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Abstract

Background: The Mycobacterium tuberculosis genome encodes two peptide transporters encoded by Rv3665c-Rv3662c and
Rv1280c-Rv1283c. Both belong to the family of ABC transporters containing two nucleotide-binding subunits, two integral
membrane proteins and one substrate-binding polypeptide. However, little is known about their functions in M. tuberculosis. Here
we report functional characterization of the Rv1280c-Rv1283c-encoded transporter and its substrate-binding polypeptide OppAMTB.

Methodology/Principal Findings: OppAMTB was capable of binding the tripeptide glutathione and the nonapeptide
bradykinin, indicative of a somewhat broad substrate specificity. Amino acid residues G109, N110, N230, D494 and F496,
situated at the interface between domains I and III of OppA, were required for optimal peptide binding. Complementaton of
an oppA knockout mutant of M. smegmatis with OppAMTB confirmed the role of this transporter in importing glutathione
and the importance of the aforesaid amino acid residues in peptide transport. Interestingly, this transporter regulated the
ability of M. tuberculosis to lower glutathione levels in infected compared to uninfected macrophages. This ability was partly
offset by inactivation of oppD. Concomitantly, inactivation of oppD was associated with lowered levels of methyl glyoxal in
infected macrophages and reduced apoptosis-inducing ability of the mutant. The ability to induce the production of the
cytokines IL-1b, IL-6 and TNF-a was also compromised after inactivation of oppD.

Conclusions: Taken together, these studies uncover the novel observations that this peptide transporter modulates the
innate immune response of macrophages infected with M. tuberculosis.
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Introduction

ATP binding cassette (ABC) transporters are found both in

eukaryotes and prokaryotes, and play important roles in the

transport of ions, amino acids, peptides, proteins, etc. [1]. ABC

transporters may be importers or exporters depending on the

direction in which they transport substrates [2]. Importers are

found exclusively in prokaryotes and include the oligopeptide

transporter systems [3–6].

The oligopeptide importers consist of five subunits: two

homologous integral membrane proteins OppB and OppC which

form the translocation pore, two nucleotide-binding domains

OppD and OppF and the substrate-binding lipoprotein (SBP)

OppA that determines substrate specificity. In Gram-positive

bacteria SBPs are soluble proteins residing in the periplasm. They

are either anchored to the membrane through a lipid modification

on the N-terminal cysteine or covalently linked to the translocation

pore [7]. Crystal structures are available for the dipeptide-binding

protein DppA from E. coli [8], OppA from Salmonella typhimurium

[9], OppA from Yersinia pestis [10], AppA from Bacillus subtilis [11]

and OppA from Lactococcus lactis [12]. The structures explain the

promiscuity of the proteins for peptide binding. The binding

pockets are fairly large. Substrate binding is determined by

hydrogen bonds with the substrate backbone. In the case of the L.

lactis OppA, the binding cavity is exceptionally large.

The genome sequence of M. tuberculosis H37Rv reveals two

peptide permease operons encoded by Rv3665c-Rv3662c and

Rv1280c-1283c [13]. Disruption of the homolog of the Rv1280c to
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1283c-encoded peptide transporter in M. bovis BCG renders the

resulting mutant resistant to the toxic peptides glutathione and S-

nitrosoglutathione [13]. However, in their study, the authors did

not analyze the substrate-binding properties of the binding

protein, OppA in particular. On the other hand, broad substrate

specificity has been demonstrated for the three OppA proteins of

Borrelia burgdorferi [14].

In order to understand the biological roles of the putative

peptide importers of mycobacteria, we have cloned, expressed and

studied the substrate-binding properties of OppA of M. tuberculosis

(OppAMTB). We observe that OppA is capable of binding both the

tripeptide glutathione and the nonapeptide bradykinin. Based on

homology modeling and mutational analysis, we have identified

amino acid residues that are critical for substrate binding. Further,

we have used an oppA-knock out mutant (OppA-KO) of M.

smegmatis as a model system to demonstrate that the Opp

transporter is capable of importing glutathione. This observation

provided the motivation to test the possible role of this transporter

in M. tuberculosis that has infected macrophages. The detoxification

of reactive ketoaldehydes such as methylglyoxal (MG) by

glyoxalase I and II protects cells from formation of advanced

glycation end products (AGEs). Glutathione is a cofactor in these

reactions [15,16]. We contended that the import of glutathione by

bacilli in infected macrophages, could possibly affect the ability of

the macrophages to convert MG to lactate.

We present evidence that MG levels are lower in macrophages

infected with an oppD knock out (OppD-KO) of M. tuberculosis

compared to the wild type. In keeping with this, we observed

decreased apoptosis of macrophages infected with OppD-KO

compared with the wild type. Knock out of oppD also altered the

ability of the bacterium to trigger cytokine release from infected

macrophages. The release of TNF-a, IL-6 and IL-1b was

attenuated in the mutant compared to the wild type.

Materials and Methods

Molecular biological procedures
Standard procedures were used for cloning and analysis of

DNA, PCR and transformation. Electroporation in mycobacteria

was carried out using a Bio-Rad Gene Pulser as described by

Snapper et al. [17]. Enzymes used to manipulate DNA were from

Roche Applied Sciences. All constructs made by PCR were

sequenced to verify their integrity.

Bacterial strains and growth conditions
Escherichia coli strains were grown in Luria–Bertani (LB) Miller

(Difco) medium. Mycobacterial strains were grown in Middleb-

rook (MB) 7H9 (Difco) supplemented with 2% glucose, 0.05%

Tween 80 or Lemco medium supplemented with 0.05% Tween

80. Antibiotics were used at the following concentrations:

ampicillin, 75 mg/ml; kanamycin monosulfate, 50 mg/ml for E.

coli and 25 mg/ml for M. smegmatis; and hygromycin B, 100 mg/ml

for E. coli and 50 mg/ml for M. smegmatis.

Construction of expression plasmids for OppA
oppA (Rv1280c) of M. tuberculosis was amplified from cosmid

MTCY50 using the primer pair 59-TTT CTA GAC ATA TGG

CTG ACC GTG GCC AG-39 (sense) and 59- TCA GCG TCG

CAT GAA CCC GAT GGC-39 (antisense) and cloned into the

vector pK19 digested with SmaI to generate pOpp101. The

resulting construct was digested with NdeI and HindIII and the

excised fragment was cloned between the same sites of pET28a+

(Novagen) to generate pOpp102. Mutants of oppA were generated

by overlap extension PCR. The primers used are given in Table

S1 with restriction sites in bold. The initial rounds of PCR were

carried out using primer pairs ‘‘a’’ and ‘‘b’’, and ‘‘c’’ and ‘‘d’’ and

pOpp102 as template. The products of each PCR were purified

and used as templates for the second round of PCR using primers

‘‘a’’ and ‘‘d’’. The final products were cloned between the NheI

and EcoR1 sites of pET28a+ to generate mutants of OppA of M.

tuberculosis in pET 28a+. The integrity of all constructs was checked

by sequencing.

Expression and purification of OppA
Recombinant plasmids derived from pET 28a+ were trans-

formed in E. coli BL21(DE3). Cells were grown to an OD600 of 0.6.

IPTG was added to a final concentration of 250 mM and growth

was continued at 37uC with shaking for 2 h. Cells were harvested

and resuspended in 10 mM Tris-HCl (pH 7.4), 1 mM MgCl2,

1 mM PMSF, 20 mg/ml leupeptin, 10 mg/ml pepstatin and

10 mg/ml aprotinin, and disrupted by sonication. Recombinant

His-tagged proteins were purified from lysates by chromatography

on Ni2+-NTA agarose.

In vitro binding assays
Purified OppA (1 mg) was added to a 25 ml reaction volume

containing the binding buffer (25 mM Na-phosphate (pH-6.5),

100 mM NaCl). 0.1 M DTT was added when using glutathione as

a substrate. The reaction was started by addition of 3,4(n)-3H

bradykinin (specific activity 7 Ci/mmol, GE Healthcare), or

glutathione (specific activity 52 Ci/mmol, Perkin Elmer) at various

concentrations and continued at 25uC for 15 min. The reaction

mix was then subjected to TCA precipitation, the precipitate was

dried and counted in a liquid scintillation counter.

Uptake of [3H] GSH
M. smegmatis cells were grown up to an OD600 of 0.6, washed in

basal salts containing 0.05% Tween 80, and concentrated to an

OD600 of 3.0. The cell suspension (1 ml) was warmed to 37uC with

shaking. The uptake reaction was initiated by the addition of

radiolabeled substrate along with unlabeled substrate at a specific

activity of 4.48 mCi/mmol and a final concentration of 100 mM.

Incorporation was terminated by removal of 0.1-ml samples at the

indicated time points, and filtration on Whatman GF/C (0.45-mm

pore size) filters prewetted with basal salts. The cells were quickly

washed thrice with 5 ml of ice-cold basal salts containing Tween

80 on a vacuum filtration manifold. Filters were counted in a

liquid scintillation counter. Uptake assays were performed in

triplicate.

Molecular modeling
Using the BLAST server (http://www.ncbi.nlm.nih.gov/BLAST/),

template structures homologous to OppA were sought, but no

appreciable homology was found in the Brookhaven pdb database.

Appropriate template structures were therefore chosen by comparing

the results of fold prediction servers 3DPSSM (http://www.sbg.bio.

ic.ac.uk/̃ 3dpssm/), GENTHREADER (http://bioinf.cs.ucl.ac.uk/

psiform.html), FFAS (http://www. bioinformatics.burnham-inst.

org/FFAS/index.html), UCLA-DOE (http://fold.doe-mbi.ucla.edu/

psiform/), BIOINBGU (http://www.cs.bgu.ac.il/̃ bioinbgu/), and

FUGUE (http://www-cryst.bioc.cam.ac.uk/̃ fugue/). The best tem-

plate which came out from these analyses was OppA of Salmonella

typhimurium complexed with the peptide KAK (pdb code 1JET). This

was used as template to model the structure of OppA of M. tuberculosis

(OppAMTB) using the software MODELER. The output was a 3D

model for the target sequence containing all main chain and side chain

non-hydrogen atoms. Amino acid residues I77 to R591 of OppAMTB

OppABCD of M. tuberculosis
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were modeled. The N-terminal 76 residues could not be modeled due

to lack of homology. A total of 20 models were generated and the final

model was selected based on its stereochemical properties. This model

was subjected to energy minimization using the Insight II Version 2000

(Accelrys Inc.) software package, using the steepest descent minimiza-

tion algorithm in the discover module of Insight II. The overall

stereochemical quality of the final models was assessed by the program

PROCHECK. The resolution was set at 1.5 Å. The final models were

verified through the program VERIFY 3D (http://www.doe-mbi.ucla.

edu/Services/Verify_3D/) and ERRAT (http://www.doe-mbi.ucla.

edu/Services/Errat.html).

Docking of OppA with glutathione and bradykinin
The co-ordinates of bradykinin were obtained from PRODRG

server and the docking was performed with AUTODOCK 3.0.5.

For docking of OppA with glutathione, the glutathione coordi-

nates were taken from glutathione-bound human glutathione-S

transferase structure (PDB ID: 1AQW) [18]. Bradykinin was

drawn with JME Molecular Editor using the PRODRG server

(http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg_beta) and

the co-ordinate file was generated. All hydrogen atoms in both

protein and ligands were explicitly modeled, with polar hydrogen

atoms being assigned Lennard-Jones 12-10 hydrogen bonding

parameters and nonpolar hydrogen atoms being assigned 12-6

parameters. Hydrogen atoms were added to the OppA structure

using the builder module of the Insight II software package. All

water molecules were removed while docking. Partial charges were

assigned to the protein atoms using CVFF force field of Insight II.

Atomic solvation parameters and fragmental atom volumes were

added using the AddSol program provided in the Autodock 3.0.5

suite. The grid maps for van der Waals and electrostatic energies

were prepared using AutoGrid version 3.0 with 50644640 points

spaced at 0.375 distances. The active sites of several OppA crystal

structures were screened first and these were found to be similar.

Hence the grid was centered in the active site accordingly. The

main aim of this docking study was to identify the active site

residues by determining the bound conformation of glutathione/

bradykinin in the active site of OppA and correlating the result

with mutational analysis. All docking jobs were run on an SGI O2

with R5000 processor running IRIX 6.5.

Construction of suicidal delivery vector for inactivation of
oppA of M. smegmatis

M. smegmatis mc2 155 oppA, -B, -C and –D are encoded by the

ORFs MSMEG_4999, MSMEG_4995, MSMEG_4996 and

MSMEG_4997 respectively. The unmarked deletion mutant of

oppA of M. smegmatis was constructed using the allelic replacement

method of Parish and Stoker [19]. Briefly, the oppA gene along

with its upstream sequence was PCR amplified in two steps to

create an in-frame deletion, from the genomic DNA of the wild

type. Fragment 1 was amplified with the primer pair 59-TAT AAG

CTT CGA CAA GTC CGC GCG CTC-39 (sense) and 59-TAA

TTC TAG AAC GGC TCG GCG AAC GTC A -39 (antisense)

and fragment 2 was amplified using the primer pair 59-ATA TTC

TAG AAG GCC AGG ACG ATG GCC AA -39 (sense) and 59-

TAG GAT CCT CGA CGA TGC GGG CGT CGG CA -39

(antisense) [restriction sites underlined]. Fragment 1 (1060 bp) was

cloned between the Hind III and XbaI sites of the vector pUC19

to generate pOpp201. Fragment 2 (1064 bp) was cloned between

the XbaI and BamHI sites of pOpp201 to generate pOPP202.

The 2.1 kb insert carrying the disrupted oppA gene (with a deletion

of 988 bp) was excised with HindIII and BamHI and cloned

between the same sites of p2NIL to generate pOpp203. The final

delivery vector pOpp204 was generated by cloning the PacI

cassette (hyg, pAg85- lac Z, phsp60- sac B) excised from the vector

pGOAL 19 into the PacI site of pOPP203.

Isolation of the mutant inactivated in the oppA gene
Denatured pOpp204 DNA was electroporated into electro-

competent cells of M. smegmatis. The cells after electroporation

were revived in 5 ml of Lemco media for 3 h and then plated on

Lemco agar supplemented with hygromycin B, kanamycin and

50 mg/ml X-gal. Blue colonies appeared after 3 days. These were

replated onto Lemco agar without any selection to enhance the

recombination process. From the colonies that appeared on the

plates, a loopful of cells was taken and resuspended in Lemco

broth, mixed with vortexing, serial dilutions were plated onto

Lemco agar supplemented with 2% sucrose and 50 mg/ml X-gal

and allowed to grow for two days. The white colonies that

appeared after 2 days on the plates were then streaked onto 4

replica plates, the first supplemented with X-gal, the second with

kanamycin, the third with hygromycin B and the fourth with

sucrose. The white, kanamycin and hygromycin-sensitive, sucrose-

resistant colonies were identified, analyzed by PCR and candidate

opp A mutants were confirmed by Southern analysis.

Complementation of oppAMTB in the OppA-KO
Complementation of oppA was achieved by constructing an

integrating vector containing a hygromycin-resistance cassette

along with a positive-selection L5 integrase cassette. oppA of M.

tuberculosis (wild type or variants) was first cloned in pOLYG [20],

under the control of the hsp60 promoter and hsp60–oppA was

excised and cloned between the same sites in pUC19 to generate

pOPP205. A 3.7 kb Hyg-integrase cassette from pUC-HY-INT

[21], was cloned at the single HindIII site of pOpp205 to generate

the integrating vector pOpp206. pOpp206 was electroporated into

electrocompetent cells of the OppA-KO strain in order to

complement the mutant strain with a single copy of the wild type

oppA of M. tuberculosis. The presence of the oppAMTB gene was

confirmed by PCR with oppA-specific primers. Variants of

oppAMTB were similarly complemented in OppA-KO.

Construction of the M. tuberculosis oppD knock out
mutant

The M. tuberculosis oppD mutant was constructed by targeted

mutagenesis using a temperature sensitive-sacB delivery system as

described previously [22]. Amplification of the oppD gene along

with flanking regions was done in two steps to delete the conserved

functional sites. In the first step a 948 bp fragment of oppD along

with its upstream region was PCR amplified using the forward and

reverse primers 59- TAT ATC TAG AAC CGT TGA TCG CCA

ACG G -39 and reverse 59- TAG AAT TCG AGA ACG GCT

CGG CGA A -39 respectively and cloned in pBluescript SK

(Stratagene) between the XbaI and EcoRI sites (underlined) to

generate pOppD101. In the second step, a 1037 bp fragment

encoding the C-terminus of OppD along with the downstream

flanking region was amplified using the forward and reverse

primers 59-ATG AAT TCG GCA GGA TCA GCA GCC CGG A-

39 and 59-TAA AGC TTC TAG ATG CGC ACC GCC ATC-39

respectively and cloned in pOppD101 between the EcoRI and

HindIII sites (italicized) to generate pOppD102. pOppD102 was

digested with XbaI and ligated with a kanamycin resistance gene

excised from pUC4K to generate pOppD103. A 3.2 kb fragment

containing the disrupted oppD along with the kanamycin resistance

cassette was digested with XbaI and cloned into pPR27xylE which

harbors the sacB and xylE genes [22] to generate pOppD104. The

resulting vector, pOppD104 was electroporated into M. tuberculosis

OppABCD of M. tuberculosis
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H37Rv and transformants were selected at 32uC on kanamycin

plates. Single colonies were grown in broth at 32uC and then

plated on sucrose plates at 39uC. The resulting colonies were

analyzed by PCR and candidate oppD mutants were confirmed by

Southern analysis.

Complementation of oppDA of M. tuberculosis in the
OppD-KO

Since the oppA gene is downstream of oppD, its expression was

blocked in the OppD-KO. Complementation was therefore

carried out with oppDA by constructing an integrating vector

containing a hygromycin-resistance cassette along with a positive-

selection L5 integrase cassette. The oppDA coding region of M.

tuberculosis was PCR amplified in two fragments. The first fragment

was amplified with the primer pair 59-TAG AAT TCA TAT GAG

CCC CCT GCT CGA-39 (sense) and 59-GGG GCG CAG CCT

CGT CGC TGG CCA-39 (antisense) and cloned between the sites

EcoRI and SmaI sites of the vector pUC19 to generate the

construct pOppD105. The second fragment was amplified with

the primer pair 59-GGG CAT CGC GTC TGC GCT CAG

GGC GTC-39 (sense) and 59-TAT AAG CTT TCA GCG TCG

CAT GAC CCC-39 (antisense) and cloned between the SmaI and

HindIII sites of pOppD105. The resulting construct pOppD106

was digested with NdeI and HindIII and the excised fragment

containing the oppDA region was cloned under the hsp promoter of

an E. coli- mycobacteria shuttle vector digested with the same

enzymes to generate the construct pOppD107. hsp60–oppDA was

excised with XbaI and HindIII and cloned between the same sites in

pUC19 to generate pOppD108. The 3.7 kb Hyg-integrase cassette

from pUC-HY-INT was cloned at the single HindIII site of

pOppD108 to generate the integrating vector pOppD109.

pOppD109 was electroporated into electrocompetent cells of the

knockout strain in order to complement the mutant strain with a

single copy of the wild type oppDA of M. tuberculosis. The presence of

the oppDA gene was confirmed by PCR with oppDA-specific primers.

Cell death ELISA
Differentiated THP-1 cells were plated in 96 well plates (105 cells/

well). Wild type M. tuberculosis H37Rv or OppD-KO was grown in

MB 7H9 medium supplemented with ADC and 0.05% Tween 80 for

2 days for getting a well dispersed culture having O.D.600 value

between 0.2 and 0.4. Infection at the indicated MOI was done for

2 h; cells were washed twice with 1X RPMI to remove the

unphagocytosed bacteria. For determination of CFUs, cells were

solubilized in 0.06% SDS, lysates were serially diluted and plated. At

the MOIs used, there was a linear relationship between the MOI and

the actual number of bacteria infecting macrophages. Fresh medium

was added to each well and medium was changed every day. Finally,

cells were lysed with lysis buffer supplied with the cell death ELISA kit

(Roche Applied Science). ELISA was performed according to the

manufacturer’s protocol.

Determination of methylglyoxal (MG) Levels in THP-1
cells

Measurement of MG levels was performed as described by

Rachman et al. [23] with some modifications. THP-1 cells were

infected with wild type M. tuberculosis or the oppD knockout (OppD-

KO) at an MOI of 20:1 for 2 h. One day after infection, THP-1

Figure 1. Purification of OppAMTB and its binding with glutathione and bradykinin. (A) Coomassie blue-stained SDS gels showing
uninduced, induced E. coli lysates expressing His-OppAMTB, and purified His-OppAMTB. Protein marker sizes are indicated on the left side of the gel.
(B,C) In vitro binding assay was carried out with purified OppAMTB using radiolabeled glutathione (B) or bradykinin (C) in the absence (no inhibitor) or
presence of unlabeled dipeptide or glutathione (1 mM) as indicated. Data are presented taking the binding in the absence of inhibitor as 100%.
Results represent the means 6 S.D. of three determinations.
doi:10.1371/journal.pone.0012225.g001

OppABCD of M. tuberculosis
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cells were scraped, harvested, washed twice with PBS, and lysed by

sonication in PBS. Perchloric acid (PCA) (Merck) and o-

phenylenediamine (Across) were added to a final concentration

of 0.5 M and 5 mM, respectively. The mixture was incubated at

20uC for 24 h. The PCA precipitate was removed by centrifuga-

tion at 12,0006g. The supernatant was passed through a C18 solid

phase extraction cartridge (Waters Sep-Pak C18 plus cartridge,

Millipore), which had been flushed with 6–8 ml of acetonitrile and

6–8 ml of 10 mM KH2PO4 (pH 2.5). The sample was eluted from

the cartridge with 4 ml acetonitrile (Sigma). The quinoxaline

derivative of methylglyoxal (2-MQ) and the quinoxaline internal

standard (5-MQ) (Across) were measured using an Adsorbosphere

25 cm C-18 column (4.6 mm internal diameter and 5 mm particle

diameter) on a Waters chromatography system. The mobile phase

was 68 vol% of 10 mM KH2PO4 (pH 2.5) and 32 vol% of

acetonitrile. The analysis conditions were as follows: detector

wavelength, 315 nm; mobile phase flow rate, 1.0 ml/min; typical

sample size, 150 ml; and column temperature, 20uC. Duplicate

injections of each sample were made. Samples were calibrated

with a 2-MQ internal standard. The average retention times of 2-

MQ and 5-MQ were 6.3 and 8.5 min, respectively. Increase in

MG was determined by calculating the ratio of peak areas between

cells with and without infection. The ratio was normalized with the

ratio of the corresponding cell numbers.

Measurement of intracellular glutathione level
Glutathione was measured using the Glutathione Fluorimetric

Detection Kit (Abcam, UK) according to the manufacturer’s

protocol. Briefly, 106 differentiated THP-1 cells were infected and

lysed by treating with 100 ml of ice cold lysis buffer. The cell lysate

was diluted and mixed with GST reagent and MCB dye (supplied

by the manufacturer). After an incubation of 30 min at 37uC,

fluorescence was measured with excitation at 380 nm and

emission at 460 nm.

Results

Binding specificity of OppA
The annotated M. tuberculosis genome indicates the presence of

two peptide permeases opp (Rv1280c-Rv1283c) [Rv1280c (oppA),

Rv1281c (oppD), Rv1282c (oppC), Rv1283c (oppB)and dpp (Rv3665c-

Rv3662c). Recent studies on M. bovis BCG suggest that the opp

operon encodes an oligopeptide transporter [24]. On the other

hand, Flores-Valdez et al. [25], have argued that Rv3665c-Rv3662c

encodes the oligopeptide transporter of M. tuberculosis, and that the

Rv1280c-Rv1283c operon likely encodes a dipeptide transporter.

Their arguments rely on the fact that an Rv3665c-Rv3662c

knockout mutant is resistant to bialaphos. However, no binding

studies for the substrate-binding components of these transporters

have been reported by this group. We undertook a more detailed

analysis of the Rv1280c-Rv1283c operon. As a first step, we

attempted to characterize OppA in terms of its binding specificity.

Figure 2. Mutational analysis of glutathione-binding ability of
OppAMTB. Binding of recombinant wild type (WT) OppAMTB or its
mutants to radioactive glutathione was studied as described under
‘‘Materials and Methods.’’ Binding of glutathione to OppAMTB (WT) was
set at 100%. Results represent the means 6 S.D. of three determinations.
doi:10.1371/journal.pone.0012225.g002

Figure 3. Glutathione uptake in M. smegmatis. (A) Southern analysis of wild type (WT) and OppA-KO of M. smegmatis. (B) M. smegmatis WT,
OppA-KO and OppA-KO complemented (com.) with oppAMTB [wild type or the indicated mutants] were grown upto logarithmic phase, harvested,
washed and incubated with radiolabeled glutathione at 37uC. Aliquots were withdrawn at the indicated time points and uptake was studied by
measuring the radioactivity incorporated in the cells (as described under Materials and Methods). Results represent the means 6 S.D. of three
determinations.
doi:10.1371/journal.pone.0012225.g003

OppABCD of M. tuberculosis
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The putative OppA proteins of M. tuberculosis and M. smegmatis

are 68% identical (as analyzed using the BLAST algorithm) [26]

(Fig. S1). A putative signal peptide was predicted at residues 34–46

of OppAMTB using the programme Emboss sigcleave (http://

emboss.bioinformatics.nl/cgi-bin/emboss/sigcleave). OppAMTB

(Gene Bank accession number CAB00902) was expressed and

purified as an N-terminal His-tagged protein in E. coli BL21(DE3)

(Fig. 1A). This recombinant OppAMTB was devoid of the first 56

residues.

The L. lactis OppA has been reported to transport peptides from

4 upto 18 residues, including the nonapeptide bradykinin,

reflecting its versatility [27]. We tested whether OppAMTB

transports the nonapeptide bradykinin (RPPGFSPFR). An in vitro

binding assay using radioactive bradykinin at a concentration of

1 mM showed that OppAMTB binds 3661.5 pmol bradykinin/mg

protein (n = 3).

Next, considering a previous report indicating that the Opp

transport system is involved in uptake of GSH in M. bovis BCG

[24], we tested the ability of OppAMTB to bind glutathione. At a

concentration of 1 mM GSH, OppA bound 14661 pmol GSH/

mg protein, suggesting that the tripeptide is preferred over the

bulkier nonapeptide bradykinin. The GSH-derived dipeptide glu-

cys was a more efficient competitor of GSH binding than the

peptide cys-gly (Fig. 1B). GSH and its peptides could also

competitively inhibit bradykinin binding (Fig. 1C). In summary,

the above results show that OppAMTB is capable of binding to

peptides of varying size. However, it likely prefers the smaller

peptides as substrates.

Homology modeling and mutational analysis of OppAMTB

Sequence similarity searches showed that OppAMTB is 22.1%

identical to OppA of S. typhimurium and 21% to OppA of B. subtilis.

The three dimensional structures of OppA proteins are likely more

conserved between different species than their primary amino acid

sequences. Based on this premise, a three-dimensional model of

OppA was built on the basis of fold prediction results. The model

encompasses residues I77 to R591. OppAMTB showed three

domains selected on the basis of clustering of folds. Domains I and

III (Fig. S2) are similar to the corresponding domains in many

substrate binding proteins and the interface between domains I

and III likely comprises the peptide binding pocket. For the

substrate binding proteins of the oligopeptide importers, peptide

binding usually involves hydrogen bonding between binding

pocket amino acid residues of the protein and the main chain of

the ligand [9].

Docking of OppA was carried out with both bradykinin and

glutathione as ligands. Docking analyses suggested that the

interactions of OppA with ligands involve binding pocket

residues containing amide or hydroxyl groups as hydrogen

bond donors/acceptors. Amino acids I107, D108, G109,

N110, V114, A115, N230, and G231 (present in domain I),

S194 and M226 (present in domain II), and W491 and F496

(present in domain III) were predicted to be involved in

binding to GSH. Most of these residues were also predicted to

be involved in binding of bradykinin. Several of these residues

were therefore chosen for mutational analyses. In addition, the

residue D494, conserved between M. tuberculosis and B. subtilis

OppA was also chosen for mutation since it is partially exposed

in the peptide binding pocket of OppA of B. subtilis. The

mutations G109S, N110A, N230G, F496D and D494N

resulted in more than 50% loss of GSH or bradykinin binding

activity (Fig. 2). Mutation N230G affected GSH binding

possibly due to the lowering of backbone interaction between

the amino acid at position 230 and GSH. Docking analyses

suggested that the N-terminal Glu of GSH is important for

binding with OppA. This supported our observation that the

peptide Glu-cys was a better competitor of GSH for binding to

OppA than the peptide Cys-gly.

Figure 4. Glutathione uptake in M. tuberculosis and glutathione
level in infected THP-1 cells. (A) Southern analysis of wild type and
OppD-KO of M. tuberculosis. (B) M. tuberculosis wild type (WT), OppD-KO
(KO) or OppD-KO complemented with oppDAMTB (com.) was grown
upto logarithmic phase, harvested, washed and incubated with
radiolabeled glutathione at 37uC. Aliquots were withdrawn at the
indicated time points and uptake was studied by measuring the
radioactivity incorporated in the cells (as described under ‘‘Materials
and Methods’’). (C) Glutathione pool was measured in uninfected or
infected THP-1 macrophages as described under ‘‘Materials and
Methods’’. Results represent the means 6 S.D. of three determinations.
doi:10.1371/journal.pone.0012225.g004

OppABCD of M. tuberculosis

PLoS ONE | www.plosone.org 6 August 2010 | Volume 5 | Issue 8 | e12225



Generation of an oppA knock out (OppA-KO) of M.
smegmatis

OppA is conserved across both pathogenic and non-pathogenic

mycobacterial species suggesting that its function is likely to be

conserved. OppA of M. tuberculosis and M. smegmatis are 81% similar

and 68% identical. In view of this, we used the fast-growing

nonpathogenic M. smegmatis as a model organism to further investigate

the effect of mutations of OppA on peptide transport in mycobacteria.

Knockout of oppA was confirmed by Southern hybridization (Fig. 3A).

OppA-KO was complemented with a single copy of His-oppAMTB or its

mutants by integration into the chromosome of M. smegmatis using the

integrating vector pOPP206 harboring the His-oppAMTB gene under

the control of the hsp60 promoter.

Glutathione uptake in OppA-KO
In order to study the effects of mutations in OppA, the uptake of

[3H]GSH was measured in OppA-KO and OppA-KO complement-

ed with wild type or mutant versions of oppAMTB. [3H]GSH uptake was

lower in OPPA-KO compared to the wild type (Fig. 3B). Comple-

mentation with wild type oppAMTB restored [3H]GSH uptake to levels

similar to the wild type. However, complementation with the mutants

N110A, N230G, F496D or D494N, did not restore GSH uptake

(Fig. 3B). The G109S mutant could partially reverse loss of GSH

uptake ability of OppA-KO. These results supported those obtained by

in vitro binding assays and also the view that the Opp importer plays a

major role in uptake of glutathione by M. smegmatis.

Glutathione uptake in M. tuberculosis
The oppD gene of M. tuberculosis, encoding the two ATP binding

components of the transporter, was disrupted by deletion and

insertion of a kanamycin resistance cassette and confirmed by

Southern hybridization (Fig. 4A). Since oppA is located down-

stream of oppD, the insertion of the kanamycin resistance cassette,

also blocked expression of oppA. An oppDA-complemented strain

was constructed by inserting a copy of oppDA into the chromosome

of H37Rv using the integrating vector pOppD109 harboring the

oppDA genes under the control of the hsp60 promoter. The growth

rates of the knockout and complemented strains were comparable

to the wild type in vitro (Fig. S3).

Just as in the case of M. smegmatis, uptake of [3H}GSH was

compromised in the OppDA-KO mutant of M. tuberculosis compared

to the wild type (Fig. 4B). Uptake was restored upon complemen-

tation with oppDA. This result supported the view that the Opp

transporter of M. tuberculosis is also capable of importing GSH. We

next tested the hypothesis that GSH uptake by the Opp importer of

M. tuberculosis residing in macrophages may deplete the macrophage

GSH pool, by comparing macrophage GSH content after infection

by wild type M. tuberculosis or the OppD-KO. The GSH pool was

significantly depleted in macrophages infected with M. tuberculosis

compared to uninfected macrophages (Fig. 4C). The extent of

depletion of GSH was greatly reduced when macrophages were

infected with OppD-KO, whereas the oppDA-complemented strain

behaved like the wild type. Intracellular GSH levels are significantly

reduced in PBMCs from tuberculosis patients compared to normal,

healthy controls [28]. Our results suggest that import of GSH by the

Opp importer is likely to contribute to this phenomenon.

Methyl glyoxal (MG) levels in M. tuberculosis H37Rv and
OppD-KO

During mycobacterial infection of macrophages, the cellular

levels of methyl glyoxal (MG) [a physiological product of various

metabolic pathways] [29], are elevated. Since GSH is required for

the conversion of MG to lactate, we speculated that GSH import

by M. tuberculosis could impair the ability of the macrophage to

detoxify MG. Based on this premise, we assessed MG levels after

infection of macrophages (at an MOI of 20) with wild type M.

tuberculosis H37Rv, OppD-KO and the complemented strains. In

three independent experiments, MG levels were 4.8 times higher

in wild type M. tuberculosis-infected macrophages compared to

uninfected macrophages, whereas MG levels were 1.5 times higher

(over uninfected macrophages) in OppD-KO- infected cells. MG

levels were restored to that observed in macrophages infected with

the wild type, when OppD-KO was complemented with oppDA of

M. tuberculosis (Fig. 5). These observations suggested that expression

of the OppABCD importer of M. tuberculosis was correlated with

MG levels in infected macrophages.

Macrophages infected with OppD-KO produce lower
amounts of TNF-a, IL-1b and IL-6 and undergo reduced
apoptosis compared to the wild type

Based on previous reports that MG production is associated

with elevated levels of inflammatory cytokine production, we

Figure 5. Methlglyoxal (MG) levels in macrophages after infection with M. tuberculosis. Differentiated THP-1 cells were infected with M.
tuberculosis H37Rv (WT), OppD-KO (KO) or OppD-KO complemented with oppDAMTB (COM.) at an MOI of 20 for 2 h. Unphagocytosed bacteria were
removed, cells were washed, incubated for 24 h in fresh medium, lysed and MG levels were determined in the lysate by HPLC [as 2-methylquinoxaline
(2-MQ)] as described under ‘‘Materials and Methods’’ and by Rachman et al. [23]. 5MQ was used as an internal standard. The chromatograms are
representative of the results obtained from three separate sets of experiments.
doi:10.1371/journal.pone.0012225.g005
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analyzed cytokine/chemokine production in macrophages infected

with wild type M. tuberculosis or OppD-KO at an MOI of 20. At

this MOI, cells were treated with bacteria for 2 h, washed, lysed

and bacterial load was determined. Comparable CFUs of

1.46104, 1.56104 and 1.36104 bacteria per 105 macrophages

were obtained for the wild type, OppD-KO and complemented

strains respectively. After 24 h, OppD-KO infection led to lesser

amounts of TNF-a, IL-1b and IL-6 production in macrophages

compared to the wild type (Fig. 6A-C). These observations were in

line with reports that MG levels regulate cytokine production from

macrophages. No significant differences were observed in the

production of IFN-b, MCP-1, IL-10, IL-8 and RANTES (data not

shown).

Since TNF-a is a known proapoptotic cytokine, we tested for

observable differences in apoptosis of macrophages infected with

M. tuberculosis H37Rv or OppD-KO. Apoptosis was lower in

macrophages infected with OppD-KO compared to the wild type

(Fig. 6D).

Discussion

Peptide import is likely to be an important process in the biology

of the mycobacteria as for other bacteria. Streptomyces coelicolor and

Corynebacterium glutamicum, two species belonging to the same

taxonomic order as mycobacteria, have often provided important

clues regarding functions of gene products in the pathogen M.

tuberculosis. In Streptomyces, the oligopeptide transport system, Opp

imports an oligopeptide that is likely involved in regulating

development [30]. Signaling molecules that likely regulate

processes such as entry into and exit out of dormancy in

mycobacteria, remain to be identified. Whether the peptide

importers play any role in developmental processes in mycobac-

teria, remains open to question. As a step in this direction, we

undertook characterization of one of the putative peptide

transporters of M. tuberculosis, annotated as an ABC transporter

oppABCD, where oppA encodes the substrate binding lipoprotein. In

this study we confirm that OppA is a peptide-binding protein. We

present evidence that OppA binds to a wide range of peptides in

terms of their size, ranging from the nonapeptide bradykinin to the

tripeptide GSH. It shows a preference for binding glutathione

compared to bradykinin, In addition, we demonstrate that GSH-

derived dipeptides can compete for peptide binding, suggesting

that the substrate specificity extends to dipeptides as well. Our

results differ somewhat from those of Flores-Valdez et al. (2009)

who have argued that OppABCD is a dipeptide transporter. Using

homology modeling to predict amino acid residues of the peptide-

binding pocket of OppA, followed by mutational analysis, we

demonstrate that amino acid residues G109, N110, N230, D494

and F496 are involved in peptide binding. Microarray expression

profiling has clearly shown that the Rv3665c-Rv3663c locus in M.

tuberculosis regulates at least some genes which are induced during

nutrient deprivation and hypoxia [24]. It would be of considerable

interest to analyze the transcriptome of the OppD-KO strain

described by us under different growth conditions.

Most importantly, we report the fortuitous observation of a

novel role of OppABCD in modulating the outcome of M.

tuberculosis-macrophage interactions. Increase in the macrophage

MG levels (over the level in uninfected macrophages) is 4.8 fold in

the case of macrophages infected with the wild type vs. 1.5 fold in

the case of macrophages infected with OppD-KO. TNF-a
stimulates the production of reactive oxygen intermediates (ROI)

[31]. TNF-a production by M. tuberculosis could therefore impair

GSH-redox status by production of ROI. Our studies suggest that

in addition to the aforesaid mechanism, other mechanisms exist

Figure 6. Attenuation of cytokine release and mycobacteria-
induced apoptosis in differentiated THP-1 cells by OppD-KO
cells. Differentiated THP-1 cells were infected with M. tuberculosis
H37Rv, the isogenic OppD-KO or OppD-KO complemented with oppDA
at an MOI of 1:20 as described under ‘‘Materials and Methods’’ (A–C).
After 24 h, cytokine release was measured in the supernatants using
cytokine assay ELISA kits, or (D) cells were washed, lysed, and cell death
was measured using the Cell Death ELISA kit (Roche) as described under
‘‘Materials and Methods’’. Results of cell death assays are expressed as
the fold increase in the release of histone compared to untreated THP-1
cells. Results represent the means 6 S.D. of three determinations.
doi:10.1371/journal.pone.0012225.g006
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for reduction of GSH levels in infected macrophages. Glutathione

uptake by mycobacteria through the opp system could be one such

mechanism. The O’Connell laboratory has shown that GSH is

toxic to ‘‘in-vitro grown’’ M. bovis BCG [13]. However, our studies

pertain to M. tuberculosis H37Rv rather than to M. bovis BCG. The

O’Connell laboratory has shown hypersurvival of the dpp mutant,

suggesting that this could be due to the impaired ability of the

mutant to import glutathione. It could just as well be contended

that the differences in CFU occur because of attenuated apoptosis

of macrophages infected with the dpp mutant. Death of

macrophages would rob the bacterium of its niche for replication,

therefore accounting for differences in CFU between the two

strains.

Apoptosis of macrophages in granulomas in TB patients, is

induced by an environment rich in MG. Rachman et al. [23] have

shown that pretreatment with GSH leads to significant reduction

in mycobacteria-induced apoptosis. Glutathione uptake by

mycobacteria through the opp system could therefore contribute

towards enhanced apoptosis of infected macrophages. Mycobac-

teria-induced apoptosis was studied by infecting differentiated

THP-1 cells with wild type M. tuberculosis, OppD-KO, and the

oppDA-complemented strain. There was marked reduction of

apoptosis of macrophages infected with OppD-KO compared

with the wild type and restoration of the apoptosis-inducing ability

in the complemented strain. We contend that the reduced

glutathione uptake by OppD-KO increases GSH levels inside

the macrophages compared to cells infected with the wild type

strain, thereby facilitating detoxification of MG. As a result,

apoptosis in OppD-KO-infected macrophages is reduced in

comparison with macrophages infected with the wild type M.

tuberculosis. MG is associated with the induction of inflammatory

cytokines such as TNF-a [32]. Our results suggest that import of

GSH by the OppABCD importer, and subsequent impairment of

MG-detoxification in infected macrophages, contributes to

enhanced production of inflammatory cytokines such as TNF-a,

IL-6 and IL-1b. This is partly rescued in OppD-KO. We contend

that these are not non-specific effects due to differences in CFUs

for wild type and OppD-KO grown in macrophages, since the

observations are restricted to a subset of cytokines.

Apoptosis of host macrophages is required for established an

effective immune response against tuberculosis [33]. Our obser-

vations therefore suggest that it would be of interest to compare

the ability of the oppD mutant to cause disease and maintain

bacterial burden during both the chronic and the persistent phases

of infection.
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