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Introduction

Malaria is caused by unicellular, obligate intracellular eukary-
otes of the genus Plasmodium that can invade and replicate 
within erythrocytes. This vector-borne parasitic disease contin-
ues to pose a major disease burden and death toll, primarily in 
infants and children living in Sub-Saharan Africa.1 As in all 
apicomplexan parasites, the pathogen life cycle follows a com-
plex developmental program, in the case of Plasmodium inside 
the mosquito and mammalian hosts. The signature febrile epi-
sodes are caused by the synchronized rupture and re-invasion 
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Eukaryotic pathogens typically follow a complex life cycle, 
including host switch and morphologically distinct forms. 
Parasite stage conversion offers exceptional opportunities 
for whole organism vaccine development. In the case of 
Plasmodium, the causative agent of malaria, disease is 
exclusively caused by asexual blood stages that invade 
and replicate within erythrocytes. Pathogenic blood 
stage infections are preceded by a silent parasite growth 
phase inside the liver. Two alternative experimental 
whole organisms vaccine strategies that lead to arrested 
Plasmodium liver stages elicit potent, lasting immunity 
against re-infection. Live irradiation- or genetically arrested 
parasites are metabolically active and correspond to classical 
attenuated vaccines. Specific antimalarial treatment during 
experimental natural sporozoite infections prevents a febrile 
malaria episode and, simultaneously, induces effective 
anti-liver stage immunity. Translation of these strategies 
into a safe, affordable and accessible pediatric anti-malaria 
vaccine requires major bioengineering and pharmaceutical 
improvements, respectively, but holds promise for a truly 
effective immunization scheme against the most prevalent 
and fatal vector-borne disease.
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of the host erythrocytes. Exponential expansion of the parasite 
population during asexual blood stage growth leads to malaria-
related morbidity and clinical symptoms. A proportion of clini-
cal malaria cases develop life-threatening complication, which 
can include anemia, multi-organ failure or cerebral malaria.2 
What triggers disease exacerbation remains an open question. It 
is believed that contributing factors include the initial sporozo-
ite dose inoculated during the mosquito bite, parasite virulence, 
host genetics and co-infections with helminths or bacteria.3-7 
Reliable biomarkers that would predict disease progression are 
still missing.

In endemic areas anti-malaria immunity is only acquired 
gradually after many repeated exposures.8,9 The first responses 
to develop in children protect against severe complications with-
out affecting mild disease or parasite burden. Over time, often 
not before adolescence, anti-disease immunity is mounted, lead-
ing to ‘clinical tolerance’ as opposed to sterilizing immunity. 
Field studies also show that antibody responses are short-lived 
and necessitate continuous re-exposure to eventually persist.10,11  
A proportion of adults remains symptom-free and parasite-
positive, and hence, do not receive treatments, contributing to 
the continuous parasite propagation via mosquito transmission. 
Together, naturally acquired anti-malaria immunity is slow, 
incomplete, short-lived and strain-specific. Whether immuni-
zation strategies can mount more potent and lasting protective 
immune responses and surpass nature remains to be shown.

Before the onset of a blood stage infection Plasmodium under-
goes an obligate, yet diagnostically and clinically silent, popula-
tion expansion phase in the liver.12,13 Intra-hepatic development 
compensates for one of the two bottlenecks, i.e., sporozoite inoc-
ulation during the short probing phase of a mosquito bite, in the 
Plasmodium life cycle and leads to formation of thousands of 
infectious merozoites. Sporozoite-to-merozoite stage conversion 
takes several days and represents a unique window of opportu-
nity for anti-malaria vaccine development.14 Recent experimental 
whole organism vaccine approaches in rodent malaria systems 
have consistently demonstrated long-lasting sterilizing immunity 
against reinfection. Complementary vaccine approaches aim at 
targeting the pathogenic blood stages and transmission stages.15-18 
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intravenous injection of radiation-attenuated sporozoites (γ-spz 
or RAS) in mice24-30 (Fig. 1). These findings established that spo-
rozoites need to be viable in order to confer protection. Heat-
killed sporozoites (hk spz), for instance, cannot enter a suitable 
hepatocyte and, hence, fail to elicit protection against re-infec-
tion31 (Fig. 1). Moreover, protection following γ-spz immuniza-
tion is acting exclusively against the pre-erythrocytic stages, since 
bypassing the life cycle by transfusion of infected blood led to a 
fulminant malaria infection. Subsequent work in rodent models 
established that protective immunity is of multifactorial nature 
and directed against free sporozoites through high titers of block-
ing antibodies and intracellular liver stages via IFNγ secreting 
conventional αβ T cells, as well as NK cells and γδ T cells.13,32-34 
The γ-spz immunization strategy has been swiftly translated to 
trials in non-human primates35 and human volunteers.36

The demonstration of lasting sterile protection in a number 
of vaccinees that received a high number of bites from irradiated  
P. falciparum-infected Anopheles mosquitoes36 has been con-
firmed in a number of subsequent small phase IIa trials and 
established the current gold standard for an anti-malaria vac-
cine.37,38 It has been argued that the translation of γ-spz from an 

Here, we present an overview of the different strategies that lead 
to a pre-erythrocytic life cycle arrest.

Radiation-Attenuated Sporozoites:  
First Generation Whole Organism Vaccines

Malaria vaccinology started with immunizations in experimental 
animals using killed blood stage parasites plus adjuvants19,20 and 
killed or UV-inactivated sporozoites21,22 or both parasite stages.23 
These traditional whole organism vaccine strategies offered only 
partial, if any, protection against re-infection. The findings 
established that eliciting anti-sporozoite or -blood stage immune 
responses, at least by the approaches available at that time, do 
not offer a path towards malaria vaccine development. Moreover, 
the experiments already indicated that vaccine strategies against 
a complex, slow-growing eukaryotic pathogen need to be funda-
mentally different from anti-viral vaccines, which often mimic 
naturally acquired immunity.

The first conclusive demonstration that lasting protection can 
be elicited by a whole organism vaccine strategy was by a series of 
immunization studies performed at New York University using 

Figure 1. Experimental approaches for developmental Plasmodium liver stage arrests. Heat-killed sporozoites (hk spz) cannot enter a suitable hepa-
tocyte and, hence, fail to elicit protection against re-infection, indicative of a minor role of antibodies against sporozoite surface proteins in lasting 
protective immunity. Irradiated sporozoites (γ-spz) retain their capacity to actively enter their host cells and initiate the transformation process inside 
a hepatocyte. They are replication-deficient because of multiple random DNA double strand breaks but persist as metabolically active parasites 
and elicit lasting protection. Genetically arrested parasites (GAPs) contain tailor-made, stable deletions of Plasmodium genes that exert vital func-
tions during liver stage development. Similar to γ-spz, GAPs persist as metabolically active parasites and confer protection. Experimental sporozoite 
exposure (SE) under drug cover (DC) aims at preventing febrile malaria while simultaneously inducing pre-erythrocytic immune responses. SE under 
chloroquine cover (spz + CQ) can induce brief, but mild malaria episodes. In addition, global CQ resistance necessitates inoculation of CQ-sensitive 
laboratory strains under clinical surveillance. Sporozoite exposure under primaquine cover (spz + PQ) takes advantage of a causal-prophylactic drug, 
which kills intra-hepatic parasites. Intracellular killing by pharmacological treatment induces lasting protection. Sporozoite exposure under azithromy-
cin cover (spz + AZ), a safe antibiotic licensed for children and during pregnancy, induces a delayed parasite death, leading to complete maturation of 
liver stages, yet inviable liver stage merozoites. This strategy combines the advantages of drug cover by CQ, i.e. full maturation and, hence, maximum 
antigen display and PQ, i.e. global parasite susceptibility to the drug and prevention of blood stage infections and malaria symptoms during the im-
munization phase.
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asparagine-rich protein), was targeted.59 Loss of SLARP func-
tion results in complete early liver stage arrest. When tested as an 
experimental malaria vaccine, slarp(-) sporozoites induced only 
modest and short-lived protection against reinfection. Expression 
profiling demonstrated that expression of a number of signature 
liver stage antigens, including UIS3 and UIS4, are controlled 
by SLARP, offering a molecular explanation for low vaccine 
efficacy of slarp(-) immunizations and opening a rationale for 
discovery of protective liver stage antigens by differential profil-
ing.59 Experiments with the P. yoelii homologue, called sporozoite 
asparagine-rich protein 1 (SAP1), led to complete protection in 
the Balb/c malaria mouse model.60 This apparent discrepancy 
may be attributed to the presence of an immunodominant CSP 
H2Kd-restricted CD8+ T cell epitope,61 corroborating the notion 
that the P. berghei/C57BL/6 model is the most difficult to pro-
tect against, and hence, serves as the most stringent preclinical 
model for anti-malaria vaccine development.

Sporozoite Exposure during Drug Cover (SE/DC):  
A ‘Needle’-Free Immunization Approach?

The potential of treatment with registered antimalarial drugs 
during sporozoite exposure to induce potent immune responses 
was first tested in rodents. In these studies oral chloroquine (CQ) 
was given over a period of repeated sporozoite injections.62,63 
Protection was also found to be mediated primarily by CD8+  
T cells.63 Roestenberg et al. could recently demonstrate the 
potency of this approach in human volunteers.64 In the vaccin-
ees multifunctional (IFNγ- and IL2-secreting) T cells of the 
effector memory phenotype (CD62L-, CD45RO+) were consis-
tently detected, but the precise molecular and immunological 
mechanisms of protection remain largely undefined. Individuals, 
who adhere to a strict CQ cover and effectively follow a SE/CQ 
scheme, can occasionally be found in malaria-endemic countries 
and were the basis for a successful antigen discovery program, 
which returned a number of liver stage antigens, e.g., LSA1.65 
High anti-LSA1 antibody titers consistently correlate with a lower 
risk of clinical malaria.10,66 Although circumstantial, these find-
ings support the premise that SE/CQ might have elicited liver 
stage immunity in the past. Because of widespread resistance of 
P. falciparum against CQ67 replacement drugs with CQ-like anti-
blood stage activity or, alternatively, with unconventional modes 
of action against the liver stage are essential for the translation of 
this concept into a clinical intervention.

The latter hypothesis was recently tested in rodent models 
using the liver-specific drug primaquine (PQ) as cover during 
sporozoite exposure68 (Fig. 1). SE/PQ leads to a high degree of 
sterile protection after three rounds of immunization, includ-
ing SE by bites of infected mosquitoes during the immuniza-
tion phase, which most closely mimics natural transmission 
at night. Unfortunately, severe side effects of PQ and other 
8-aminoquinolines limit the use of this intervention in malaria-
endemic countries.69 However, it will be interesting to test in a 
limited proof-of-concept clinical trail in humans whether SE/
PQ would also induce consistent protection against reinfection. 

experimental vaccine to a pediatric formulation is hampered by 
several hurdles and, hence, impractical.39 Vaccination with γ-spz, 
however, most likely induces very potent, strain transcending 
long lasting cellular immune responses. It remains to be formally 
demonstrated that a subunit vaccine can achieve lasting protec-
tion against a eukaryotic pathogen. Delivery of the gold standard 
vaccine to the people in need is an ambitious goal that deserves 
sustained commitment from researchers, funding agencies and 
public health authorities. Towards this goal, researchers currently 
explore practical and efficient vaccine administration routes, spo-
rozoite purification and freezing methods and logistics to distrib-
ute liquid nitrogen-frozen vials to rural health centers.40,41

An alternative vaccine candidate that emerged from the 
studies utilizing γ-spz was the successful cloning of the major  
P. falciparum sporozoite surface protein, termed circumsporo-
zoite protein (CSP),42 and the subsequent development of the 
RTS,S subunit vaccine, which includes portions of CSP as the 
malaria antigen and is the first anti-malaria vaccine candidate 
ever to enter testing in phase III clinical trials in Africa.43,44

Genetically Arrested Parasites (GAPs):  
Tailor-Made Vaccine Lines

Near-complete Plasmodium genome sequence data,45 expres-
sion profiling,46 and reliable transfection technology47 permit 
molecular genetics approaches to generate Plasmodium vaccine 
lines with precise gene deletions.14,48 Important requirements are 
(1) non-vital roles during asexual growth, where transfection is 
performed; (2) normal transmission, sporozoite formation inside 
the mosquito vector, and invasion of host hepatocytes; and (3) 
complete life cycle block between sporozoite entry and release of 
infectious merozoites from the liver. In a proof-of-concept study 
in the P. berghei/C57BL/6 model, targeted deletion of a signa-
ture liver stage protein, termed upregulated in infectious sporo-
zoites gene 3 (UIS3), resulted in an early liver stage arrest and 
absence of blood stage infections, even when very high sporozoite 
doses were injected intravenously49 (Fig. 1). Immunization with 
three doses of uis3(-) sporozoites mounted long-lasting sterile 
protection against sporozoite re-infection, but not blood stage 
transfusion, supporting the notion that immunity is liver stage-
specific. The concept to test genetically arrested parasites (GAPs) 
as experimental malaria vaccines was corroborated by additional 
targeted deletions of other liver stage-specific genes both in the  
P. berghei/C57BL/6 and the P. yoelii/Balb/c models.50-54 
Protection offered following GAP-vaccination has been shown to 
be primarily dependent on CD8 T cells.53,55,56

Following the promising pre-clinical findings in rodent mod-
els, one vaccine line has been translated to P. falciparum by gen-
eration of p36/p36p(-) parasites, despite the early indications of 
substantial break-through infections in the rodent model.57,58 It 
remains uncertain how this parasite line can be tested in human 
trials and highlights the need for rigorous pre-clinical testing.

In an effort to develop safe GAPs that display uncondi-
tional liver stage arrest a master regulator of gene expression in  
P. berghei sporozoites, termed SLARP (sporozoite and liver stage 
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add an additional safety level or may even boost immunity in 
prospected experimental human trials with GAPs.

Due to its favorable drug safety record, AZ can be used in 
all ages and risk groups.74 The results of ongoing intermittent 
preventive treatment in pregnancy (IPTp) studies with a fixed 
drug combination azithromycin and chloroquine against uncom-
plicated malaria will inform future wider use and, perhaps, inclu-
sion into other IPT programs.

Outlook

Development of a safe, affordable and long-lasting pediatric 
malaria vaccine and identification of immune correlates of protec-
tion among the abundant non-protective host responses remain 
research priorities in infection biology. Understanding the molecu-
lar and immunological mechanisms of the crosstalk between the 
parasite and the host is a prerequisite for rational anti-malaria vac-
cine discovery and development. Metabolically active, arrested liver 
stage parasites by live irradiation or molecular genetics and thera-
peutic cover during experimental sporozoite infections are alter-
native experimental whole organism vaccine strategies. Systematic 
immunological profiling of arrested parasites has the potential to 
inform translation of a whole organism anti-malaria vaccine to the 
human pathogen and can lead to the identification of protective 
antigens that have been elusive thus far. Together, precise genetic 
and pharmaceutical arrests of Plasmodium liver stage development 
are important approaches towards vaccine discovery.
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If confirmed, the search for novel compounds that effectively kill 
intra-hepatic stages will gain further momentum.

More recently, studies in the P. berghei/C57BL/6 model 
established that concomitant use of antibiotics (Abx), such as 
azithromycin (AZ) and clindamycin, with infectious sporo-
zoites does not lead to development of pathogenic blood stage 
infection despite full maturation of exoerythrocytic forms and 
release of hepatic merozoites.70 This so-called “delayed death” of 
parasites occurs after administration of antibiotics, which tar-
get the algae-originating apicoplast, an organelle encoding the 
prokaryotic-type translation machinery.71,72 When administered 
in a vaccination scheme, sporozoite exposure under Abx cover 
induces robust CD8 T-cell mediated protection against re-infec-
tion with mosquito-derived salivary gland sporozoites (Fig. 1). 
This strategy is apparently at least as powerful as the irradiated 
sporozoite gold-standard vaccine and might in fact be superior, 
since developmental arrest during late liver stage development 
may lead to improved live-attenuated vaccines due to the pres-
ence of a wider antigenic repertoire. Yet, correlates of protection, 
most likely protective CD8+ T-cell epitopes, remain to be identi-
fied. Systematic identification and characterization of these, still 
elusive signatures of protection will also inform the development 
of second-generation subunit vaccines.

Long-acting antibiotic drugs like AZ are being tested for mass 
drug administration, for instance in trachoma control programs. 
A recent documentation of an unanticipated substantial reduction 
in overall mortality after a campaign in Ethiopia73 encourages 
optimism that the protective effect observed in the experimental 
immunizations may be translated to malaria-endemic regions. 
One testable hypothesis is that intermittent delivery of AZ to the 
most vulnerable target populations, young children and pregnant 
women, may have a dual role in protection against malaria. In 
addition to an immediate therapeutic effect against an ongoing 
blood stage infection, sporozoites that are being delivered after 
bites of P. falciparum-infected mosquitoes will be arrested lead-
ing to gradual acquisition of anti-preerythrocytic immunity. 
Because of a potential vaccine-like secondary effect, oral Abx 
administration together with natural sporozoite exposure could 
effectively complement needle-vaccinations. Abx cover will also 
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