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Abstract

Many infectious Gram-negative bacteria, including Salmonella typhimurium, require a Type Three Secretion System (T3SS) to
translocate virulence factors into host cells. The T3SS consists of a membrane protein complex and an extracellular needle
together that form a continuous channel. Regulated secretion of virulence factors requires the presence of SipD at the T3SS
needle tip in S. typhimurium. Here we report three-dimensional structures of individual SipD, SipD in fusion with the needle
subunit PrgI, and of SipD:PrgI in complex with the bile salt, deoxycholate. Assembly of the complex involves major
conformational changes in both SipD and PrgI. This rearrangement is mediated via a p bulge in the central SipD helix and is
stabilized by conserved amino acids that may allow for specificity in the assembly and composition of the tip proteins. Five
copies each of the needle subunit PrgI and SipD form the T3SS needle tip complex. Using surface plasmon resonance
spectroscopy and crystal structure analysis we found that the T3SS needle tip complex binds deoxycholate with micromolar
affinity via a cleft formed at the SipD:PrgI interface. In the structure-based three-dimensional model of the T3SS needle tip,
the bound deoxycholate faces the host membrane. Recently, binding of SipD with bile salts present in the gut was shown to
impede bacterial infection. Binding of bile salts to the SipD:PrgI interface in this particular arrangement may thus inhibit the
T3SS function. The structures presented in this study provide insight into the open state of the T3SS needle tip. Our findings
present the atomic details of the T3SS arrangement occurring at the pathogen-host interface.
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Introduction

Bacterial infections including Salmonellosis and Shigellosis

affect millions of people every year. These bacteria use a T3SS

to secrete virulence factors to manipulate host cells. The T3SS is a

multi-component system that forms a continuous protein transport

channel through the two bacterial membranes and the periplas-

matic space that extends into the surrounding medium by a needle

structure [1–3]. Spatiotemporal control of secretion is essential for

effective host invasion [4].

Tip proteins, which bind to the distal end of the T3SS needle,

are thought to play an important role in this process [4–6]. SipD

from S. typhimurium, IpaD from Shigella flexneri and BipD from

Burkholderia mallei are tip proteins that are thought to interact with

their corresponding needle subunits PrgI, MxiH and BsaL,

respectively, to make the needle tip complex [5]. Although the

mechanism is unclear, tip proteins were shown to influence

secretion and invasion of bacteria [7–9].

Sterols like cholesterol or cholic acid derivatives found in the

bile are amphipathic compounds that play important roles in

cellular communication and metabolic processes. Bile salts

influence the T3SS of intestinal bacteria. For instance, the

presence of deoxycholate either impedes (S. typhimurium) or

facilitates (S. flexneri) host invasion[10–13]. Noteworthy, it was

recently shown that SipD and IpaD bind deoxycholate and some

of its derivatives [14,15].

To understand how T3SS are regulated it is required to analyze

the structure and mechanism of proteins gating the transport

channel. Here, we address the questions of how the Salmonella

SipD interacts with PrgI and deoxycholate and the mechanistic

consequences of the assembly of the T3SS needle tip complex.

Results

Crystal structure of the Salmonella tip protein SipD
We solved the X-ray crystal structure of SipD, the needle tip

protein of S. typhimurium at 3.0 Å resolution (Figure 1A and

Table 1). The crystal contained 4 copies of SipD in the asymmetric

unit with structural information for 306 of 343 amino acids. In

SipD crystals, as in the crystal structures of IpaD [16] and BipD

[17], the N-terminal 31, 38 or 29 amino acids, respectively, were

not defined. Here we report structural features of SipD chain A,

which, compared with chains B to D, showed continuous electron

density for most amino acids. SipD is predominantly a-helical

folded and can be divided in three structurally different domains

(Figure 1B). The central domain, domain 2, (green in Figure 1)

adopted a coiled coil structure with two helices of 47 and 52 amino

acids length, respectively. The bending of the coiled coil of domain
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2 allowed us to distinguish between a concave and a convex

surface. Domain 2 is joined to domain 3, an a/b-structure (yellow

in Figure 1). Domain 3 is in contact with the convex surface

provided by the coiled coil of the central domain (Figure 1A).

Domain 2 and 3 of SipD share high sequence homology and

similar three dimensional structure to the orthologs from S. flexneri

(Figure S1, r.m.s. deviation 1.3 Å with IpaD) [16] or B. mallei

(Figure S1, r.m.s. deviation 2.2 Å with BipD) [17]. Notably, amino

acids involved in intramolecular contacts are identical or highly

conserved in all three orthologs, suggesting functional relevance in

T3SS tip proteins.

In contrast to domain 2 and 3, the amino acid sequence of

domain 1 in SipD (grey in Figure 1) show almost no sequence

conservation with IpaD or BipD. However, a-helices of domain 1

adopted a similar structure in both SipD and IpaD (Figure S2),

encompassing the central coiled coil of domain 2 (Figure 1A).

PrgI displaces the N-terminal domain of SipD
In the S. flexneri cytosol, IpaD domain 1 was suggested to

function as a self-chaperone avoiding either spontaneous self

oligomerization or its interaction with the needle forming protein

MxiH before secretion [16]. We tested the oligomerization state of

purified SipD by static light scattering and found that SipD is a

monomer in solution (Mw ,37 kDa, Figure S3). Deletion of

domain 1 (SipDDD1) resulted in a mixture of SipD dimers and

trimers (Figure S4). Though oligomerization of the needle tip

protein changed depending on the presence of domain 1, deletion

of this domain did not favour spontaneous protein polymerization

as was found for PrgI and its orthologues [18]. SipD did not bind

to PrgI*, a soluble and functional PrgI mutant [18], as tested by

isothermic titration calorimetry (ITC, Figure 2A). In contrast,

SipDDD1 bound with a Kd of 8863 mM to PrgI* (Figure 2B).

Deletion of domain 1 did not destabilize SipD, as demonstrated by

the comparative analysis of X-ray crystal structures of SipDDD1

(Figure 2C and Table 1) and SipD (Figure 1A). Superposition of

SipDDD1 and SipD showed almost identical 3-dimensional

structure reflected in an r.m.s. deviation of 0.9 Å for amino acids

149 to 328. ITC results showed that domains 2 and 3 of SipD

mediate binding to PrgI*, while domain 1 impedes the interaction.

In fact, prior to binding to PrgI*, the self-chaperoning domain 1 of

SipD may unfold independently from the rest of the molecule as

recently suggested [19,20].

Structure of the PrgI-SipDDD1 fusion protein
In order to decipher the 3-dimensional structure of the entire

T3SS needle tip, we generated a fusion protein of N-terminal

Figure 1. Crystal structure of SipD. (A) X-ray crystal structure and (B) topology plot of SipD chain A from S. typhimurium: structurally
distinguishable domains are coloured in grey (domain 1), green (domain 2), and yellow (domain 3), respectively.
doi:10.1371/journal.ppat.1002163.g001

Author Summary

Since the rise of pathogenic bacterial strains resistant to
antibiotics, the need to develop potent anti-infective
drugs is continually increasing. This necessitates a detailed
knowledge of the bacterial host invasion process. Gram-
negative bacteria have evolved a protein transport system
through which they deliver virulence factors into host cells.
These virulence factors influence the signal transduction
cascade and metabolism inside host cells in a way that is
beneficial for the invading bacteria. The proteins at the
transport system needle tip mediate contact with host
cells and spatiotemporal coordinated release of virulence
factors. In this study, we used biophysical and biochemical
methods to understand the structure and function of
proteins present at the needle tip of such a virulence factor
transport system in Salmonella species. We could show
that two different proteins, structurally conserved in many
pathogenic bacteria, bind each other to constitute the
needle tip of the transport system. Multiple copies of both
proteins constitute the tip of the transport system in what
may represent the open state of the needle. Our study will
serve to provide new insights into the virulence factor
transport system essential for many different pathogenic
bacteria, and may thus offer novel targets to fight
infection.

Type 3 Secretion System Needle Tip
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truncated SipD with PrgI (PrgI-SipDDD1). Crystals of PrgI-

SipDDD1 contained two similar copies (chain A and chain B) in

the asymmetric unit. We describe here the structure of chain A,

which is more complete than chain B. The X-ray crystal structure

of PrgI-SipDDD1 solved at 2.4 Å resolution showed noteworthy

features (Figure 3A and Table 1). Comparing structures of

individual SipD (brown) and PrgI* molecules (grey) with the

PrgI-SipDDD1 fusion protein (SipDDD1 in green and PrgI in blue)

revealed conformational changes in both proteins (Figure 3B and

Figure S5). Two of the five helices providing contact between SipD

and PrgI changed conformation during complex formation. The

central helix of domain 2 in SipD is kinked at Asn141 in the

complex (Figure 3A–B). We observed also a kink in the C-terminal

helix of PrgI at Asn63 (Figure 3A and Figure S5). Both kinked

helices, together with two additional helices from SipD and PrgI,

adopted a new four helix bundle in the complex.

Recent studies [9] suggest that the needle proteins could replace

the two helices of domain 1 in the corresponding T3SS tip protein

that are in contact with the concave side of the central coiled coil

(Figure 1A). This hypothesis is in agreement with our ITC data

showing that PrgI* may replace domain 1 during SipD binding

(Figure 2A–B). However, the crystal structure of the complex

presented here revealed PrgI binding to the convex surface of the

central coiled coil in SipD (Figure 3A). Thus, in contrast to the

proposed model, a single PrgI molecule may replace the helix-loop

motif of SipD immediately upstream of domain 2 (Figure 1B),

instead of the two helices at the N-terminus of SipD. Moreover,

both proteins in the complex comprised an angle of about 45u
(Figure 3A and Figure S6) due to the contact between SipD

domain 3 and PrgI.

We tested the oligomerization state of the PrgI-SipDDD1 fusion

protein using static light scattering technique. The needle tip

complex was monomeric in solution (Figure S7), suggesting that

the supramolecular architecture of the tip complex is influenced by

the PrgI assembly of the T3SS needle. This hypothesis is in

agreement with our observation that deletion of domain 1 of SipD

did not support polymerization of the needle tip protein (Figure

S4) but rather allowed interaction with the needle protein PrgI

(Figure 2).

Stabilization of the PrgI-SipDDD1 fusion protein
The X-ray crystal structure of the PrgI-SipDDD1 complex

compared with the structure of SipD alone and with previous

structural studies of needle tip proteins [18,21–23] showed that both

PrgI and SipD changed conformation during complex assembly. As

mentioned above, the two helices which showed novel kinked

Table 1. Data collection and refinement statistics.

SipDDD1 SipD PrgI-SipDDD1 PrgI-SipDDD1 + DXC

Data collection

Space group P212121 P6522 C2 C2

Cell dimensions

a, b, c (Å) 55.8, 94.4, 117.7 128.4, 128.4, 350.1 172.2, 48.1, 103.7 171.2, 47.5, 102.6

a, b, c (u) 90, 90, 90 90, 90, 120 90, 121.9, 90 90, 122.0, 90

Resolution (Å) 40.00–3.00 (3.15–3.00) 20.00–3.00 (3.17–3.00) 40.00–2.40 (2.54–2.40) 40.00–2.19 (2.26–2.19)

Rsym 0.063 (0.473) 0.098 (0.508) 0.081 (0.498) 0.070 (0.481)

I/s(I) 19.77 (3.42) 13.86 (3.58) 12.47 (2.97) 16.02 (4.73)

Completeness (%) 99.3 (96.4) 96.7 (92.9) 97.4 (96.5) 95.4 (84.4)

Redundancy 5.0 (5.0) 7.6 (7.3) 3.7 (3.8) 5.8 (5.2)

Refinement

Resolution (Å) 37.21- 3.00 19.94–3.00 32.89–2.40 36.48–2.19

No. reflections 12938 34082 27970 34906

Rwork/Rfree 0.198/0.224 0.229/0.258 0.222/0.251 0.246/0.284

No. atoms

Protein 3065 7094 4116 4006

Ligand/ion 6 27 18 40

Water 21 38 67 97

B-factors

Protein 64.5 80.9 47.9 53.4

Ligand/ion 77.9 89.3 46.4 57.9

Water 47.6 59.4 38.9 45.0

R.m.s. deviations

Bond lengths (Å) 0.007 0.008 0.006 0.007

Bond angles (u) 1.1 1.4 1.1 1.1

Values in parentheses are for highest-resolution shell.
Abbreviations:
SipDDD1: N-terminal truncated SipD (SipD132–343).
PrgI-SipDDD1: fusion protein PrgI + truncated SipD (see Methods).
DXC: deoxycholate.
doi:10.1371/journal.ppat.1002163.t001

Type 3 Secretion System Needle Tip

PLoS Pathogens | www.plospathogens.org 3 August 2011 | Volume 7 | Issue 8 | e1002163



conformation are part of a four helix bundle, thus providing close

contact between SipD and PrgI (Figure 3A and Figure 4A). The four

helix bundle stabilized by hydrophobic (Figure S8) and polar

interactions encompassed a buried surface of 1113 Å2 per protein.

An extended hydrogen bonding network connecting conserved

amino acids of both proteins stabilizes the twisted helical arrangement

found in the PrgI-SipDDD1 fusion protein (Figure 4A). In total six

hydrogen bonds and salt bridges between the C-terminal helix of PrgI

and the long helices of domain 2 or the central helix of SipD domain

3 stabilized the tertiary structure of the complex (Figure 4B). A

hydrogen bond between Ser333 and Asp11 of SipD and PrgI,

respectively, contributed additional stabilization of the complex

structure. Spin labelled amino acids Asp136, Ala144, Asp147,

Leu318, Lys324, Ser328, Ser331 and Glu335 of SipD are influenced

by PrgI as recently shown [24], consistently with the PrgI-SipDDD1

crystal structure presented here.

Figure 2. Deletion of SipD domain 1 permits binding to PrgI*. (A) Binding between S. typhimurium needle protein PrgI* and SipD was not
detectable using isothermal titration calorimetry (ITC). Heat flow for each SipD injection as a function of time (upper) and integration of the
thermogram (lower). (B) ITC of purified proteins PrgI* with SipDDD1 indicated a binding affinity of 8863 mMol. Heat flow for each PrgI* injection as a
function of time (upper) and integration of the thermogram with the fitting curve (lower). (C) X-ray crystal structure of SipDDD1.
doi:10.1371/journal.ppat.1002163.g002

Figure 3. Conformational changes during interaction of SipD and PrgI. (A) Structure of the PrgI-SipDDD1 fusion protein (SipD green and PrgI
blue) from two orthogonal perspectives. The helix kink in SipD and PrgI is indicated by red arrows. (B) Superposition of complexed SipD (green) with
monomeric SipD (orange) indicated conformational changes in the central coiled coil.
doi:10.1371/journal.ppat.1002163.g003
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We tested whether the interactions between SipD and PrgI are

necessary for the T3SS function in HeLa cell invasion assays. SipD

knockout cells, which are not invasive, were complemented with

plasmids harbouring wildtype or mutant sipD (Figure 4C). We

designed sipD mutants based on the structure of the PrgI-SipDDD1

fusion protein and on conservation of SipD amino acids (Figure

S1). Including control mutants that did not hamper stabilization of

the tip complex, we tested 15 SipD point mutations (Figure 4C).

Except for Tyr153 and Glu237, which formed intramolecular

hydrogen bonds, tested SipD mutants should not destabilize

folding of the apo-protein. Most interactions between SipD and

PrgI were essential for a functional T3SS as demonstrated by a

dramatically reduced invasiveness (Figure 4C). In contrast, amino

acids in the same region of SipD not interacting with PrgI had

little or no effect (S130A, S236A, Q310A, D320A, S327A) on host

cell invasion (Figure 4C–D). Circular dichroism spectroscopy of

purified mutants and wildtype SipD indicated same folding, albeit

the weaker spectrum of I142S indicates less a-helical content and

suggests lower stability at 37uC (Figure S9). Similarly prgI mutant

complemented PrgI knockout cells showed reduced invasiveness

(Figure S10). Our results showed that mutations in the C-terminus

of needle proteins can impede host invasion and are in agreement

with previous studies in S. typhimurium and other T3SS dependent

bacteria [21–23,25].

p–bulge in SipD provides conformational flexibility
We showed that polar interactions at the PrgI-SipDDD1

interface provide tight and specific contacts between the needle

tip complex components. In close proximity of these contacts two

helices adopted kinked conformation in the complex, but not in

the individual proteins (Figure 3). By comparing the structures of

PrgI-SipDDD1 fusion protein and SipD, we can propose how

assembly of the T3SS needle tip is established.

In chain A of both structures, one helix of the coiled coil

(domain 2 of SipD) showed partial unwinding. This helix anomaly,

usually energetically disfavoured, is stabilized in the fusion protein

by hydrogen bonds formed between carbonyl oxygen of amino

acid Ser148, a water molecule, and Trp234 of SipD (Figure 5A).

The interaction of the Ser148 backbone carbonyl group with

Trp234 shifted the typical backbone hydrogen bonding pattern

stabilizing architecture of an a–helix (iRi+4) by one position

(i(Ala144)Ri+5(Tyr149)) (Figure 5B). Local deviation from the

backbone hydrogen bonding pattern of an a–helix described as p-

bulge plays an important role in many different proteins that

require conformational flexibility for function [26]. In our

structure of the PrgI-SipDDD1 fusion protein the p-bulge caused

local unwinding and weakening of the a–helix around Ser148.

Furthermore, mutation of either of the two amino acids (Ser148 or

Trp234) involved in formation of the p-bulge led to reduced or

even loss of bacterial invasion in HeLa cells (Figure 4C). These

results support the relevance of the p-bulge for the functionality of

the T3SS needle tip complex.

In the PrgI-SipDDD1 fusion protein a water molecule bridges the

backbone carbonyl oxygen of Ser148 and Trp234 (Figure 5A).

The backbone carbonyl of Ser148 pointing towards the imino

group of Trp234 suggested similar hydrogen bond stabilization in

SipD as in the PrgI-SipDDD1 fusion protein (Figure 5B). It is

interesting to speculate whether the coiled coil of SipD is

intrinsically destabilized even in the absence of PrgI based on

the superposition of different SipD copies found in the SipD

structure (Figure S11).

Structural flexibility introduced by the p-bulge may account

partially for the helix kink observed in the complex. The SipD

helix kink is stabilized through interactions between Ser148 side

chain with Asn59 of PrgI, which is highly conserved in needle

proteins (Figure 4A and Figure 5A). Notably, in the fusion protein

the Ser148 side chain formed a hydrogen bond with the backbone

carbonyl oxygen of Ala144, located one helix turn upstream

(Figure 5A). This hydrogen bonding network stabilized the helix

kink present at amino acid Ala144 of SipD in the complex. Taken

together, a p–bulge in SipD may provide conformational flexibility

to allow the formation of the T3SS needle tip complex.

Conversely, conformational flexibility of SipD may be arrested

by the folded domain 1 in cytosolic SipD.

Figure 4. Interaction of SipD and PrgI in the T3SS needle tip complex. (A) Four helix bundle of the tip complex formed by two helices of
SipD domain 2 (green) and the helix termini of PrgI (blue). Side chains that provided hydrogen bonding network (yellow) between PrgI-SipDDD1 in the
fusion protein are highlighted. (B) List of the amino acids that stabilized the PrgI-SipDDD1 fusion protein by forming hydrogen bonds. (C) Host
invasion assay of SipD mutant complemented S. typhimurium knockout cells. (D) Close up of the PrgI-SipDDD1 interface: mutated SipD amino acids
interacting with PrgI are highlighted in grey as stick model and corresponding labels marked with grey boxes.
doi:10.1371/journal.ppat.1002163.g004

Figure 5. p–bulge in SipD domain 2 permitted the assembly of
the PrgI-SipDDD1 complex. Amino acids (stick model) and interac-
tions (yellow) that stabilize the p–bulge and helix kinks in the PrgI-
SipDDD1 fusion protein (A) and SipD (B) are highlighted.
doi:10.1371/journal.ppat.1002163.g005
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As mentioned above, one helix of PrgI had a similar kink to

SipD in the complex. Amino acids Val65 and Val67 of PrgI were

located at the kink (Figure 5A). Interestingly, both amino acids

were recently found to be critically involved in polymerization of

the T3SS needle [18]. Briefly, substitution of valines at position 65

and 67 by alanines reduced polymerization kinetics of the needle

protein, but did not abolish needle formation or affect bacterial

host invasion. Assembly of the T3SS needle is coupled with a-

helix-to-b-sheet change downstream of Val67. Noteworthy, both

amino acids were located at the PrgI-SipDDD1 interface, suggesting

a functional importance during assembly of the T3SS needle and

tip complex. The visible amino acids downstream of the helix kink

in PrgI adopted a helix conformation in the complex. Conforma-

tional flexibility, depending whether PrgI molecules interact with

each other to form a needle or with SipD at the T3SS needle tip,

may be a prerequisite for the function of this protein.

PrgI-SipDDD1 fusion protein binds to deoxycholate
Host invasion of enteric bacteria is often dramatically influenced

by the presence of bile salts [10–13]. Human intestinal bile salts,

including deoxycholates, taurodeoxycholates and chenodeoxycho-

lates, can either increase or repress invasion of S. flexneri or S.

typhimurium, respectively [10,14,15]. The bile salt effect on those

bacteria is coupled to a functional T3SS. Moreover, recent studies

show that bile salts bind to needle tip proteins, corroborating that a

T3SS component is affected by ligands released into the human

gut [27].

To measure whether the PrgI-SipDDD1 fusion protein could also

bind deoxycholate (Figure 6A), we used surface plasmon resonance

assay (Biacore). The binding curve of the immobilized PrgI-

SipDDD1 fusion with increasing concentrations of deoxycholate

(Figure 6B) indicated a dissociation constant of 59.062.7 mM,

assuming a protein ligand ratio of 1 to 1. These data are in

agreement with previous results indicating an affinity between the

S. flexneri needle tip protein IpaD and deoxycholate in the

micromolar range [14]. Next, we soaked PrgI-SipDDD1 crystals

with sodium deoxycholate and analyzed the corresponding

electron density for novel features that could fit the ligand. In

the co-crystal structure (Figure 6C, Figure S12 and Table 1),

deoxycholate was bound through its most hydrophobic b-surface

(Figure 6A) to the cleft formed by SipD and PrgI. Localization of

this binding site is about 25 Å away from the previously described

deoxycholate binding site in wildtype SipD [28]. The a-surface of

deoxycholate, disposing two hydroxyl groups, was facing the bulk

medium. Ligand binding induced only minor structural changes

related to the side chain of Ser236 in SipD and Gln24 and Gln48

in PrgI. Deoxycholate is a rigid molecule that fit almost perfectly

into the cleft provided by the PrgI-SipDDD1 fusion protein. In the

cocrystal, the deoxycholate carboxyl group located at the end of

the binding cleft was not as tightly embedded as the rest of the

ligand. Therefore bile salts with larger substituents at this position

could also occupy the cleft. Indeed, taurodeoxycholate, which is

deoxycholate amidated at the carboxyl group with ethansulfonic

acid, also binds to SipD and IpaD [14,15].

Results presented here are in agreement with recent NMR

titration experiments showing that deoxycholate causes chemical

shift changes in SipD upon binding to amino acids in the vicinity

of the ligand binding site comprised by Arg232, Gln233, Ser236,

Glu237 and Asn239 [15]. Moreover, mutation of amino acid

Glu229 of IpaD, which is the equivalent of Glu237 in SipD,

abolishes binding of deoxycholate [14].

Our data, however, indicate that bile salts bind to SipD similarly

to the deoxycholate PrgI-SipDDD1 fusion protein. The inhibitory

effect of this ligand protein interaction for host invasion suggests

that other proteins need to bind to the hydrophobic cleft formed

by SipD and PrgI.

Discussion

We showed that the interaction of SipD with PrgI depends on

the folding of domain 1 of SipD. In the PrgI-SipDDD1 fusion

protein, PrgI replaces the helix of domain 1 of SipD forming a

contact with the concave side of the coiled coil. Crystal structure

analysis of both SipD and of PrgI-SipDDD1 reveal that the p-bulge

in domain 2 of the tip protein contributes to the complex

formation. Moreover, sterol binding to a cleft in the PrgI-SipDDD1

complex suggests that intestinal detergents released from the

gallbladder could hamper regulated secretion of virulence factors

and consequently prevent invasion of S. typhimurium.

The T3SS needle tip protein from S. flexneri and Yersinia

enterocolitica shows a pentameric organization [29,30]. We found

that the PrgI-SipDDD1 fusion protein is monomeric in solution,

suggesting that the architecture of the tip complex depends on the

scaffold provided by the subunits of the T3SS needle.

Three dimensional model of the T3SS needle tip
The cryo-EM map of isolated needles from S. flexneri which is

similar to the map obtained from isolated S. typhimurium needle

[31] together with the X-ray crystal structure of a needle protomer

mutant can be used to build a composite 3-dimensional model

[21]. Based on this composite model of the T3SS needle we

manually superimposed the similarly structured regions of the

PrgI-SipDDD1 fusion protein with the MxiH subunits of the needle.

Superposition of PrgI and MxiH (PDB code 2V6L) using the

program Coot [32] was feasible without structural clashes. In total,

five molecules of the PrgI-SipDDD1 fusion protein were successfully

superimposed with five MxiH subunits at the distal end of the

T3SS needle (Figure 7). As described above, we found that PrgI

binds to the concave side of the central coiled coil in SipD.

Therefore, the PrgI-SipDDD1 fusion protein could be mounted at

the distal end of the needle without inducing structural changes.

Domain1 present in SipD may face the bulk medium either in an

unfold state or as a folded entity. In contrast to our model, the

SipD-PrgI contact predicted by a previous work [9] would require

substantial structural changes at the tip of the T3SS needle.

Open state of the T3SS needle tip
The tip complex is the distal opening of the transport channel

provided by the T3SS needle. According to the proposed model,

SipD bound to PrgI localizes to the outer surface of the T3SS

needle without obstructing the inner channel (Figure 7). The

channel is opened in the three dimensional model of the T3SS tip

complex (Figure 7A), adopting a state that permits transport or

release of unfolded molecules after passage through the channel

inside the needle. For this reason we assign the presented

structure-based model as the ‘‘open state’’ of the T3SS needle

tip. About 25 Å for the diameter of the T3SS channel may allow

the passage of a single a-helix (or even of a helix-loop-helix motif).

Deletion of the T3SS needle tip protein causes constitutive

secretion of virulence factors but abolishes bacterial invasion [7].

Consequently, it was proposed that the needle tip protein blocks

the secretion of virulence factors. In contrast to this hypothesis, our

structure based model of the open state suggests that the T3SS tip

complex is not necessarily blocking the T3SS channel. Moreover,

the tip protein does not need to be released for secretion of

virulence factors, as the SipD-PrgI interaction is not clogging the

channel. We speculate that the presence of the tip protein enables
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intermittent closing of the T3SS system thus regulating the process

of secretion.

The three dimensional model presented here enables the

following conclusions: The open state of the SipD-PrgI needle

tip must be closed to block the constitutive transport of virulence

factors. The closing of the T3SS needle tip can be mediated by

either a conformational change of SipD or by its interaction with

other effector proteins or lipids. Notably, the structure of the

Figure 6. Binding assay and cocrystal structure of PrgI-SipDDD1 with deoxycholate. (A) Chemical formula of sodium deoxycholate,
emphasizing the hydrophilic a- and the hydrophobic b-side of the molecule. (B) Binding curve of deoxycholate to PrgI-SipDDD1: plot of the
equilibrium binding response versus the concentration of deoxycholate. The solid line represents the fitting curve of the individual measurements. (C)
Surface representation of the PrgI-SipDDD1 fusion protein (chain B) coloured according the electrostatic potential (blue positive, red negative).
Deoxycholate bound in the hydrophobic cleft of the PrgI-SipDDD1 complex through its b-side is highlighted as a stick model.
doi:10.1371/journal.ppat.1002163.g006

Figure 7. Model of the open state of the T3SS needle tip. (A) View from the surface into the channel opening of the T3SS needle tip. SipD is
coloured in green and PrgI in blue, respectively. Deoxycholate molecules binding to PrgI-SipDDD1 are highlighted in red. The inner diameter of the
needle tip complex (25 Å) permits passage of unfolded virulence proteins. Opening of the needle tip complex with an outer diameter of 140 Å results
in a large inner cavity which could be closed through contact with the plasma membrane of host cells. (B) Side view of the T3SS needle including the
tip complex. The inner channel is highlighted by dotted lines and a contacting host cell membrane is shown in grey.
doi:10.1371/journal.ppat.1002163.g007
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needle tip complex is not in conflict with possible movement of

domain 2 and 3 in SipD but further work is required to explain

how SipD regulates the secretion of T3SS. Moreover, binding of

other effector proteins to the T3SS needle tip was proposed for the

control of the needle length [1,33] and the translocation of

virulence factors across host membranes (SipB).

Along these lines, we previously reported that the T3SS needle

protein PrgI extends the needle from the distal end in the absence

of tip proteins [18]. Moreover, addition of tip proteins prevented

further growth of the T3SS needle [18]. It is plausible that

addition of SipD avoid needle elongation.

Bile salts, including deoxycholate, can prevent S. typhimurium

invasion through binding to SipD [12,15]. We showed here that

deoxycholate binds to the cleft formed by SipD and PrgI close to

the constriction of the T3SS channel (Figure 6 and Figure 7a).

This interaction may prevent larger conformational changes in

SipD, which block closure of the T3SS channel. Likewise bound

deoxycholate may impede the binding of channel blocking

proteins. Future studies are needed to understand how the T3SS

is regulated using deoxycholate.

The presented structural studies enable us to construct a three

dimensional model of the Salmonella T3SS needle tip, which in

turn suggests a secretion mechanism. In the open state of the T3SS

needle tip a large cavity, maybe enclosed through contact with the

host membrane, is formed. This cavity could act as a folding

chamber to facilitate the folding of secreted proteins. Folding of

early secreted translocator proteins at the host membrane could

improve the delivery of other effector proteins into the host

cytoplasm. A similar folding principle was identified in the

molecular chaperones, including prefoldin which forms a cavity

for the nascent protein chain at the exit channel of the ribosome

[34–36]. Moreover, the T3SS channel could be closed by contact

with host membranes. In this scenario, the host membrane could

prevent waste of secreted virulence factors, which otherwise could

diffuse away from the point of contact. The T3SS needle tip is

crucial for bacterial invasion and searching for substances similar

to deoxycholate that prevent functioning or even assembly of the

complex could lead to the discovery of novel targets for the

development of drugs against pathogenic enterobacteria.

Material and Methods

Cloning, gene expression and protein purification
Wildtype and mutant sipD or prgI were amplified from S. enterica

serovar typhimurium strain SL1344 (S. typhimurium) by standard PCR

using oligonucleotide primers with NdeI and XhoI restriction sites at

either ends. Single crystallization of SipD132–343 superseded

cocrystallization with PrgI in various attempts. Therefore, wildtype

prgI and a sipD fragment encoding amino acids 127 to 343 were

connected by fusion PCR. N-terminal PrgI was fused by the amino

acids Gly-Gly-Ser-Gly-Gly to SipD127-343.

PCR products were cloned into the expression vector pET-

28a(+) (Novagen) or pET-21a(+) (Novagen), both containing N-

terminal His-tag, and expressed in Escherichia coli BL21(DE3) cells.

Cells were induced with isopropyl-b-D-1-thiogalactopyranoside,

harvested after 4 h and His-tagged protein purified using affinity

chromatography (HisTrap, GE Healthcare). Bound protein was

washed (40 mM imidazole) and eluted using buffer containing

500 mM imidazole. After buffer exchange (20 mM HEPES

pH 7.4, 50 mM NaCl) the tag was cleaved with CleanCleave

Kit (Sigma-Aldrich). The cleaved product was purified by size-

exclusion chromatography (Superdex 200 or Superdex 75, GE

Healthcare) and stored at 4uC until use. For functional assays,

wildtype or mutant sipD or prgI were cloned into the pASK-IBA5

vector (IBA) as BsaI fragments. Point mutants were generated

using QuikChange Site-Directed Mutagenesis Kit (Stratagene). All

constructs were confirmed by sequencing.

Crystallization, data collection, structures determination
and refinement

Crystals of SipD, SipDDD1 and PrgI-SipDDD1 were obtained at

18uC using hanging drop vapour diffusion technique. SipD was

concentrated to ,15 mg/ml and mixed with equal volume of

reservoir solution containing 100 mM HEPES pH 7.5 and 1.5 M

Li2SO4. SipDDD1 was concentrated to 40 mg/ml and mixed with

equal volume of reservoir solution 0.1 M MES pH 6.5 and 12%

(w/v) polyethylene glycol 20000. PrgI-SipDDD1 was concentrated

to 30 mg/ml and mixed with equal volume of reservoir solution

containing 0.49 M NaH2PO4 N H2O and 0.91 M K2HPO4,

pH 6.9. To obtain cocrystals PrgI-SipDDD1 crystals were soaked

for 72 hours in mother liquor containing ,10 mM deoxycholate.

All crystals were flash frozen in liquid nitrogen in the presence of

30% glycerol (v/v). Diffraction data were collected at 100 K and

wavelength 0.918 Å at BESSY II (Berlin, Germany) beamlines

14.1 or 14.2, or wavelength 1.000 Å at SLS (Villigen, Switzerland)

beamline X06SA.

Diffraction data were indexed, integrated and scaled using the

program package XDS [37]. The crystal structure of SipDDD1 was

solved by molecular replacement with the program Phaser [38]

using the structure of truncated IpaD (pdb code: 2J0N) as

template. The structures of SipD and PrgI-SipDDD1, apo and with

deoxycholate, were solved by molecular replacement using the

SipDDD1 structure as template. The initial models were refined by

repeated cycles of manual building and refinement using the

programs Coot [32] and CNS [39].

Crystals of SipD have 4 copies in the asymmetric unit and the

following Ramachandran statistics: 82.7% of residues in most

favoured regions, 16.6% in additionally allowed regions, 0.7% in

generously allowed regions. Crystals of SipDDD1 have 2 copies in

the asymmetric unit and 92.7% of residues in most favoured

regions, 6.5% in additionally allowed regions, and 0.8% in

generously allowed regions. Crystals of PrgI-SipDDD1 have 2

copies in the asymmetric unit and 92.9% of residues in most

favoured regions, 7.1% in additionally allowed regions. The

structure of PrgI-SipDDD1 complexed deoxycolate has 93.4% of

residues in most favoured regions and 6.6% in additionally

allowed regions. Ramachandran statistics were calculated with

PROCHECK v.3.3 [40].

Molecular graphics images, including representations of surface

electrostatic potential, were produced using PyMOL version

0.99rc6 [41], except Figure S6 which was produced with UCSF

Chimera package from the Resource for Biocomputing, Visual-

ization, and Informatics at the University of California, San

Francisco [42].

Generation of knockout strains
Bacterial knockouts were generated according to Datsenko and

Wanner [43]. pASK-IBA5 plasmids harboring wild type or

mutant sipD (psipD) were used to complement deletions of sipD

in S. typhimurium strain SL1344 to generate strains SL1344DsipD/

psipD.

HeLa cell invasion assay
HeLa cells were seeded at 16105 cells per well and grown for

24 h at 37uC. Prior to infection, growth medium was aspirated,

cells were washed twice with phosphate-buffered saline (PBS), and

serum-free medium was added. To test for epithelial cell invasion
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and intracellular growth, HeLa cells were infected with S.

typhimurium at a multiplicity of infection (MOI) of 10:1. Expression

of sipD wild-type and sipD mutants was induced with 0.2 mg ml21

anhydrotetracycline for 1 h. Bacterial inocula were prepared in

PBS and centrifuged onto cells (2000 rpm, 10 min), and infected

cultures incubated for 20 min at 37uC. Cultures were washed

three times with PBS, and fresh medium containing 100 mg ml21

gentamicin was added. After 2 h cells were washed with PBS and

lysed with 0.1% Triton X-100. Numbers of viable bacteria were

obtained by plating dilutions of lysates on tryptic soy agar plates

and counting colonies after overnight incubation at 37uC.

Multi-angle laser light scattering (MALLS)
For mass determination a combined setup consisting of SEC

and subsequent online detection by UV absorption, (three angle)

static laser light scattering and differential refractive index

measurement was used as described earlier [44]. SEC was

performed with either a Tricorn Superdex 200 10/300 GL

column or a Tricorn Superdex 75 10/300 GL (GE Healthcare)

equilibrated with 20 mM HEPES (pH 7.5), 150 mM NaCl. For

static light scattering and differential refractive index measure-

ments a linear coupled miniDAWN Tristar (Wyatt Technology)

system and a differential refractive index detector (RI-101,

Shodex), respectively, was used. All calculations were done with

the software ASTRA (Wyatt Technology). Each experiment was

repeated at least in triplicate.

Isothermal Titration Calorimetry (ITC)
Titration experiments were carried out using a VP–ITC

isothermal titration microcalorimeter (MicroCal, Northampton,

MA, USA). Aliquots of 12 ml of SipD (1.35 mM) were injected

consecutively at 20uC into the cell containing 1.4 ml of PrgI*

(0.34 mM) or at 17uC by injecting consecutively 12 ml aliquots of

PrgI* (1.99 mM) into the cell containing 1.4 ml of SipDDD1

(0.37 mM). The heat of dilution of the injected protein was

measured in both cases and subtracted from the heath measured at

each injection. Binding stoichiometry, enthalpy, and equilibrium

association constants were determined by fitting the corrected data

to one set of sites model equation using the evaluation software

provided by the manufacturer.

Surface plasmon resonance (Biacore)
Binding of sodium deoxycholate to the PrgI-SipDDD1 fusion

protein was measured using surface plasmon technology-based

Biacore X100 biosensor (GE Healthcare) according to manufac-

turer’s instruction. Briefly, PrgI-SipDDD1 fusion protein was

immobilized on a sensor chip CM5 (research grade) by amine

coupling method. Binding experiments were performed at 25uC at

continuous flow rate of HBS-N buffer (10 mM HEPES, 150 mM

NaCl, pH 7.4). Deoxycholate was injected in steps with increasing

concentrations in a single analysis cycle without regeneration of

the surface in between injections. Affinity analysis was performed

using single-cycle kinetics. Equilibrium dissociation constant (KD)

was determined with Biacore evaluation Version 4.1 software.

During the assays, the signal was corrected against the control

surface response to eliminate refractive index changes due to

buffer change.

Circular dichroism spectroscopy
CD spectra were collected with a Jasco J-500A spectropolarim-

eter. Samples buffered in 10 mM HEPES (pH 7.4), 25 mM NaCl

were measured either at 20uC and protein concentration1.5 mg/

ml between 182 and 260 nm in a quartz cuvette with optical path

length of 0.1 mm or at 37uC and protein concentration 0.15 mg/

ml between 198 and 260 nm in a temperature controlled quartz

cuvette with optical path length of 1 mm. Wavelength scans were

carried out at a scan rate of 12 nm/min, with time constant 2 sec.

All the spectra were acquired in triplicates.

PDB accession codes
The atomic coordinates and structure factors of the four

structures described here are available from the Protein Data Bank

under the following accession codes: 2YM0 for SipDDD1, 2YM9

for SipD, 3ZQB for PrgI- SipDDD1, 3ZQE for PrgI- SipDDD1

complexed with deoxycholate.

Supporting Information

Figure S1 Structural conservation of T3SS needle tip
proteins. Superposition of the domains 2 and 3 of the crystal

structures of SipD from Salmonella (orange, this work), BipD from

Burkholderia (blue, PDB code 2IZP), and IpaD from Shigella (green,

PDB code 2J0O) and corresponding structure based protein

sequence alignment (below). Identical and similar amino acids are

highlighted in dark and light grey, respectively. Amino acids are

numbered according to the SipD sequence.

(TIF)

Figure S2 Structural similarity of the tip protein in
domain 1. Superposition of the N-terminal domains of SipD

(orange. this work) and IpaD (light blue, pdb code: 2J0O).

(PNG)

Figure S3 SipD is a monomer in solution. On-line static

laser light scattering experiments of SipD eluted from a size

exclusion column. The black line shows the protein absorption at

280nm (right axis) versus the eluted volume, indicating the

presence of SipD. The light and dark grey lines refer to the left axis

and reflect the measured molecular weight of SipD in solution for

2 independent experiments.

(TIF)

Figure S4 Deletion of the N-terminal domain 1 in SipD
does not facilitate self-polymerization. On-line static laser

light scattering experiments of SipDDD1 eluted from a size

exclusion column. The black line show the protein absorption at

280nm (right axis) versus the eluted volume indicating the

presence of SipDDD1. The light and dark grey lines refer to the

left axis and reflect the measured molecular weight of SipDDD1 in

solution for 2 independent experiments.

(TIF)

Figure S5 Conformational changes during interaction
of SipD and PrgI. Superposition of PrgI as in the fusion protein

(blue) with monomeric PrgI* (light brown) indicated structural

differences in the C-terminal helix of the needle protein.

(TIF)

Figure S6 Relative orientation of SipD and PrgI in the
fusion protein. SipD (green) and PrgI (blue) adopt a relative

orientation of about 45u. Calculation is based on the relative

orientation of the highlighted (grey cylinders) helices.

(PNG)

Figure S7 PrgI-SipDDD1 fusion protein is a monomer in
solution. On-line static laser light scattering experiments of PrgI-

SipDDD1 eluted from a size exclusion column. The black line show

the protein absorption at 280nm (right axis) versus the eluted

volume indicating the presence of PrgI-SipDDD1. The light and

dark grey lines refer to the left axis and reflect the measured
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molecular weight of the fusion protein in solution for two

independent experiments.

(TIF)

Figure S8 Hydrophobic surfaces stabilize the PrgI-
SipDDD1 fusion protein. Two perspectives of SipD (green

cartoon on the left, surface representation on the right) and PrgI

(surface representation on the left, blue cartoon on the right).

Surfaces are coloured according to the electrostatic potential, blue:

positive, red: negative). Uncharged surface patches at the interface

between the two proteins indicate hydrophobic contacts.

(TIF)

Figure S9 Circular Dichroism spectra obtained at 206C
and 376C from purified SipD and SipD mutants. Except

for I142S the spectra obtained from six mutants described in

Figure 4 show similar secondary structure content at 20uC (upper

panel) and at 37uC (lower panel). Mutant I142S shows reduced

folding stability compared to wildtype, particularly at 37uC. Data

at 37u (lower panel) were recorded to a lower limit of 1980 Å to

avoid spectra distortion due to high photomultiplier voltage

obtained with a temperature controlled cuvette with 1 mm optical

path length.

(TIF)

Figure S10 Host invasion assay of PrgI mutant comple-
mented S. typhimurium knockout cells.
(TIF)

Figure S11 Superposition of the different copies found
in the SipD crystal structure. Chain A (orange), chain B (light

blue), chain C (red), and chain D (green) were superimposed and

the region of the coiled-coil around Ser148 is highlighted. Chains

A and B show a p-bulge, chain C and D are partially destabilized

and kinked at the same position as SipD in the fusion protein.

(PNG)

Figure S12 Co-crystal structure of PrgI-SipDDD1 with
deoxycholate. Left: Ribbon presentation of the PrgI-SipDDD1

fusion protein (chain B, SipDDD1: green, PrgI: blue) in complex

with deoxycholate (yellow); Right: Bound deoxycholate in the

same orientation as on the left shown with superimposed

composite 2fo-fc density map (blue) contoured at 1 s.

(TIF)
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