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We review here our experiences with the in vitro reprogramming of somatic cells to induced pluripotent stem cells (iPSC) and
subsequent in vitro development of hematopoietic cells from these iPSC and from embryonic stem cells (ESC). While, in principle,
the in vitro reprogramming and subsequent differentiation can generate hematopoietic cell from any somatic cells, it is evident
that many of the steps in this process need to be significantly improved before it can be applied to human cells and used in clinical
settings of hematopoietic stem cell (HSC) transplantations.

1. Introduction

The in vitro generation of hematopoietic stem cells (HSC)
and mature hematopoietic cells from embryonic stem cells
(ESC) promises to provide an alternative source of cells
that could replace total bone marrow cells or HSC-enriched
fractions of them. This is especially necessary in the case of
human cells in clinical settings for HSC transplantations. In
addition, studying hematopoiesis in vitro bypasses the need
of donor cells, in particular to study hematopoietic disorders
in human. ESC lines can be cultured long term and allow,
in contrast to HSC, homologous recombination of DNA,
that is, the insertion of exogenously modified genes into the
appropriate sites in the genome. Thus, genetically altered,
ESC-derived HSC might allow the proper genetic repair of
defective cells of the hematopoietic system, including those
of the innate and the adaptive immune system. However,
for transplantations of human cells histoincompatibilities
between the ESC-derived HSC and the transplanted host
might be the cause of transplant rejections.

Since it has now become possible to generate ESC-like
induced pluripotent stem cells (iPSC) from differentiated
peripheral cells [1, 2], HSC as well as mature hematopoietic
cells might in the future be generated from differentiated cells
of a patient via iPSC. Somatic cells that are either mature,
fully differentiated cells or are restricted in their ability to

develop into a limited collection of cell types can be induced
to become pluripotent, so that they exhibit higher differenti-
ation capacity. This process is called reprogramming. It is not
yet clear whether reprogramming will always equal dediffer-
entiation. The original, and most widely employed method
to induce iPSC from somatic cells uses ectopic expression of
the transcription factors Oct-4, Sox-2, and Klf-4, either with
or without c-myc [1, 3–8]. However, concerns limiting clini-
cal applications of patient-derived, that is, directly converted
iPSC, include potential epigenetic differences between iPSC
and ESC [9–18], and possible modifications of the genome
by insertions and continued expression of the transcription
factors that could affect the capacities of reprogrammed
iPSC to properly differentiate. In our case of interest, we
discuss some limitations to develop them into HSC and their
differentiated hematopoietic cell lineages.

Several studies have improved the procedure of the gen-
eration of iPSC from a variety of different types of differ-
entiated cells to find the most efficient method. In general, at-
tempts to optimize both cell-intrinsic and exogenous factors
to achieve optimal growth, survival, and differentiation re-
quirements, first for the transfection phase and, thereafter,
for the conversion from the differentiated cells to the iPSC
have been made [1, 3–8]. Many studies exist showing that
iPSC share the characteristic of ESC, that is, they can give rise
to all cell types of a proper body, proven by the development
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of chimeric animals and teratoma formation [1]. Howev-
er, these qualitative analyses do not provide information
about the quantitative efficiency of development. Thus, to in-
vestigate whether iPSC can replace ESC to study devel-
opment and for clinical applications, efficiencies of develop-
ment are needed.

Here, we summarize our experience with Oct-4/Sox-
2/Klf-4-transduced mouse embryonic fibroblasts (MEF),
mouse bone marrow-derived (MBM) hematopoietic progen-
itors, and mouse fetal liver-derived preB lymphocytes in the
in vitro generation of iPSC that show varying levels of con-
tinued expression of the transduced transcription factors in
iPSC and in differentiating hematopoietic cells. These levels
of transgenic expression relate to the potency of the iPSC to
differentiate subsequently in vitro to hematopoietic cells.

Hematopoietic development from ESC and iPSC is
one of the best-studied differentiation programs. Culture
systems have been developed that allow the differentiation of
hematopoietic lineages in vitro from ESC and iPSC [19–27]
which we have attempted to optimize for myeloid, T, NK,
and B cells [28]. However, the efficient development and
maintenance of in vivo reconstituting HSC from ESC and
iPSC remains challenging. For a clinically relevant procedure
of generating transplantable HSC, first, the best type of
differentiated cell for conversion to iPSC with the best cell-
intrinsic and extrinsic factors have to be found. Thereafter,
improved methods need to be developed to generate and
stabilize the pluripotent, long-term reconstituting potentials
of transplantable HSC.

2. Reprogrammed Somatic Cells as New Sources
for the Generation of Hematopoietic Cells

2.1. Step 1: From Differentiated Cells to iPSC. Somatic cells
were first reprogrammed by somatic cell nuclear transfer
[29–31]. Later, lineage-associated transcription factors were
identified within a pool of 24 pluripotency-associated fac-
tors that had the potential to reprogram adult cells into
pluripotent cells upon retroviral transduction [1]. Thus,
transduction of mouse fibroblasts with Oct-4, Sox-2, Klf-4,
and c-myc-generated iPSC by selection for Fbxo15 activation
that expressed pluripotency markers, generated teratomas
upon subcutaneous injection, and contributed to different
tissues upon blastocyst injection [1]. Transcription factor-
based reprogramming has been optimized, so that c-myc was
omitted and cells were selected with reactivation of Nanog
and Oct-4 as well as by checking the ESC-like morphology [4,
6, 8, 32]. Facts, hypotheses, and unresolved issues of cellular
reprogramming [33] and the maintenance and change of
epigenetic memory in iPSC [34] have recently been discussed
extensively. As summarized by Hanna et al. [33], gene
expressions and biological characteristics of iPSC may be
influenced by genetic backgrounds (different strains of mice,
healthy donor-derived versus patient-derived iPSC), incom-
plete or heterogeneous iPSC formation, additional or alter-
nate reprogramming factors, and transgene-expressing iPSC.

In our experiments, we have used the method of
retroviral transduction with three vectors that constitutively
express Sox-2, Oct-4, and Klf-4, respectively, and in which

the transcription factor genes are not excisable, for example,
by cre/lox-mediated deletion. We have generated iPSC lines
from MEFs, and MBM. All of our iPSC lines express ESC-
characteristic markers and form teratomas in vivo [28].

Continued transgene expression in our iPSC lines
at different levels, even throughout differentiation to
hematopoiesis in vitro, appeared possible. When this was
measured, a remarkable difference became apparent. All
MEF-iPSC lines showed expression patterns of the three
transgenic transcription factors that were hardly above
those of the corresponding endogenous genes, while all
MBM-iPSC lines showed a markedly higher expression of
Oct-4,Klf-4 and Sox-2. It appears that a higher threshold
expression of the three factors is needed to reprogram MBM-
iPSC than MEF-iPSC.

Distinct differentiated cells need different culture condi-
tions, for example, different stromal cells or other cytokines
(Figure 1). While MBM-derived cells do not grow well in
the iPSC condition without IL-6 and SCF, MEF do. This
may contribute to our observations that the efficiencies of
establishing MEF-derived iPSC are higher than that of MBM-
derived iPSC in our experiments. This indicates that the
establishment of iPSC is more difficult if the original somatic
cells from which the iPSC are intended to be induced do not
fit iPSC media conditions on MEF and LIF.

The tissue culture conditions for the transduction and
subsequent in vitro conversion to iPSC appear markedly
different. Thus, when we consider the changes that MEF
proliferating in medium alone, compared with MBM pro-
liferating in medium substituted with SCF and IL-6 have to
undergo after viral transduction to become iPSC MEF should
find it easier to continue proliferation and survival in LIF-
substituted media. Maybe the higher expression of the three
transduced transcription factors is favourable for the more
difficult conversion of MBM to iPSC. Thus, we suggest that
the ability of cells to grow in “iPSC selection media” might
influence their efficiency to reprogram.

2.2. Step 2: From ESC and iPSC to HSCs and Mature
Hematopoietic Lineage Cells. For the differentiation of ESC
towards several types of mature hematopoietic cells, two
protocols have been developed—the formation of embryoid
bodies (EB) that form in suspension culture and the co-
cultivation of ESC with stromal cells. In the first protocol,
ESC are allowed to grow in suspension in the absence of
feeder cells and LIF, differentiate spontaneously, and form
spheroidal aggregates mimicking embryonic tissues, so called
embryoid bodies [35–38]. Cells within developing EB can
differentiate to mature cells, including hematopoietic lineage
cells [39, 40]. Hematopoietic progenitor cells, which have the
tendency to exist as mobile, nonaggregated single cells, must
be freed by dissociating procedures from these EB aggregates.

In the second protocol, cocultivation of ESC with pre-
adipocytic stromal cells allows a two-dimensional differenti-
ation into hematopoietic cells without the formation of those
complex aggregated structures and, thus, an easier, gentle
isolation of progenitors of hematopoietic development [21,
27]. Furthermore, the use of the M-CSF-deficient stromal
cell line OP9 avoids premature differentiation to myeloid
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Figure 1: Overview of the current understanding of the efficiency to induce iPSC from different types of somatic cells, and subsequent
development of iPSC into hematopoietic cells. Dashed lines implicate lower numbers of cells developing from the former cell type compared
to full lines.

lineage cells and allows the development of T, NK, and B
lymphoid cells [21]. In our in vitro differentiation experi-
ments comparing ESC and iPSC [28]—the latter generated
by retroviral transduction with Sox-2, Oct-4, and Klf-4—we
did observe a reduced ability of iPSC-derived mesodermal-
like cells to differentiate into hematopoietic progenitors in
vitro. When Oct-4, Sox2, and Klf-4 were still highly expressed
in the differentiating cells. The overexpression of Sox-2
appeared to be inversely related to hematogenic potency
(data are summarized in Table 1).

In conclusion, our experiments suggest—as those of
others [41]—that expression of virally transduced genes
must be terminated before the induction of differentiation.
The three different transcription factors appear to impede
hematopoietic development to different extents. While Oct-
4 and Klf-4 appear to be tolerated at continuously elevated
levels to generate at least progenitors and precursors of T,
NK, B, and myeloid cell development, levels of Sox-2 need
to be downregulable for hematopoietic development. From
these results, it appears that overexpression of the transgenic
transcription factors inhibits development of Flk-1+ meso-
dermal to CD45+ hematopoietic progenitors. Constitutive
expression has been shown by others not to affect the devel-
opment of iPS cells into cells of the hematopoietic system [42,
43]. We would expect from our results that the transgenic
expression of the three transcription factors in their iPSC
lines should be as low as that of our MEF-iPSC lines.

If normal mouse or human somatic cells are used for the
generation of iPSC the viral vectors should be deletable [44]

without mutagenic consequences or should be introduced as
proteins [45] or as synthetic modified mRNA [46].

3. Generation of HSC from ESC and
iPSC Still Needs to Be Improved

Even if the procedures for the generation of iPSC will
eventually be faithful and efficient enough to yield cells
with the same differentiation potencies as those of ESC the
subsequent efficient generation of transplantable, reconsti-
tuting HSC derived from ESC and iPSC cells still has been
difficult until today. Murine iPSC can be used to generate
new mouse strains in which bone marrow should, in most
cases, become the source of normal numbers of long-term
reconstituting HSC. In contrast, human iPSC, obviously, can
not be used for such an in vivo development of HSC. Hence,
the development of human HSC from ESC and iPSC must
be attempted by differentiation in tissue cultures. The most
successful method to obtain HSC in vitro from ESC is to
transduce the cells with HOXB4 [23, 25, 47–54].

However, such retroviral modifications generate cells in
which the “per cell” hematopoietic potency is still inferior
to the same number of unseparated total bone marrow cells.
Furthermore, retrovirally transduced cells carry the risk of
mutations which might lead to malignant transformations,
for example, leukaemia in the case of HOXB4 [55]. A
few studies have reported transplantations of non-HOXB4-
transduced cells resulting in long-term engraftment of both
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Table 1: Differentiation of MBM- and MEF-derived iPSC lines in comparison to ESC lines. Numbers of cells indicate those developed from
4 × 103 undifferentiated cells (day 0). Expression levels represent amounts of mRNA determined by quantitative RT-PCR, normalized to
GAPDH expression, and calculated as expression values of the respective genes in undifferentiated Bruce4 ES cells (day 0).

Cell line

Number of
Flk1+ cells on

day 5

Number of
CD45+ cells
on day 10

Sox-2
expression on
day 5 relative
to Bruce 4 on

day 0

Sox-2
expression on

day 10
relative to
Bruce 4 on

day 0

Oct-4
expression on
day 5 relative
to Bruce 4 on

day 0

Oct-4
expression on

day 10
relative to
Bruce 4 on

day 0

Klf-4
expression on
day 5 relative
to Bruce 4 on

day 0

Klf-4
expression on

day 10
relative to
Bruce 4 on

day 0

×105 ×105 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2

J1 ES 2.7 5.5 1.3 0.2 31 0.2 480 1.7

Bruce 4 ES 3.2 23 0.5 0.04 41 0.08 32 0.04

MBM-iPS A 3.1 10 1.0 6.3 2600 120 3600 83

MBM-iPS C 2.2 0.1 18 1050 11000 2500 3700 700

MEF-iPS 1 2.6 7.3 16 21 12 56 3.2 5.8

MEF-iPS 5 4.0 18 45 71 0.65 70 22 5.6

the lymphoid and myeloid compartments, but none of them
could reconstitute hematopoiesis in secondary transfers,
[56–59]. The question remains which kind of progenitor is
developed under these conditions.

It has been shown that yolk sac progenitors display
minimal HSC potential [60–62]. In contrast, para-aortic
splanchnopleura-derived cells can give rise to bone mar-
row reconstituting HSC which are capable of definitive
hematopoiesis [60, 61, 63]. It might be that ESC differenti-
ation in vitro generates only HSC capable of primitive, but
not of definitive hematopoietic potency. That would explain
the inability of ESC-derived hematopoietic progenitors to
generate HSC with the capacity to develop into lymphoid
cells upon transplantation. This possibility ignores the fact
that ESC and iPSC can be differentiated into primitive,
that is, erythrocytes expressing fetal-type haemoglobin,
and definitive cells, that is, lymphocytes, in vitro. HOXB4
overexpression in hematopoietic cells derived from ESC and
from yolk sac enables the detection of transplantable HSC
[47] (Figure 1). Hence, HOXB4 works in two ways. One is
to increase the number of transplantable HSC. The second
is to make HSC transplantable by modifying the homing
receptors. Therefore, the injection of hematopoietic cells
from human ESC directly into the bone marrow results in
the detection of repopulatable HSC [49]. In conclusion, we
need to understand the molecular program that induces this
switch in greater detail to induce the formation of long-term
reconstituting HSC with definitive hematopoietic potential,
as HOXB4 does, but without retroviral insertion.

Finally, nonhematopoietic cells provide niches in bone
marrow for the proper hematopoietic differentiation that
are yet to be defined, and that are missing in the culture
conditions of differentiating ESC. Furthermore, long-term
repopulating HSC that reside in the bone marrow are in a
deeply quiescent (G0) state and lose engraftment potential
during their S/G2/M transit [64–67]. The present tissue
culture conditions favor proliferation of HSC candidate cells.
The development of conditions allowing cells to enter into
and survive in the G0/G1 phase would be another important
step towards establishing HSC in vitro.

4. Conclusions

Both stages of the in vitro development, first, from somatic,
differentiated cells into iPSC and second, from iPSC into
HSC are still so inefficient, even with murine cells, that
the clinical use of human HSC derived from a patient’s
somatic cells are far from reality. It will need many more
improvements at the various stages of reprogramming
and differentiations of cells (Figure 1). Different somatic
cell types represent different differentiation states, which
have different growth abilities in vitro, different suscepti-
bilities to be transduced by retroviral vectors and other
yet unidentified factors, that make differently capable to
become reprogrammed with different efficiencies. To allow
effective reprogramming to iPSC, reversibly inducible or
nonintegrative methods for reprogramming need to be used,
since constitutive overexpression of reprogramming factors
has been shown to interfere with differentiation. ES cells,
and, to a lesser degree also, iPSC can be developed into
all types of hematopoietic lineages in vitro. However, the
reproducible generation of transplantable, engraftable HSC
in vitro from pluripotent cells without overexpression of
HOXB4 is still challenging (Figure 1).
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