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Abstract

Severe malarial anemia is the most common syndrome of severe malaria in endemic areas. The pathophysiology of chronic
malaria is characterised by a striking degree of abnormal development of erythroid precursors (dyserythropoiesis) and an
inadequate erythropoietic response in spite of elevated levels of erythropoietin. The cause of dyserythropoiesis is unclear
although it has been suggested that bone-marrow macrophages release cytokines, chemokines or lipo-peroxides after
exposure to hemozoin, a crystalloid form of undigested heme moieties from malarial infected erythrocytes, and so inhibit
erythropoiesis. However, we have previously shown that hemozoin may directly inhibit erythroid development in vitro and
the levels of hemozoin in plasma from patients with malarial anemia and hemozoin within the bone marrow was associated
with reduced reticulocyte response. We hypothesized that macrophages may reduce, not enhance, the inhibitory effect of
hemozoin on erythropoiesis. In an in vitro model of erythropoiesis, we now show that inhibition of erythroid cell
development by hemozoin isolated from P. falciparum is characterised by delayed expression of the erythroid markers and
increased apoptosis of progenitor cells. Crucially, macrophages appear to protect erythroid cells from hemozoin, consistent
with a direct contribution of hemozoin to the depression of reticulocyte output from the bone marrow in children with
malarial anemia. Moreover, hemozoin isolated from P. falciparum in vitro inhibits erythroid development independently of
inflammatory mediators by inducing apoptotic pathways that not only involve activation of caspase 8 and cleavage of
caspase 3 but also loss of mitochondrial potential. Taken together these data are consistent with a direct effect of hemozoin
in inducing apoptosis in developing erythroid cells in malarial anemia. Accumulation of hemozoin in the bone marrow could
therefore result in inadequate reticulocytosis in children that have adequate levels of circulating erythropoietin.
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Introduction

Severe malaria caused by P. falciparum causes many different

syndromes which culminate in more than a million childhood

deaths each year. In young infants in holo-endemic regions of

Africa the predominant syndrome of severe malaria is severe

malarial anemia (SMA) (reviewed in [1,2]). SMA is due not only to

increased hemolysis of infected and non-infected red blood cells

(iRBC) but also due to a striking degree of abnormal development

of erythroid precursors in acute and in chronic infection [3,4] and

an inadequate erythropoietic response in spite of elevated levels of

erythropoietin (Epo) [4,5,6]. The distribution of erythroid

precursors in the cell-cycle is also abnormal with an increased

number of cells in the G2 phase compared with normal controls

[7,8]. In simian and murine models of malaria, ineffective

erythropoiesis also contributes to anemia [9,10,11].

The pathology of inadequate erythropoietic responses associat-

ed with malaria infection has not been established. The systemic

pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-a)

and interferon-gamma (IFNc) have been associated with SMA

[12,13] and reviewed by McDevitt et al [14]. However other

experimental and clinical studies suggest that by-products from the

asexual stage of infection such as the ring surface protein 2 (RSP-2)

[15,16,17], glycophosphatidylinositol (GPI) anchors of merozoite

proteins [18,19] and hemozoin (or its synthetic analogue b hematin)

[4,20,21] also contribute to the pathology of SMA.

Hemozoin is formed in the food vacuole of developing intra-

erythrocytic parasites, as toxic heme remaining after digestion of

hemoglobin forms a crystalline dimer of a hematin, complexed

with lipid and protein. Hemozoin crystals closely resemble b
hematin, consisting of a ferric ion within a protoporphyrin IX ring

structure [22]. Hemozoin released after the lysis of iRBC is more

heterogeneous and is phagocytosed by the reticulo-endothelial

system, where it is readily observed within macrophages of the

bone marrow and spleen [23] and reviewed in [24].

Hemozoin and its constituents affect the function of host cells.

Schwarzer, Arese and colleagues showed inhibition of macrophage

function by hemozoin including reduced production of the pro-

inflammatory cytokines IL-1b and TNF-a and reduced phagocytic

activity and oxidative burst [25,26]. Others have shown that

hemozoin induces production of the same inflammatory cytokines

[27] and that synthetic hemozoin enhances IFN-c-inducible nitric
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oxide synthase (iNOS) and the chemokines macrophage-inflam-

matory protein (MIP)-1a, MIP-1b, MIP-2, and monocyte chemo-

attractant protein-1 (MCP-1), that may mediate enhanced

migration of macrophages and neutrophils [28,29]. These

cytokines and chemokines have been shown to inhibit erythro-

poiesis [30,31,32,33,34]. More recently synthetic hemozoin

administered to mice has been shown to induce IL-6 production

via the release of uric acid [35].

The pro-inflammatory effects of hemozoin have been attributed

to the oxidative properties of heme. The ferric ion co-ordinated in

the heme moiety is a potent catalyst of free radical production

through the Fenton reaction (for review see [36]). Experimental

studies of the effect of hemozoin on monocytes have shown that

abnormal monocyte function was associated with the mono-

hydroxy derivatives of the poly-unsaturated fatty acids (OH-

PUFAs) in hemozoin produced after metabolism of hemoglobin by

the parasite [37]. The biologically active lipo-peroxides, such as

15-(s)-hydroxyeicosatetraenoic acid (15-S-HETE) and 4-Hydroxy-

2-Nonenal (4-HNE) are potentially inhibitory to the growth of

erythroid cells [38]. Furthermore, 15-S-HETE (a mono-hydroxy

derivative of arachidonic acid) was shown to inhibit differentiation

and maturation of dendritic cells [39]. Taken together, these data

have supported the hypothesis that during malaria infection, bone

marrow macrophages contribute to the inhibition of erythropoiesis

indirectly or directly by oxidative stress.

Previously we have shown that hemozoin may inhibit erythroid

precursors in vitro at concentrations found in the peripheral blood

of children presenting with anemia and malaria [4]. The

mechanism of this inhibition has not been established. Inhibition

of erythropoiesis may result from disturbing the balance of anti-

apoptotic and pro-apoptotic factors that are required for normal

erythroid cell development. In the later stages of this development,

cell death has been shown to result from increased activation of

caspases, withdrawal of Epo or stimulation of the death receptors

Fas (CD95) or TRAIL (for review see [40]). Increased apoptosis of

developing erythroid cells has also been observed in a variety of

malignant, genetic and inflammatory disorders including myelo-

dysplasia [41], myeloma [42], rheumatoid arthritis [43], septic

shock [44] and thalassaemia [45].

To understand the mechanism of inadequate erythropoiesis in

more detail during malaria infection we used a two phase liquid

culture system of erythropoiesis that contains macrophages [46].

We show that macrophages protect erythroid cells from hemozoin

and that reduced erythroid expansion was accompanied by

increased activity within the extrinsic and intrinsic pathways of

apoptosis. These events occurred in the absence of inflammatory

mediators and macrophages suggesting that accumulation of

hemozoin in the bone marrow could contribute to the severity of

anemia in children with chronic malarial infection.

Results

Inhibition of Erythroid Progenitors Derived from
Peripheral Blood

The well characterised two step liquid culture described by

Fibach and colleagues [46] generates erythroblasts from peripheral

blood mononuclear cells (PBMCs) and mimics the stages of

transcription factor and globin expression that occur during adult

erythropoiesis [47]. As a result each stage of erythroid develop-

ment can be studied as shown in Figure 1. This system was used to

examine the effect of malarial pigment on erythroid development.

The effect of malarial pigment on erythropoiesis was first

studied by adding hemozoin to erythroid cultures on day 0 of the

Epo dependent phase of culture (see Materials and Methods).

Erythroid development was determined by assessing expression

levels of transferrin receptor (CD71) and glycophorin A (CD235a)

by flow cytometry.

We found that hemozoin (equivalent to 6mg/ml heme equiva-

lents) reduced the proportion of cells in culture expressing CD71

and CD235a on day 7 (Figures 2A and 2B). Examination of

erythroid cultures on day 14 also showed that hemozoin reduced the

proportion of more mature erythroid cells that express low levels of

CD71 (Figures 2D and 2E). These observations suggested that some

erythroid precursors had either died after exposure to hemozoin on

day 0 of culture or that hemozoin may have delayed the maturation

of erythroid precursors.

We therefore determined the number of surviving erythroid

cells in culture by assessing the proportion of all cells expressing

CD71 and/or CD235a and combining this value with the viable

count of cells in culture on day 7 and day 14 (see Methods).

Hemozoin added to cultures at 6mg/ml reduced the number of live

erythroid progenitors recovered on day 14 but had no effect on the

recovery of cells on day 7 compared with media alone (Figures 2C

and 2F).

Generation of Reactive Oxygen Species by Hemozoin
The biological activity of hemozoin in previous studies has been

attributed to its ability to induce oxidative stress. The generation of

ROS in viable cells was therefore determined using the fluorogenic

dye 2, 7-dichlorofluoroscein diacetate. After uptake by cells this

dye is hydrolyzed by intracellular esterases and then oxidized by

ROS to form dichlorofluoroscein which emits green fluorescence

following excitation at between 480 and 500nm. We used flow

cytometry to allow us to gate specifically on CD71+ cells (day 7) or

CD235a+ cells (day 14). Hemozoin (6mg/ml) was added to

erythroid cultures on day 0. Increases in ROS were observed on

day 14 but not on day 7 (Figure 3A). Consistent with previous

experiments there was a significant reduction in erythroid cells on

day 14 that was absent on day 7 (Figure 3B).

The use of vitamin E succinate (succinyl ester of D-a-tocopherol),

a potent cytoprotective and anti-oxidant reagent [48,49] was used to

reduce inhibition of erythroid cultures by hemozoin. Erythroid

cultures from day 0 were pre-incubated with 30mM vitamin E

succinate 1 hour before adding hemozoin. Vitamin E succinate

reduced the inhibitory activity of 6mg/ml hemozoin on the

maturation of precursors to CD71loCD235a+ (Figure 3C) as well

as the number of CD235a+ erythroid precursors in culture

(Figure 3D).

Modulation of Erythroid Development by Macrophages
We wanted to establish whether macrophages, or cytokines

secreted by them, mediated the inhibitory activity of hemozoin.

Erythroblasts were cultured in the presence or absence of hemozoin

and supernatants collected on days 7 and 14 were assayed for IFN-

c, IFN-a, TNF-a, MIP1-a and MCP-1. We were unable to detect

IFN-a in any of the cultures studied (data not shown). There were

detectable but low levels of other inflammatory mediators on day 7

and day 14 (Figure 4A). TNF-a (10–13 pg/ml) was 10 fold less than

levels measured in patients with malarial anemia [12,50,51] and no

increase in IFN-c was observed upon addition of hemozoin. Only

MCP-1 concentrations increased 4-fold to more than 400pg/ml on

days 7 and 14 whilst the levels of MIP1-a were either slightly

reduced or remained unchanged (Figure 4A). Furthermore, a

blocking anti-TNF-a antibody added on day 0 of culture reversed

the inhibition of exogenous TNF-a on erythroid growth but did not

block the effect of hemozoin (Table 1).

Erythroid cultures were next depleted of macrophages (CD14+

cells) on day 0. Flow cytometry analysis indicated that CD14+

Apoptosis and Hemozoin
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macrophages typically constituted 1–3% of total cells analyzed and

were reduced more than 10-fold after depletion (data not shown).

As described previously [52] the yield and differentiation of

erythroid cells is reduced in the absence of macrophages. To

control for this effect, we assessed erythroid maturation in cultures

depleted of macrophages both with and without hemozoin.

When supernatants from these cultures were assayed for MCP-1

we found that its induction by hemozoin required the presence of

CD14+ cells since their removal resulted in no induction of MCP-1

by hemozoin (Figure 4B). Removal of macrophages also increased

the inhibitory effect of hemozoin. We found that fewer CD71lo

CD235a+ cells survived in culture in the presence of hemozoin

when macrophages were absent (Figure 4C). This was also

observed with b hematin, a synthetic form of hemozoin (data not

shown). It was therefore apparent that the inhibitory effect of

hemozoin was less in the presence of MCP-1 and it seemed likely

that the role of MCP-1 in this system is to modulate monocyte

function [53].

We also found that cultures depleted of CD14+ cells had smaller

aggregates of pigment dispersed amongst erythroid cells

(Figure 4D, -MØ). In contrast, cultures with CD14+ cells often

had macrophages in association with larger aggregates of pigment

indicating phagocytosis of hemozoin (Figure 4D, +MØ).

The content of CD14+ cells in cultures was varied to determine

the minimal proportion of macrophages required to reduce

inhibition by hemozoin. To avoid cytotoxic activity due to non-

matched cells the CD14-negative cultures were generated from the

same donor as the non-separated cells. On day 14 the absolute

number of more mature erythroblasts was determined (Figure 5A).

After normalization to media controls containing the same

proportion of CD14+ cells, an enhancement of cells grown with

hemozoin was only observed with 1.5% CD14+ where erythroid

numbers were 25% of those seen in control cultures with the same

proportion of macrophages (Figure 5B).

These results demonstrated the potential role of macrophages in

supporting erythropoiesis during malaria infection by reducing

contact between hemozoin and erythroid cells. Furthermore the

inhibitory effects of hemozoin were not dependent on release of

pro-inflammatory mediators from the macrophage.

Apoptotic Pathways Induced by Hemozoin in Erythroid
Precursors

Since hemozoin appeared to have a significant effect on the

survival of erythroid precursors as well as on their maturation we

determined the role of hemozoin in the induction of apoptosis

in erythroid cells. To investigate which apoptotic pathway is

Figure 1. Erythroid Expansion in vitro. A, Cytospins of cells stained with 1% dianisidine/10% Giemsa are shown to illustrate the morphological
changes within this culture as erythroblasts differentiate from larger basophilic cells on day 7 to smaller hemoglobin positive cells on day 10 and with
pyknotic nuclei on day 14. The brown stain is indicative of hemoglobinization. B, The generation of erythroid precursors was monitored by labelling
cells with fluorescent antibodies specific to the cell surface markers CD71 (transferrin receptor) and CD235a (glycophorin A) and analysed by flow
cytometry. C, The changes in FSC and SSC of gated cells are shown in B to indicate the reduced size of erythroid precursors. Representative plots and
cytospins viewed at 660 magnification from 3 or more independent experiments are shown.
doi:10.1371/journal.pone.0008446.g001
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involved, we studied the effects of hemozoin on the basophilic

erythroblast population appearing on days 6 to 7 of culture. Day 6

erythroid cultures were incubated with hemozoin at 6mg/ml and

cells harvested to assess levels of pro-apoptotic markers. Within

24 hours we observed loss of CD71+ erythroid precursors

(Figure 6Ai) accompanied by elevated levels of exposed phospha-

tidylserine (Figure 6Aii and 6B). Within the same population of

cells we also observed an increase in activated Caspase 8 by

staining with a fluoresceinated inhibitor of caspase 8 (FLICA-

LETD) (Figures 6Aiii and 6B). When a proportion of the same

cells exposed to hemozoin were incubated with the mitochondrial

cationic dye, JC-1, increased disruption of the mitochondrial

membrane potential in Annexin V+ cells was also observed

(Figures 6Aiv and 6B). We used 20mg/ml of an antibody that cross

links the death receptor, CD95, as a positive control and found

that the proportion of cells with activated caspase 8 and decreased

mitochondrial membrane potential was comparable to that seen

with 6mg/ml hemozoin (p.0.1 with students t test).

Reduction in mitochondrial membrane potential is consistent

with disturbance of membrane function through either the

generation of ROS or activation of Bid by cleaved Caspase 8.

Activated Bid (tBid) mediates mobilization of Bax to mitochondria

which results in membrane permeabilization and release of

Cytochrome C. Released Cytochrome C forms an apoptosome

with Apaf I to cleave and activate Caspase 9 and also is an inducer

of active Caspase 3 [54].

We therefore also determined whether we could detect

increased levels of activated caspase 3 and cytochrome C in the

cytosol of cells incubated with hemozoin. Erythroblasts were

purified from erythroid cultures on day 6 and then incubated with

6mg/ml hemozoin for 24 hours. Using flow cytometry we observed

measurable but low increases in activated caspase 3 but not of

cytochrome C (Figure 7A). Western blots were also performed on

lysates from purified erythroblasts incubated with the same dose of

hemozoin for 4 hours (Figure 7B). Here we observed elevated

levels of cleaved Caspase 8 and cleaved Caspase 3 and

comparatively lower elevation of tBid (Figure 7B). However

cytosolic cytochrome C was not induced in cultures incubated with

hemozoin (data not shown). The same lysates contained elevated

levels of cleaved Caspase 9 after 4 and 24 hours (Figure 7C) where

the levels of cleaved Caspase 9 were increased up to 5-fold

following normalization to alpha tubulin. Taken together these

results indicated that hemozoin can increase levels of cleaved

(activated) caspase 8 and activated tBid and that this corresponded

with disruption of the mitochondrial membrane potential and

increases in cleaved (activated) caspases 3 and 9 in erythroid

precursors.

Discussion

Inadequate production of reticulocytes from the bone marrow

in response to the removal of circulating erythrocytes is a

Figure 2. Hemozoin inhibits cell expansion and differentiation of erythroid progenitors. A, An example of the inhibition of progression to
basophilic CD71+CD235+ precursors on day 7 is shown and B, the proportion of cells incubated with 6mg/ml hemozoin (H) that express CD71+CD235+

on day 7 is compared to media controls (M). * p = 0.030. C, The absolute number of viable cells on day 7 in control cultures with media or with
hemozoin. D, An example of reduction in CD71loCD235+ precursors on day 14 and E, the proportion of cells incubated with hemozoin that express
CD71loCD235+ on day 14 is compared to media controls. **p = 0.006. F, The absolute number of viable cells on day 14 following culture with
hemozoin or control cultures. *p = 0.012. Dot plots show the percentage of live cells expressing markers for each quadrant. Bar graphs show the
average of 3 or more independent experiments with SEMs where for each experiment values for CD71+CD235+ or CD71loCD235+ have been
normalized to cultures grown in media alone.
doi:10.1371/journal.pone.0008446.g002
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significant component of the pathology of severe anemia in

falciparum malaria infection. The characteristic features of severe

malarial anemia (SMA) include hemoglobin levels of 5g/dL or

less, increased clearance of infected and uninfected erythrocytes,

inadequate reticulocyte responses and dyserythropoiesis of the

bone marrow with phagocytosed erythroid precursors within

macrophages [3,24,55]. Here, we show for the first time that

macrophages can protect erythroblasts from the inhibitory effects

of hemozoin and also show that inhibition of erythroid expansion

is accompanied by apoptosis of erythroid precursors.

We found that, in vitro, hemozoin had a greater effect on the

numbers of day 14 mature orthochromatophilic erythroblasts

(CD71loCD235a+) compared to the younger basophilic cells

(CD71+CD235a+) on day 7. Furthermore, there was increased

hemozoin-induced exposure of phosphatidylserine on CD71hi

erythroid cells. If the proportion of apoptotic cells is taken into

account then the effect of hemozoin on the production of fully

functional erythroblasts is considerably greater than suggested by

cell counts alone.

We have shown here that hemozoin enhanced levels of cleaved

caspase 8 and caspase 3 and also disturbed the membrane

potential of mitochondria. However there was no evidence that

pro-inflammatory cytokines were induced by hemozoin or that

they contributed to the enhanced apoptosis in our erythroid

cultures derived from PBMCs. These results are consistent with

previous observations using erythroid precursors from CD34+ cells

where hemozoin (and its synthetic analogue b hematin) inhibited

erythroid growth and development independent of TNF-a and

IFN-c [4]. Suppression of the reticulocyte response was associated

with levels of hemozoin circulating in plasma or in phagocytic cells

where the concentrations of hemozoin found in plasma were

comparable to those used in the study described here.

We found that after adding hemozoin, macrophages are

associated with pigment and that removal of CD14+ monocytes

or macrophages from culture decreased the growth of erythroid cells

and increased the inhibitory effect of hemozoin on erythropoiesis. It

is possible that a component of protection was mediated via the

growth enhancing effects of macrophages [56] as well as via the

Figure 3. Assessment of reactive oxygen species (ROS) in erythroid cells following incubation with hemozoin. A, Relative levels of ROS
were determined using the fluorescent dye 2, 7-dichlorofluoroscein diacetate. The mean fluorescence intensity relative to media controls at each time
point is shown. B, Viable erythroid cells in the same cultures with controls (MEDIA) or with 6mg/ml hemozoin (HZ). C, The proportion of late
erythroblasts (CD71loCD235a+) and D, the total number of CD235a+ erythroid cells in culture on day 14 when treated with the anti-oxidant vitamin E.
Cells were incubated with 6mg/ml hemozoin on day 0 or with the same dose of hemozoin after pre incubation with 30mM vitamin E and normalized
to media controls in the absence or presence of vitamin E respectively. The averages of 3 independent experiments with SEMs are shown.
A * p = 0.021, B *** p = 0.0003 C * p = 0.0278 and D * p = 0.0236.
doi:10.1371/journal.pone.0008446.g003
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Figure 4. Macrophages do not contribute to erythroid inhibition induced by hemozoin. A, Cytokine levels in supernatants from erythroid
cultures in the absence or presence of a high dose of hemozoin (25mg/ml) are shown for days 7 and 14. Empty bars represent levels detected in
control cultures with media alone for each time point. The average of 3 or more independent experiments is shown with SEMs. B, Induction of MCP-1
by hemozoin is compared between erythroid cultures depleted of CD14+ macrophages on day 0 (2MØ) and cultures in which macrophages are
present (+MØ). A representative experiment of 2 is shown with error bars as standard deviation of measurements in triplicate. C, The maturation of
erythroblasts on day 14 to CD71loCD235a+ precursors in cultures depleted of CD14+ on day 0 (2MØ) is reduced compared with the same cultures
that have not had macrophages removed (+MØ). The effect of macrophage loss on erythroid development was taken into account by normalizing
the yield of erythroblasts with hemozoin to the yield obtained in macrophage-depleted control cultures, where media but no hemozoin was added.
The average of 2 independent experiments is shown where error bars are SEMs. **p = 0.003. D, O-dianisidine staining of cytospin preparations to
show changes in morphology and hemoglobinization (brown staining) of cells cultured without macrophages and cultures with macrophages that
are found associated with larger clusters of hemozoin. Images are representative of 3 or more experiments and were taken at 640 magnification.
doi:10.1371/journal.pone.0008446.g004
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removal of malarial pigment by macrophages. However, it is clear

that macrophages added to developing erythroid cells in the

presence of hemozoin do not increase the inhibitory effect of

hemozoin on erythroid development. We were unable to completely

overcome the inhibitory effects of hemozoin with an excess of

CD14+ cells, probably due to a combination of the limited numbers

of isogenic CD14+ cells recovered in each experiment and the

previously reported inhibitory effects of hemozoin on macrophage

function [25].

Monocytes and macrophages have multiple roles in malaria

infection including specific roles in removal of iRBCs by

phagocytosis of mature and ring-stage forms [57,58], antibody-

dependent cytotoxicity [59] and more generally by stimulation of

the innate immune response during the early stages of infection

(for review see reference [23]). In children admitted to hospital

with malaria, a low circulating monocyte count is associated with a

poor outcome, independently of the other clinical features or other

leukocyte counts [60]. Our data showing reduced inhibitory effect

of hemozoin on erythroid precursors when macrophage numbers

are increased would be consistent with these clinical observations

and add to the roles of these cells during malaria infection.

In malaria endemic areas of Africa up to 6–8% of circulating

white blood cells in children are monocytes [60,61]. It is

conceivable that with physiological levels of functional non-

pigmented monocytes in circulation the inhibitory effects of

hemozoin could be completely overcome. There are few studies

that provide differential counts from the bone marrows of children

with malaria. However increases in circulating monocytes

containing pigment are indicative of long protracted or repeated

infections in which severe malarial anemia is more likely than

cerebral anemia and is an indicator of overall sequestered parasite

burden [62]. Very early studies report that repeated attacks of

malaria can result in grey discoloration of the bone marrow due to

accumulation of hemozoin (reviewed in [5,63]). In such situations

macrophage dysfunction secondary to phagocytosis of hemozoin

might limit further ingestion of hemozoin and/or infected red

blood cells [25]. Our observations indicate that failure of

phagocytic cells to clear hemozoin may severely reduce the

erythropoietic response to hemolysis of RBCs during infection.

A direct effect of malarial pigment on erythroid development

would be to increase the level of oxidative stress in these cells. Low

levels of vitamin E in the RBC membranes of children with

malaria have been associated with the severity of malarial anemia

[64]. Although the source of ROS in this study was not identified it

is possible that low levels of a-tocopherol may be associated with

reduced survival of developing erythroblasts in contact with

hemozoin. We were able to detect significant increases of ROS in

developing precursors with 6mg/ml hemozoin and pre-incubation

with an anti-oxidant reduced the inhibitory effects of hemozoin.

Apoptosis is involved in the homeostatic mechanisms for

erythropoiesis and can occur via intrinsic activation of caspases,

withdrawal of Epo or pro-inflammatory stimulation of death

receptors. In our cultures, erythropoietin levels (1000mU/ml) are

comparable with those seen in children with SMA and so do not

limit erythropoiesis. Inflammatory cytokines are also absent,

Table 1. Neutralization of TNF-a does not reverse inhibition
induced by hemozoin.

InfliximAb Erythroid Cells (mean6SD) p-value (t-test)

Control 2 16666420

+ 16886350 0.920

Hz 2 12956427

+ 13056460 0.984

TNF-a 2 6296151

+ 15476365 0.087

Erythroid cultures were pre-incubated with 25mg/ml of the neutralising
antibody to TNF-a, InfliximAb (Centocor, Horsham, USA) on day 0 of the
erythropoietin dependent stage of culture. After 1 hour hemozoin (Hz) and
TNF-a were added at 6mg/ml and 10ng/ml respectively. The number of live
erythroid CD235a positive events acquired (out of a total of 10, 000) by flow
cytometry on day 14 is shown. Data from a representative experiment of 3 is
shown.
doi:10.1371/journal.pone.0008446.t001

Figure 5. Macrophage content required to reduce inhibition by hemozoin. Increasing proportions of isogenic CD14+ cells (MØ) isolated
from the same culture were added on day 0 together with hemozoin. A, Absolute numbers of erythroblasts on day 14 and B, normalization of the
same cell counts to media controls with each concentration of CD14+ cells to allow assessment of rescue by CD14+ cells. A representative experiment
of 3 is shown where error bars are SDs of measurements in triplicate. ** p = 0.007.
doi:10.1371/journal.pone.0008446.g005
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Figure 6. Apoptosis of erythroid cells is enhanced by hemozoin. A, Basophilic erythroblasts from day 6 cultures were incubated with 20mg/
ml anti-CD95 (CD95) or hemozoin at 6mg/ml (Hz) and 24 hours later assessed for i, the relative proportion of CD71+ erythroblasts ii, exposure of
phosphatidylserine on non necrotic 7AAD2 cells and iii, activation of caspase 8 (FLICA LETD+) in Annexin V+ cells; iv, a proportion of cells from the
same experimental groups were also assessed for permeability of mitochondria using the fluorescent dye JC-1. Fluorescence from JC-1 aggregates in
mitochondria (JC1-A) and from monomers in the cytosol (JC1-M) is used to calculate the ratio of JC1-A to JC1-M to allow for comparison between
experiments. Loss of membrane potential is indicated by values less than 1 shown in bold in the lower right quadrant of each dot plot. The
proportion of cells with JC1-Ahi and JC1-Alo fluorescence is also shown to the left. Controls are isotype controls. B, The average of 3 or more
independent experiments as described in A following incubation with media, anti-CD95, or hemozoin (Hz) demonstrating fold changes in apoptotic
markers. Error bars are of SEMs and p values are from analyses using the student’s t test.
doi:10.1371/journal.pone.0008446.g006
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suggesting that hemozoin may directly or indirectly stimulate

apoptosis by an intrinsic route and/or by increased expression of

death receptors or their ligands.

It is possible that hemozoin in contact with cells in the bone

marrow mediates ineffective erythropoiesis by inducing apoptosis

of erythroblasts. We found that hemozoin had a direct impact on

the extrinsic apoptotic pathways of basophilic erythroid precur-

sors. Hemozoin was observed in contact with erythroid cells

during their culture and EM studies would confirm whether

hemozoin is also within erythroblasts. Our experiments have used

only a single exposure to hemozoin to demonstrate inhibition of

erythropoiesis. It is possible that repeated release of hemozoin at

each cycle of parasite growth in vivo may have a cumulative and

greater effect on erythroid development than suggested by these in

vitro experiments. Ineffective erythropoiesis as a result of enhanced

apoptosis is also observed in Thai thalassaemia patients due to an

excess of a-globin [65].

Previous studies have shown that expression of caspase 3 is

transiently elevated during the proerythroblast and basophilic

stages of development [66]. In the cultures described here caspase

8 was also expressed at this stage of differentiation. After only

4 hours of incubation with hemozoin, the activated forms of both

these enzymes were increased compared to controls. Elevation of

cleaved caspase 8 indicated that some of the observed loss of

mitochondrial potential stems from the extrinsic pathway which

may in turn be amplified through activation of caspase 9.

Of note is the inability to detect cytochrome C with hemozoin

despite the observed disruption of mitochondria equivalent to that

observed after cross linking the death receptor CD95. Since we

detected the cleaved product of caspase 9 both at 4 and 24 hours

this suggests that either hemozoin induced an undetectable but

sufficient quantity of cytochrome C to cause some activation of

caspase 9 or that activation occurred by an alternative route.

These observations are supported by a previous report that

describes an 80% drop in cytochrome C and only transient

caspase 3 and 9 activity in cultured erythroid cells as they mature

[67].

We have not been able to examine the role of other stromal cells

and we cannot exclude that they or other accessory cells may

participate in pathology or protection during malaria. Similarly,

our observations do not rule out the contribution of systemic

mediators of inflammation to dyserythropoiesis observed during

acute malaria infection in vivo. Several studies investigating the role

of apoptosis in the pathology of severe malaria indicate that

contact of parasitized RBCs or neutrophils with endothelial cells

[68,69] can induce apoptosis of vascular endothelia and neuroglia,

whilst others suggest a role of soluble factors from parasitized cells

[70,71].

Figure 7. Activation of Caspases in erythroid cells. A, Induction of cleaved caspase 3 and cytochrome C in basophilic erythroblasts purified
from day 6 cultures 24 hours after incubation with media (controls), anti-CD95 or 6mg/ml hemozoin. B, Western blots of lysates taken from purified
basophilic erythroblasts incubated with hemozoin for 4 hours demonstrate increased levels of cleaved caspase 8 and activation of caspase 3 with
slight induction of cleaved Bid (tBid). C, Detection of cleaved caspase 9 after 4 and 24 hours incubation with hemozoin. Each band was normalised to
that for alpha tubulin. Fold changes in normalized levels of pro-apoptotic proteins relative to those in lysates from media controls are shown below
each band.
doi:10.1371/journal.pone.0008446.g007
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In our studies we examined the role of macrophages in

modulating the inhibition induced by hemozoin on erythroid

development. Our observations are consistent with a direct effect

of hemozoin on erythroid precursors. Hemozoin increased levels of

ROS and apoptosis in erythroblasts. Activation of caspase 8,

mitochondrial disruption, caspase 9 and 3 were observed implicating

both the extrinsic and intrinsic pathways of apoptosis. Further work

is required to elucidate the multiple pathways of cellular dysfunction

induced by hemozoin and how this disrupts the ‘erythroblast survival

network’ [72]. Since the data indicate that hemozoin can act directly

on erythroid precursors to inhibit normal erythropoietic activity,

these observations may be relevant to the effect of hemozoin on other

host cells. Further studies will be required to determine the molecular

basis of this inhibition and to correlate these observations with those

in individuals with severe malaria.

Materials and Methods

Materials
All tissue culture grade reagents were obtained from (Sigma,

Poole, UK) unless otherwise stated.

Tissue Culture
The 3D7 strain of P. falciparum was up to 10% parasitemia at

1–2% hematocrit as described previously [73,74]. Erythroid

cultures were grown from PBMCs in a two-stage system [46].

Briefly, PBMCs were isolated from a buffy coat (NHSBT, Bristol,

UK) and early erythroblasts were expanded for one week in 10%

conditioned medium from the bladder cancer cell line 5637, 10%

non-heat inactivated FBS (SLI, Salisbury, UK) and 1mg/ml

Cyclosporin A (Sandoz Pharmaceuticals, Surrey, UK) in a-

modified MEM. Erythroid cells were washed twice before transfer

into a-MEM with 1000mU/ml recombinant Epo (Ortho Biotech

Janssen Cilag Ltd, Bucks, UK), 10ng/ml SCF (R&D Systems,

Abingdon, UK), 0.3 mg/ml holo transferrin (MP Biomedical,

London, UK), 1mM dexamethasone (Faulding Pharmaceuticals

plc, Warwickshire, UK), 3% non-heat inactivated FBS (SLI) and

1% fraction V deionized BSA. The start of this second stage of

culture is referred to as day 0. Erythroid precursors differentiated

into mature erythroblasts and hemoglobinized normoblasts over

the next 14 days. The proportion of erythroid cells was typically

60–70% on day 7 and 80% on day 14 of the second phase of

culture. Non-erythroid cells on day 7 of the second phase consisted

of CD14+ cells (1–3%), CD20+ cells (5%) and CD3+ T cells

(22%). These diminished proportionally as erythroid cells

expanded. Experiments were performed on cells from the second

stage seeded in 0.5ml at 56105 cells per well of a 48 well dish. For

experiments studying the influence of macrophages on the activity

of hemozoin, CD14+ cells were isolated at the end of the first

phase of culture using the CD14 microbead isolation kit (Miltenyi

Biotec, Guildford, UK) and were incubated in the second phase

with remaining cells from the same buffy coat as indicated.

Isolation and Preparation of Malarial Pigment
Mycoplasma-free P. falciparum (3D7) cultures were enriched for

trophozoites and schizonts over 60% Percoll [75] and lysed in

8mg/ml digitonin for 10 minutes on ice. Centrifugation at 16400g

for 10 minutes at 4uC was followed by sterile sonication (Soni prep

150, MSE) in 2% SDS Tris pH8 for 2s at amplitude of 10 microns

on ice. Hemozoin was obtained after 4–5 washes in 2% SDS Tris

pH8, one wash in 1% Triton X-100 and finally 3 washes in 100-

fold volumes of PBS, before storage under nitrogen at 280uC.

Before use all pigment preparations were sonicated for 10–20s as

described above.

Quantification of Pigment
The concentrations of hemozoin were determined following

depolymerization in 20mM NaOH for 2 hours at room temper-

ature [76]. The absorbance at 405nm was compared with known

concentrations of a-hematin and the concentration determined as

hematin equivalents/ml. The quantity of infected RBC required

to produce a given amount of hematin equivalents per ml was

calculated assuming 16107 RBCs/ml.

Flow Cytometry
Erythroid cell maturation was determined by measuring

expression of CD71 and CD235a with the appropriate mAbs

(Beckman Coulter plc, High Wycombe, UK and DAKO

Cytomation Ltd, Ely, UK). Monocytes and macrophages were

identified with murine anti-CD14 (Serotec, Oxford, UK), using

appropriate isotype controls. Cells were stained in 0.5% BSA,

0.05% sodium azide in PBS for 30 minutes at 4uC, washed twice

and fixed in 2% paraformaldehyde. Live cells were identified from

FSC and SSC profiles of 7-AAD (Becton Dickinson, Oxford, UK)

-negative unfixed cells. The absolute number of erythroid cells was

determined by multiplying the viable cell count by the proportion

of CD71+ and/or CD235a+ cells acquired. Countbright fluores-

cent beads (Invitrogen, Paisley, UK) were also used to determine

erythroid numbers in culture. For the detection of early apoptotic

events, cells were stained with PE conjugated anti-CD71, washed

twice with Annexin V binding buffer and incubated with

fluoresceinated Annexin V (R&D Systems, Abingdon, UK). Cells

were analysed within 1 hour following the addition of 7-AAD to

permit exclusion of dead cells. To detect cleaved caspases and

cytochrome C, cells were stained for extracellular markers, fixed in

2% paraformaldehyde for 10 minutes at 37uC, chilled on ice for

1 minute. After removal of paraformaldehyde, cells were permea-

bilised with ice cold absolute methanol, incubated on ice for

30 minutes, washed twice with PBS containing 0.5% BSA and

stained with antibodies to either cleaved caspase 3 or cytochrome

C (Cell Signaling Technology, Hitchin, UK). Cells were washed

and analyzed on the same day by flow cytometry on a

FACSCalibur or LSR II machine (Becton Dickinson) at a flow

rate of ,1500 events/s. Events were analysed with WinMDI

(http://facs.scripps.edu/software.html) and Weasel software (http://

www.wehi.edu.au/faculty/advanced_research_technologies/flow_

cytometry/weasel_for_flow_cytometry_data_analysis/).

Identification of Apoptotic Markers
Day 6 cells from the second stage of culture were incubated with

hemozoin or 20mg/ml anti-CD95 (clone DX2, Becton Dickenson)

cross-linked using 11mg/ml protein G. The levels of activated

caspase 8, the mitochondrial potential and exposed phosphatidyl-

serine were determined using the FLICA kit, the JC-1 kit and

Alexa 350-Annexin V respectively (Invitrogen). Loss of membrane

potential was determined as MFI of aggregates (JC1-A)/MFI of

monomers (JC-1M). Calculating the ratio of fluorescence due to

each form of JC-1 reduces the influence of different mitochondrial

size, shape or density when quantifying fluorescence due to

released monomers. This therefore allows comparative measure-

ments to be made between experiments. Cells were stained for

FLICA and JC-1 following the manufacturer’s instructions and for

CD71, Annexin V and 7-AAD as described previously. For

Western blot analyses day 6 cells were enriched for erythroid

progenitors using magnetic bead isolations (Miltenyi Biotec).

Briefly CD3+ cells were depleted with an LD column and

CD71+ cells selected from the excluded fraction using an LS

column. Eluted cells from the final step were incubated with

hemozoin and pelleted at 4uC for 10 minutes at 400g, washed with
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PBS containing a protease inhibitor cocktail, resuspended in 50ml

of cell lysis buffer containing 20mM TrisHCl pH7.5, 2mM EDTA,

150mM NaCl, 0.5% Triton X- 100, 1mM PMSF, inhibitor

cocktails to proteases (containing 4-(2-aminoethyl)benzenesulfonyl

fluoride, E-64, bestatin, leupeptin, aprotinin, and sodium EDTA)

and phosphatases (containing microcystin LR, cantharidin, (2)-p-

bromotetramisole, microcystin LR, cantharidin, and (2)-p-bro-

motetramisole) and incubated on ice for 20 minutes. The crude

lysate was homogenized by passing through a 25 gauge needle 30

times and cytosolic fractions collected after pelleting nuclei and

mitochondria at 16,000g and 4uC for 15 minutes. Approximately

20mg protein per lane was loaded onto 12% Tris-glycine

polyacrylamide gels (Bio-Rad Laboratories, Hemel Hampstead,

UK) and transferred onto Polyvinylidene Difluoride membranes

using the iBlot system (Invitrogen). Membranes were probed with

antibodies to cleaved forms of caspase 3, caspase 8 and Bid (Cell

Signaling Technology) and proteins visualized with Dura Sensitive

Rapid detection kit (Pierce Biotechnology, Cramlington, UK).

Microscopy
Cytospins were performed by loading 1226105 cells in 150ml

into Shandon cytospin funnels (Thermo Electron Corporation,

Massachusetts, USA) and centrifuged for 3 minutes at 1000rpm.

Cells were fixed in absolute methanol and hemoglobinized cells

identified using 1% (w/v) O-dianisidine in MeOH for 5 minutes.

The reaction was stopped using 2.5% H2O2 in 70% EtOH for 2–

3 minutes and cells counterstained using 10% (w/v) Giemsa in

water (pH6.8) before rinsing with water.

Cytokine ELISAs
Tissue culture supernatants were collected and stored at

220uC. Samples were thawed on ice and levels of TNF-a, IFN-

a, IFN-c, MIP-1a and MCP-1 were determined using Quantikine

kits (R&D Systems). Cytokine concentrations were calculated from

duplicate readings with reference to standards in the kit.

Statistical Analyses
Unless stated differently statistical significance was determined

with GraphPad Prism using the two-tailed paired student’s test at

95% confidence interval.
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