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Abstract

Extended molecular dynamics simulations covering a total of ������s

have been carried out on a simpli�ed protein model� Despite its simpli�ed

structure� that model exhibits properties similar to those of more realistic

protein models� In particular� the model was found to undergo transitions

between conformational substates at a time scale of several hundred pico�

seconds� The computed trajectories turned out to be su	ciently long as

to permit a statistical analysis of that conformational dynamics�

To check whether e
ective descriptions neglecting memory e
ects can

reproduce the observed conformational dynamics� two stochastic models

were studied� a one�dimensional Langevin e
ective potential model derived

by elimination of sub�picosecond dynamical processes could not describe

the observed conformational transition rates� In contrast� a simple Markov

model describing the transitions between but neglecting dynamical proces�

ses within conformational substates reproduced the observed distribution

of �rst passage times� These �ndings suggest� that protein dynamics gene�

rally does not exhibit memory e
ects at time scales above a few hundred

picoseconds� but con�rms the existence of memory e
ects at a picosecond

time scale�
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� Introduction

Knowledge about detailed atomic structures of biological macromolecules has be�

en rapidly accumulated in recent years �see� e�g�� Refs� ����� That progress opens

the chance to acquire an understanding of macromolecular biological function

in terms of basic physical and chemical notions� Many aspects particularly of

protein function are known to be connected to dynamical processes within these

macromolecules���� Therefore� adequate descriptions of that molecular dynamics

�MD� are required and represent essential clues in the attempt to derive function

from structure� Due to the structural complexity of proteins and a corresponding

lack of well�founded coarse�grained e�ective models for the dynamics� the method

of MD�simulation�� � currently is the only approach� to which some reliability can

be assigned� That method conceives a macromolecule as a classical many�body

system of 	atoms
 and describes the quantum�mechanical forces like the chemi�

cal binding forces� which are caused by the electronic degrees of freedom� by a

semi�empirical force �eld� Accordingly� the molecular dynamics is simulated by

integration of the Newtonian equations of motion�

The enormous computational task associated with MD�simulation of biologi�

cal macromolecules entails an upper limit to the time scale of dynamical processes

accessible by this method� the MD�simulation of one nanosecond ��
�� s� of an

average�sized system consisting of �
�


 atoms requires roughly � � �
�� �oa�

ting point operations if all long�range interactions are taken into account� About

�

 days of CPU�time on a � GFLOPSa�supercomputer are necessary to perform

that task� Hence� the limit of accessible time scales set by current computer

technology is in the nanosecond range�

However� many biochemical processes occur at time scales� which are by six to

twelve orders of magnitude larger than that limit� typical ligand binding reactions

as well as quaternary rearrangements occur in the range �
�� to �
�� seconds�

protein aggregation and protein folding processes require up to �
� seconds�	 Ad�

mittedly� enormous e�orts have been spent to increase the computational perfor�

mance of MD including e�cient implementations of MD�codes on vector�machines

�e�g� Ref� �� or� more recently� on parallel computers��
��� However� assuming that

such e�orts generate an increase of processing capabilities at about the rate of

�
� every ten years one is forced to the conclusion that computer technology will

not allow MD�descriptions of many important biochemical processes before the

year �
�
 �cf� also Ref� ����

At present� a reduction of the amount of computation involved in the descripti�

on of protein dynamics is the prerequisite to further extend the range of accessible

biochemical processes� Accordingly� various techniques have been developed and

employed among which three main approaches can be distinguished�

a��� FLoating point Operations Per Second
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�a� Mathematical and numerical methods attempt to reduce the amount of ne�

cessary computation essentially without any modi�cation of the physical

description� These methods include higher order integration algorithms���

the use of generalized internal coordinates���� �� symplectic integration al�

gorithms���� �� fast multipole methods��	� �� variable time step methods��
� ��

and various multiple time step methods��
� �����

�b� Proper approximations modify the molecular model employed in MD�

simulations in a way that enables a reduction of the computational task�

Here� care has to be taken to ensure� that the approximations do not too

seriously alter the physics of the macromolecular dynamics��� Examples are

the neglect of long�range interactions by use of a �cut�o�� function��� the

suppression of fast degrees of freedom��	 and the so�called �mass�tensor�

molecular dynamics���

�c� E�ective models are designed to replace the original MD�model� They rest

on a classi�cation of 	relevant
 vs� 	irrelevant
 system properties for a given

dynamical process� These models reduce the explicit description to the rele�

vant properties and assume that the action of the irrelevant properties can

be implicitly taken into account by renormalized interactions or other quan�

tities representing statistical averages� Stochastic models� in particular� are

based on the assumption� that the detailed dynamics of fast degrees of free�

dom� such as bond� or bond angle vibrations� is not essential for protein

structure and function� Successful applications of stochastic descriptions

like Monte Carlo simulation��
��� Langevin dynamics��� generalized Lange�

vin dynamics with memory friction �e�g� Ref� ��� or the use of statistical

potentials��� support that assumption�

Certainly� this classi�cation is not mutually exclusive which becomes obvious

by considering the neglect of the long�range part of the Coulomb interaction as

an example� that method equally can be regarded as an approximation and as

an e�ective model implicitly accounting for shielding e�ects caused by atomic

polarizabilities�

Most of the above methods have been designed for a wide class of many�body

systems and� therefore� represent general purpose methods� Application of these

methods to proteins typically speeds up MD�simulations by about one order of

magnitude� However� in view of the desire to increase accessible time spans by

six to twelve orders of magnitude� the e�ciency gains achieved by these general

purpose methods represent only a moderate success�

Major e�ciency gains can be expected if computational methods and e�ective

models are developed which more speci�cally take advantage of structural and

dynamical properties particular to proteins� That expectation rests on the emer�

ging notion that proteins actually possess unique properties which distinguish
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these many�body systems from others��� In particular� a clear�cut identi�cation

of irrelevant degrees of freedom� explicit consideration of which usually is compu�

tationally demanding� should allow considerable e�ciency gains by development

of coarse�grained e�ective models� which are adjusted to the particular dynamical

and structural properties of proteins�

From the above discussion we conclude� that a proper characterization of pro�

tein dynamics is a prerequisite for the development of e�cient protein dynamics

descriptions� We note that a separation of relevant observables from irrelevant

ones is also required for an application oriented evaluation of a given MD�method�

Usually� such an evaluation is based on a comparison of certain quantities com�

puted from test�simulations carried out with the given MD�method� with cor�

responding quantities obtained from simulations employing a reference method�

which is assumed to provide more accurate results �cf� Refs� ��� ���� However�

for an application oriented evaluation� the quality of the given method should be

evaluated solely with respect to its ability to describe relevant properties accura�

tely� These ideas are discussed and exempli�ed in detail in a forthcoming paper�	

as well as in���

In the present paper we focus on the question� how knowledge on the very

special dynamical properties of proteins can be acquired� Below we will motivate

the hypothesis� that studies of the dynamics of simpli�ed protein models are well

suited to contribute to such knowledge� provided the dynamical properties of the

protein model can be shown to be su�ciently similar to those of more realistic

protein models�

Contrary to less complex many�body systems the dynamics of proteins ap�

pears to involve a hierarchy of time scales���� �
 The high�frequency dynamics of

protein models has been examined in detail by means of MD�simulation��� �� as

well as by normal mode analysis��� whereas knowledge about the low�frequency

dynamics is sparse� However� many quantities which are important to protein

function are de�ned only at slow time scales well above �

 picoseconds� mean

�rst passage times for transitions between conformational substates���� � which are

considered as elementary steps for 	functionally important motions
��� fall in that

region� Computations of corresponding transition rates� e�g� by transition state or

activated dynamics��� �� or of other relevant quantities� like free energies� typically

require large statistical ensembles and� therefore� show slow convergence� Accor�

dingly� studies of infrequent conformational motions have been possible only for

small polypeptides�����
 Typically� the time scale covered by available sampling

techniques like umbrella sampling�� or various force�bias methods��� �� is too short

as to provide an ensemble large enough for accurate results� Hence a characteri�

zation of protein dynamics is required especially in the low�frequency region�

At the �rst glance� this requirement appears to entail a vicious circle which

impedes the development of e�cient protein dynamics descriptions� On the one
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hand� due to the structural complexity of the system as well as due to the lack

of experimental data� studies of dynamical properties in the low�frequency region

have to rely on extended MD�simulations� On the other hand� it is di�cult to car�

ry out such simulations unless su�ciently e�cient protein dynamics descriptions

have been developed�

In view of that problem we note that insights into slow phenomena of protein

dynamics� such as the folding process� have been provided by studies of small�

oversimpli�ed protein models� such as lattice models�� or 	bead
�models��� Of

course� the simpli�ed structure of such model systems requires a careful interpre�

tation of results in order to provide information on properties of real proteins�

But at the same time their simplicity entails the key advantage of such systems

which is to permit extended simulations covering time spans several orders of

magnitude larger than those accessible to simulations on more realistic protein

models� Hence� analysis of the dynamics of a simpli�ed protein model by means

of extended MD�simulations should enable insights into dynamical properties of

proteins and� therefore� should contribute to the development of more e�cient

protein dynamics descriptions�

The present paper exempli�es that approach by considering a 	minimalmodel


for proteins� which is described in the following Section� Despite its simpli�ed

structure� MD�simulations carried out on this protein model reveal dynamical pro�

perties similar to those computed fromMD�simulations of more realistic� complex

protein models or to those obtained from experiments �Section ��� In particular�

the dynamics of the protein model was found to exhibit conformational transiti�

ons at a time scale of several hundred picoseconds� Such conformational dyna�

mics appears to be ubiquitous in protein dynamics���� �� As we will argue� these

similarities support the assumption that results obtained by our extended MD�

simulations of the simpli�ed protein model actually provide information about

the low�frequency dynamics of real proteins�

In Section � we analyze whether memory�e�ects are present in the dynamics

of our model� Memory�e�ects of dynamic quantities are well known to exist in

proteins at short time scales up to the picosecond range��� Here they give ri�

se to non�vanishing autocorrelation functions of atomic positions or velocities���

Proper consideration of these short time correlations is essential for stochastic

descriptions of fast degrees of freedom��	 Accordingly� the development of coarse�

grained e�ective descriptions of slow degrees of freedom requires knowledge about

time scales of correlations� To contribute to such knowledge� we address the que�

stion� to what extent memory e�ects show up in the low�frequency conformational

dynamics of proteins�
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� Design of a simpli�ed protein model

To enable studies of low�frequency protein dynamics by extended MD�simulations

of a simpli�ed protein model� the design of that model has to meet two main re�

quirements� �a� the model should exhibit structural and dynamical properties

similar to those of real proteins� in particular� it should enable a study of confor�

mational transitions� �b� the model should exhibit as few degrees of freedom as

possible� and� accordingly� should be structurally simple� Thus� the protein mo�

del should represent a 	minimal
 model� Such model can not contain all features

of proteins� nor can it model the dynamics of a speci�c protein� Therefore� we

included only those structural elements� the combination of which a priori seemed

to be essential for low�frequency dynamical properties�

For the design of the protein model we have chosen a two step procedure�

�rst� we de�ned a 	primary
 structure� consisting of �

 residues� and a force

�eld� Second� we simulated a 	folding
 process of that model in order to obtain a

stable tertiary structure�

To optimally meet the above con�icting objectives� we decided to neglect the

internal structure of the residues and to describe the polypeptide by a chain of �



van der Waals spheres� which are linearly connected via interactions resembling

chemical bonds� The employed force �eld included bond stretch� bond angle� van

der Waals and Coulomb interactionsb�

E � Eb � E
 � EvdW � Eel �

where the energy contributions are de�ned as in Ref� ��� The particle masses

and force parameters were those of CH� 	extended atoms
 and associated single

bonds� as de�ned in the CHARMm force �eld���

With the above de�nitions� the model describes a �

�alkane �	hektane
� rat�

her than a protein� Therefore� additional properties which can mimic the low�

frequency behavior of proteins have to be included� In order to identify such

properties we note that a characteristic feature of proteins is their ability to fold

into and to maintain a unique tertiary structurec in native environment��� That

property is a prerequisite for their speci�c biochemical function� The tertia�

ry structure is determined by speci�c interactions of particular amino acid side

groups� e�g� by disul�de bonds or by H�bonds as well as by less speci�c long�range

interactions like Coulomb or hydrophilic and hydrophobic interactions� The latter

type of interaction� in particular the hydrophobic force� is known to dominantly

contribute to the stability of folded proteins��
� �� We therefore decided to add

heterogeneous long�range interactions to our protein model�

bWe did not include an angle torsion potential�
cMore accurately� that is a set of mutually similar conformational substates�
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Primary structure�

For that purpose we de�ned an arti�cial� heterogeneous 	primary structure


by assigning di�erent partial charges to the �

 van der Waals spheres of the

model� Figure � shows the chosen charge distribution �bold� wavy curve� along

the stretched chain� As can be seen� that distribution divides the protein model

into �ve parts� three of which carry a positive charge� while the remaining two

are charged negatively� The inset of Fig� � shows the detailed structure of the

model�
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Figure �� Protein model in a stretched� unfolded con�guration� consisting of

�

 CH��like 	atoms
� their partial charges are represented by the bold curve� the

inset shows a zoom of the detailed structure�

The average absolute charge was chosen such that the corresponding Coulomb

energy contribution becomes su�ciently large as to over�compensate entropic free

energy contributions at room temperatured and thus to stabilize folded structures�

In that respect� the chosen Coulomb interactions mimic hydrophobic protein�

solvent interactions comparable to those included into the bead�model in Ref� ���

the attraction of oppositely charged 	residues
 resembles hydrophobic forces� whe�

reas the repulsion of equally charged 	residues
 models the tendency of hydrophilic

groups to solvate� We note� that� as a consequence of the above interpretation�

the protein model comprises a simple e�ective solvent model�

Folding Process�

The second step � the 	folding
 of the protein model � was carried out

dWe chose an average absolute charge of ���� e� which� accidentally� corresponds to the

average value found in more realistic protein models�
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by means of MD�simulation� All simulations presented in this paper have been

performed in vacuo using the Verlet�algorithm�� with an integration step size of

one femtosecond for the integration of the Newtonian equations of motion� No

	cut�o�
 has been employed�

Starting from an unfolded con�guration� shown in Fig� � and� as a ribbon�plot�

in Fig� � �a�� the protein model was allowed to freely move under the in�uence of

bond�� van der Waals�� and Coulomb interactions� Figure � �b�f� shows snapshots

of the structure during this initial phase of the 	folding process
� As can be seen�

the compactness of the model rapidly increased and� after �
 picoseconds� came

close to its �nal value� At this stage� the tertiary structure had not yet stabilized�

and the model exhibited frequent conformational changes�

Within the �rst few femtoseconds of the folding process� the temperature of

the model raised from �

 K to above �
�


 K� This large temperature jump

is due to high conformational energy present in the initial structure� part of

which quickly converted into kinetic energy� We continued this high temperature

dynamics for two nanoseconds to explore con�gurational space� By rescaling

of atomic velocities� the model was then slowly cooled down to �

 K� where

it was trapped in a well�de�ned conformation� which remained stable during

the subsequent equilibration phase of one nanosecond duration� The model was

then allowed to move freely again for two nanoseconds in order to approach

thermal equilibrium� This has been achieved� as is indicated by the fact that no

temperature drift could be observed during that period� The resulting� folded

and relaxed conformation is depicted in Fig� � �g�� This structure was used as

initial con�guration for the simulations described in the following Sections�
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(a) (b) (c) (d) (e) (f)

(g)

Figure �� Snapshots of the protein structure during the simulated folding pro�

cess described in the text� structures are shown as 	ribbon�plots
 �a���f�� initial�

completely unfolded con�guration �a�� successive con�gurations after � ps �b��

� ps �c�� � ps �d�� � ps �e�� and �

 ps �f�� respectively� �g�� folded structure of

the protein model after � ns� which was used as initial con�guration for the dyna�

mics simulations described in the text� the bold lines represent chemical bonds�

four numbered circles mark atoms referred to in the text�
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� Relevance of the Simpli�ed Protein Model

The severe simpli�cations inherent to the protein model described above enforce

a close inspection concerning its relation to real proteins as well as a number of

caveats with respect to the interpretation of the MD�studies described below� In

particular we want to check in what sense our study of the low�frequency con�gu�

rational dynamics of our simpli�ed model can serve as a tool to characterize the

corresponding dynamics of real proteins� To that aim we will �rst discuss some

of the properties determining the shape of the energy and free energy landscape�

respectively� Subsequently� we will check� whether the model ful�lls our expecta�

tions�

The neglect of any internal structure of the �

 residues which make up the

protein model� represents the most obvious simpli�cation� Since the residues are

represented by van der Waals spheres� most short�range� residue�speci�c inter�

actions� such as H�bonds� which contribute to the formation of rigid secondary

structure elements in proteins� are absent in our model� As a consequence� the

model structure is expected to exhibit larger �exibility as compared to proteins�

An additional increase of �exibility should arise from the absence of side�groups

and a corresponding lack of site�speci�c sterical restraints� Thus� free energy

barriers for conformational transitions in our model are expected to be lower

than in real proteins� The neglect of angle torsion barriers should have similar

consequences�

Secondly� the residue masses have been chosen smaller than those of amino

acids by about one order of magnitude� However� this di�erence does not a�ect

the quality of the dynamics� according to Newton
s laws� scaling of masses merely

corresponds to a shift of time scales � in the present case by a factor of three

to four� As a result� also conformational motions of the model will occur at a

correspondingly faster time scale as compared to proteins�

We expect that as a result of both e�ects� the reduction of free energy barriers

as well as the time scaling of the dynamics of the simpli�ed model� the number of

conformational transitions� which occur in the course of our simulations is large

enough as to permit their statistical analysis�

Finally� our simple e�ective solvent model does not include stochastic and

frictional forces� which are exerted by solvent molecules onto protein surfaces�

Comparisons of MD�simulations of protein models in vacuo with simulations in

solvent have shown� that such solvent�induced forces reduce the inertial character

of vibrational modes in proteins and decorrelate these motions��� Accordingly�

our in vacuo simulations should exhibit a much slower decay of the short�time dis�

placement autocorrelation functions of surface residues than the one determined

in more realistic protein�solvent models� i�e�� the simpli�cations should enhance

memory e�ects at fast time scales�
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The folded structure of our model �Fig� � �g�� seems to be built up from

structural motifs comparable to secondary structure elements found in proteins�

such as a 	helix
 at the bottom of the model as well as 	loops
 at the left and right

sides and at the top� The combination of these motifs resembles typical tertiary

structures of small globular proteins �compare� e�g�� the structure of Crambin� as

shown in Ref� ���� This structural similarity has not explicitly been put into our

model� but� instead� results from the particular choice of chain�chain interactions�

Analogously� we did expect that also realistic dynamical properties should appear

as a consequence of the model design�

To con�rm that expectation� we computed various properties� the combina�

tion of which is known to be characteristic to protein dynamics� and compared

them with simulations of more realistic protein models or experiments� In our

analysis� we will proceed from short time scales �femtoseconds� to longer ones

�nanoseconds��

The short�range interactions� which determine the high�frequency dynamics

of the protein model� have been chosen in close correspondence to those of hy�

drocarbons� as de�ned by the CHARMm force �eld��� Hence� the protein model

should exhibit reasonably realistic dynamical properties at a time scale below

some �

 femtoseconds�

Figure �� Normalized velocity autocorrelation function Cv�t� � hv�
� �

v�t�i�hv�
��i derived from an average over a one nanosecond trajectory using

the velocity vector v of one particular atom of the protein model� The inset

shows the corresponding spectrum� computed using a Fourier transform of the

velocity autocorrelation function� This spectrum is comparable to that of more

realistic protein models� The two sharp peaks originate from fast bond�stretch

vibrations� whereas the broad bands in the low�frequency region of the spectrum

are predominantly caused by the stochastic character of inter�atomic van der

Waals contacts�

As an example� Figure � shows the normalized velocity autocorrelation func�

tion C�t� � hv��� �v�t�i�hv����i� derived from an average over a one�nanosecond
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trajectory using the velocity vector v of an arbitrarily chosen residue of the pro�

tein model� The inset shows the corresponding spectrum� which has been derived

in a way similar to that employed in Ref� �� in order to enable a comparison with

the results of MD�simulations of a detailed model of RNAse�A presented therein�

Similar features are sharp peaks in the range ��
 to ��
ps��� originating from

fast bond stretch vibrations� as well as broad bands in the region below ��
ps���

arising from bond angle vibrations and� particularly� the noisy character of van

der Waals collisions� The dynamics of more realistic models di�ers from that of

the simpli�ed protein model in that it typically gives rise to a larger number of

peaks in the high frequency spectrum� due to a heterogeneity of bond stretch

frequencies� which is absent in our model�

These high frequency modes represent the �rst layer of a hierarchy of time

scales in proteins� within each of which speci�c dynamical processes can be ob�

served���� ����� These range from bond stretching modes �� �
 fs�� bond angle�

and dihedral vibrations �few �

 fs�� collective motions involving groups of atoms

�some �
 ps�� to conformational transitions occurring within a wide range of time

scales above �

 ps� Inspection of dynamical details at di�erent resolutions in

time has shown� that such hierarchy actually is reproduced by our simulations�

which cover time scales di�ering by more than six orders of magnitude� As an

example� Figure � shows the time development of the distance between two arbi�

trarily chosen residues at decreasing time resolutions� Proceeding within Fig� �

from top to bottom� one observes characteristic �uctuations� which occur at time

scales increasing at each step by a factor of ten and originate from the four dif�

ferent dynamical processes enumerated above�

A characteristic feature of protein dynamics is the existence of a variety of

conformational substates� which are interconnected by conformational transitions�

The model� too� exhibits such conformational transitions� which reveal themsel�

ves as sudden structural rearrangements� In particular� the rapid atomic distance

changes apparent in the bottom three pictures of Fig� � are due to such confor�

mational transitions�

From these observations we infer� that� despite its simpli�cations� our protein

model exhibits a set of structural and dynamical properties� which are charac�

teristic for proteins� In particular� the model should be rather well�suited for a

simulation study of the long�time conformational dynamics of proteins�
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Figure �� Distance �in �A� between residues � �� and � �� �cf� Fig� � �g�� du�

ring an MD�simulation of �

 nanoseconds length� The series of plots shows the

distance �uctuations at time scales increasing by a factor of ten at each magni��

cation step� the bold lines in the bottom two pictures represent smoothed data�

Note that the depicted simulation has not been included within the analysis car�

ried out in the following Section�
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� Conformational Dynamics

We studied the conformational dynamics of our protein model by means of exten�

ded MD�simulations covering a total of ��� nanoseconds� Using the well�known

Verlet�algorithm with an integration step size of one femtosecond� ��� simula�

tions� each of one nanosecond duration� were carried oute� All ��� simulations

started with almost identical initial conditions� derived from the structure resul�

ting from the folding procedure described in Section � by minute random modi�

�cations of atomic positions ��
�� �A�� Nevertheless� these ��� simulations are

essentially independent from each other� since the chaoticity inherent in the dy�

namics guarantees a rapid decorrelation of the initially similar trajectories within

a few picoseconds�

An integration time step size as short as one femtosecond may seem to contra�

dict the purpose of our simpli�ed model� i�e�� the reduction of the computational

e�ort that has to be spent to study conformational dynamics� Note� however�

that here the main computational speed up is due to the decrease of the number

of degrees of freedom as compared to more realistic protein models� Furthermore�

as described in the preceding Chapter� conformational transitions in our model

are expected to be accelerated� implying fewer integration steps per conforma�

tional transition� As we shall see below� these expectations will be con�rmed�

in that the simulations actually will exhibit a large number of conformational

transitions within the time span of our simulations�

��� Theory of Conformational Substates

Generally� a coarse�grained e�ective description of a �microcanonical� system with

a Hamiltonian H�qN �pN�� where qN denote the �N Cartesian coordinates of

the N particles within the system and pN their momenta� can be achieved by

explicitly considering the dynamics of only a few degrees of freedom ci�qN �pN ��

commonly referred to as 	conformational coordinates
��� If the remaining degrees

of freedom are regarded as a heat bath� the resulting system of reduced dimension

belongs to a canonical ensemble�

The free energy landscape of that sub�system is a potential of mean force���

W �c�� which determines� together with the heat bath� the dynamics of the con�

formational coordinates c� By means of the canonical �projected� phase space

density �c�c��

�c�c� �
Z
dq

�Ndp
�N��q

�N �p
�N ���c� c

�

� � ���

ePart of these ��� simulations were carried out using modi�ed Verlet integration algorithms�

as described in Refs� �	� �
� However� we do not consider these algorithmic di�erences to

seriously a�ect our results�
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W �c� can be derived from the phase space density ��qN �pN� generated by the

dynamics of the entire system�

W �c� � �kbT ln �c�c� � ���

As an illustration� Figure � shows a contour�plot of the free energy landscape

of our protein model� which has been determined from �c�c� � �c�d������ d���	��

according to ���� Here� the two distances d����� and d���	� between atoms ��� and

��� as well as ��� and ���� respectively� have been chosen as conformational

coordinates �cf� Fig� ��� The canonical ensemble� from which we derived �c�c��

has been generated from the complete set of ��� ��ns�trajectories by recording

both distances every � fs in the course of the simulations� Discrete values for

�c�c� have then been determined on a grid of 
���A resolution by computing a

two�dimensional histogram using square bins of 
���A side length� This choice

represents a compromise between the con�icting aims of high resolution and low

statistical �uctuations of frequency counts per bin� The contour plot in Fig� �

represents a smoothened version of the two�dimensional histogram�

Figure �� Contour�plot of the free energy landscape W �d������ d���	�� derived from

a projection of the phase space density �c onto two conformational coordinates�

namely the distances between atoms ��� and ���� and atoms ��� and ����

respectively �cf� Fig� ��� The inset shows the values of the energy landscape in

units of kbT along a hypothetical reaction coordinate �bold line� connecting the

points A�B�C�D�B�E�

The inset of Fig� � illustrates the shape of the free energy landscape W by

plotting its value in units of kbT �at T � �

K� along an arbitrarily chosen

��



	reaction coordinate
 �bold line� passing through the three minima� W has been

interpolated using a cubic spline function�

The energy landscape in Fig� � exhibits three distinct minima� denoted as

	B
� 	C
� and 	D
� respectively� As suggested on the basis of experimental data by

Frauenfelder� such regions of low free energy in conformational space� separated

by free energy barriers� generally de�ne distinct conformational substates of a

protein� Accordingly� we de�ne our model to be in substate 	B
� 	C
� or 	D
�

respectively� if its conformation lies in the corresponding region of the free energy

landscape� Like the Brownian motion of a particle coupled to a heat bath� the

dynamics of the system within the energy landscape shown in Fig� � is di�usive�

Occasionally� the �uctuating forces generated by the heat bath drive the system

across one of the energy barriers and induce a conformational transition� which

reveals itself as a rapid change in the sterical structure of the model� Such sudden

structural transitions are� e�g�� apparent in the lower parts of Fig� ��

Note� that the above de�nition of conformational substates di�ers from the

approach commonly employed for theoretical explorations of substate hierar�

chies���� �	 In these studies� the distribution of thermally accessible local minima

of potential energy within con�gurational space is studied� and it is assumed� that

these local minima or clusters thereof can provide information on the distribution

of conformational substates� At low temperatures� where entropic contributions

are small and safely can be neglected� the potential energy landscape de�nitely

can serve as a tool for the analysis of conformational substates� However� at

room temperature the suggested relation between accessible minima of potential

energy and conformational substates� de�ned as minima of free energy� is que�

stionable� In contrast� our approach allows the study of conformational substates

at physiological temperatures� as it refers to the free energy landscape within con�

formational space� Therefore� if applied to realistic protein models� our approach

enables comparisons of theory and experiment� Admittedly� much larger compu�

tational e�ort is involved in such analysis� because a su�ciently dense sampling

of phase space by extended simulations is required for the determination of �c�

At present� that computational e�ort restricts our method to studies of simpli�ed

protein models�

As can be seen in Fig� �� the conformational substates of our protein model

are stable on the time scale of several ten picoseconds� conformational transitions

occur on scales above a few hundred picoseconds� In order to study� whether

memory e�ects are present in the dynamics on these two time scales� we will now

consider two simple stochastic models�

The �rst model will refer to and will be derived from the protein dynamics

within one particular conformational substate� We choose a one�dimensional Lan�

gevin model� which describes the Brownian motion of a particle in a potential

of mean force� W �c�� We will derive this e�ective potential from the simulation

��



employing the same procedure that was used to compute the free energy lands�

cape shown in Fig� �� The second model serves to describe the conformational

dynamics of transitions between the three conformational substates apparent in

Fig� � on the longer time scale above several hundred picoseconds� We will choose

a Markov model which neglects the protein dynamics within each substate�

��� A Langevin Model

We now try to describe the dynamics of our protein model in the vicinity of

the energy minimum 	D
 �cf� Fig� �� as a Brownian motion� As a conformational

coordinate� we chose the distance c � d������ which allows to separate substate 	B


from substate 	D
 �cf� Fig� ��� Since the dynamics within substate 	D
 determines

the transition rate from 	D
 to 	B
� comparison of this particular rate determined

from the Langevin model with the corresponding rate observed in the simulation

will provide a check whether that model is applicable�

The time evolution of the stochastic model is described by the Langevin equa�

tion�

m c � �m� !c�rW �c� � ��t� � ���

where m denotes the e�ective mass�� of a Brownian particle� the motion of which

is governed by a heat bath a potential of mean force� W �c�� The in�uence of

the heat bath is described by the friction coe�cient � and a �uctuating force

��t�� The dots represent time derivatives� We assume� that ��t� can be modelled

by Gaussian �white� noise� and then we check� whether this assumption� which

implies a neglect of memory e�ects� is correct�

Figure � �left� shows the potential of mean force� W �c�� which has been com�

puted according to ��� and ���� respectively� where only those conformations�

which belong to state D or B� have been used for the calculation of �c according

to ���� The considerable length of the trajectory allowed a quite accurate determi�

nation of W �c�� As a check� we computedW �c� using only half of the trajectory�

Compared to the full statistics� no signi�cant deviations were observed �data not

shown��

In Fig� � the transition under consideration� B � D� corresponds to a tran�

sition from the deep minimum across the energy barrier to the left� To calculate

its rate from the Langevin model� the parameters m and � have to be speci�ed�

the amplitude of ��t� then follows from the dissipation �uctuation theorem�

As indicated by harmonic �ts �dashed lines� in Fig� � �left�� at the energy

minimum and at the barrier top� the shown energy landscape can be described

by a harmonic double well� Di�usive motion in such a double well potential can

be described analytically and� therefore� enables a simple determination of the

friction coe�cient � as well as of the e�ective mass m� which enter into ��� as

adjustable parameters� from our simulations� For that purpose� we make use

��



of the velocity autocorrelation function� C�t� � h !c�
� � !c�t�i� computed from an

average using a selected �ns�trajectory� which did not leave state 
D
� In our

harmonic approximation we assume W �c� � �
�
m	�


c
� � C�t� can then be derived

analytically and � can be determined by comparison with the simulation� We

used the velocity autocorrelation instead of a displacement correlation� because it

relaxes more rapidly� its relaxation depends sensitively on the friction coe�cient�

and it is rather insensitive to the characteristics of the mean force potential���

Figure �� Left� potential of mean force W �c� for the conformational coordinate

c in units of kbT �solid line�� harmonic �ts as described in the text are shown as

dashed lines� right� low�frequency part of the spectrum "C�	� of the autocorrela�

tion function C�t� � h !c�
� � !c�t�i derived from a ��ns�trajectory �bold line�� �t of

an expression derived from a harmonic oscillator model �dashed line��

Figure � �right� shows the low�frequency part of the spectrum of C�t� �solid

line�� In the di�usive harmonic oscillator model the spectral density of the velocity

autocorrelation function is given by��

"C�	� �
�	�

�	�

 � 	��� � ��	�

�

provided that 	
 
 ���� which is assumed to hold for the present application�

A �t �dashed line� of this expression to the low�frequency part of the observed

velocity autocorrelation spectrum yields � � ��
 ps�� and 	
 � ��� ps��� In

the harmonic oscillator model� this corresponds to an e�ective mass of m � ���

atomic units� The excellent quality of the �t demonstrates the applicability of

the harmonic oscillator model� Moreover� the obtained values for � and 	
�

respectively� justify the assumption of moderate friction �	
 �
� �����

An upper limit kD�B for the transition rate in the case of moderate friction

can be obtained using Kramers
 theory��


kD�B �

q
���� � 	�

b � ���

	b

	

��

exp��#W�kbT � � ���

��



where ��
�
m	�

bc
� is a harmonic �t to the potential at the barrier top b

�cf� Fig� � �left�� and #W is the barrier height� With 	b � ��� ps�� one ob�

tains kD�B � ���� ns��� However� this prediction largely overestimates the rate

obtained from the MD�simulation� which is lower by a factor of nearly ��� namely

���� ns��$

Obviously� the Langevin model could not reproduce the observed conforma�

tional transition rates� This failure must be attributed to the only unjusti�ed

assumption in that model� namely that of memory�free� Gaussian noise as a

description of the in�uence of all degrees of freedom within the system on the dy�

namics of the conformational coordinate c� Thus one is forced to the conclusion�

that memory e�ects� caused by correlations between many degrees of freedom�

strongly in�uence the short time scale dynamics within conformational states at

a picosecond time scale� One consequence of these memory e�ects is a ���fold

reduction of the particular transition rate under consideration�

A closer inspection of the MD�trajectories showed indeed a frequent crossing

of the barrier top in Fig� � �left�� as predicted by ���� but� in most cases� without

a consecutive transition� i�e�� the system 	remembered
� where it came from� Pre�

sumably� a better estimate for the transition rate could be obtained by applying

the method of reactive �ux�� �a review can be found in Ref� ���� However� this

method requires the preparation of an ensemble near the barrier top� The questi�

on� whether this is possible without relying on extended conformational sampling�

must be left open within the present paper�

��� A Markov Model

The question arises� whether memory�e�ects also show up at longer time scales�

e�g�� in the range of few �

 picoseconds� Viewed at that time scale� the dynamics

of the protein model is characterized by transitions between the three distinct

conformational states apparent in Fig� �� Accordingly� we shall now neglect the

fast protein dynamics within each conformational substate and instead focus on

the �discrete� conformations dynamics governed by transitions between the three

substates of our model� To study memory e�ects at that time scale we will

check� whether the distribution of transition times between the conformational

states can be described by a memory�free stochastic dynamics� i�e�� we compare

the observed conformational dynamics with the three�state continuous Markov

process depicted in Figure ��

This Markov process has three states S � fB�C�Dg� which shall represent the

three conformational states de�ned in Fig� � and which are shown together with

all possible transitions �arrows� and corresponding transition rates� kij �i� j �

fB�C�Dg�� The probabilities Pi�t� to �nd the model in state St � i at time t

��



obey the master equation

d

dt
Pi�t� �

X
j�B�C�D

kijPj�t� �
X

j�B�C�D

kjiPi�t� � i � B�C�D �

The time�independent transition rates kij are de�ned by the conditional proba�

bility of �nding the system in state i at any time t � 
� if it has been in state j

before at time t � �#t�

kij � lim
�t�


�

#t
P �S
 � ijS��t � j� � i �� j � kii � � �

X
j ��i

kji �

B D

C

kBC

kCD

kDB

kBD

kDC

kCB

kBB

kDD

kCC

Figure �� Transition diagram of the three state Markov process used to describe

the transition dynamics of the protein model �see text�� Three states� B�C� and D�

corresponding to the three maxima of the con�guration space density projection

in Fig� �� are connected via conformational transitions �arrows�� The stochastic

dynamics of that model is speci�ed by the values of nine transition rates kij�

In order to decide� whether the observed conformational dynamics is Mar�

kovian� we need to check �cf� Ref� ���� whether the probability for a particular

transition depends on the history of the process� i�e�� whether the conditional pro�

babilities listed below are independent of the time intervals #k� k � 
� �� �� � � ��

Pij�#�� �� P �S
� ijS���
�j�

Pij�j��#��#�� �� P �S
� ijS���
�j� 	 S������

�j��

Pij�j�j��#��#��#�� �� P �S
� ijS���
�j� 	 S������

�j� 	 S���������
�j��

���
��� ���

Of course� the limited set of available data �a total of ��� conformational tran�

sitions� does not allow to verify all the above conditions� Instead� we restrict

our analysis to a comparison of only the �rst and second order conditional pro�

babilities� Pij�#�� and Pij�j��#��#��� respectively� In addition� we consider only

�




probabilities Pij�j��#� �� Pij�j��#�#� derived from equally spaced instances of

time� In applying this slightly less rigorous test� we assume that 	partial amnesia


is not likely to appear within the dynamical systems considered here� that is� our

analysis does not apply to processes� which exhibit long�term memory� but at the

same time do not show short�term memory� This assumption is supported by the

results of the preceding section� where it was shown� that the dynamics of our

model does exhibit short�term memory�

Estimates for the �rst and second order conditional probabilities Pij�#� and

Pij�j��#� were computed from frequency counts derived from the ��� nanoseconds

of simulation data by

Pij�#� �
Nij�#�

Nj�#�

Pij�j��#� �
Nij�j��#�

Nj�j��#�
�

Here� the frequency counts Nj � Nij� and Nij�j�� where i� j� j�� j� � fB�C�Dg�

are de�ned in analogy to ���� Nj�#� denotes� how often in the course of the

simulations the model has been found in substate j� Nij�#� denotes the number

of times it has been found in substate i� if it has been in substate j a particular

time span # before� and Nij�j�� how often it has been found in substate i� if it

has been in substate j� before and in substate j�� �# before�

Nj �
X
k

�j�S�k��� �

Nij �
X
k

�i�S�k������j�S�k��� �

Nij�j� �
X
k

�i�S�k��

�����j��S�k��

����j��S�k��

� �

The frequency counts were determined using a sample rate of #
�

� 
�� ps� He�

re� �i�S�t� denotes the Kronecker symbol� being unity� if the protein model is in

conformational state i at time t� and zero otherwise�

In order to test the hypothesis that corresponding �rst order and second order

conditional probabilities are equal� in which case the observed conformational

dynamics would be Markovian� the statistical signi�cance of observed deviations

of the probability estimates Pij�j� from Pij had to be determined� Accordingly�

we estimated the corresponding standard deviations �ij�j� from our data by

�ij�j��#� �
q
Pij�j��#���� Pij�j��#���Nj�j��#� � ���

using the Gaussian approximation for binomial probability distributions�

From the set of �� possible probability distributions Pij�j��#�� i� j�� j� �

fB�C�Dg which we examined� Figure � shows a selection of six typical cases�

��



These are the second order conditional probability estimates PDDD� PDDB� PDDC �

PBCD� PBDD� and PCCD computed in the range # � �
 � � � �

 ps �bold� solid

lines� which are compared with the corresponding �rst order conditional proba�

bility estimates� Pij�#� �bold� dashed�� Also shown is a ���interval �thin� solid�

as well as a ���interval �thin� dashed dotted�� computed according to ����

The main observation is that the deviations of the second order conditional

probabilities from the �rst order probabilities do not exceed ��� i�e�� with a signi�

�cance of �% the data are consistent with the hypothesis that the conformational

dynamics of our model is indeed Markovian� This is also true for the remaining ��

probability distributions not shown in Fig� �� For a closer analysis we note� that

although the three second order probabilities� PDDD� PDDB� and PDDC �upper

half of Fig� �� correspond to the same �rst order probability� PDD� the particular

error ranges vary considerably as a result of the di�erent population densities of

the three states� Whereas the broad error ranges of PDDC or PBCD� resulting from

a low population density of state C do not provide much signi�cance� the narrow

ranges apparent for PDDD or PBDD� resulting from a large number of transitions

between these highly populated states� provide a good check for non�Markovian

memory�e�ects� The largest deviation �� ��� was observed for PDDC in the time

range below �
 ps� One may speculate� that this deviation might be due to a

minor memory�e�ect present in the rapid decay dynamics from conformational

state C into D�
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Figure �� Comparison of six selected second order conditional probabilities Pij�j�

�bold� solid� with the corresponding �rst order conditional probabilities Pij �bold�

dashed�� as described in the text� The statistical error due to the limited data

set is depicted as a ���range �thin� solid lines� centered at Pij � and a ���range

�thin� dashed�dotted�� respectively�
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The above analysis of the distribution of conformational transition times

shows� that the conformational dynamics of our model is actually well descri�

bed by a Markov model suggesting that no memory e�ects are present at the

corresponding time scale of a few hundred picoseconds�

��



� Summary and Discussion

We studied the conformational dynamics of a simpli�ed protein model by molecu�

lar dynamics simulations at long time scales up to 
����
s� The model has been

designed as a minimal model� intended to include only those structural elements�

which can be assumed to be essential for the low�frequency dynamical properties

of proteins� As shown by our simulations the model actually exhibits properties

similar to those of more realistic protein models� such as tertiary structure� vibra�

tional spectra� a hierarchy of time scales� and the occurrence of rare transitions

between conformational substates�

Two e�ective descriptions for the conformational dynamics of the model�

which both neglect memory e�ects� were compared with an explicit MD�

simulation� To enable an analysis� a rigorous theoretical concept of conformatio�

nal substates based on the notion of free energy landscapes has been formulated

and applied�

The �rst model� a Langevin model� describing the dynamics within a certain

conformational state at a picosecond time scale� could not reproduce conforma�

tional transition rates derived from MD�simulations� This failure was found to be

due to memory e�ects� caused by correlations between many degrees of freedom�

which strongly in�uence the short time scale dynamics within conformational

states at the picosecond time scale�

The second description� a Markov model� aimed at an analysis of the protein

dynamics at the much longer time scale of few hundred picoseconds� Here� the

analysis of the distribution of conformational transition times suggested� that the

conformational dynamics of our model does not exhibit memory e�ects�

These �ndings demonstrate a qualitative change in the dynamical behavior

of our model protein� when proceeding from the short time scales� which are at

present accessible by MD�simulations of realistic protein models� to longer time

scales� whereas memory e�ects play a signi�cant role at short time scales� they

appear to vanish at longer time scales� As a result the slower conformational

dynamics can be described by a master equation�

Care has to be taken in the attempt to generalize these results to the dy�

namical behavior of real proteins� As argued in the �rst part of Section �� we

expect the polymer chain of real proteins to be much more �exible than that of

our simple model� Correspondingly� their conformational dynamics � as far as

collective motions of the polypeptide chain are involved� should occur at slower

time scales� For this reason� one can not conclude� that memory e�ects in protein

dynamics are actually absent at that hundred picosecond time scale characteristic

for conformational transitions of our model� However� the results do suggest that

memory e�ects in the dynamics of proteins generally tend to vanish at long time

scales� Furthermore� because enhanced rigidity of real proteins� the time scale of

��



few hundred picosecond can be considered as a lower bound for the absence of

memory e�ects�
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