
similar antigen properties might be relevant for CD4 T cell
dependent immunity to intracellular pathogens like
Salmonella, as for antibody-dependent immunity to
extracellular pathogens. Detailed analysis revealed that
Salmonella surface antigens were not generally more
immunogenic compared to internal antigens. However,
internal antigens were inaccessible for CD4 T cell recog-
nition of a substantial number of infected host cells that
contained exclusively live intact Salmonella. Together,
these results might pave the way for development of an
efficacious Salmonella vaccine, and provide a basis to
facilitate antigen identification for Salmonella and possibly
other intracellular pathogens.

Identification of Salmonella Vaccine Antigens
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against a large number of in vivo expressed antigens from all

Salmonella compartments in agreement with data observed for S.

Typhi infected human patients [43]. There was no correlation

between in vivo antigen abundance as determined by proteome

analysis of ex vivo purified Salmonella, and CD4 T cell frequency or

cytokine profile (Tab. 1).

Serum antibody responses revealed similar broad recognition of

antigens from several Salmonella compartments (Fig. 1B) in

agreement with previous data for human typhoid fever patients

[24–26,44]. Interestingly, the three immunodominant humoral

antigens T2461, PhoN, and PcgL were all highly expressed in vivo

(Tab. 1) suggesting a potential impact of antigen dose on antibody

responses to Salmonella, although responses to minor antigens did

not correlate with antigen abundance. PhoN has been previously

recognized as an immunodominant antigen [26].

Immunization and challenge infection
Many of the tested Salmonella antigens were capable to induce

cellular and humoral immune responses. To test if these responses

could confer protective immunity, we tested the 21 recombinant

Salmonella antigens in immunization/challenge infection experi-

ments in genetically susceptible BALB/c mice. Based on the

results, we selected 16 additional Salmonella antigens primarily from

the outer membrane, and tested them using the same experimental

immunization/challenge approach (however, we did not measure

their immunogenicity in convalescent mice). For simplicity, we

discuss results for both antigen sets together. Out of 37 tested

antigens, only few antigens enabled prolonged survival after oral

challenge infection with virulent Salmonella compared to control

immunization with the unrelated antigen GFP (Fig. 2; Tab. 1;

poor survival of PhoN-vaccinated animals confirmed recently

published data [26]). In fact, only two antigens (T0937 and T2672)

mediated protective immune responses with P-values below 0.05

in our small experimental groups of only five mice per antigen.

Replicate experiments with larger group sizes might yield

statistical significant results for additional candidates such as SseB

that has already been shown to be protective in two independent

previous studies. Such experiments will be required to select

individual antigens for vaccine development in future studies. On

the other hand, the primary focus of this study was to identify

antigen properties that correlate with protectivity. For this

purpose, the somewhat noisy survival times detected with small

animal groups were still helpful.

As an example, survival times did not correlate with CD4 T cell

responses (Fig. 3A) or serum antibody levels (Fig. 3B) during

natural infection of resistant mice. This could partially reflect

differences in MHC class II haplotypes (H2d in BALB/c vs. H2b in

129/Sv), courses of infection, and potential differences in Salmonella

biology in susceptible vs. resistant mice. However, a recent large-

scale study reports comprehensive immunogenicity data for

BALB/c mice and other mouse strains that had been immunized

with attenuated Salmonella, as well as for human patients [26].

Several antigens that prolonged survival of immunized BALB/c

mice after Salmonella challenge infection in our experiments, elicit

detectable antibody responses in various mouse strains including

BALB/c. However, none of these antigens was found to be

immunodominant [26] and antibodies to antigens IroN and CirA

with the longest survival times were not detected in this and

previous studies. This could reflect differential antigen expression

in virulent vs. attenuated Salmonella, different routes of adminis-

tration, and/or differential expression at various stages of disease

progression. Together, these data provide no evidence for

immunodominance in convalescent or immune individuals as a

prerequisite for protectivity.

Figure 1. Cellular and humoral immune responses of convalescent Salmonella-infected mice to recombinant Salmonella antigens. A)
Antigen-specific CD4 T cell frequencies as detected by CD154 upregulation (red) and IFNc (green) or IL-17 (blue) secretion. The data represent means
6 SE of three mice. Responses to Salmonella antigens in non-infected control mice were subtracted (see also Fig. S1). B) Serum antibody responses to
Salmonella antigens. The data represent means 6 SE of 11 convalescent mice (filled circles) and means 6 SE for ten non-infected control mice (open
circles).
doi:10.1371/journal.ppat.1002966.g001
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Interestingly, in vivo expression levels also did not correlate with

survival times (Fig. 4A). In fact, the two antigens that enabled the

longest survival, IroN and CirA, had in vivo expression levels that

were below our detection threshold. By comparison, antigens

T2461 and PhoN were highly expressed in vivo and induced

potent CD4 T cell and humoral responses in convalescent

individuals, yet failed to prolong survival (in agreement with

previous observations [26]).

In contrast to immunogenicity and in vivo abundance, antigen

localization seemed to be crucial (Fig. 4B). In fact, antigens

enabling prolonged survival times were exclusively associated with

the Salmonella surface, either as experimentally validated outer

membrane-associated lipoproteins [45], as outer membrane

proteins, or as the translocon complex of the type III secretion

system encoded by Salmonella pathogenicity island two (SPI-2)

(Tab. 1). These data suggested distinct immune responses to

Salmonella outer membrane/surface antigens that fundamentally

differ from those to internal antigens.

On the other hand, surface localization alone was not sufficient

for protectivity. As examples, membrane proteins PgtE, PagC, and

Tsx were highly expressed in vivo and PgtE and PagC elicited

potent CD4 T cell responses in convalescent individuals (Fig. 1A).

PagC is also well recognized by antibodies and CD4 T cells of

human typhoid fever patients [24]. However, PagC, PgtE, and

Tsx failed to prolong survival. Interestingly, structural models

revealed that these proteins were largely buried in the outer

membrane bilayer (Fig. 5), and their extracellular loops contained

at most one predicted CD4 T cell epitope each, and only up to two

linear antibody epitopes, respectively. Importantly, key amino

acids in exposed T cell epitopes differed among Salmonella serovars

which might have impaired cross-protectivity of serovar Typhi

antigens against serovar Typhimurium challenge infection. Similar

observations were also made for non-protective TolC, OmpC,

OmpD, and OmpF. By contrast, antigens IroN, CirA, and FepA

that enabled extended survival after challenge infection, had

extracellular loops with several highly conserved T and B cell

epitopes (Fig. 5). Further studies with larger data sets will be

required to validate the relevance of these structural properties for

protectivity.

Impact of Salmonella antigen localization in an
ovalbumin model

The strong bias for surface-associated Salmonella antigens might

have been expected based on previous data for model antigens

suggesting superior immunogenicity of surface antigens compared

to internal antigens [30,46–50]. However, these model antigen

Figure 2. Survival curves of mouse groups immunized with 37 different Salmonella antigens (thin lines) or the control antigen GFP
(thick dashed line). For better visualization, curves were slightly shifted. The longest survival was observed for antigens IroN and CirA. For statistical
analysis by log-rank test see Table 1.
doi:10.1371/journal.ppat.1002966.g002
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Figure 3. Comparison of Salmonella antigen protectivity against primary infection and immunogenicity in convalescent resistant
mice. A) Relationship between antigen protectivity against primary infection and cognate CD4 T cell responses in convalescent mice (same data as
Fig. 1A). Protectivity is expressed as ‘‘survival time extension’’, which is the difference in median survival time of a group of five immunized mice
compared to a control group of five mice that were immunized with GFP. B) Relationship between antigen protectivity and serum antibody
responses in convalescent mice (same data as Fig. 1B).
doi:10.1371/journal.ppat.1002966.g003

Figure 4. Salmonella antigen protectivity does not correlate with in vivo antigen abundance but depends on antigen localization
within the Salmonella cell. A) Relationship between antigen protectivity and in vivo abundance as determined by quantitative proteome analysis
of ex vivo purified Salmonella (means 6 SD for three independently infected mice; b.d., below detection threshold). B) Relationship between antigen
protectivity and antigen localization within Salmonella (C, cytosol; IM, inner membrane; P, periplasm; LP, outer-membrane associated lipoprotein;
OMP, outer membrane protein; S, surface). Statistical significance of differences between internal and outer membrane/surface antigens was tested
using the non-parametric Mann-Whitney U test.
doi:10.1371/journal.ppat.1002966.g004
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Figure 5. Structural models and exposed immune epitopes of various Salmonella outer membrane proteins. The outer membrane is
shown as a grey area, predicted CD4 T cell epitopes in exposed loops are shown in red, potential antibody binding sites are shown in blue, and
overlapping T and B cell epitopes are shown in magenta. Partially exposed epitopes are shown in pale colors. Amino acid residues that differ between
Salmonella enterica serovars Typhimurium and Typhi are shown in green. For TolC only the outer membrane-associated part is shown. LPS structures
as observed in FhuA-LPS crystals [93] are also shown.
doi:10.1371/journal.ppat.1002966.g005
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data were in striking contrast to results from us and others

demonstrating comparable immune responses to autologous

Salmonella antigens from all Salmonella compartments (Fig. 1A,B).

Furthermore, there was no obvious correlation between immuno-

genicity and survival times (Fig. 3A,B).

To better understand these discrepancies between model

antigens and autologous Salmonella antigens, we re-visited the

impact of antigen localization using a well-characterized, sensitive

model system in which a MHC II-restricted T cell epitope from

ovalbumin comprising amino acids 319 to 343 (OVA) is

recognized by adoptively transferred cognate T cell receptor

transgenic CD4 T cells [51,52]. We targeted the OVA epitope to

different Salmonella compartments by fusing it to various proteins

with known localization: GFP_OVA (cytosol [53]), OVA_MglB

(periplasm [54]), Lpp_OVA (inner leaflet of the outer membrane

[55]), and OVA_AIDA (outer leaflet of the outer membrane [56])

(Fig. 6A). To modulate expression levels, we used ribosome

binding sites with differential translation initiation efficiency [12].

We expressed these fusion proteins from an in vivo inducible

promoter [57] in an attenuated Salmonella enterica serovar

Typhimurium aroA strain [58]. Antigen expression and localization

was validated in in vitro cultures using cell fractionation followed

Figure 6. CD4 T cell responses to Salmonella expressing an ovalbumin model antigen in various compartments. A) Schematic overview
of fusion proteins that target an immunodominant ovalbumin epitope (OVA) to various Salmonella cell compartments. B) Flow cytometric analysis of
ovalbumin-specific CD4 T cell activation in a T cell receptor-transgenic adoptive transfer model. Mice were infected with control Salmonella
expressing GFP (left) or Salmonella expressing LPP_OVA (right). Ovalbumin-specific transgenic CD4 T cells were detected with a clonotypic
monoclonal antibody and analyzed for forward scatter and expression of the very early activation marker CD69. The dashed line was used to count
CD4 T cell blasts. Similar observations were made for more than hundred mice in several independent experiments. C) Relationship between
Salmonella Peyer’s patches colonization and OVA-specific CD4 T cell induction in mice infected with Salmonella expressing high levels of LPP_OVA
(filled circles) or low levels of GFP_OVA (open circles). Data represent means 6 SEM’s for groups of five to six animals from three independent
experiments. CD4 T cell blasts correlated with Salmonella Peyer’s patches colonization for both strains (Spearman test, P,0.05 in both cases). The
slopes of the two curves differed (ANCOVA; P,0.05). D) OVA-specific CD4 T cell induction in mice infected with Salmonella expressing OVA at various
levels (open circles, low abundance; filled circles, high abundance) in four different compartments. The dashed line represents CD4 T cell responses to
saturating levels of cytosolic OVA. The star represents data for Salmonella expressing moderate levels of cytosolic OVA together with cholera toxin B
and AIDA. Data represent means 6 SEM’s for groups of ten to twenty mice. Statistical significance of differences to Salmonella expressing saturating
levels of cytosolic OVA were tested using Mann-Whitney U test (*, P,0.05; **, P,0.01).
doi:10.1371/journal.ppat.1002966.g006
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by western blotting, trypsin treatment, and antibody binding (Fig. S2).

Interestingly, small fractions of both outer membrane antigens

LPP_OVA and partially processed OVA_AIDA were released to the

extracellular surroundings when expressed at high levels (Fig. S2C) in

agreement with previous findings for similar proteins [59–61].

We infected BALB/c mice with Salmonella strains by intragastric

gavage of 1010 CFU. All Salmonella strains colonized intestinal

Peyer’s patches with peak tissue loads of 36104 to 1.56105 CFU

at day seven post infection as observed before for attenuated

Salmonella aroA [62]. All constructs stably maintained their

respective ovalbumin-expression plasmids (.80% at 7 days post

infection). To determine antigen-specific CD4 T cell induction, we

adoptively transferred OVA-specific TCR-transgenic CD4 T cells

one day prior to Salmonella infection. OVA-specific T cells

upregulated the early activation marker CD69 and formed blasts

in mice infected with Salmonella expressing ovalbumin model

antigens, but not in mice infected with control Salmonella (Fig. 6B)

as observed previously [53]. CD4 T cell induction kinetics were

similar for all constructs and consistent with our previous

observations [53] suggesting a response to Salmonella in situ

antigen expression, but not to the inoculum [57,63].

To compare T cell responses against the various Salmonella

constructs, we measured T cell blast formation at peak Salmonella

colonization at day seven post infection. Salmonella tissue loads

varied somewhat between individual mice but for each construct,

there was a linear relationship between the number of ovalbumin-

specific DO11.10 blasts and Salmonella loads (Fig. 6C) in agreement

with our earlier observations [57]. To determine the specific

immunogenicity of each Salmonella strain, we calculated the

average ratio of DO11.10 CD4 T cell blasts per viable Salmonella

(i.e., the slopes in Fig. 6C) [57]. The data revealed comparable

immunogenicity of model antigens GFP_OVA and OVA_MglB

(Fig. 6D). In contrast, high-level expression of surface-associated

LPP_OVA and OVA_AIDA induced superior responses that

clearly surpassed responses even to saturating amounts [12] of

internal GFP_OVA.

The OVA_AIDA fusion protein contained a fragment of the

virulence factor AIDA from enteropathogenic E. coli and a cystein-

deficient variant of the cholera toxin B subunit from Vibrio cholerae

[64]. Both components might have stimulatory effects [65,66] that

could potentiate ovalbumin immunogenicity. To test this poten-

tially confounding factor, we compared Salmonella expressing a

suboptimal level of cytosolic GFP_OVA [12] (some 54.000 copies

per Salmonella cell) to Salmonella expressing the same amount of

GFP_OVA together with AIDA and cholera toxin B. Both strains

induced DO11.10 T cell blasts with similar efficacy (Fig. 6D)

Figure 7. Detection of intact and damaged Salmonella cells in infected mouse tissues. A) Flow cytometry of a spleen homogenate infected
with Salmonella sifB::gfp using 488 nm excitation. Gate 1 contains GFP-positive Salmonella. The inset shows the relationship between flow cytometry
data and plate counts for individual mice, the dashed line represents a 1:1 ratio. B) Confocal micrographs of liver cryosections infected with
Salmonella sifB::gfp that were stained with antibodies to Salmonella lipopolysaccharide (red) and macrophage marker CD68 (blue). Individual color
channels are shown with inverted grey scale for better visualization of weak staining. Micrographs represent typical observations for four
independently infected mice. C) Confocal micrographs of lipopolysaccharide-positive particles that lack detectable GFP (even when contrast was
increased compared to B). Such particles were absent in non-infected control sections.
doi:10.1371/journal.ppat.1002966.g007
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suggesting that AIDA and cholera toxin B expression had no

impact on the immunogenicity of Salmonella-encoded OVA.

Taken together, these findings suggested that antigens from all

Salmonella compartments could induce specific CD4 T cell

responses, but highly expressed outer membrane-associated

antigens were clearly superior in agreement with previous

observations in other model systems. However, these data were

in striking contrast to responses to autologous Salmonella antigens

(see discussion).

Distribution of intact and damaged Salmonella in
infected tissues

The fundamentally superior protectivity of surface-associated

Salmonella antigens might reflect their unique accessibility to

antigen processing and presentation in infected host cells in

contrast to internal Salmonella antigens that are shielded by the

Salmonella envelope, and thus remain invisible for the host immune

system until Salmonella is damaged and the bacterial cell breaks

open. To detect intact and damaged Salmonella in infected tissues,

we used cytosolic GFP as a marker for internal antigens.

Salmonella expressing GFP from the chromosomal in vivo

induced locus sifB were readily detected in infected tissue

homogenates using flow cytometry [12] (Fig. 7A). Flow cytometric

counts for GFP+ Salmonella closely correlated with viable counts as

determined by plating (Fig. 7A, inset) suggesting that detectable

GFP levels were present in all live Salmonella.

Confocal microscopy of infected spleen and liver sections

revealed many particles that were stained by a polyclonal antibody

to Salmonella lipopolysaccharide, had typical Salmonella size and

morphology, and contained GFP (Fig. 7B) as previously observed

[53] suggesting that these particles represented live intact

Salmonella. In addition, we also detected numerous lipopolysac-

charide-positive particles with distorted shapes that lacked

detectable GFP (Fig. 7C), and likely represented killed and

partially degraded Salmonella. Such particles were absent in non-

infected control sections. Some Salmonella killing during acute

infections had previously been proposed [67–69]. We observed

some infected cells containing both intact and damaged Salmonella,

but a large number of live Salmonella resided alone (or together with

other live Salmonella) in infected cells with no detectable dead

Salmonella. In such infected cells, internal Salmonella antigens were

thus shielded and inaccessible for immune recognition.

Discussion

There is an urgent medical need for an efficacious Salmonella

vaccine with broad coverage of invasive serovars. One important

bottleneck in the development of such a vaccine is the

identification of suitable protective antigens. In this study, we

identified broadly conserved S. Typhi antigen candidates that

prolonged survival after S. Typhimurium challenge infection in the

mouse typhoid fever model. The protectivity of some of these

candidates should be confirmed with larger experimental groups

to select the best antigen candidates for vaccine development in

future studies.

Two siderophore receptors (IroN, CirA) enabled the longest

survival (Tab. 1) consistent with previous studies that revealed

siderophore receptors including IroN as promising vaccine

antigens in other models [70–72]. Interestingly, siderophore

receptors are induced by iron starvation and/or activation of the

PhoPQ two component sensory system [73]. IroN and CirA

induction could thus contribute to increased protective efficacy of

membrane preparations from iron-starved Salmonella [74], or live

attenuated Salmonella phoQ24 with constitutive hyperactivation of

the PhoP response regulator [75].

On the other hand, all identified antigens still provided at most

partial protection against challenge infection with virulent

Salmonella suggesting a need for additional antigens. Unfortunately,

protective Salmonella antigens might be rather rare as even among

the 37 tested in vivo expressed antigens that were all highly

immunogenic during infection, only a small minority enabled

prolonged survival. OmpC, OmpD, and OmpF were previously

proposed as potential protective antigens based on data obtained

for enriched Salmonella membrane preparations. However, all three

antigens failed to protect in our model. This could reflect higher

stringency of our model (challenge infection with virulent

Salmonella vs. highly attenuated mutant Salmonella), denatured

three-dimensional structures of our recombinant antigen prepara-

tions vs. native antigens, and/or presence of undetected minor

protective antigens (such as IroN and CirA) besides OmpC,

OmpD, and OmpF in the previously used outer membrane

antigen preparations.

Additional protective Salmonella antigens could be identified by

comprehensive immunization/challenge experiments, but this

would require extensive animal experimentation. Antigen prior-

ization using relevant antigen properties could help to narrow

down the number of antigen candidates to more practical

numbers. Unfortunately, some previously proposed antigen

properties seemed to have limited relevance for protectivity in

our model. This included Salmonella in vivo expression levels,

sequence-based antigenicity predictions, and immunodominance

in convalescent individuals. Poor correlation of antigen immuno-

dominance with protective efficacy has also been observed in

tuberculosis [17]. On the other hand, immune recognition in

convalescent individuals can still provide valuable information

about antigen expression during at least some stage of infection

that might be difficult to obtain otherwise [23,29]. Such data thus

could greatly help to prioritize antigen candidates [26].

In contrast to antigen abundance and immunodominance,

surface-association appeared to be an essential prerequisite.

Surprisingly, some surface-associated proteins that enabled pro-

longed survival also included lipoproteins which were likely to

reside in the inner leaflet of the outer membrane facing the

internal periplasmic space with no exposure to the outside. It is

possible that some lipoproteins might flip across the outer

membrane as observed for other Gram-negative bacteria [76].

Moreover, some lipoprotein fraction is constantly released to the

outside through outer membrane vesicle shedding [59,60].

Several mechanisms could contribute to the striking superiority

of surface-associated antigens. Antibody responses are important

for full protection against virulent Salmonella [10], and protective

antibody responses must be directed against surface antigens [9].

On the other hand, CD4 T cells are even more important for

immunity to Salmonella at least in the mouse typhoid fever model

[10], and it is unclear why CD4 T cells should respond to surface-

associated antigens in a fundamentally different way compared to

the much larger number of internal antigens.

In fact, early cell culture experiments suggested no impact of

Salmonella antigen localization on CD4 T cell recognition of

infected cells [77]. However, in this study a large amount of

antigen was already present in the inoculum, and rapid killing of

the majority of phagocytosed Salmonella [78] would have released

this antigen from all Salmonella compartments. Several subsequent

in vivo studies suggested that surface-associated model antigens

might have intrinsically higher immunogenicity compared to

internal model antigens [30,46–50]. However, the various model

antigen targeting constructs could have differed in antigen in vivo
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expression levels, antigen stability, and epitope processing. Fusion

partners could also have direct immunomodulatory effects. We

therefore re-visited this issue and tried to control some of these

factors. Our results clearly supported the previous finding of

superior immunogenicity of highly expressed surface-associated

model antigens in Salmonella.

In surprising contrast to these data from model antigens,

however, humoral and cellular immune responses in Salmonella-

infected convalescent mice did not show any bias for surface-

associated autologous Salmonella antigens in this as well as in a

recent large-scale study [26]. Broad recognition of antigens from

all pathogens compartments has also been observed in Salmonella

Typhi-infected or Chlamydia-infected human patients

[24,25,29,43,44]. Model antigens and autologous antigens were

also discordant with respect to the impact of antigen abundance.

Specifically, our data for ovalbumin model antigens in this and a

previous study [12], as well as similar findings for Mycobacterium

bovis BCG overexpressing Ag85b [19], suggested that high in vivo

expression levels enhance antigen immunogenicity. However, for

autologous Salmonella antigens in vivo expression levels did not

correlate with protectivity. Striking discrepancies between results

for model antigens vs. autologous antigens have also been

observed in other pathogens [38].

Some of the discrepancies could reflect technical issues. In

particular, strong expression of foreign surface model antigens

might induce subtle alteration in Salmonella in vivo properties such

as increasing outer membrane vesicle shedding or alterations in

protein secretion that could affect antigen presentation and

immune recognition. Furthermore, model antigens might not be

representative of autologous antigens that may have been shaped

by host/pathogen co-evolution selecting for weak immunogenicity.

Regardless of the actual causes of these discrepancies, our data

indicated that in contrast to evidence from model antigens,

protective Salmonella surface-associated antigens were not more

immunogenic compared to internal antigens.

As an alternative explanation, surface-associated antigens might

become more rapidly available for immune recognition compared

to internal antigens that are only released after some pathogen

damage. This could be relevant since early immune responses

might facilitate infection control [32]. In the mouse typhoid fever

model, however, a detectable fraction of Salmonella is rapidly killed

early during infection as observed in this and previous studies

[67,69] similar to events during Mycobacterium infection [79].

Consistent with these observations, CD4 T cell induction kinetics

in the ovalbumin model system were similar for Salmonella strains

with internal or surface-associated OVA-expression.

Instead, we propose an alternative explanation based on the

observation that many live Salmonella resided alone, or together

with other live Salmonella, in infected host cells with no dead

Salmonella releasing their internal antigens. As a consequence,

Figure 8. Schematic model for cellular immunity to Salmonella. Salmonella (yellow) reside in intracellular vacuoles in infected host cells.
Salmonella possesses internal (green) and surface-associated (red) antigens. Left) Live Salmonella shield internal antigens, but some of their surface-
associated antigens are accessible for processing and presentation. As a consequence, T cells specific for Salmonella surface antigens can recognize
these infected cells and initiate antibacterial immune effector mechanisms. In contrast, T cells specific for internal Salmonella antigens fail to detect
host cells that contain exclusively intact Salmonella. Right) Dead Salmonella release internal antigens. As a consequence, both surface-exposed and
internal antigens can be processed, presented, and recognized by cognate T cells. However, this recognition is unproductive for infection control
since it targets Salmonella that are already dead.
doi:10.1371/journal.ppat.1002966.g008
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Salmonella internal antigens remained inaccessible for antigen

processing and presentation in these cells. In contrast, surface-

exposed Salmonella antigens, or antigens released by outer

membrane vesicle shedding, could be accessible for processing

and presentation to cognate CD4 T cells for initiation of protective

anti-Salmonella effector mechanisms (Fig. 8). In comparison, CD4 T

cells recognizing internal Salmonella antigens would have limited

impact on infection control because they miss many cells

containing live Salmonella and instead direct their responses to

host cells containing already dead Salmonella. According to this

model, surface-associated antigens thus differ fundamentally from

internal antigens because they are uniquely accessible in host cells

containing only live Salmonella.

Surface-associated/secreted antigens have been shown to be

crucial for CD8 T cell-dependent immunity to Listeria infection

[31,33]. Our data suggested that such antigens might also be

crucial for CD4 T cell mediated immunity to Salmonella and

potentially other intracellular pathogens. Interestingly, some

internal antigens have been shown to confer partial protection in

infectious diseases caused by intracellular pathogens such as

Leishmania [38] and Mycobacterium [37]. In these infections live and

dead pathogens often co-occur in the same host microenviron-

ments [80,81] suggesting that both internal and surface-associated

antigens might be available for T cell recognition and initiation of

antimicrobial immune effector mechanisms targeting both live and

already dead pathogens [82]. We speculate that full protection

might still require immune detection of all live pathogens including

those that reside in microenvironments with yet no accessible

internal antigens from dead pathogens. Further studies are

required to test this hypothesis.

Conclusion
This study suggested novel Salmonella antigens that conferred

partial protection against virulent Salmonella in a stringent typhoid

fever model. High sequence conservation among relevant Salmo-

nella serovars and cross-protection of serovar Typhi antigens

against serovar Typhimurium challenge infection, suggested that

some of these antigens might help to pave the way for a broadly

protective vaccine against systemic Salmonella infection. In addi-

tion, our findings suggested that surface-associated antigens might

represent particular promising antigens for both humoral and

cellular immunity to Salmonella, since recognition of surface

antigens uniquely enables detection and destruction of live

Salmonella in relevant host microenvironments. This crucial

importance of antigen localization could facilitate discovery of

additional protective antigens for Salmonella and potentially other

intracellular pathogens.

Materials and Methods

Ethics statement
All animal experiments were approved (license 2239, Kanto-

nales Veterinäramt Basel-Stadt) and performed according to local

guidelines (TschV, Basel) and the Swiss animal protection law

(TschG).

Cloning, expression, and purification of Salmonella
antigens

Antigens were PCR-amplified from Salmonella enterica serovar

Typhi Ty2 (or Salmonella enterica serovar Typhimurium SL1344

[58] for ompD), cloned as His6-fusions by conventional ligation into

pET22b, or by Enzyme Free Cloning into plasmid pLICHIS [83],

and overexpressed in E. coli BL21. GFP_His6 was cloned as

control antigen. Antigens were purified from washed inclusion

bodies using immobilized metal ion affinity chromatography

(Protino Ni TED 1000, Macherey Nagel) followed by ion

exchange chromatography (Ion exchange spin columns, Pierce

Thermo Scientific, cationic or anionic resins depending on antigen

isoelectric point).

Proteome analysis of ex vivo sorted Salmonella
Salmonella expressing the green fluorescent protein (GFP) were

sorted infected using flow cytometry as described [22]. Preparation

of tryptic peptides and analysis by LC-MS/MS was done essentially

as described [84] with some modifications. Given the limited sample

material Protein LoBind tubes and pipette tips (Axygen) were used

throughout the procedure. Frozen FACS sorted Salmonella pellets

were resuspended in 15 ml lysis buffer (100 mM ammonium

bicarbonate, 8 M urea, 0.1% RapiGest) and sonicated for

2630 seconds. The released proteins were reduced and alkylated,

and first digested for 4 hrs with sequencing grade LysC peptidase

(10 ng/ml; Promega) before overnight trypsin digestion. The

detergent was cleaved by adding 2M HCL and 5% TFA to final

concentrations of 50 mM and 0.5% respectively, and incubating for

45 min at 37uC. Prior to centrifugation to remove the cleaved

detergent (14,0006g, 10 min, 4uC) a mixture containing 32 heavy

labeled reference peptides were added to the samples (5*1025

fmoles per Salmonella for expected ‘‘high’’ abundance proteins,

5*1026 fmoles per Salmonella for expected ‘‘low’’ abundance

proteins; Tab. S1). The recovered peptides were desalted on C18

reverse-phase spin columns (Macrospin columns, Harvard appara-

tus), dried under vacuum and subjected to LC-MS/MS using an

LTQ-Orbitrap-Velos instrument (Thermo-Fischer Scientific). The

amount of material analyzed in a single shot in the MS depended on

the infection load, and corresponded to peptides derived from

between 5*105 and 2*106 sorted Salmonella, plus contaminating

mouse material which escaped detection in the cell sorter [22]. We

analyzed samples from seven independently infected mice. In order

to increase the number of Salmonella protein identifications, MS-

sequencing was focused on previously identified peptides from

Salmonella using the recently developed inclusion list driven workflow

[84]. Each sample was analyzed twice in succession in the MS to

verify technical reproducibility. Peptides and proteins were database

searched against a decoy database consisting of the SL1344 genome

sequence (ftp://ftp.sanger.ac.uk/pub/pathogens/Salmonella/),

GFP_OVA, 204 frequently observed contaminants, all mouse

entries from SwissProt (Version 57.12), and all sequences in reversed

order (total 42502 entries) using the Mascot search algorithm. The

search criteria were set as follows: full tryptic specificity was required

(cleavage after lysine or arginine residues); 2 missed cleavages were

allowed; carbamidomethylation (C) was set as fixed modification;

oxidation (M) as variable modification. The mass tolerance was set

to 10 ppm for precursor ions and 0.5 Da for fragment ions. The

false discovery rate was set to 1% for protein and peptide

identifications. In addition to Salmonella proteins a substantial

number of mouse proteins were identified in the samples as

previously noted [22]. Absolute quantities were determined for

those 18–20 ‘‘anchor’’ proteins that were detected along with a

corresponding labeled AQUA peptide using the Trans-Proteomic

Pipeline (TPP,V4.4.0). We then used the iBAQ method [40] to

establish absolute quantities of all remaining protein identifications,

with a linear model error of between 47 and 60%.

Construction of ovalbumin-expressing Salmonella
Translational fusions of the ovalbumin peptide containing

amino acids 319 to 343 to various proteins with differential

targeting in the Salmonella cell were constructed by PCR cloning.

All fusion genes were cloned into a pBR322-derived plasmid
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backbone [53] downstream of a Salmonella genome fragment

containing the in vivo inducible pagC promoter [57] and ribosomal

binding site 1 (AAGAA) or 2 (AGCAG) for low or high translation

initiation efficiencies [12]. To generate ova_aida, coding sequence

for the ovalbumin peptide (ova) was inserted between the signal

peptide derived from cholera toxin B and the HA tag in plasmid

pLAT260 [85]. A control plasmid coding for CTB_AIDA and

GFP_OVA was also constructed. To generate lpp_ova, lpp without

the C-terminal lysine codon that can cross-link to peptidoglycan

[86], was amplified from E. coli DH5a and fused with ova and a C-

terminal HA tag. To generate ova_mglB, mglB gene without the

signal peptide sequence was amplified from E. coli DH5a and fused

with a ctB signal sequence followed by ova and the HA tag. The

construction of gfp_ova has been described [87]. The various

plasmids were transformed into attenuated Salmonella enterica

serovar Typhimurium aroA SL3261 [58].

Biochemical analysis
Ovalbumin expression was assessed by western blotting with a

polyclonal antibody to ovalbumin (Sigma) that recognizes the OVA

peptide comprising amino acids 319 to 343 [53]. Salmonella outer

membranes were prepared by extraction with L-lauryl sarcosinate

as described [85]. Periplasm was prepared by chloroform extraction

as described [88]. Culture supernatants were sterile filtered (0,2 mm

pore size) and subjected to TCA precipitation [89]. To assess

ovalbumin surface accessibility, intact or lysed Salmonella cells were

treated with 50 mg ml21 trypsin at 37uC for 10 min. In addition,

Salmonella were stained with an antibody to the HA tag, and

examined by fluorescence microscopy.

Immune responses in convalescent mice
Female 8 to 12 weeks old 129/Sv mice were obtained from

Charles River. Mice were orally infected with 109 CFU Salmonella

enterica serovar Typhimurium SL1344 [58] from late log cultures

using a round-tip stainless steel needle. Control mice were sham-

infected. Mice were sacrificed 6 months after infection. Splenocytes

were isolated and tested for antigen-specific CD4 T cell responses as

described [41]. Unstimulated T cells from convalescent mice as well

as antigen-stimulated T cells from naı̈ve control mice showed only

weak background responses (Fig. S1). Some antigens gave also weak

responses for T cells from convalescent mice (depending on the

individual mouse). Together, these data suggested that antigen-

nonspecific background responses to E. coli contaminants that might

have been present in trace amounts in our antigen preparations did

not result in unspecific T cell responses in our assay. Plasma was

tested for antigen-specific IgG responses using ELISA with an IgG

calibration curve for absolute quantification.

Immunization and challenge experiments
Female, 8 to 12 weeks old BALB/c mice were obtained from

Charles River. Groups of 5 mice were immunized subcutaneously

with 10 mg antigen emulsified in complete Freund’s adjuvant

followed by a second immunization with incomplete Freund’s

adjuvant four weeks later. After additional four weeks, mice were

orally infected with 66105 CFU Salmonella enterica serovar

Typhimurium SL1344 [58] from late log cultures using a round-

tip stainless steel needle. Infected BALB/c were monitored twice

daily and sacrificed when moribund.

Ovalbumin-specific CD4 T cell responses
BALB/c and DO11.10 mice [51] were bred in the Bundesamt

für gesundheitlichen Verbraucherschutz und Veterinärmedizin

(Berlin, Germany) under specific-pathogen free conditions. Adop-

tive transfer of 46106 DO11.10 T cells into syngenic age- and sex-

matched BALB/c mice was performed one day before infection as

described [53]. For infection, attenuated Salmonella strains carrying

expression cassettes for various ovalbumin fusion proteins were

grown to late log phase and harvested. Bacteria were washed twice

and resuspended in LB containing 3% sodium bicarbonate. Doses

containing ca. 1010 cfu in 100 ml were administered intragastri-

cally to chimeric mice with a round-tip stainless steel needle. At

various time points post infection, mice were anesthetized and

sacrificed. DO11.10 T cell blast formation was determined by flow

cytometry as described [53]. Aliquots of the same Peyer’s patch

preparations were treated with 0.1% Triton x-100 to release

intracellular Salmonella for CFU determination by plating, and for

quantitation of GFP_OVA in vivo expression levels by two-color

flow cytometry as described [87]. Many TCR tg models show

substantial clonal expansion upon antigen stimulation. However,

in our Salmonella model we observe only weak and variable

accumulation of tg CD4 T cells in infected tissues which might

reflect the fact that even at peak Salmonella loads only about 1 ng

antigen is present [87]. Instead, blastogenesis as measured by

CD69 upregulation and increased forward scatter provides a

sensitive antigen-specific readout.

Detection of intact Salmonella in infected tissues
BALB/c mice with Salmonella loads of 106 to 107 in spleen and

liver were sacrificed. 10 mm cryosections were stained with

polyclonal rabbit antibodies to Salmonella lipopolysaccharide

(SIFIN) and anti-CD68 (abcam) followed by Alexa 546-conjugated

goat anti-rabbit and Alexa 647-conjugated goat anti-rat antibodies

(Invitrogen). Sections were examined by confocal microscopy

(Leica, SP5).

Structural models and epitope prediction
Structural models for selected Salmonella outer membrane

antigens based on solved structures of homologues were obtained

from SWISS-MODEL [90] available at http://swissmodel.expasy.

org. Linear B-cell epitopes were predicted using FBCPred [91]

available at http://ailab.cs.iastate.edu/bcpreds/predict.html using

an epitope length of 14 and 90% specificity. Peptides that bind to

MHC II I-Ad and/or I-Ed were predicted using RANKPEP [92]

available at http://imed.med.ucm.es/Tools/rankpep.html with a

binding threshold yielding 85% sensitivity for detection of well-

defined epitopes in MHCII haplotype databases (the default

setting of RANKPEP).

Supporting Information

Figure S1 Representative antigen-specific CD4 T cell
responses in convalescent and control mice. Cells were

stimulated with various antigens (shown are examples for T2461 and

T0937). CD4, CD154-double positive cells representing responding

cells were gated (upper panels) and analyzed for IFNc and IL-17

(lower panels). Background responses in control mice were subtracted

form responses in convalescent mice and reported in Tab. 1.

(TIF)

Figure S2 Expression and localization of ovalbumin
epitope fusion proteins in Salmonella. A) Anti-ovalbumin

immunoblot of total Salmonella cell lysates (36107 cfu) of strains

expressing either low (‘‘lo’’) or high (‘‘hi’’) levels of ovalbumin fused

to different proteins. Expected molecular weights were: GFP_OVA,

30 kDa; OVA_MglB, 38 kDa; Lpp_OVA, 11 kDa; OVA_AIDA,

67 kDa. B) Localization of various fusion proteins. OVA_MglB was

detected in isolated periplasm fractions (Ppl.) in similar quantities as

in whole cell lysates (Lys.). Lpp_OVA was detected in isolated outer
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membrane fractions. It was unaccessible for trypsin degradation in

intact Salmonella but readily digestible in isolated membrane

fractions. Immunostaining of intact Salmonella with a fluorescent

antibody showed no detectable signal. OVA_AIDA was detected in

isolated outer membranes and accessible to trypsin digestion even in

intact Salmonella suggesting surface localization. This was confirmed

by immunostaining. C) Immunoblot of culture supernatants of

4.561011 CFU (TCA precipitation). Endogenous Salmonella pro-

teins with apparent molecular weights of ca. 23 and 67 kDa,

respectively, cross-react with the anti-ovalbumin polyclonal anti-

body (empty arrowheads). These bands were also detected in non-

recombinant Salmonella. In addition, an OVA-containing protein of

around 11 kDa was released from Lpp_OVA expressing Salmonella

(black arrowhead), whereas a 30 kDa fragment was released from

Salmonella expressing high amounts of OVA_AIDA.

(TIF)

Table S1 List of isotope labeled peptides used for
protein quantification.

(XLS)

Acknowledgments

We thank Claus Lattemann, Thomas Meyer, and Reinhold Förster for

helpful discussions and generous support.

Author Contributions

Conceived and designed the experiments: SB YW KR AKS DK AS NB

DB. Performed the experiments: SB YW KR BC AKS AM AS DK NB.

Analyzed the data: SB YW KR AKS DK AS NB DB. Wrote the paper: SB

KR DB.

References

1. (2008) Typhoid vaccines: WHO position paper. Wkly Epidemiol Rec 83: 49–59.

2. Alcaine SD, Warnick LD, Wiedmann M (2007) Antimicrobial resistance in

nontyphoidal Salmonella. J Food Prot 70: 780–790.

3. Ahmed D, D’Costa LT, Alam K, Nair GB, Hossain MA (2006) Multidrug-

resistant Salmonella enterica serovar typhi isolates with high-level resistance to

ciprofloxacin in Dhaka, Bangladesh. Antimicrob Agents Chemother 50: 3516–

3517.

4. Graham SM (2010) Nontyphoidal salmonellosis in Africa. Curr Opin Infect Dis

23: 409–414.

5. Podda A, Saul AJ, Arora R, Bhutta Z, Sinha A, et al. (2010) Conjugate vaccines

for enteric fever: proceedings of a meeting organized in New Delhi, India in

2009. J Infect Dev Ctries 4: 404–411.

6. Crump JA, Mintz ED (2010) Global trends in typhoid and paratyphoid Fever.

Clin Infect Dis 50: 241–246.

7. McSorley SJ, Cookson BT, Jenkins MK (2000) Characterization of CD4+ T cell

responses during natural Infection with Salmonella typhimurium. J Immunol 164:

986–993.

8. Gil-Cruz C, Bobat S, Marshall JL, Kingsley RA, Ross EA, et al. (2009) The

porin OmpD from nontyphoidal Salmonella is a key target for a protective B1b

cell antibody response. Proc Natl Acad Sci U S A 106: 9803–9808.

9. Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era

of genomics. Immunity 33: 530–541.

10. Dougan G, John V, Palmer S, Mastroeni P (2011) Immunity to salmonellosis.

Immunol Rev 240: 196–210.

11. Khan MI, Ochiai RL, Clemens JD (2010) Population impact of Vi capsular

polysaccharide vaccine. Expert Rev Vaccines 9: 485–496.

12. Rollenhagen C, Sorensen M, Rizos K, Hurvitz R, Bumann D (2004) Antigen

selection based on expression levels during infection facilitates vaccine

development for an intracellular pathogen. Proc Natl Acad Sci U S A 101:

8739–8744.

13. Gondwe EN, Molyneux ME, Goodall M, Graham SM, Mastroeni P, et al.

(2010) Importance of antibody and complement for oxidative burst and killing of

invasive nontyphoidal Salmonella by blood cells in Africans. Proc Natl Acad

Sci U S A 107: 3070–3075.

14. Alaniz RC, Deatherage BL, Lara JC, Cookson BT (2007) Membrane vesicles are

immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic

cells, prime B and T cell responses, and stimulate protective immunity in vivo.

J Immunol 179: 7692–7701.

15. MacLennan CA, Gilchrist JJ, Gordon MA, Cunningham AF, Cobbold M, et al.

(2010) Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-

infected African adults. Science 328: 508–512.

16. Stober CB, Lange UG, Roberts MT, Gilmartin B, Francis R, et al. (2006) From

genome to vaccines for leishmaniasis: screening 100 novel vaccine candidates

against murine Leishmania major infection. Vaccine 24: 2602–2616.

17. Sable SB, Plikaytis BB, Shinnick TM (2007) Tuberculosis subunit vaccine

development: impact of physicochemical properties of mycobacterial test

antigens. Vaccine 25: 1553–1566.

18. Lee SJ, McLachlan JB, Kurtz JR, Fan D, Winter SE, et al. (2012) Temporal

expression of bacterial proteins instructs host CD4 T cell expansion and th17

development. PLoS Pathog 8: e1002499.

19. Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A, et al. (2011) Intravital

imaging reveals limited antigen presentation and T cell effector function in

mycobacterial granulomas. Immunity 34: 807–819.

20. Heithoff DM, Conner CP, Hanna PC, Julio SM, Hentschel U, et al. (1997)

Bacterial infection as assessed by in vivo gene expression. Proc Natl Acad

Sci U S A 94: 934–939.

21. Bumann D, Valdivia RH (2007) Identification of host-induced pathogen genes

by differential fluorescence induction reporter systems. Nat Protoc 2: 770–777.

22. Becker D, Selbach M, Rollenhagen C, Ballmaier M, Meyer TF, et al. (2006)

Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature
440: 303–307.

23. Rollins SM, Peppercorn A, Hang L, Hillman JD, Calderwood SB, et al. (2005)

In vivo induced antigen technology (IVIAT). Cell Microbiol 7: 1–9.

24. Harris JB, Baresch-Bernal A, Rollins SM, Alam A, LaRocque RC, et al. (2006)
Identification of in vivo-induced bacterial protein antigens during human

infection with Salmonella enterica serovar Typhi. Infect Immun 74: 5161–5168.

25. Hu Y, Cong Y, Li S, Rao X, Wang G, et al. (2009) Identification of in vivo

induced protein antigens of Salmonella enterica serovar Typhi during human
infection. Sci China C Life Sci 52: 942–948.

26. Lee SJ, Liang L, Juarez S, Nanton MR, Gondwe EN, et al. (2012) Identification

of a common immune signature in murine and human systemic salmonellosis.
Proc Natl Acad Sci U S A 109: 4998–5003.

27. Lundegaard C, Hoof I, Lund O, Nielsen M (2010) State of the art and challenges

in sequence based T-cell epitope prediction. Immunome Res 6 Suppl 2: S3.

28. Maybeno M, Redeker A, Welten SP, Peters B, Loughhead SM, et al. (2012)

Polyfunctional CD4(+) T cell responses to immunodominant epitopes correlate
with disease activity of virulent Salmonella. PLoS One 7: e43481.

29. Finco O, Frigimelica E, Buricchi F, Petracca R, Galli G, et al. (2011) Approach

to discover T- and B-cell antigens of intracellular pathogens applied to the design
of Chlamydia trachomatis vaccines. Proc Natl Acad Sci U S A 108: 9969–9974.

30. Hess J, Gentschev I, Miko D, Welzel M, Ladel C, et al. (1996) Superior efficacy

of secreted over somatic antigen display in recombinant Salmonella vaccine

induced protection against listeriosis. Proc Natl Acad Sci U S A 93: 1458–1463.

31. Shen H, Miller JF, Fan X, Kolwyck D, Ahmed R, et al. (1998) Compartmen-
talization of bacterial antigens: differential effects on priming of CD8 T cells and

protective immunity. Cell 92: 535–545.

32. Kaufmann SH, Hess J (1999) Impact of intracellular location of and antigen
display by intracellular bacteria: implications for vaccine development. Immunol

Lett 65: 81–84.

33. Zenewicz LA, Foulds KE, Jiang J, Fan X, Shen H (2002) Nonsecreted bacterial
proteins induce recall CD8 T cell responses but do not serve as protective

antigens. J Immunol 169: 5805–5812.

34. Pepper M, Dzierszinski F, Crawford A, Hunter CA, Roos D (2004)

Development of a system to study CD4+-T-cell responses to transgenic
ovalbumin-expressing Toxoplasma gondii during toxoplasmosis. Infect Immun

72: 7240–7246.

35. Bergman MA, Cummings LA, Barrett SL, Smith KD, Lara JC, et al. (2005)
CD4+ T cells and toll-like receptors recognize Salmonella antigens expressed in

bacterial surface organelles. Infect Immun 73: 1350–1356.

36. Prickett S, Gray PM, Colpitts SL, Scott P, Kaye PM, et al. (2006) In vivo

recognition of ovalbumin expressed by transgenic Leishmania is determined by its
subcellular localization. J Immunol 176: 4826–4833.

37. Andersen P, Doherty TM (2005) TB subunit vaccines–putting the pieces

together. Microbes Infect 7: 911–921.

38. Goldszmid RS, Sher A (2010) Processing and presentation of antigens derived
from intracellular protozoan parasites. Curr Opin Immunol 22: 118–123.

39. Tsolis RM, Xavier MN, Santos RL, Baumler AJ (2011) How to become a top

model: The impact of animal experimentation on human Salmonella disease
research. Infect Immun 79: 1806–1814.

40. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al. (2011) Global

quantification of mammalian gene expression control. Nature 473: 337–342.

41. Kirchhoff D, Frentsch M, Leclerk P, Bumann D, Rausch S, et al. (2007)

Identification and isolation of murine antigen-reactive T cells according to
CD154 expression. Eur J Immunol 37: 2370–2377.

42. Cookson BT, Bevan MJ (1997) Identification of a natural T cell epitope

presented by Salmonella- infected macrophages and recognized by T cells from
orally immunized mice. J Immunol 158: 4310–4319.

Identification of Salmonella Vaccine Antigens

PLOS Pathogens | www.plospathogens.org 15 October 2012 | Volume 8 | Issue 10 | e1002966



43. Sheikh A, Khanam F, Sayeed MA, Rahman T, Pacek M, et al. (2011)

Interferon-gamma and proliferation responses to Salmonella enterica Serotype
Typhi proteins in patients with S. Typhi Bacteremia in Dhaka, Bangladesh. PLoS

Negl Trop Dis 5: e1193.

44. Charles RC, Sheikh A, Krastins B, Harris JB, Bhuiyan MS, et al. (2010)
Characterization of anti-Salmonella enterica serotype Typhi antibody responses in

bacteremic Bangladeshi patients by an immunoaffinity proteomics-based
technology. Clin Vaccine Immunol 17: 1188–1195.

45. Chooneea D, Karlsson R, Encheva V, Arnold C, Appleton H, et al. (2010)

Elucidation of the outer membrane proteome of Salmonella enterica serovar
Typhimurium utilising a lipid-based protein immobilization technique. BMC

Microbiol 10: 44.

46. Lee JS, Shin KS, Pan JG, Kim CJ (2000) Surface-displayed viral antigens on
Salmonella carrier vaccine. Nat Biotechnol 18: 645–648.

47. Kang HY, Curtiss R, 3rd (2003) Immune responses dependent on antigen
location in recombinant attenuated Salmonella typhimurium vaccines following oral

immunization. FEMS Immunol Med Microbiol 37: 99–104.

48. Rizos K, Lattemann CT, Bumann D, Meyer TF, Aebischer T (2003)
Autodisplay: efficacious surface exposure of antigenic UreA fragments from

Helicobacter pylori in Salmonella vaccine strains. Infect Immun 71: 6320–6328.

49. Galen JE, Zhao L, Chinchilla M, Wang JY, Pasetti MF, et al. (2004) Adaptation
of the endogenous Salmonella enterica serovar Typhi clyA-encoded hemolysin for

antigen export enhances the immunogenicity of anthrax protective antigen
domain 4 expressed by the attenuated live-vector vaccine strain CVD 908-htrA.

Infect Immun 72: 7096–7106.

50. Panthel K, Meinel KM, Domenech VE, Retzbach H, Igwe EI, et al. (2005)
Salmonella pathogenicity island 2-mediated overexpression of chimeric SspH2

proteins for simultaneous induction of antigen-specific CD4 and CD8 T cells.
Infect Immun 73: 334–341.

51. Murphy KM, Heimberger AB, Loh DY (1990) Induction by antigen of

intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250:
1720–1723.

52. Pape KA, Kearney ER, Khoruts A, Mondino A, Merica R, et al. (1997) Use of

adoptive transfer of T-cell-antigen-receptor-transgenic T cell for the study of T-
cell activation in vivo. Immunol Rev 156: 67–78.

53. Bumann D (2001) In vivo visualization of bacterial colonization, antigen
expression, and specific T-cell induction following oral administration of live

recombinant Salmonella enterica serovar Typhimurium. Infect Immun 69: 4618–

4626.

54. Scholle A, Vreemann J, Blank V, Nold A, Boos W, et al. (1987) Sequence of the

mglB gene from Escherichia coli K12: comparison of wild-type and mutant
galactose chemoreceptors. Mol Gen Genet 208: 247–253.

55. Braun V (1975) Covalent lipoprotein from the outer membrane of Escherichia coli.

Biochim Biophys Acta 415: 335–377.

56. Benz I, Schmidt MA (1989) Cloning and expression of an adhesin (AIDA-I)

involved in diffuse adherence of enteropathogenic Escherichia coli. Infect Immun

57: 1506–1511.

57. Bumann D (2001) Regulated antigen expression in live recombinant Salmonella

enterica serovar Typhimurium strongly affects colonization capabilities and
specific CD4(+)-T-cell responses. Infect Immun 69: 7493–7500.

58. Hoiseth SK, Stocker BA (1981) Aromatic-dependent Salmonella typhimurium are

non-virulent and effective as live vaccines. Nature 291: 238–239.

59. Zhang X, Kelly SM, Bollen WS, Curtiss R (1997) Characterization and

immunogenicity of Salmonella typhimurium SL1344 and UK-1 delta crp and delta

cdt deletion mutants. Infect Immun 65: 5381–5387.

60. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, et al. (1999) Cell

activation and apoptosis by bacterial lipoproteins through toll-like receptor-2.
Science 285: 736–739.

61. Ruiz-Olvera P, Ruiz-Perez F, Sepulveda NV, Santiago-Machuca A, Maldo-

nado-Rodriguez R, et al. (2003) Display and release of the Plasmodium falciparum

circumsporozoite protein using the autotransporter MisL of Salmonella enterica.

Plasmid 50: 12–27.

62. Dunstan SJ, Simmons CP, Strugnell RA (1998) Comparison of the abilities of
different attenuated Salmonella typhimurium strains to elicit humoral immune

responses against a heterologous antigen. Infect Immun 66: 732–740.

63. Bumann D (2003) T cell receptor-transgenic mouse models for studying cellular

immune responses to Salmonella in vivo. FEMS Immunol Med Microbiol 37:

105–109.

64. Maurer J, Jose J, Meyer TF (1997) Autodisplay: one-component system for

efficient surface display and release of soluble recombinant proteins from

Escherichia coli. J Bacteriol 179: 794–804.

65. Eriksson K, Holmgren J (2002) Recent advances in mucosal vaccines and

adjuvants. Curr Opin Immunol 14: 666–672.

66. Shreedhar VK, Kelsall BL, Neutra MR (2003) Cholera toxin induces migration

of dendritic cells from the subepithelial dome region to T- and B-cell areas of

Peyer’s patches. Infect Immun 71: 504–509.

67. Hormaeche CE (1980) The in vivo division and death rates of Salmonella

typhimurium in the spleens of naturally resistant and susceptible mice measured by
the superinfecting phage technique of Meynell. Immunology 41: 973–979.

68. Benjamin WH, Jr., Hall P, Roberts SJ, Briles DE (1990) The primary effect of

the Ity locus is on the rate of growth of Salmonella typhimurium that are relatively
protected from killing. J Immunol 144: 3143–3151.

69. Grant AJ, Restif O, McKinley TJ, Sheppard M, Maskell DJ, et al. (2008)
Modelling within-host spatiotemporal dynamics of invasive bacterial disease.

PLoS Biol 6: e74.

70. Kaneshige T, Yaguchi K, Ohgitani T (2009) Siderophore receptor IroN is an
important protective antigen against Salmonella infection in chickens. Avian Dis

53: 563–567.
71. Baghal SM, Gargari SL, Rasooli I (2010) Production and immunogenicity of

recombinant ferric enterobactin protein (FepA). Int J Infect Dis 14 Suppl 3:
e166–170.

72. Skaar EP (2010) The battle for iron between bacterial pathogens and their

vertebrate hosts. PLoS Pathog 6: e1000949.
73. Yu JL, Guo L (2011) Quantitative proteomic analysis of Salmonella enterica serovar

Typhimurium under PhoP/PhoQ activation conditions. J Proteome Res 10:
2992–3002.

74. Sood S, Rishi P, Dhawan V, Sharma S, Ganguly NK (2005) Protection

mediated by antibodies to iron-regulated outer-membrane proteins of S. typhi in
a mouse peritonitis model. Mol Cell Biochem 273: 69–78.

75. Miller SI, Mekalanos JJ (1990) Constitutive expression of the phoP regulon
attenuates Salmonella virulence and survival within macrophages. J Bacteriol 172:

2485–2490.
76. Martens EC, Koropatkin NM, Smith TJ, Gordon JI (2009) Complex glycan

catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm.

J Biol Chem 284: 24673–24677.
77. Wick MJ, Harding CV, Normark SJ, Pfeifer JD (1994) Parameters that influence

the efficiency of processing antigenic epitopes expressed in Salmonella typhimurium.
Infect Immun 62: 4542–4548.

78. Buchmeier NA, Libby SJ (1997) Dynamics of growth and death within a

Salmonella typhimurium population during infection of macrophages.
Can J Microbiol 43: 29–34.

79. Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, et al. (2009) A
replication clock for Mycobacterium tuberculosis. Nat Med 15: 211–214.

80. Ridley MJ, Wells CW (1986) Macrophage-parasite interaction in the lesions of
cutaneous leishmaniasis. An ultrastructural study. Am J Pathol 123: 79–85.

81. Hoff DR, Ryan GJ, Driver ER, Ssemakulu CC, De Groote MA, et al. (2011)

Location of intra- and extracellular M. tuberculosis populations in lungs of mice
and guinea pigs during disease progression and after drug treatment. PLoS One

6: e17550.
82. Filipe-Santos O, Pescher P, Breart B, Lippuner C, Aebischer T, et al. (2009) A

dynamic map of antigen recognition by CD4 T cells at the site of Leishmania major

infection. Cell Host Microbe 6: 23–33.
83. de Jong RN, Daniels MA, Kaptein R, Folkers GE (2006) Enzyme free cloning

for high throughput gene cloning and expression. J Struct Funct Genomics 7:
109–118.

84. Schmidt A, Beck M, Malmstrom J, Lam H, Claassen M, et al. (2011) Absolute
quantification of microbial proteomes at different states by directed mass

spectrometry. Mol Syst Biol 7: 510.

85. Kramer U, Rizos K, Apfel H, Autenrieth IB, Lattemann CT (2003) Autodisplay:
development of an efficacious system for surface display of antigenic

determinants in Salmonella vaccine strains. Infect Immun 71: 1944–1952.
86. Zhang WY, Wu HC (1992) Alterations of the carboxyl-terminal amino acid

residues of Escherichia coli lipoprotein affect the formation of murein-bound

lipoprotein. J Biol Chem 267: 19560–19564.
87. Bumann D (2002) Examination of Salmonella gene expression in an infected

mammalian host using the green fluorescent protein and two-colour flow
cytometry. Mol Microbiol 43: 1269–1283.

88. Ames GF, Prody C, Kustu S (1984) Simple, rapid, and quantitative release of

periplasmic proteins by chloroform. J Bacteriol 160: 1181–1183.
89. Komoriya K, Shibano N, Higano T, Azuma N, Yamaguchi S, et al. (1999)

Flagellar proteins and type III-exported virulence factors are the predominant
proteins secreted into the culture media of Salmonella typhimurium. Mol Microbiol

34: 767–779.
90. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-

MODEL Repository and associated resources. Nucleic Acids Res 37: D387–392.

91. El-Manzalawy Y, Honavar V (2010) Recent advances in B-cell epitope
prediction methods. Immunome Res 6 Suppl 2: S2.

92. Reche PA, Glutting JP, Zhang H, Reinherz EL (2004) Enhancement to the
RANKPEP resource for the prediction of peptide binding to MHC molecules

using profiles. Immunogenetics 56: 405–419.

93. Ferguson AD, Welte W, Hofmann E, Lindner B, Holst O, et al. (2000) A
conserved structural motif for lipopolysaccharide recognition by procaryotic and

eucaryotic proteins. Structure 8: 585–592.

Identification of Salmonella Vaccine Antigens

PLOS Pathogens | www.plospathogens.org 16 October 2012 | Volume 8 | Issue 10 | e1002966


