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Abstract

Background: Plague was introduced to Madagascar in 1898 and continues to be a significant human health problem. It
exists mainly in the central highlands, but in the 1990s was reintroduced to the port city of Mahajanga, where it caused
extensive human outbreaks. Despite its prevalence, the phylogeography and molecular epidemiology of Y. pestis in
Madagascar has been difficult to study due to the great genetic similarity among isolates. We examine island-wide
geographic-genetic patterns based upon whole-genome discovery of SNPs, SNP genotyping and hypervariable variable-
number tandem repeat (VNTR) loci to gain insight into the maintenance and spread of Y. pestis in Madagascar.

Methodology/Principal Findings: We analyzed a set of 262 Malagasy isolates using a set of 56 SNPs and a 43-locus multi-
locus VNTR analysis (MLVA) system. We then analyzed the geographic distribution of the subclades and identified patterns
related to the maintenance and spread of plague in Madagascar. We find relatively high levels of VNTR diversity in addition
to several SNP differences. We identify two major groups, Groups I and II, which are subsequently divided into 11 and 4
subclades, respectively. Y. pestis appears to be maintained in several geographically separate subpopulations. There is also
evidence for multiple long distance transfers of Y. pestis, likely human mediated. Such transfers have resulted in the
reintroduction and establishment of plague in the port city of Mahajanga, where there is evidence for multiple transfers
both from and to the central highlands.

Conclusions/Significance: The maintenance and spread of Y. pestis in Madagascar is a dynamic and highly active process
that relies on the natural cycle between the primary host, the black rat, and its flea vectors as well as human activity.
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Introduction

Throughout recorded history, Yersinia pestis, etiologic agent of

plague, has spread multiple times from foci in Central Asia in

greatly widening swaths as human-mediated transport became

more efficient [1]. Plague attained its current global distribution

during the current ‘‘third’’ pandemic, which began in 1855 in

the Chinese province of Yünnan, when it was introduced to

many previously unaffected countries via infected rats on steam

ships [2]. Plague caused widespread outbreaks during this

introduction period (,1900 A.D.), and though disease incidence

has since largely decreased, plague remains a significant human

health threat due to the severe and often fatal nature of the

disease, the many natural plague foci [2] and its potential as a

bioterror agent (it is currently classified as a Class A Select

Agent [3]). Plague is of particular significance in Madagascar,

which has reported some of the highest human plague case

numbers (18%–60% of the world total each year between 1995

and 2009) [4] and was the origin of a natural multi-drug

resistant strain of Y. pestis [5,6].
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Plague has been a problem in Madagascar since its introduction

during the current pandemic. It was first introduced to Toamasina

in 1898 [7], likely via India [1], with outbreaks in other coastal

cities soon after. In 1921, plague reached the capital, Antananar-

ivo, likely via infected rats transported on the railroad linking

Toamasina and Antananarivo. Subsequent rat epizootics signaled

the establishment of plague in the central highlands [7]. Plague

then disappeared from the coast and now exists within two large

areas in the central and northern highlands above 800 m in

elevation [8]. This elevational distribution of plague is linked to the

presence of the flea vectors Xenopsylla cheopis and Synopsyllus

fonquerniei, which are less abundant and absent, respectively, below

800 m [9,10]. Plague has never disappeared from this region and

although it was relatively controlled in the 1950s due to public

hygiene improvements and the introduction of antibiotics and

insecticides, disease incidence began increasing in 1989 [8,11,12].

Human plague cases peaked in 1997 but continue to occur at high

frequencies, making Madagascar among the top three countries

for human plague cases during the past 15 years [4].

A third, newly emerged plague focus outside the central and

northern highlands is the port city of Mahajanga, located

,400 km by air from Antananarivo [8]. Plague first appeared in

Mahajanga during an outbreak in 1902. Subsequent outbreaks

occurred in 1907 and between 1924 and 1928 [7]. Plague then

disappeared from Mahajanga for a period of 62 years before

reappearing during a large outbreak in 1991 [13]. Subsequent

outbreaks occurred from 1995–1999 [14–16]. During this time,

the Mahajanga focus was responsible for ,30% of the reported

human plague cases in Madagascar [14]. Interestingly, this focus

likely represents one of the only examples of plague being

reintroduced to an area where it had gone extinct, rather than

emergence from a silently cycling rodent reservoir without telltale

human cases [17].

Molecular subtyping of Y. pestis for epidemiological tracking has

been difficult due to a lack of genetic diversity [18]. SNP

genotyping [1,19,20], ribotyping [21], IS100 insertion element

restriction fragment length polymorphism (RFLP) analysis [18],

PCR-based IS100 genotyping [19,22] and pulsed-field gel

electrophoresis (PFGE) [23] have been used to differentiate global

isolate collections, however, SNP genotyping provides the most

robust phylogenetic reconstructions. SNP genotyping [1], ribotyp-

ing [24], IS100 insertion element RFLP analysis [25], different

region (DFR) analysis [26], clustered regularly interspaced short

palindromic repeats (CRISPR) analysis [27], ERIC-PCR [28],

ERIC-BOX-PCR [28] and PFGE [25,29] have shown limited to

moderate ability in differentiating isolates on a regional scale. Of

these, ribotyping has been applied to a set of 187 Malagasy

isolates, but only revealed four ribotypes, three of which were

unique to Madagascar [24]. SNP genotyping of 82 Malagasy

isolates provided greater and more phylogenetically informative

resolution, revealing two major groups and an additional 10

subgroups derived from these two major groups that were mostly

isolate-specific [1]. In contrast to these other molecular subtyping

methods, multi-locus variable-number tandem repeat (VNTR)

analysis (MLVA) has shown high discriminatory power at global

[19,30,31], regional [30,32–35] and local scales [32], indicating its

likely usefulness for further differentiation among Y. pestis isolates

from Madagascar.

The use of SNPs and MLVA together, in a hierarchical

approach, has been successfully applied to clonal, recently

emerged pathogens [36–38]. Point mutations that result in SNPs

occur at very low rates, making SNPs relatively rare in the

genome, but discoverable through intensive sampling (i.e., whole

genome sequencing). In addition, since each SNP likely occurred

only once in the evolutionary history of an organism, SNPs

represent highly stable phylogenetic markers that can be used for

identifying key phylogenetic positions [36]. However, SNPs

discovered from a limited number of whole genome sequences

will have limited resolving power [36] since they will only be able

to identify phylogenetic groups along the evolutionary path(s)

linking the sequenced genomes [39]. In contrast, VNTRs possess

very high mutation rates and multiple allele states, allowing them

to provide a high level of resolution among isolates. Unfortunately,

these high mutation rates can lead to mutational saturation and

homoplasy which can obscure deeper phylogenetic relationships,

leading to inaccurate phylogenies. Using these two marker types

together, in a nested hierarchical approach, with SNPs used to

identify major genetic groups followed by VNTRs to provide

resolution within those groups, allows for both a deeply rooted

phylogenetic hypothesis and high resolution discrimination among

closely related isolates [36].

We investigated the phylogeography and molecular epidemiol-

ogy of Y. pestis in Madagascar through extensive genotyping and

mapping of genetic groups. We genotyped 262 Malagasy isolates

from 25 districts from 1939–2005 using 56 SNPs and a 43-marker

MLVA system to identify island specific subclades. We then

spatially mapped the subclades to examine island-wide geograph-

ic-genetic patterns and potential transmission routes.

Methods

Ethics Statement
The DNAs analyzed in this study (Table S1) were extracted

from Y. pestis cultures that were previously isolated by the

Malagasy Central Laboratory for plague and Institut Pasteur de

Madagascar as part of Madagascar’s national plague surveillance

plan. The Malagasy Ministry of Health, as part of this national

plague surveillance plan, requires declaration of all suspected

human plague cases and collection of biological samples from

those cases. These biological samples are analyzed by the

Malagasy Central Laboratory for plague and Institut Pasteur de

Madagascar which also maintains any cultures derived from these

samples. These cultures are all de-linked from the patients from

Author Summary

Plague, caused by the bacterium Yersinia pestis, has been a
problem in Madagascar since it was introduced in 1898. It
mainly affects the central highlands, but also has caused
several large outbreaks in the port city of Mahajanga, after
it was reintroduced there in the 1990s. Despite its
prevalence, the genetic diversity and related geographic
distribution of different genetic groups of Y. pestis in
Madagascar has been difficult to study due to the great
genetic similarity among isolates. We subtyped a set of
Malagasy isolates and identified two major genetic groups
that were subsequently divided into 11 and 4 subgroups,
respectively. Y. pestis appears to be maintained in several
geographically separate subpopulations. There is also
evidence for multiple long distance transfers of Y. pestis,
likely human mediated. Such transfers have resulted in the
reintroduction and establishment of plague in the port city
of Mahajanga where there is evidence for multiple
transfers both from and to the central highlands. The
maintenance and spread of Y. pestis in Madagascar is a
dynamic and highly active process that relies on the
natural cycle between the primary host, the black rat, and
its flea vectors as well as human activity.
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whom they originated and analyzed anonymously if used in any

research study. Thus, for purposes of this study, all of the DNAs

derived from Y. pestis cultures from human patients were analyzed

anonymously. No Malagasy review board existed during the

collection period of the cultures (1939–2001) from which the

DNAs used in this study were derived. In addition, the

Institutional Review Board of Northern Arizona University, where

the DNA genotyping was done, did not require review of the

research due to the anonymous nature of the samples.

DNAs
DNA was obtained from 262 isolates from 25 different districts

from 1939–2005 (Figure S1, Table S1). DNAs consisted of simple

heat lysis preparations or whole genome amplification (WGA)

(QIAGEN, Valencia, CA) products generated from the heat lysis

preps. Most of the isolates were collected by the Malagasy Central

Laboratory for plague supervised by the Institut Pasteur de

Madagascar and were primarily isolated from human cases with a

few isolated from other mammals or fleas. A handful of other

isolates were from other institutions (still originally collected by the

Malagasy Central Laboratory for plague) or represent publically

available whole genome sequences (Table S1).

SNP Genotyping
A total of 56 SNPs were chosen to genotype the Malagasy isolates

because they either marked the branches leading to or from the

Madagascar clades in a worldwide analysis [1] or were polymorphic

among Malagasy isolates (Table S2). These SNPs were either

previously identified in a worldwide SNP study on Y. pestis using a

combination of denaturing High Performance Liquid Chromatogra-

phy (dHPLC) and whole genome sequence comparisons [1] or

identified here through whole genome sequence comparisons among 2

Malagasy whole genome sequences (MG05-1020 [GenBan-

k:AAYS00000000] and IP275 [GenBank:AAOS00000000] [1]) and

14 other Y. pestis strain sequences (CO92 [GenBank:AL590842] [40],

FV-1 [GenBank:AAUB00000000] [41], CA88-4125 [GenBan-

k:ABCD00000000] [42], Antiqua [GenBank:CP000308], Nepal 516

[GenBank:CP000305] [43], UG05-0454 [GenBank:AAYR00000000]

[1], KIM 10 [GenBank:AE009952] [44], F1991016 [GenBank:A-

BAT00000000], E1979001 [GenBank:AAYV00000000], K1973002

[GenBank:AAYT00000000], B42003004 [GenBank:AAYU0000000-

0] [45], Pestoides F [GenBank:CP000668] [46], Angola [Gen-

Bank:CP000901] [20] and 91001 [GenBank:AE017042] [47]). These

whole genome sequence comparisons involved comparing the

predicted gene sequences of the closed genome of Y. pestis strain

CO92 [40] to the completed and draft genomes of all other strains

using MUMmer and in-house Perl scripts [48]. For genomes with

deposited underlying Sanger sequencing read information, a polymor-

phic site was considered of high quality when its underlying sequence in

the query comprised at least three sequencing reads with an average

Phred quality score .30 [20,49].

A TaqMan-minor groove binding (MGB) assay or a melt

mismatch amplification mutation assay (Melt-MAMA) was

developed for each SNP for use in genotyping the Malagasy

DNAs. A TaqMan-MGB assay was designed around one SNP

known to divide Malagasy isolates into two major groups (Mad-43,

Table S2). Melt-MAMA assays were designed around the other 55

SNPs as previously described [38]. SNP locations, primer

sequences, primer concentrations and other information for these

assays are presented in Table S2. Primers and probes were

designed using Primer Express 3.0 software (Applied Biosystems,

Foster City, CA). Each 5 ml TaqMan-MGB reaction contained

primers and probes (for concentrations see Table S2), 16Platinum

Quantitative PCR SuperMix-UDG with ROX (Invitrogen,

Carlsbad, CA), water and 1 ml of template. Each 5 ml Melt-

MAMA reaction contained 16 SYBR Green PCR Master Mix

(Applied Biosystems) or 16 EXPRESS SYBR GreenER qPCR

Supermix with Premixed ROX (Invitrogen) (for assay-specific

master mix see Table S2), derived and ancestral allele-specific

MAMA primers, a common reverse primer (for primer concen-

trations see Table S2), water and 1 ml of diluted DNA template.

DNA templates were diluted 1/10 for heat lysis preparations or 1/

50 for WGA products. All assays were performed on an Applied

Biosystems 7900HT Fast Real-Time PCR System with SDS

software v2.3. Thermal cycling conditions for the TaqMan-MGB

assay were as follows: 50uC for 2 min, 95uC for 2 min and 50

cycles of 95uC for 15 s and 66uC for 1 min. Thermal cycling

conditions for the Melt-MAMA assays were as follows: 50uC for

2 min, 95uC for 10 min and 40 cycles of 95uC for 15 s and 55–

65uC for 1 min (see Table S2 for assay-specific annealing

temperatures). Melt-MAMA results were interpreted as previously

described [38].

MLVA
All 262 Malagasy isolates were also genotyped using a 43-

marker MLVA system as previously described [32].

Node Assignment
In general, missing SNP data (,0.5% of dataset) were not a

factor in node assignment (see SNP phylogenetic analysis below)

since data were usually available for an equivalent SNP, thus

leading to unambiguous node assignments for most isolates.

However, there were four cases where the node assignment was

potentially ambiguous. For three isolates missing data for SNP

Mad-21 (branch 1.ORI3.k-1.ORI3.o, Table S2), the ancestral

allele state was assumed for that SNP for those isolates, since in this

and in a previous worldwide analysis [1], only a single isolate, not

included among these three, belonged to node ‘‘o.’’ For a single

isolate missing data for SNP Mad-46 (branch 1.ORI3.d-

1.ORI3.h1, Table S2) the derived state was assumed, due to the

placement of that isolate in MLVA subclade II.B in a neighbor-

joining analysis and the observed congruence between the ‘‘h’’

nodes and MLVA subclade II.B (see phylogenetic analyses below,

Table S1).

Phylogenetic Analyses
A hierarchical approach was applied to the phylogenetic

analysis of the Malagasy isolates. First, a SNP phylogeny was

generated using data from all 56 SNPs (Figure 1). Second,

neighbor-joining dendrograms based upon MLVA data were

constructed using MEGA 3.1 [50] for the two main groups in the

SNP phylogeny, Groups I and II (Figure 2A–B). These groups

corresponded to the two major Malagasy groups in a previous

worldwide analysis [1] and so were separated prior to analyzing

with MLVA. The remaining SNPs showing variation among the

Malagasy isolates mostly defined subclades observed in the MLVA

phylogenies or were specific to single isolates, and so were not used

to further separate the isolates prior to applying MLVA. The

locations of these additional SNPs are marked on the two MLVA

phylogenies where applicable (Figure 2A–B). A small set of SNPs

provided very fine-scale resolution of the lineage leading to the

whole genome sequenced MG05-1020 strain and are not marked

on the MLVA phylogeny due to disagreement between the SNP

and MLVA phylogenies on this small scale. Distance matrices for

the two MLVA phylogenies were based upon mean character

differences. Bootstrap values were based upon 1,000 simulations

and were generated using PAUP 4.0b10 (D. Swofford, Sinauer

Associates, Inc., Sunderland, MA). Branches with $50% boot-

Y. pestis Phylogeography in Madagascar
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strap support and/or supported by one or more SNPs were

identified as subclades. One other cluster (II.A) was also

considered a subclade despite a lack of bootstrap support because

of the proximity of a SNP-defined subclade (Figure 2B).

Geographic Distribution of Subclades
We mapped the geographic distributions of the Group I and II

subclades we identified to determine their phylogeographic

patterns (Figure 3).

Statistical Analyses
Analysis of similarity (ANOSIM) [51] tests were performed

using PRIMER software version 5 to test the hypotheses that 1)

Groups I and II form distinct geographic groups and 2) the

identified subclades form distinct geographic groups. These tests

were performed on all subclades with $5 members (N = 221

isolates), thus excluding the unaffiliated isolates and subclades I.C,

I.H, I.I and I.G (Table S1). The results of all 55 pairwise

comparisons among the subgroups were evaluated at a= 0.000909

(global a of 0.05 divided by 55). To determine if there was a rank

relationship between genetic distance and geographic distance, a

Spearman correlation coefficient was generated using the

RELATE function in PRIMER software with significance of the

resulting statistics determined using 10,000 random permutations

of the data. This analysis utilized all isolates with any geographic

data (N = 256), with district centroids used as the geographic

location for isolates for which only district level geographic

information was available (N = 33); city/commune point geo-

graphic data were used for the remaining 223 isolates. Six isolates

lacking any geographic information were excluded from both

statistical analyses (Table S1).

Results

Genetic Diversity of Y. pestis in Madagascar
Our hypervariable-locus and genome-based approaches identi-

fied a relatively high level of genetic diversity among the 262

Malagasy isolates from 25 districts from 1939–2005. We

confirmed the presence of two major genetic groups, Groups I

and II, differentiated by a single SNP, Mad-43 (Figure 1, Table

S2), and many VNTR mutational steps. Groups I and II were

further differentiated into eleven (I.A–I.K, Figure 2A, Table S1)

and four (II.A–II.D, Figure 2B, Table S1) subclades, respectively,

based upon MLVA and/or SNPs. All but one of these subclades

was at least weakly supported by bootstrap values $50 and/or one

or more SNPs (Figure 2A–B). The high mutation rates at VNTR

loci can lead to homoplasy and, consequently, to low bootstrap

support for deeper phylogenetic relationships when analyzing

isolates from regional or worldwide collections [19,34,36,52].

Nevertheless, subsequent analyses using more phylogenetically

stable molecular markers (i.e., SNPs) have confirmed MLVA-

determined clades with weak or even no bootstrap support

[19,38], leading us to use even weak bootstrap support to validate

subclades in this analysis. Of the two MLVA identified subclades

without bootstrap support, II.A and II.B, subclade II.B was

supported by SNP Mad-46 (Table S2) and subclade II.A was

designated due to its proximity to and clear separation from the

SNP-identified subclade II.B (Figure 2B). Subclades I.B, I.F and

I.H were supported by SNPs Mad-26 to 31, Mad-42 and Mad-09

to 17 (Table S2), respectively, and bootstrap analysis (Figure 2A).

MLVA also identified 23 and 5 isolates in Groups I and II,

respectively, that did not belong to any of the identified subclades

within those groups (hereafter referred to as unaffiliated isolates)

(Figure 2A–B, I.NONE and II.NONE isolates in Table S1). Four

of these unaffiliated isolates and isolates in subclades I.B, I.H and

II.B were also identified by apparently isolate-specific SNPs

(Figure 2A–B). Overall, MLVA identified 226 genotypes among

the 262 isolates, constituting far better resolution than that

achieved using ribotyping [24].

The SNP and MLVA analyses showed remarkable congruence.

Nearly all of the nodes in the SNP phylogeny either corresponded to

MLVA subclades or were specific to individual isolates, allowing the

combined analysis of SNP and MLVA data discussed above. Three

nodes (f, m and n, Figure 1) did not have representatives in this

study, but appeared to be specific for individual isolates in a previous

analysis [1]. The only exception to this congruence was within the

lineage leading to the whole genome sequenced strain, MG05-1020

Figure 1. SNP phylogeny of 262 Malagasy isolates. Nodes were
named as in Morelli et al. [1] (lower case letters) and belong to the
1.ORI3 group described there [1]. Previously identified nodes [1] that
were expanded in this analysis (h, l and q) have additional number
designations (e.g., q1) given to each new node in the expansions. The
one entirely new node was assigned a new letter, ‘‘r.’’ Previously
identified nodes [1] that were not represented by any isolates in this
study are represented by gray outlines. Colored nodes correspond to
MLVA-identified subclades and are colored the same as their matching
MLVA subclades in Figure 2A–B. The number of isolates in nodes with
.1 isolate are indicated as are the number of SNPs on branches (red
numbers) with .1 SNP. The nodes containing the two sequenced
Malagasy strains, MG05-1020 and IP275, are labeled with the strain
names.
doi:10.1371/journal.pntd.0001319.g001

Y. pestis Phylogeography in Madagascar
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(q nodes in Figure 1 and subclade I.B in Figure 2A). In this case, the

SNP phylogeny (q nodes, Figure 1) was more accurate than and

provided nearly as much resolution as the corresponding MLVA

phylogeny (I.B, Figure 2A). This fine-scale phylogenetic resolution

was due to the use of a high resolution SNP discovery method,

whole genome sequence comparisons, to discover SNPs along this

lineage as opposed to the lower resolution dHPLC method used to

discover most of the other Malagasy SNPs [1]. Interestingly,

comparable resolution was not seen in the lineage leading to the

other whole genome sequenced strain, IP275 (l nodes in Figure 1

and subclade I.H in Figure 2A), likely due to the very low number of

isolates (N = 2) within that lineage in this analysis.

Figure 2. Neighbor-joining dendrograms based upon MLVA data. Dendrograms for Group I (A) and Group II (B) are indicated. The SNP
phylogeny from Figure 1 is also indicated (C) for comparison. Subclades within Groups I and II are collapsed in the full phylogenies (dotted boxes) for
those groups (colored triangles) and are then individually expanded to show the structure within each subclade. The expanded subclades are labeled
based upon their membership in Group I or II and by a capital letter (e.g., I.A) and are indicated by colored bars. Bootstrap values $50 supporting
individual subclades are indicated on the expanded subclade phylogenies. SNP locations are indicated by vertical red lines. These red lines are labeled
with the SNP ID numbers presented in Table S2 on the full phylogenies for unaffiliated isolate-specific SNPs and on the expanded phylogenies for all
other SNPs. The years of isolation for isolates within each full and expanded phylogeny are indicated beside the panel label and underneath the
individual phylogeny, respectively. The gray subcluster marked by the gray arrow in subclade I.A represents the ‘‘Mahajanga I.A subcluster,’’ a
subcluster containing most of the isolates from the Mahajanga plague focus. Seven isolates from the central highlands that also fell within this
subcluster are labeled with a ‘‘CH.’’ Five Mahajanga isolates that did not belong in this subcluster are labeled with a gray ‘‘M’’ (A). Black stars indicate
the locations of the two sequenced Malagasy strains, MG05-1020 in subclade I.B and IP275 in subclade I.H.
doi:10.1371/journal.pntd.0001319.g002

Y. pestis Phylogeography in Madagascar
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Figure 3. Geographic distribution of MLVA subclades in Madagascar. The MLVA phylogenies for Groups I and II from Figure 2A-B are
presented with labeled subclades. Light gray shaded districts indicate Madagascar districts where Y. pestis isolates used in this study were obtained.
Colors within the mapped circles and squares correspond to the subclade color designations in the MLVA phylogenies. Divisions within those circles
and squares indicate that multiple subclades were found at that location. Circles represent isolates where the city/commune of origin is known.
Squares represent isolates where only the district of origin is known and are placed within their corresponding districts near to cities/communes

Y. pestis Phylogeography in Madagascar

www.plosntds.org 6 September 2011 | Volume 5 | Issue 9 | e1319



Missing data for two SNP assays suggested a potential genomic

rearrangement (e.g., deletion) in some of the Malagasy strains.

Twenty-five of the 262 isolates were missing data for two SNP

assays despite repeated attempts at amplification (Table S1). The

two SNPs, Mad-28 and Mad-41, were located ,850 bp apart at

CO92 positions 2,208,345 and 2,207,531, respectively (Table S2),

suggesting that there may have been a genomic rearrangement

affecting this region in these strains. Intriguingly, IS100 elements

were located flanking these SNPs at CO92 positions 2,135,459-

2,137,412 and 2,236,265-2,238,215. IS elements are important

facilitators of genomic rearrangements in Y. pestis [42,43] and may

have played a role in this result. If so, the same or a similar

genomic rearrangement must have occurred multiple times since

the 25 isolates were members of six different nodes in the SNP

phylogeny (Table S1). This hypothesis is supported by the fact that

IS100 elements are known potential hotspots for genomic

rearrangements and excisions in Y. pestis [19,42].

Geographic Distribution of Isolates
Significant geographic separation was observed among the

identified subclades. Overall, there was a small, but highly

significant relationship between genetic and geographic distance

(Spearman correlation coefficient r= 0.226, p,0.0001). In

addition, the two main genetic groups, Groups I and II, formed

distinct geographic groups based upon an ANOSIM (R = 0.091,

p = 0.0007). Group II isolates, which possessed the derived state for

SNP Mad-43 (Table S2), were essentially restricted to three of the

most active plague districts in the central highlands, Betafo,

Manandriana and Ambositra [11], and an adjacent district,

Ambatofinandrahana (Figure 3, S1). The only exceptions to this

were the five unaffiliated Group II isolates, which were scattered in

districts to the east and north (+ symbols, Figure 3). In contrast,

Group I isolates were found in all three foci, both the central and

northern highlands and Mahajanga. Geographic separation

among the individual Group I and II subclades was also apparent

(Figure 3) and statistically supported in an ANOSIM (R = 0.232,

p,0.0001). Post-hoc analyses of the pairwise comparisons among

subclades indicated that most of the eleven tested subclades

formed distinct geographic groups (data not shown). Indeed,

several interesting geographic patterns were apparent for the

different subclades, only some of which are described below.

Separate Group I subclades were found in the northern (I.C, I.G

and I.I, Figure 3, Table S1) versus the central (I.A, I.B, I.D, I.E,

I.F, I.H, I.J and I.K, Figure 3, Table S1) highlands. Subclade I.A,

the largest single subclade, was the dominant subclade found in the

capital, Antananarivo, and the surrounding area (Figure 3, S1).

With the exception of two isolates, it was also the only subclade

found in Mahajanga (Figure 3, S1, Table S1), indicating a central

highlands origin for the Y. pestis responsible for the series of

Mahajanga plague outbreaks from 1991–1999 [13–16]. Subclade

I.B was the only subclade found in the northeastern portion of the

central highlands (Figure 3). Geographic analysis of the corre-

sponding SNP phylogeny (q nodes, Figure 1) for this subclade

revealed some additional geographic-genetic patterns. Isolates with

the same SNP genotype tended to be clustered geographically,

although no distinct spreading pattern could be discerned, possibly

due to the limited number of isolates (Figure 4). Subclade I.E was

predominantly found in the southern central highlands, in district

containing the same subclade(s) where possible. Six isolates had unknown districts of origin and were not mapped. Unaffiliated Group I and II isolates
are indicated by an ‘‘*’’ and a ‘‘+,’’ respectively; these symbols surrounded by a square indicate unaffiliated isolates where only the district of origin is
known. The dark gray shaded area indicates the geographic area where Group II subclades are found. Note that some Group I subclades are also
found in this area.
doi:10.1371/journal.pntd.0001319.g003

Figure 4. Geographic distribution of SNP-defined nodes in the strain MG05-1020 lineage. The strain MG05-1020 lineage portion of the
SNP phylogeny from Figure 1 is indicated as well as an enlarged cutout of the map from Figure 3 showing the geographic distribution of isolates
from this lineage. For an explanation of the mapped circles and squares see the figure legend for Figure 3. Circles, squares and pie chart slices in the
map are numbered based upon the node number in the SNP phylogeny for the isolates represented by those shapes. The isolate in node ‘‘q7’’ is not
mapped due to its geographic origin being unknown.
doi:10.1371/journal.pntd.0001319.g004

Y. pestis Phylogeography in Madagascar

www.plosntds.org 7 September 2011 | Volume 5 | Issue 9 | e1319



Fianarantsoa, and also appears to be the subclade responsible for

the reemergence of plague in the Ikongo district [53], adjacent to

Fianarantsoa on the southeast (Figure 3, S1).

Three subclades, I.F, I.H and I.K, did not show distinct

geographic patterns (Figure 3). In the cases of subclades I.F and

I.H, this may be due to the limited numbers of isolates within those

subclades (Figure 2A, Table S1). The geographically widespread

nature of subclade I.K isolates, however, may be related to their

older dates of isolation. All of the subclade I.K isolates were

isolated between 1940 and 1955 (Figure 2A, Table S1), just 19–34

years after plague was introduced to the central highlands.

Therefore, these isolates may represent a subclade that was

formerly spread throughout much of the central highlands but that

currently does not exist in nature in Madagascar. Similarly,

subclade I.I, although it was not geographically widespread

(Figure 3), only contained isolates isolated from 1971–1976

(Figure 2A, Table S1) and may represent a former, now extinct

subclade from the northern highlands. However, the limited

number of isolates makes this difficult to determine. Alternatively,

these subclades may still exist, but may have decreased in

frequency and/or be very rare in nature.

Interestingly, the other older isolates tended to be the

unaffiliated isolates. Eighteen of the 28 unaffiliated isolates were

isolated between 1939 and 1978. Another 3 had unknown dates of

isolation (Table S1). Given their older dates of isolation, these

unaffiliated isolates may also be representatives of older, now

extinct subclades from Madagascar. The lack of comparable

isolates to these unaffiliated isolates among the rest of the isolate

collection could be due to the limited sampling from earlier years

(Table S1). Alternatively, the unaffiliated isolates may simply be

representatives of very rare subclades. A final possibility could

involve the accumulation of VNTR mutations due to repeated

passages associated with prolonged storage in the laboratory,

which could lead to the older isolates being inaccurate represen-

tatives of the original isolates. This is unlikely, however, as the rate

of VNTR evolution in the laboratory, even with passaging, should

be much slower than in nature. Thus, while these isolates may not

be exactly the same as when they were first isolated, they should be

close. Also, multiple copies of a subset of the Malagasy isolates in

this study that were stored at different temperatures showed

identical MLVA genotypes (data not shown), indicating that these

VNTR loci are relatively stable in these isolates under the storage

conditions used. Regardless, the unaffiliated nature of many of the

older isolates is consistent with and most likely related to their

older dates of isolation.

Several cities and communes yielded isolates of subclades

predominantly found elsewhere, suggesting importation from

other locations. Antananarivo, in particular, contained isolates

from five subclades in addition to the dominant subclade (Figure 3,

S1). Commune Andina Firaisana in the Ambositra district is

another example, containing representatives of four different

subclades (Figure 3, S1). One of these, subclade I.A, was also

found in the nearby surrounding area. However, this area is

considerably south of the area where the majority of subclade I.A

isolates were found, suggesting that this subclade may have been

imported to this area from further north or vice versa (Figure 3).

Of the other three subclades found in Andina Firaisana, subclades

II.A and II.B are also found in nearby areas and so may be

naturally occurring in Andina Firaisana rather than due to transfer

events. Subclade II.C, in contrast, appears to have been

transferred to Andina Firaisana from the Betafo district in the

northwest or vice versa (Figure 3, S1). Another nearby commune,

Ivato, contained a single subclade I.E isolate, suggesting a transfer

event from district Fianarantsoa in the south (Figure 3, S1).

Plague in Mahajanga
Our data suggest that Y. pestis was reintroduced to Mahajanga

from the central highlands. The majority of the Mahajanga

isolates (39 of 44) belonged to a single subcluster within subclade

I.A (hereafter referred to as the Mahajanga I.A subcluster)

(Figure 2A), suggesting that there was an introduction to

Mahajanga from the central highlands that became established

in Mahajanga and then underwent local cycling. Though this

Mahajanga I.A subcluster did not have either SNP or MLVA

support (Figure 2A), close examination of the isolates within this

subcluster revealed very close genetic relationships, with most

differences involving only a single repeat change at a single VNTR

locus (data not shown). This is consistent with an outbreak

scenario originating from a single introduction and strengthens the

identification of this subcluster as a genetic group. In contrast,

subclade I.A isolates outside of the Mahajanga I.A subcluster

exhibited much greater variation both in the number of VNTR

loci displaying polymorphisms and the number of alleles observed

at those loci (data not shown), consistent with an older, more

geographically dispersed and more differentiated set of isolates.

Our data also suggest that there have been multiple transfers of

Y. pestis between Mahajanga and the central highlands. Specifi-

cally, seven isolates within the Mahajanga I.A subcluster were

isolated from central highland locations rather than from

Mahajanga (Figure 2A), suggesting that Y. pestis was also

transferred back from Mahajanga to the central highlands. Two

other Mahajanga isolates belonged to subclade I.F and were

unaffiliated, respectively (Figure 2A), suggesting that there has

been more than one introduction of Y. pestis to Mahajanga as well.

The final three Mahajanga isolates, although they belonged to

subclade I.A, were not part of the Mahajanga I.A subcluster and

were instead more closely related to subclade I.A isolates from the

central highlands (Figure 2A), again suggesting multiple introduc-

tions. However, it is unclear as to whether any of these other

introductions became established in Mahajanga due to the lack of

other Mahajanga isolates similar to these five outliers. Finally,

although our data suggest that there have been multiple transfers

of Y. pestis between Mahajanga and the central highlands, there is

no evidence in these data for an introduction to Mahajanga from

the northern highlands, as was previously suggested by PFGE

analyses [14,17].

Discussion

Madagascar is one of the most active plague regions in the

world. However, few studies have investigated the molecular

epidemiology of Y. pestis from Madagascar and none have done so

using very high resolution genomic methodologies. Here, we

investigated the phylogeography and molecular epidemiology of Y.

pestis in Madagascar by using a combination of SNPs and MLVA

to analyze 262 Malagasy isolates from 25 districts from 1939–

2005. In contrast with previous analyses that utilized ribotyping or

SNPs alone [1,24], we identified a very high level of genetic

diversity with 226 MLVA genotypes among the 262 isolates.

These genotypes were distributed amongst 15 subclades that

displayed significant geographic separation (Figure 3), leading to

insights into the maintenance and spread of plague in Madagascar.

The use of MLVA was particularly effective at identifying

genetic groups in Madagascar. SNPs, though useful, mostly

provided confidence in genetic groups that were already apparent

via MLVA. This is somewhat counter to the conventional

hierarchical approach wherein SNPs are used first to identify

major genetic groups followed by MLVA to provide resolution

within those groups, thus minimizing the problems of mutational
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saturation/homoplasy that can occur with highly variable markers

such as VNTRs [36]. In this study, only SNP Mad-43 (Table S2),

which differentiated Groups I and II, was useful in this

conventional sense to identify ‘‘major genetic groups’’ that were

obscured in the MLVA phylogeny (data not shown). All of the

other subclades identified by SNPs were also identified by MLVA,

suggesting that at this regional scale, MLVA alone may be

effective at identifying robust genetic groups. Importantly, though

MLVA was excellent at identifying these genetic groups, the

relationships among those groups, such as the division between

Groups I and II, remained unclear using MLVA alone (data not

shown) whereas they were very clearly depicted as a star phylogeny

in the SNP phylogeny (Figure 1). Where knowledge of deeper

genetic relationships or fine-scale phylogenetic analysis of specific

lineages (e.g., the strain MG05-1020 lineage here) is desired, SNPs

will remain the preferred methodology for clonal pathogens such

as Y. pestis. However, until whole genome sequencing for entire

isolate collections becomes feasible, MLVA will continue to be a

useful tool for examining genetic diversity whether used in

conjunction with SNPs or alone.

Our analyses suggest that plague is being maintained in

Madagascar in multiple geographically separated subpopulations.

We revealed significant geographic separation among the

identified subclades (Figure 3), suggesting that these subclades

are undergoing local cycling with limited gene flow from other

subclades. This is consistent with the population genetics and

ecology of the black rat (Rattus rattus), the primary plague host in

rural Madagascar [7,9]. The black rat in Madagascar exhibits

limited gene flow between subpopulations [54] as well as limited

geographic ranges [55]. This limited mobility, a high reproduction

rate [10] and the development of some resistance to plague [56]

are all likely important factors that allow the black rat to maintain

plague in these genetically distinct, geographically separated

subpopulations. The two flea vectors, X. cheopis and S. fonquerniei

[9,10], may also play a role in maintaining genetically distinct

subpopulations (i.e., Groups I and II), though more data would be

needed to confirm this hypothesis.

In contrast, transport of Y. pestis across longer distances in

Madagascar is likely human-mediated. Historically, there is ample

evidence for the influence of human traffic on the spread of

plague, including transport along trade routes such as the Silk

Road in the early pandemics and transport via steam ship to

numerous new locations during the ‘‘third’’ pandemic [1,2]. The

SNP phylogeny determined by Morelli et al. [1] suggests the

progression of plague from Israel to Madagascar to Turkey

(Figure 1), a series of transfer events that were almost certainly

human-mediated, though the details remain unknown. In

Madagascar, plague was most likely transported from its

introduction point on the coast to the central highlands, where it

became permanently established, via the railroad linking Toama-

sina and Antananarivo [7]. More recently, plague was most likely

reintroduced to Mahajanga via the transport of infected rats and

fleas together with foodstuffs from the central highlands. Indeed,

our data suggest multiple transfers between Mahajanga and the

central highlands, all likely human-mediated. Additional long

distance transfers of Y. pestis in Madagascar are suggested by the

multiple subclades identified in cities/communes such as Antana-

narivo and Andina Firaisana (Figure 3, S1, Table S1).

Though long distance transfers of Y. pestis undoubtedly occur, it

is unclear how often such transfers result in the successful

establishment of the transferred genotypes in new locations. At

least one transfer to Mahajanga became successfully established

and underwent local cycling as evidenced by the Mahajanga I.A

subcluster described here (Figure 2A). However, many of the other

examples of long distance transfers where multiple subclades were

found in a single location are not as clear regarding the

establishment of the transferred subclade(s). Antananarivo, for

example, is clearly dominated by subclade I.A with only 1–2

representatives of each of the other five subclades identified there

(Figure 3, S1, Table S1), suggesting that the presence of these

alternative subclades may have been only transitory.

Successful establishment of subclades in new locations following

a long distance transfer may be related to adaptive advantages

possessed by some genotypes [57]. For instance, subclade I.A

appears to be particularly successful in our analysis. The earliest

subclade I.A isolate in our dataset was collected in 1974 from the

Ambositra district (Table S1), one of the most active plague

districts in Madagascar [11]. Subsequent isolates indicate that this

subclade continued to exist in a small area of the Ambositra district

but also became well established over a large geographic area

including and surrounding the capital, Antananarivo. This

subclade was also successfully introduced to and established in

Mahajanga and appears to have been transferred to the

Fianarantsoa district, though it is unclear whether or not it

became established there (Figure 3, S1, Table S1). This

widespread geographical success may indicate that this subclade

possesses an adaptive advantage that enhances its ability to be

transferred long distances and become established in new locations

[57]. Alternatively, the particular success of this subclade may

simply be due to chance.

The central highlands focus remains the most active plague

focus in Madagascar [11] and is, consequently, a likely place for

new genotypes to emerge. This is particularly true for those central

highlands districts with the highest plague activity. For instance,

the three unique ribotypes identified in a previous study belonged

to isolates from two highly active districts, Ambositra and

Ambohimahasoa [24]. Here, isolates belonging to Group II and

its subclades were found in three highly active districts, Betafo,

Manandriana and Ambositra (Figure 3, S1). As discussed above,

Ambositra may also have been the district of origin for the highly

successful subclade I.A. Overall, the Ambositra district was one of

the two most diverse districts in our analysis, containing

representatives from six different subclades (Figure 3, Table S1).

This diversity is consistent with the Ambositra district’s status as

one of the three most important plague districts in Madagascar

[8,11].

The maintenance and spread of Y. pestis in Madagascar is a

dynamic and highly active process, depending on the natural cycle

between the black rat and its flea vectors as well as human activity.

Y. pestis in Madagascar is maintained in multiple, genetically

distinct, geographically separated subpopulations, likely via the

black rat. The exact geographic landscape of these subpopulations

is probably ever changing, with some subclades going extinct or

decreasing in frequency (e.g., subclade I.K), new subclades

emerging and becoming established and some subclades being

transferred to new locations, where they may become established

either temporarily or more long-term. Much of the long distance

spread of Y. pestis in Madagascar is likely due to human activities

that allow for the transport of plague infected rats and fleas from

one location to another.

Supporting Information

Figure S1 Map of Madagascar. Districts (gray shaded and

labeled A–Y) and cities/communes (numbered points) where Y.

pestis isolates analyzed in the study were collected are indicated.

The capital, Antananarivo, is marked with a star.

(PDF)
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