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An integrated map of genetic variation
from 1,092 human genomes
The 1000 Genomes Project Consortium*

By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to
build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092
individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome
sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we
provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and
deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different
profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation,
which is further increased by the action of purifying selection. We show that evolutionary conservation and coding
consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially
across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites,
such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of
accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and
low-frequency variants in individuals from diverse, including admixed, populations.

Recent efforts to map human genetic variation by sequencing exomes1

and whole genomes2–4 have characterized the vast majority of com-
mon single nucleotide polymorphisms (SNPs) and many structural
variants across the genome. However, although more than 95% of
common (.5% frequency) variants were discovered in the pilot phase
of the 1000 Genomes Project, lower-frequency variants, particularly
those outside the coding exome, remain poorly characterized. Low-fre-
quency variants are enriched for potentially functional mutations, for
example, protein-changing variants, under weak purifying selection1,5,6.
Furthermore, because low-frequency variants tend to be recent in
origin, they exhibit increased levels of population differentiation6–8.
Characterizing such variants, for both point mutations and struc-
tural changes, across a range of populations is thus likely to identify
many variants of functional importance and is crucial for interpreting

individual genome sequences, to help separate shared variants from
those private to families, for example.

We now report on the genomes of 1,092 individuals sampled from
14 populations drawn from Europe, East Asia, sub-Saharan Africa
and the Americas (Supplementary Figs 1 and 2), analysed through a
combination of low-coverage (2–63) whole-genome sequence data,
targeted deep (50–1003) exome sequence data and dense SNP geno-
type data (Table 1 and Supplementary Tables 1–3). This design was
shown by the pilot phase2 to be powerful and cost-effective in dis-
covering and genotyping all but the rarest SNP and short insertion
and deletion (indel) variants. Here, the approach was augmented with
statistical methods for selecting higher quality variant calls from can-
didates obtained using multiple algorithms, and to integrate SNP,
indel and larger structural variants within a single framework (see

Table 1 | Summary of 1000 Genomes Project phase I data
Autosomes Chromosome X GENCODE regions*

Samples 1,092 1,092 1,092
Total raw bases (Gb) 19,049 804 327
Mean mapped depth (3) 5.1 3.9 80.3
SNPs

No. sites overall 36.7 M 1.3 M 498 K
Novelty rate{ 58% 77% 50%
No. synonymous/non-synonymous/nonsense NA 4.7/6.5/0.097 K 199/293/6.3 K
Average no. SNPs per sample 3.60 M 105 K 24.0 K

Indels
No. sites overall 1.38 M 59 K 1,867
Novelty rate{ 62% 73% 54%
No. inframe/frameshift NA 19/14 719/1,066
Average no. indels per sample 344 K 13 K 440

Genotyped large deletions
No. sites overall 13.8 K 432 847
Novelty rate{ 54% 54% 50%
Average no. variants per sample 717 26 39

NA, not applicable.
*Autosomal genes only.
{Compared with dbSNP release 135 (Oct 2011), excluding contribution from phase I 1000 Genomes Project (or equivalent data for large deletions).

*Lists of participants and their affiliations appear at the end of the paper.
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Box 1 and Supplementary Fig. 1). Because of the challenges of iden-
tifying large and complex structural variants and shorter indels in
regions of low complexity, we focused on conservative but high-quality
subsets: biallelic indels and large deletions.

Overall, we discovered and genotyped 38 million SNPs, 1.4 million
bi-allelic indels and 14,000 large deletions (Table 1). Several tech-
nologies were used to validate a frequency-matched set of sites to

assess and control the false discovery rate (FDR) for all variant types.
Where results were clear, 3 out of 185 exome sites (1.6%), 5 out of 281
low-coverage sites (1.8%) and 72 out of 3,415 large deletions (2.1%)
could not be validated (Supplementary Information and Supplemen-
tary Tables 4–9). The initial indel call set was found to have a high
FDR (27 out of 76), which led to the application of further filters,
leaving an implied FDR of 5.4% (Supplementary Table 6 and
Supplementary Information). Moreover, for 2.1% of low-coverage
SNP and 18% of indel sites, we found inconsistent or ambiguous
results, indicating that substantial challenges remain in characterizing
variation in low-complexity genomic regions. We previously described
the ‘accessible genome’: the fraction of the reference genome in which
short-read data can lead to reliable variant discovery. Through longer
read lengths, the fraction accessible has increased from 85% in the pilot
phase to 94% (available as a genome annotation; see Supplementary
Information), and 1.7 million low-quality SNPs from the pilot phase
have been eliminated.

By comparison to external SNP and high-depth sequencing data,
we estimate the power to detect SNPs present at a frequency of 1% in
the study samples is 99.3% across the genome and 99.8% in the con-
sensus exome target (Fig. 1a). Moreover, the power to detect SNPs at
0.1% frequency in the study is more than 90% in the exome and nearly
70% across the genome. The accuracy of individual genotype calls at
heterozygous sites is more than 99% for common SNPs and 95% for
SNPs at a frequency of 0.5% (Fig. 1b). By integrating linkage disequi-
librium information, genotypes from low-coverage data are as accurate
as those from high-depth exome data for SNPs with frequencies .1%.
For very rare SNPs (#0.1%, therefore present in one or two copies),
there is no gain in genotype accuracy from incorporating linkage dis-
equilibrium information and accuracy is lower. Variation among
samples in genotype accuracy is primarily driven by sequencing depth
(Supplementary Fig. 3) and technical issues such as sequencing plat-
form and version (detectable by principal component analysis; Sup-
plementary Fig. 4), rather than by population-level characteristics.
The accuracy of inferred haplotypes at common SNPs was estimated
by comparison to SNP data collected on mother–father–offspring trios
for a subset of the samples. This indicates that a phasing (switch) error is
made, on average, every 300–400 kilobases (kb) (Supplementary Fig. 5).

A key goal of the 1000 Genomes Project was to identify more than
95% of SNPs at 1% frequency in a broad set of populations. Our
current resource includes ,50%, 98% and 99.7% of the SNPs with
frequencies of ,0.1%, 1.0% and 5.0%, respectively, in ,2,500 UK-
sampled genomes (the Wellcome Trust-funded UK10K project), thus

BOX 1

Constructing an integrated map of
variation
The 1,092 haplotype-resolved genomes released as phase I by the
1000 Genomes Project are the result of integrating diverse data from
multiple technologiesgeneratedbyseveral centresbetween2008and
2010. The Box 1 Figure describes the process leading from primary
data production to integrated haplotypes.

a, Unrelated individuals (see Supplementary Table 10 for exceptions) were
sampled in groups of up to 100 from related populations (Wright’s FST

typically ,1%) within broader geographical or ancestry-based groups2.
Primary data generated for each sample consist of low-coverage (average 53)
whole-genome and high-coverage (average 803 across a consensus target of
24 Mb spanning more than 15,000 genes) exome sequence data, and high
density SNP array information. b, Following read-alignment, multiple
algorithms were used to identify candidate variants. For each variant, quality
metrics were obtained, including information about the uniqueness of the
surrounding sequence (for example, mapping quality (map. qual.)), the
quality of evidence supporting the variant (for example, base quality (base.
qual.) and the position of variant bases within reads (read pos.)), and the
distribution of variant calls in the population (for example, inbreeding
coefficient). Machine-learning approaches using this multidimensional
information were trained on sets of high-quality known variants (for
example, the high-density SNP array data), allowing variant sites to be ranked
in confidence and subsequently thresholded to ensure low FDR. c, Genotype
likelihoods were used to summarize the evidence for each genotype at bi-
allelic sites (0, 1 or 2 copies of the variant) in each sample at every site. d, As
the evidence for a single genotype is typically weak in the low-coverage data,
and can be highly variable in the exome data, statistical methods were used to
leverage information from patterns of linkage disequilibrium, allowing
haplotypes (and genotypes) to be inferred.
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Figure 1 | Power and accuracy. a, Power to detect SNPs as a function of
variant count (and proportion) across the entire set of samples, estimated by
comparison to independent SNP array data in the exome (green) and whole
genome (blue). b, Genotype accuracy compared with the same SNP array data
as a function of variant frequency, summarized by the r2 between true and
inferred genotype (coded as 0, 1 and 2) within the exome (green), whole
genome after haplotype integration (blue), and whole genome without
haplotype integration (red). LD, linkage disequilibrium; WGS, whole-genome
sequencing.
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meeting this goal. However, coverage may be lower for populations
not closely related to those studied. For example, our resource includes
only 23.7%, 76.9% and 99.3% of the SNPs with frequencies of ,0.1%,
1.0% and 5.0%, respectively, in ,2,000 genomes sequenced in a study
of the isolated population of Sardinia (the SardiNIA study).

Genetic variation within and between populations
The integrated data set provides a detailed view of variation across
several populations (illustrated in Fig. 2a). Most common variants
(94% of variants with frequency $5% in Fig. 2a) were known before
the current phase of the project and had their haplotype structure
mapped through earlier projects2,9. By contrast, only 62% of variants
in the range 0.5–5% and 13% of variants with frequencies of #0.5%
had been described previously. For analysis, populations are grouped
by the predominant component of ancestry: Europe (CEU (see Fig. 2a
for definitions of this and other populations), TSI, GBR, FIN and IBS),
Africa (YRI, LWK and ASW), East Asia (CHB, JPT and CHS) and
the Americas (MXL, CLM and PUR). Variants present at 10% and
above across the entire sample are almost all found in all of the
populations studied. By contrast, 17% of low-frequency variants in
the range 0.5–5% were observed in a single ancestry group, and 53% of
rare variants at 0.5% were observed in a single population (Fig. 2b).
Within ancestry groups, common variants are weakly differentiated
(most within-group estimates of Wright’s fixation index (FST) are
,1%; Supplementary Table 11), although below 0.5% frequency
variants are up to twice as likely to be found within the same popu-
lation compared with random samples from the ancestry group
(Supplementary Fig. 6a). The degree of rare-variant differentiation
varies between populations. For example, within Europe, the IBS and
FIN populations carry excesses of rare variants (Supplementary Fig.
6b), which can arise through events such as recent bottlenecks10, ‘clan’
breeding structures11 and admixture with diverged populations12.

Some common variants show strong differentiation between popu-
lations within ancestry-based groups (Supplementary Table 12),
many of which are likely to have been driven by local adaptation either
directly or through hitchhiking. For example, the strongest differenti-
ation between African populations is within an NRSF (neuron-restrictive
silencer factor) transcription-factor peak (PANC1 cell line)13, upstream
of ST8SIA1 (difference in derived allele frequency LWK 2 YRI of 0.475 at
rs7960970), whose product is involved in ganglioside generation14.
Overall, we find a range of 17–343 SNPs (fewest 5 CEU 2 GBR,
most 5 FIN 2 TSI) showing a difference in frequency of at least 0.25
between pairs of populations within an ancestry group.

The derived allele frequency distribution shows substantial diver-
gence between populations below a frequency of 40% (Fig. 2c), such
that individuals from populations with substantial African ancestry
(YRI, LWK and ASW) carry up to three times as many low-frequency
variants (0.5–5% frequency) as those of European or East Asian origin,
reflecting ancestral bottlenecks in non-African populations15. However,
individuals from all populations show an enrichment of rare variants
(,0.5% frequency), reflecting recent explosive increases in population
size and the effects of geographic differentiation6,16. Compared with the
expectations from a model of constant population size, individuals
from all populations show a substantial excess of high-frequency-
derived variants (.80% frequency).

Because rare variants are typically recent, their patterns of sharing
can reveal aspects of population history. Variants present twice across
the entire sample (referred to as f2 variants), typically the most recent
of informative mutations, are found within the same population in
53% of cases (Fig. 3a). However, between-population sharing identifies
recent historical connections. For example, if one of the individuals
carrying an f2 variant is from the Spanish population (IBS) and the
other is not (referred to as IBS2X), the other individual is more likely
to come from the Americas populations (48%, correcting for sample
size) than from elsewhere in Europe (41%). Within the East Asian
populations, CHS and CHB show stronger f2 sharing to each other

(58% and 53% of CHS2X and CHB2X variants, respectively) than
either does to JPT, but JPT is closer to CHB than to CHS (44% versus
35% of JPT2X variants). Within African-ancestry populations, the
ASW are closer to the YRI (42% of ASW2X f2 variants) than the
LWK (28%), in line with historical information17 and genetic evidence
based on common SNPs18. Some sharing patterns are surprising; for
example, 2.5% of the f2 FIN2X variants are shared with YRI or LWK
populations.

Independent evidence about variant age comes from the length of
the shared haplotypes on which they are found. We find, as expected,
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Figure 2 | The distribution of rare and common variants. a, Summary of
inferred haplotypes across a 100-kb region of chromosome 2 spanning the genes
ALMS1 and NAT8, variation in which has been associated with kidney disease45.
Each row represents an estimated haplotype, with the population of origin
indicated on the right. Reference alleles are indicated by the light blue
background. Variants (non-reference alleles) above 0.5% frequency are
indicated by pink (typed on the high-density SNP array), white (previously
known) and dark blue (not previously known). Low frequency variants (,0.5%)
are indicated by blue crosses. Indels are indicated by green triangles and novel
variants by dashes below. A large, low-frequency deletion (black line) spanning
NAT8 is present in some populations. Multiple structural haplotypes mediated
by segmental duplications are present at this locus, including copy number gains,
which were not genotyped for this study. Within each population, haplotypes are
ordered by total variant count across the region. Population abbreviations: ASW,
people with African ancestry in Southwest United States; CEU, Utah residents
with ancestry from Northern and Western Europe; CHB, Han Chinese in
Beijing, China; CHS, Han Chinese South, China; CLM, Colombians in Medellin,
Colombia; FIN, Finnish in Finland; GBR, British from England and Scotland,
UK; IBS, Iberian populations in Spain; LWK, Luhya in Webuye, Kenya; JPT,
Japanese in Tokyo, Japan; MXL, people with Mexican ancestry in Los Angeles,
California; PUR, Puerto Ricans in Puerto Rico; TSI, Toscani in Italia; YRI,
Yoruba in Ibadan, Nigeria. Ancestry-based groups: AFR, African; AMR,
Americas; EAS, East Asian; EUR, European. b, The fraction of variants identified
across the project that are found in only one population (white line), are
restricted to a single ancestry-based group (defined as in a, solid colour), are
found in all groups (solid black line) and all populations (dotted black line).
c, The density of the expected number of variants per kilobase carried by a
genome drawn from each population, as a function of variant frequency (see
Supplementary Information). Colours as in a. Under a model of constant
population size, the expected density is constant across the frequency spectrum.

RESEARCH ARTICLE

5 8 | N A T U R E | V O L 4 9 1 | 1 N O V E M B E R 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012



a negative correlation between variant frequency and the median
length of shared haplotypes, such that chromosomes carrying variants
at 1% frequency share haplotypes of 100–150 kb (typically 0.08–
0.13 cM; Fig. 3b and Supplementary Fig. 7a), although the distribution
is highly skewed and 2–5% of haplotypes around the rarest SNPs
extend over 1 megabase (Mb) (Supplementary Fig. 7b, c). Haplotype
phasing and genotype calling errors will limit the ability to detect long
shared haplotypes, and the observed lengths are a factor of 2–3 times
shorter than predicted by models that allow for recent explosive
growth6 (Supplementary Fig. 7a). Nevertheless, the haplotype length
for variants shared within and between populations is informative
about relative allele age. Within populations and between populations
in which there is recent shared ancestry (for example, through admix-
ture and within continents), f2 variants typically lie on long shared
haplotypes (median within ancestry group 103 kb; Supplementary
Fig. 8). By contrast, between populations with no recent shared ances-
try, f2 variants are present on very short haplotypes, for example, an
average of 11 kb for FIN 2 YRI f2 variants (median between ancestry
groups excluding admixture is 15 kb), and are therefore likely to reflect
recurrent mutations and chance ancient coalescent events.

To analyse populations with substantial historical admixture, statis-
tical methods were applied to each individual to infer regions of the
genome with different ancestries. Populations and individuals vary
substantially in admixture proportions. For example, the MXL popu-
lation contains the greatest proportion of Native American ancestry
(47% on average compared with 24% in CLM and 13% in PUR), but the
proportion varies from 3% to 92% between individuals (Supplemen-
tary Fig. 9a). Rates of variant discovery, the ratio of non-synonymous
to synonymous variation and the proportion of variants that are new
vary systematically between regions with different ancestries. Regions
of Native American ancestry show less variation, but a higher fraction
of the variants discovered are novel (3.0% of variants per sample;
Fig. 3c) compared with regions of European ancestry (2.6%). Regions
of African ancestry show the highest rates of novelty (6.2%) and hetero-
zygosity (Supplementary Fig. 9b, c).

The functional spectrum of human variation
The phase I data enable us to compare, for different genomic features
and variant types, the effects of purifying selection on evolutionary
conservation19, the allele frequency distribution and the level of dif-
ferentiation between populations. At the most highly conserved
coding sites, 85% of non-synonymous variants and more than 90%
of stop-gain and splice-disrupting variants are below 0.5% in frequency,

compared with 65% of synonymous variants (Fig. 4a). In general, the
rare variant excess tracks the level of evolutionary conservation for
variants of most functional consequence, but varies systematically
between types (for example, for a given level of conservation enhancer
variants have a higher rare variant excess than variants in transcrip-
tion-factor motifs). However, stop-gain variants and, to a lesser extent,
splice-site disrupting changes, show increased rare-variant excess
whatever the conservation of the base in which they occur, as such
mutations can be highly deleterious whatever the level of sequence
conservation. Interestingly, the least conserved splice-disrupting
variants show similar rare-variant loads to synonymous and non-
coding regions, suggesting that these alternative transcripts are under
very weak selective constraint. Sites at which variants are observed are
typically less conserved than average (for example, sites with non-
synonymous variants are, on average, as conserved as third codon
positions; Supplementary Fig. 10).

A simple way of estimating the segregating load arising from rare,
deleterious mutations across a set of genes comes from comparing the

GBR
FIN
IBS
CEU
TSI

CHS
CHB
JPT

YRI
LWK
ASW

PUR
CLM
MXL

Variant frequency

0.01 0.200.100.050.02 0.50

S
ha

re
d

 h
ap

lo
ty

p
e 

le
ng

th
 (k

b
)

0

120

100

80

60

40

20

140

0

2

4

6

N
ov

el
 v

ar
ia

nt
s 

p
er

 s
am

p
le

 (%
) MXL

PUR
CLM
ASW

A
FR

/A
FR

A
FR

/E
U

R

N
at

A
m

/
N

at
A

m

E
U

R
/E

U
R

E
U

R
/N

at
A

m

A
FR

/N
at

A
m

G
B

R
FI

N
IB

S
C

E
U

TS
I

C
H

S
C

H
B

JP
T

Y
R

I
LW

K
A

S
W

P
U

R
C

LM
M

X
L

GBR

FIN

IBS

CEU

TSI

CHS

CHB

JPT

YRI

LWK

ASW

PUR

CLM

MXL

f 2
 v

ar
ia

nt
sa b c

Figure 3 | Allele sharing within and between populations. a, Sharing of f2

variants, those found exactly twice across the entire sample, within and between
populations. Each row represents the distribution across populations for the
origin of samples sharing an f2 variant with the target population (indicated by
the left-hand side). The grey bars represent the average number of f2 variants
carried by a randomly chosen genome in each population. b, Median length of
haplotype identity (excluding cryptically related samples and singleton
variants, and allowing for up to two genotype errors) between two

chromosomes that share variants of a given frequency in each population.
Estimates are from 200 randomly sampled regions of 1 Mb each and up to 15
pairs of individuals for each variant. c, The average proportion of variants that
are new (compared with the pilot phase of the project) among those found in
regions inferred to have different ancestries within ASW, PUR, CLM and MXL
populations. Error bars represent 95% bootstrap confidence intervals. NatAm,
Native American.
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Figure 4 | Purifying selection within and between populations. a, The
relationship between evolutionary conservation (measured by GERP score19)
and rare variant proportion (fraction of all variants with derived allele
frequency (DAF) , 0.5%) for variants occurring in different functional
elements and with different coding consequences. Crosses indicate the average
GERP score at variant sites (x axis) and the proportion of rare variants (y axis)
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RNA; non-syn, non-synonymous; PSEUG, pseudogene; syn, synonymous; TF,
transcription factor. b, Levels of evolutionary conservation (mean GERP score,
top) and genetic diversity (per-nucleotide pairwise differences, bottom) for
sequences matching the CTCF-binding motif within CTCF-binding peaks, as
identified experimentally by ChIP-seq in the ENCODE project13 (blue) and in a
matched set of motifs outside peaks (red). The logo plot shows the distribution
of identified motifs within peaks. Error bars represent 62 s.e.m.
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ratios of non-synonymous to synonymous variants in different fre-
quency ranges. The non-synonymous to synonymous ratio among
rare (,0.5%) variants is typically in the range 1–2, and among com-
mon variants in the range 0.5–1.5, suggesting that 25–50% of rare
non-synonymous variants are deleterious. However, the segregating
rare load among gene groups in KEGG pathways20 varies substantially
(Supplementary Fig. 11a and Supplementary Table 13). Certain
groups (for example, those involving extracellular matrix (ECM)–
receptor interactions, DNA replication and the pentose phosphate
pathway) show a substantial excess of rare coding mutations, which
is only weakly correlated with the average degree of evolutionary
conservation. Pathways and processes showing an excess of rare func-
tional variants vary between continents (Supplementary Fig. 11b).
Moreover, the excess of rare non-synonymous variants is typically
higher in populations of European and East Asian ancestry (for
example, the ECM–receptor interaction pathway load is strongest
in European populations). Other groups of genes (such as those asso-
ciated with allograft rejection) have a high non-synonymous to syno-
nymous ratio in common variants, potentially indicating the effects of
positive selection.

Genome-wide data provide important insights into the rates of
functional polymorphism in the non-coding genome. For example,
we consider motifs matching the consensus for the transcriptional
repressor CTCF, which has a well-characterized and highly conserved
binding motif21. Within CTCF-binding peaks experimentally defined
by chromatin-immunoprecipitation sequencing (ChIP-seq), the average
levels of conservation within the motif are comparable to third codon
positions, whereas there is no conservation outside peaks (Fig. 4b).
Within peaks, levels of genetic diversity are typically reduced 25–75%,
depending on the position in the motif (Fig. 4b). Unexpectedly, the
reduction in diversity at some degenerate positions, for example, at
position 8 in the motif, is as great as that at non-degenerate positions,
suggesting that motif degeneracy may not have a simple relationship
with functional importance. Variants within peaks show a weak but
consistent excess of rare variation (proportion with frequency ,0.5%
is 61% within peaks compared with 58% outside peaks; Supplementary
Fig. 12), supporting the hypothesis that regulatory sequences contain
substantial amounts of weakly deleterious variation.

Purifying selection can also affect population differentiation if its
strength and efficacy vary among populations. Although the magnitude
of the effect is weak, non-synonymous variants consistently show

greater levels of population differentiation than synonymous variants,
for variants of frequencies of less than 10% (Supplementary Fig. 13).

Uses of 1000 Genomes Project data in medical genetics
Data from the 1000 Genomes Project are widely used to screen variants
discovered in exome data from individuals with genetic disorders22 and
in cancer genome projects23. The enhanced catalogue presented here
improves the power of such screening. Moreover, it provides a ‘null
expectation’ for the number of rare, low-frequency and common
variants with different functional consequences typically found in ran-
domly sampled individuals from different populations.

Estimates of the overall numbers of variants with different sequence
consequences are comparable to previous values1,20–22 (Supplementary
Table 14). However, only a fraction of these are likely to be functionally
relevant. A more accurate picture of the number of functional variants
is given by the number of variants segregating at conserved posi-
tions (here defined as sites with a genomic evolutionary rate profiling
(GERP)19 conservation score of .2), or where the function (for example,
stop-gain variants) is strong and independent of conservation (Table 2).
We find that individuals typically carry more than 2,500 non-
synonymous variants at conserved positions, 20–40 variants identified
as damaging24 at conserved sites and about 150 loss-of-function (LOF)
variants (stop-gains, frameshift indels in coding sequence and disrup-
tions to essential splice sites). However, most of these are common
(.5%) or low-frequency (0.5–5%), such that the numbers of rare
(,0.5%) variants in these categories (which might be considered as
pathological candidates) are much lower; 130–400 non-synonymous
variants per individual, 10–20 LOF variants, 2–5 damaging mutations,
and 1–2 variants identified previously from cancer genome sequencing25.
By comparison with synonymous variants, we can estimate the excess
of rare variants; those mutations that are sufficiently deleterious that
they will never reach high frequency. We estimate that individuals
carry an excess of 76–190 rare deleterious non-synonymous variants
and up to 20 LOF and disease-associated variants. Interestingly,
the overall excess of low-frequency variants is similar to that of rare
variants (Table 2). Because many variants contributing to disease risk
are likely to be segregating at low frequency, we recommend that
variant frequency be considered when using the resource to identify
pathological candidates.

The combination of variation data with information about regulatory
function13 can potentially improve the power to detect pathological

Table 2 | Per-individual variant load at conserved sites
Variant type Number of derived variant sites per individual Excess rare deleterious Excess low-frequency deleterious

Derived allele frequency across sample

,0.5% 0.5–5% .5%

All sites 30–150 K 120–680 K 3.6–3.9 M ND ND
Synonymous* 29–120 82–420 1.3–1.4 K ND ND
Non-synonymous* 130–400 240–910 2.3–2.7 K 76–190{ 77-130{
Stop-gain* 3.9–10 5.3–19 24–28 3.4–7.5{ 3.8–11{
Stop-loss 1.0–1.2 1.0–1.9 2.1–2.8 0.81–1.1{ 0.80–1.0{
HGMD-DM* 2.5–5.1 4.8–17 11–18 1.6–4.7{ 3.8–12{
COSMIC* 1.3–2.0 1.8–5.1 5.2–10 0.93–1.6{ 1.3–2.0{
Indel frameshift 1.0–1.3 11–24 60–66 ND1 3.2–11{
Indel non-frameshift 2.1–2.3 9.5–24 67–71 ND1 0–0.73{
Splice site donor 1.7–3.6 2.4–7.2 2.6–5.2 1.6–3.3{ 3.1–6.2{
Splice site acceptor 1.5–2.9 1.5–4.0 2.1–4.6 1.4–2.6{ 1.2–3.3{
UTR* 120–430 300–1,400 3.5–4.0 K 0–350{ 0–1.2 K{
Non-coding RNA* 3.9–17 14–70 180–200 0.62–2.6{ 3.4–13{
Motif gain in TF peak* 4.7–14 23–59 170–180 0–2.6{ 3.8–15{
Motif loss in TF peak* 18–69 71–300 580–650 7.7–22{ 37–110{
Other conserved* 2.0–9.9 K 7.1–39 K 120–130 K ND ND
Total conserved 2.3–11 K 7.7–42 K 130–150 K 150–510 250–1.3 K

Only sites in which ancestral state can be assigned with high confidence are reported. The ranges reported are across populations. COSMIC, Catalogue of Somatic Mutations in Cancer; HGMD-DM, Human Gene
Mutation Database (HGMD) disease-causing mutations; TF, transcription factor; ND, not determined.
*Sites with GERP .2
{Using synonymous sites as a baseline.
{Using ’other conserved’ as a baseline.
1 Rare indels were filtered in phase I.
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non-coding variants. We find that individuals typically contain several
thousand variants (and several hundred rare variants) in conserved
(GERP conservation score .2) untranslated regions (UTR), non-
coding RNAs and transcription-factor-binding motifs (Table 2).
Within experimentally defined transcription-factor-binding sites,
individuals carry 700–900 conserved motif losses (for the transcrip-
tion factors analysed, see Supplementary Information), of which
18–69 are rare (,0.5%) and show strong evidence for being selected
against. Motif gains are rarer (,200 per individual at conserved sites),
but they also show evidence for an excess of rare variants compared
with conserved sites with no functional annotation (Table 2). Many of
these changes are likely to have weak, slightly deleterious effects on
gene regulation and function.

A second major use of the 1000 Genomes Project data in medical
genetics is imputing genotypes in existing genome-wide association
studies (GWAS)26. For common variants, the accuracy of using the
phase I data to impute genotypes at sites not on the original GWAS
SNP array is typically 90–95% in non-African and approximately 90%
in African-ancestry genomes (Fig. 5a and Supplementary Fig. 14a),
which is comparable to the accuracy achieved with high-quality
benchmark haplotypes (Supplementary Fig. 14b). Imputation accu-
racy is similar for intergenic SNPs, exome SNPs, indels and large
deletions (Supplementary Fig. 14c), despite the different amounts of
information about such variants and accuracy of genotypes. For low-
frequency variants (1–5%), imputed genotypes have between 60% and
90% accuracy in all populations, including those with admixed ancestry
(also comparable to the accuracy from trio-phased haplotypes; Sup-
plementary Fig. 14b).

Imputation has two primary uses: fine-mapping existing asso-
ciation signals and detecting new associations. GWAS have had only
a few examples of successful fine-mapping to single causal variants27,28,
often because of extensive haplotype structure within regions of asso-
ciation29,30. We find that, in Europeans, each previously reported
GWAS signal31 is, on average, in linkage disequilibrium (r2 $ 0.5) with
56 variants: 51.5 SNPs and 4.5 indels. In 19% of cases at least one of
these variants changes the coding sequence of a nearby gene (com-
pared with 12% in control variants matched for frequency, distance to
nearest gene and ascertainment in GWAS arrays) and in 65% of cases

at least one of these is at a site with GERP .2 (68% in matched con-
trols). The size of the associated region is typically ,200 kb in length
(Fig. 5b). Our observations suggest that trans-ethnic fine-mapping
experiments are likely to be especially valuable: among the 56 variants
that are in strong linkage disequilibrium with a typical GWAS signal,
approximately 15 show strong disequilibrium across our four con-
tinental groupings (Supplementary Table 15). Our current resource
increases the number of variants in linkage disequilibrium with each
GWAS signal by 25% compared with the pilot phase of the project and
by greater than twofold compared with the HapMap resource.

Discussion
The success of exome sequencing in Mendelian disease genetics32 and
the discovery of rare and low-frequency disease-associated variants
in genes associated with complex diseases27,33,34 strongly support the
hypothesis that, in addition to factors such as epistasis35,36 and gene–
environment interactions37, many other genetic risk factors of sub-
stantial effect size remain to be discovered through studies of rare
variation. The data generated by the 1000 Genomes Project not only
aid the interpretation of all genetic-association studies, but also pro-
vide lessons on how best to design and analyse sequencing-based
studies of disease.

The use and cost-effectiveness of collecting several data types (low-
coverage whole-genome sequence, targeted exome data, SNP geno-
type data) for finding variants and reconstructing haplotypes are
demonstrated here. Exome capture provides private and rare variants
that are missed by low-coverage data (approximately 60% of the
singleton variants in the sample were detected only from exome data
compared with 5% detected only from low-coverage data; Sup-
plementary Fig. 15). However, whole-genome data enable characteri-
zation of functional non-coding variation and accurate haplotype
estimation, which are essential for the analysis of cis-effects around
genes, such as those arising from variation in upstream regulatory
regions38. There are also benefits from integrating SNP array data, for
example, to improve genotype estimation39 and to aid haplotype
estimation where array data have been collected on additional family
members. In principle, any sources of genotype information (for
example, from array CGH) could be integrated using the statistical
methods developed here.

Major methodological advances in phase I, including improved
methods for detecting and genotyping variants40, statistical and
machine-learning methods for evaluating the quality of candidate
variant calls, modelling of genotype likelihoods and performing statis-
tical haplotype integration41, have generated a high-quality resource.
However, regions of low sequence complexity, satellite regions, large
repeats and many large-scale structural variants, including copy-
number polymorphisms, segmental duplications and inversions
(which constitute most of the ‘inaccessible genome’), continue to
present a major challenge for short-read technologies. Some issues
are likely to be improved by methodological developments such as
better modelling of read-level errors, integrating de novo assembly42,43

and combining multiple sources of information to aid genotyping of
structurally diverse regions40,44. Importantly, even subtle differences
in data type, data processing or algorithms may lead to systematic
differences in false-positive and false-negative error modes between
samples. Such differences complicate efforts to compare genotypes
between sequencing studies. Moreover, analyses that naively combine
variant calls and genotypes across heterogeneous data sets are vulnerable
to artefact. Analyses across multiple data sets must therefore either
process them in standard ways or use meta-analysis approaches that
combine association statistics (but not raw data) across studies.

Finally, the analysis of low-frequency variation demonstrates both
the pervasive effects of purifying selection at functionally relevant
sites in the genome and how this can interact with population history
to lead to substantial local differentiation, even when standard metrics
of structure such as FST are very small. The effect arises primarily
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Figure 5 | Implications of phase I 1000 Genomes Project data for GWAS.
a, Accuracy of imputation of genome-wide SNPs, exome SNPs and indels
(using sites on the Illumina 1 M array) into ten individuals of African ancestry
(three LWK, four Masaai from Kinyawa, Kenya (MKK), two YRI), sequenced to
high coverage by an independent technology3. Only indels in regions of high
sequence complexity with frequency .1% are analysed. Deletion imputation
accuracy estimated by comparison to array data46 (note that this is for a
different set of individuals, although with a similar ancestry, but included on the
same plot for clarity). Accuracy measured by squared Pearson correlation
coefficient between imputed and true dosage across all sites in a frequency
range estimated from the 1000 Genomes data. Lines represent whole-genome
SNPs (solid), exome SNPs (long dashes), short indels (dotted) and large
deletions (short dashes). SV, structural variants. b, The average number of
variants in linkage disequilibrium (r2 . 0.5 among EUR) to focal SNPs
identified in GWAS47 as a function of distance from the index SNP. Lines
indicate the number of HapMap (green), pilot (red) and phase I (blue) variants.
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because rare variants tend to be recent and thus geographically
restricted6–8. The implication is that the interpretation of rare va-
riants in individuals with a particular disease should be within the
context of the local (either geographic or ancestry-based) genetic back-
ground. Moreover, it argues for the value of continuing to sequence
individuals from diverse populations to characterize the spectrum of
human genetic variation and support disease studies across diverse
groups. A further 1,500 individuals from 12 new populations, including
at least 15 high-depth trios, will form the final phase of this project.

METHODS SUMMARY
All details concerning sample collection, data generation, processing and analysis
can be found in the Supplementary Information. Supplementary Fig. 1 summarizes
the process and indicates where relevant details can be found.

Received 4 July; accepted 1 October 2012.

1. Tennessen, J. A. et al. Evolution and functional impact of rare coding variation from
deep sequencing of human exomes. Science 337, 64–69 (2012).

2. The 1000 Genomes Project Consortium. A map of human genome variation from
population-scale sequencing. Nature 467, 1061–1073 (2010).

3. Drmanac, R. et al. Human genome sequencing using unchained base reads on
self-assembling DNA nanoarrays. Science 327, 78–81 (2010).

4. Mills, R. E. et al. Mapping copy number variation by population-scale genome
sequencing. Nature 470, 59–65 (2011).

5. Marth, G. T. et al. The functional spectrum of low-frequency coding variation.
Genome Biol. 12, R84 (2011).

6. Nelson, M. R. et al. An abundance of rare functional variants in 202 drug target
genes sequenced in 14,002 people. Science 337, 100–104 (2012).

7. Mathieson, I. & McVean, G. Differential confounding of rare and common variants
in spatially structured populations. Nature Genet. 44, 243–246 (2012).

8. Gravel, S. et al. Demographic history and rare allele sharing among human
populations. Proc. Natl Acad. Sci. USA 108, 11983–11988 (2011).

9. The International HapMap Consortium. A second generation human haplotype
map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

10. Salmela, E. et al. Genome-wide analysis of single nucleotide polymorphisms
uncovers population structure in Northern Europe. PLoS ONE 3, e3519 (2008).

11. Lupski, J. R., Belmont, J. W., Boerwinkle, E. & Gibbs, R. A. Clan genomics and the
complex architecture of human disease. Cell 147, 32–43 (2011).

12. Lawson, D. J., Hellenthal,G., Myers, S.&Falush,D. Inference ofpopulation structure
using dense haplotype data. PLoS Genet. 8, e1002453 (2012).

13. ENCODE Project Consortium. A user’s guide to the encyclopedia of DNA elements
(ENCODE). PLoS Biol. 9, e1001046 (2011).

14. Sasaki, K. et al. Expression cloning of a novel Galb(1–3/1–4)GlcNAc
a2,3-sialyltransferase using lectin resistance selection. J. Biol. Chem. 268,
22782–22787 (1993).

15. Marth, G. et al. Sequence variations in the public human genome data reflect a
bottlenecked population history. Proc. Natl Acad. Sci. USA 100, 376–381 (2003).

16. Keinan, A. & Clark, A. G. Recent explosive humanpopulation growth has resulted in
an excess of rare genetic variants. Science 336, 740–743 (2012).

17. Hall, G. M. Slavery and African Ethnicities in the Americas: Restoring the Links (Univ.
North Carolina Press, 2005).

18. Bryc,K.et al. Genome-widepatternsofpopulationstructureandadmixture inWest
Africans and African Americans. Proc. Natl Acad. Sci. USA 107, 786–791 (2010).

19. Davydov, E. V. et al. Identifying a high fraction of the human genome to be under
selective constraint using GERP11. PLOS Comput. Biol. 6, e1001025 (2010).

20. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration
and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40,
D109–D114 (2012).

21. Kim,T.H.et al.Analysisof thevertebrate insulatorproteinCTCF-bindingsites in the
human genome. Cell 128, 1231–1245 (2007).

22. Bamshad, M. J. et al. Exome sequencing as a tool for Mendelian disease gene
discovery. Nature Rev. Genet. 12, 745–755 (2011).

23. Cancer Genome Altas Research Network. Integrated genomic analyses of ovarian
carcinoma. Nature 474, 609–615 (2011).

24. Stenson, P. D. et al. The Human Gene Mutation Database: 2008 update. Genome
Med. 1, 13 (2009).

25. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of
Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

26. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of
genomes. G3 (Bethesda) 1, 457–470 (2011).

27. Sanna, S. et al. Fine mapping of five loci associated with low-density lipoprotein
cholesterol detects variants that double the explained heritability. PLoS Genet. 7,
e1002198 (2011).

28. Gregory, A. P., Dendrou, C. A., Bell, J., McVean, G. & Fugger, L. TNF receptor 1
genetic riskmirrors outcome of anti-TNF therapy inmultiple sclerosis. Nature 488,
508–511 (2012).

29. Hassanein, M. T. et al. Fine mapping of the association with obesity at the FTO locus
in African-derived populations. Hum. Mol. Genet. 19, 2907–2916 (2010).

30. Maller, J., The Wellcome Trust Case Control Consortium. Fine mapping of
14 loci identified through genome-wide association analyses. Nature Genet.
(in the press).

31. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide
association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106,
9362–9367 (2009).

32. Bamshad, M. J. et al. The Centers for Mendelian Genomics: A new large-scale
initiative to identify the genes underlying rare Mendelian conditions. Am. J. Med.
Genet. A. (2012).

33. Momozawa, Y. et al. Resequencing of positional candidates identifies low
frequency IL23R coding variants protecting against inflammatory bowel disease.
Nature Genet. 43, 43–47 (2011).

34. Raychaudhuri, S. et al. A rare penetrant mutation in CFH confers high risk of
age-related macular degeneration. Nature Genet. 43, 1232–1236 (2011).

35. Strange, A. et al. A genome-wide association study identifies new psoriasis
susceptibility loci and an interaction between HLA-C andERAP1. Nature Genet. 42,
985–990 (2010).

36. Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing
heritability: Genetic interactions create phantom heritability. Proc. Natl Acad. Sci.
USA 109, 1193–1198 (2012).

37. Thomas, D. Gene-environment-wide association studies: emerging approaches.
Nature Rev. Genet. 11, 259–272 (2010).

38. Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human
expression variation. Nature 482, 390–394 (2012).

39. Flannick, J. et al. Efficiency and power as a function of sequence coverage, SNP
array density, and imputation. PLOS Comput. Biol. 8, e1002604 (2012).

40. Handsaker, R. E., Korn, J. M., Nemesh, J. & McCarroll, S. A. Discovery and
genotyping of genome structural polymorphism by sequencing on a population
scale. Nature Genet. 43, 269–276 (2011).

41. Li, Y., Sidore, C., Kang, H. M., Boehnke, M. & Abecasis, G. R. Low-coverage
sequencing: implications for design of complex trait association studies. Genome
Res. 21, 940–951 (2011).

42. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. & McVean, G. De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nature Genet. 44, 226–232
(2012).

43. Simpson, J. T. & Durbin, R. Efficient construction of anassembly string graph using
the FM-index. Bioinformatics 26, i367–i373 (2010).

44. Sudmant, P. H. et al. Diversity of human copy number variation and multicopy
genes. Science 330, 641–646 (2010).

45. Chambers, J. C. et al. Genetic loci influencing kidney function and chronic kidney
disease. Nature Genet. 42, 373–375 (2010).

46. Conrad, D. F. et al. Origins and functional impact of copy number variation in the
human genome. Nature 464, 704–712 (2010).

47. Hindorff, L. A. et al. A Catalog of Published Genome-Wide Association Studies.
Available at http://www.genome.gov/gwastudies (accessed, September 2012).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank many people who contributed to this project:
A. Naranjo, M. V. Parra and C. Duque for help with the collection of the Colombian
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Development, InnovationandTrade grantPSR-SIIRI-195 toP.Aw.;National Institutesof
Health (NIH) grants UO1HG5214, RC2HG5581 and RO1MH84698 to G.R.A.;
R01HG4719 and R01HG3698 to G.T.M; RC2HG5552 and UO1HG6513 to G.R.A. and
G.T.M.; R01HG4960 and R01HG5701 to B.L.B.; U01HG5715 to C.D.B. and A.G.C.;
T32GM8283 to D.Cl.; U01HG5208 to M.J.D.; U01HG6569 to M.A.D.; R01HG2898 and
R01CA166661 to S.E.D.; UO1HG5209, UO1HG5725 and P41HG4221 to C.Le.;
P01HG4120 to E.E.E.; U01HG5728 to Yu.F.; U54HG3273 and U01HG5211 to R.A.G.;

RESEARCH ARTICLE

6 2 | N A T U R E | V O L 4 9 1 | 1 N O V E M B E R 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012

http://www.genome.gov/gwastudies
www.nature.com/doifinder/10.1038/nature11632


R01HL95045 to S.B.G.; U41HG4568 to S.J.K.; P41HG2371 to W.J.K.; ES015794,
AI077439, HL088133 and HL078885 to E.G.B.; RC2HL102925 to S.B.G. and D.M.A.;
R01GM59290 to L.B.J. and M.A.B.; U54HG3067 to E.S.L. and S.B.G.; T15LM7033 to
B.K.M.; T32HL94284 to J.L.R.-F.; DP2OD6514 and BAA-NIAID-DAIT-NIHAI2009061 to
P.C.S.; T32GM7748 to X.S.; U54HG3079 to R.K.W.; UL1RR024131 to R.D.H.;
HHSN268201100040C to the Coriell Institute for Medical Research; a Sandler
Foundation award and an American Asthma Foundation award to E.G.B.; an IBM Open
CollaborativeResearchProgramaward toY.B.; anA.G. LeventisFoundationscholarship
to D.K.X.; a Wolfson Royal Society Merit Award to P.Do.; a Howard Hughes Medical
Institute International Fellowship award to P.H.S.; a grant from T. and V. Stanley to
S.C.Y.; andaMaryBerylPatchTurnbull ScholarProgramaward toK.C.B. E.H. is a faculty
fellow of the Edmond J. Safra Bioinformatics program at Tel-Aviv University. E.E.E. and
D.H. are investigators of the Howard Hughes Medical Institute. M.V.G. is a long-term
fellow of EMBO.

Author Contributions Details of author contributions can be found in the author list.

Author Information All primary data, alignments, individual call sets, consensus call
sets, integrated haplotypes with genotype likelihoods and supporting data including
details of validation are available from the project website (http://
www.1000genomes.org). Variant and haplotypes for specific genomic regions and
specific samples can be viewed and downloaded through the project browser (http://
browser.1000genomes.org/). Common project variantswith noknownmedical impact
have been compiled by dbSNP for filtering (http://www.ncbi.nlm.nih.gov/variation/
docs/human_variation_vcf/). The authors declare competing financial interests:
details are available in the online version of the paper. Reprints and permissions
information is available at www.nature.com/reprints. Readers are welcome to
comment on the online version of the paper. Correspondence and requests for
materials should be addressed to G.A.M. (mcvean@well.ox.ac.uk). This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
licence. To view a copy of this licence, visit http://creativecommons.org/licenses/
by-nc-sa/3.0/

The 1000 Genomes Consortium (Participants are arranged by project role, then by
institution alphabetically, and finally alphabetically within institutions except for
Principal Investigators and Project Leaders, as indicated.)

Corresponding author Gil A. McVean1,2

Steering committee David M. Altshuler3,4,5 (Co-Chair), Richard M. Durbin6 (Co-Chair),
Gonçalo R. Abecasis7, David R. Bentley8, Aravinda Chakravarti9, Andrew G. Clark10,
Peter Donnelly1,2, Evan E. Eichler11, Paul Flicek12, Stacey B. Gabriel3, Richard A.
Gibbs13, Eric D. Green14, Matthew E. Hurles6, Bartha M. Knoppers15, Jan O. Korbel16,
Eric S. Lander3, Charles Lee17, Hans Lehrach18,19, Elaine R. Mardis20, Gabor T. Marth21,
Gil A. McVean1,2, Deborah A. Nickerson22, Jeanette P. Schmidt23, Stephen T. Sherry24,
Jun Wang25,26,27, Richard K. Wilson20

Production group: Baylor College of Medicine Richard A. Gibbs13 (Principal
Investigator), Huyen Dinh13, Christie Kovar13, Sandra Lee13, Lora Lewis13, Donna
Muzny13, Jeff Reid13, Min Wang13; BGI-Shenzhen Jun Wang25,26,27 (Principal
Investigator), Xiaodong Fang25, Xiaosen Guo25, Min Jian25, Hui Jiang25, Xin Jin25,
Guoqing Li25, Jingxiang Li25, Yingrui Li25, Zhuo Li25, Xiao Liu25, Yao Lu25, Xuedi Ma25,
Zhe Su25, ShuaishuaiTai25, MeifangTang25, BoWang25, GuangbiaoWang25, Honglong
Wu25, Renhua Wu25, Ye Yin25, Wenwei Zhang25, Jiao Zhao25, Meiru Zhao25, Xiaole
Zheng25, Yan Zhou25; Broad Institute of MIT and Harvard Eric S. Lander3 (Principal
Investigator), David M. Altshuler3,4,5, Stacey B. Gabriel3 (Co-Chair), Namrata Gupta3;
European Bioinformatics Institute Paul Flicek12 (Principal Investigator), Laura
Clarke12, Rasko Leinonen12, Richard E. Smith12, Xiangqun Zheng-Bradley12; Illumina
David R. Bentley8 (Principal Investigator), Russell Grocock8, Sean Humphray8, Terena
James8, Zoya Kingsbury8; Max Planck Institute for Molecular Genetics Hans
Lehrach18,19 (Principal Investigator), Ralf Sudbrak18 (Project Leader), Marcus W.
Albrecht28, Vyacheslav S. Amstislavskiy18, Tatiana A. Borodina28, Matthias Lienhard18,
Florian Mertes18, Marc Sultan18, Bernd Timmermann18, Marie-Laure Yaspo18; US
National Institutes of HealthStephenT.Sherry24 (Principal Investigator);Universityof
Oxford Gil A. McVean1,2 (Principal Investigator); Washington University in St Louis
Elaine R. Mardis20 (Co-Principal Investigator) (Co-Chair), Richard K. Wilson20

(Co-Principal Investigator), Lucinda Fulton20, Robert Fulton20, George M. Weinstock20;
Wellcome Trust Sanger Institute Richard M. Durbin6 (Principal Investigator),
Senduran Balasubramaniam6, John Burton6, Petr Danecek6, Thomas M. Keane6, Anja
Kolb-Kokocinski6, Shane McCarthy6, James Stalker6, Michael Quail6

Analysis group: Affymetrix Jeanette P. Schmidt23 (Principal Investigator), Christopher
J. Davies23, Jeremy Gollub23, Teresa Webster23, Brant Wong23, Yiping Zhan23; Albert
Einstein College of Medicine Adam Auton29 (Principal Investigator); Baylor College of
Medicine Richard A. Gibbs13 (Principal Investigator), Fuli Yu13 (Project Leader),
Matthew Bainbridge13, Danny Challis13, Uday S. Evani13, James Lu13, Donna Muzny13,
Uma Nagaswamy13, Jeff Reid13, Aniko Sabo13, Yi Wang13, Jin Yu13; BGI-Shenzhen Jun
Wang25,26,27 (Principal Investigator), Lachlan J. M. Coin25, Lin Fang25, Xiaosen Guo25,
Xin Jin25, Guoqing Li25, Qibin Li25, Yingrui Li25, Zhenyu Li25, Haoxiang Lin25, Binghang
Liu25, Ruibang Luo25, Nan Qin25, Haojing Shao25, Bingqiang Wang25, Yinlong Xie25,
Chen Ye25, Chang Yu25, Fan Zhang25, Hancheng Zheng25, Hongmei Zhu25; Boston
College Gabor T. Marth21 (Principal Investigator), Erik P. Garrison21, Deniz Kural21,
Wan-Ping Lee21, Wen Fung Leong21, Alistair N. Ward21, Jiantao Wu21, Mengyao

Zhang21; Brigham and Women’s Hospital Charles Lee17 (Principal Investigator),
Lauren Griffin17, Chih-Heng Hsieh17, Ryan E. Mills17,30, Xinghua Shi17, Marcin von
Grotthuss17, Chengsheng Zhang17; Broad Institute of MIT and Harvard Mark J. Daly3

(Principal Investigator), Mark A. DePristo3 (Project Leader), David M. Altshuler3,4,5, Eric
Banks3,GauravBhatia3,MauricioO.Carneiro3,Guillermo delAngel3, StaceyB.Gabriel3,
Giulio Genovese3, Namrata Gupta3, Robert E. Handsaker3,5, Chris Hartl3, Eric S.
Lander3, Steven A. McCarroll3, James C. Nemesh3, Ryan E. Poplin3, Stephen F.
Schaffner3, Khalid Shakir3; Cold Spring Harbor Laboratory Seungtai C. Yoon31

(Principal Investigator), Jayon Lihm31, Vladimir Makarov32; Dankook University
Hanjun Jin33 (Principal Investigator), Wook Kim34, Ki Cheol Kim34; European
Molecular Biology Laboratory Jan O. Korbel16 (Principal Investigator), Tobias
Rausch16; European Bioinformatics Institute Paul Flicek12 (Principal Investigator),
Kathryn Beal12, Laura Clarke12, Fiona Cunningham12, Javier Herrero12, William M.
McLaren12, Graham R. S. Ritchie12, Richard E. Smith12, Xiangqun Zheng-Bradley12;
Cornell University Andrew G. Clark10 (Principal Investigator), Srikanth Gottipati35, Alon
Keinan10, Juan L. Rodriguez-Flores10; Harvard University Pardis C. Sabeti3,36

(Principal Investigator), Sharon R. Grossman3,36, Shervin Tabrizi3,36, Ridhi Tariyal3,36;
Human Gene Mutation Database David N.Cooper37 (Principal Investigator), Edward V.
Ball37, Peter D. Stenson37; Illumina David R. Bentley8 (Principal Investigator), Bret
Barnes38, Markus Bauer8, R. Keira Cheetham8, Tony Cox8, Michael Eberle8, Sean
Humphray8, Scott Kahn38, Lisa Murray8, John Peden8, Richard Shaw8; Leiden
UniversityMedical Center KaiYe39 (Principal Investigator);Louisiana State University
Mark A. Batzer40 (Principal Investigator), Miriam K. Konkel40, Jerilyn A. Walker40;
Massachusetts General Hospital Daniel G. MacArthur41 (Principal Investigator),
Monkol Lek41; Max Planck Institute for Molecular Genetics Ralf Sudbrak18 (Project
Leader), Vyacheslav S. Amstislavskiy18, Ralf Herwig18; Pennsylvania State University
Mark D. Shriver42 (Principal Investigator); Stanford University Carlos D. Bustamante43

(Principal Investigator), Jake K. Byrnes44, Francisco M. De La Vega10, Simon Gravel43,
Eimear E. Kenny43, Jeffrey M. Kidd43, Phil Lacroute43, Brian K. Maples43, Andres
Moreno-Estrada43, Fouad Zakharia43; Tel-Aviv University Eran Halperin45,46,47

(Principal Investigator), Yael Baran45; Translational Genomics Research Institute
David W. Craig48 (Principal Investigator), Alexis Christoforides48, Nils Homer49, Tyler
Izatt48, Ahmet A. Kurdoglu48, Shripad A. Sinari48, Kevin Squire50; US National
Institutes of Health Stephen T. Sherry24 (Principal Investigator), Chunlin Xiao24;
University of California, San Diego Jonathan Sebat51,52 (Principal Investigator), Vineet
Bafna53, Kenny Ye54; University of California, San Francisco Esteban G. Burchard55

(Principal Investigator), Ryan D. Hernandez55 (Principal Investigator), Christopher R.
Gignoux55; University of California, Santa Cruz David Haussler56,57 (Principal
Investigator), Sol J. Katzman56, W. James Kent56; University of Chicago BryanHowie58;
University College London Andres Ruiz-Linares59 (Principal Investigator); University
of Geneva Emmanouil T. Dermitzakis60,61,62 (Principal Investigator), Tuuli
Lappalainen60,61,62; University of Maryland School of Medicine Scott E. Devine63

(Principal Investigator), Xinyue Liu63, Ankit Maroo63, Luke J. Tallon63; University of
Medicine and Dentistry of New Jersey Jeffrey A. Rosenfeld64,65 (Principal
Investigator), Leslie P. Michelson64; University of Michigan Gonçalo R. Abecasis7

(Principal Investigator) (Co-Chair), Hyun Min Kang7 (Project Leader), Paul Anderson7,
Andrea Angius66, Abigail Bigham67, Tom Blackwell7, Fabio Busonero7,66,68, Francesco
Cucca66,68, Christian Fuchsberger7, Chris Jones69, Goo Jun7, Yun Li70, Robert Lyons71,
Andrea Maschio7,66,68, Eleonora Porcu7,66,68, Fred Reinier69, Serena Sanna66, David
Schlessinger72, Carlo Sidore7,66,68, Adrian Tan7, Mary Kate Trost7; University of
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(Co-Chair), Tobias Rausch16, Adrian M. Stütz16; Illumina David R. Bentley8 (Principal
Investigator), Bret Barnes38, R. Keira Cheetham8, Michael Eberle8, Sean Humphray8,
ScottKahn38, Lisa Murray8,Richard Shaw8; Leiden UniversityMedical Center KaiYe39

(Principal Investigator); Louisiana State University Mark A. Batzer40 (Principal
Investigator), Miriam K. Konkel40, Jerilyn A. Walker40; Stanford University Phil
Lacroute43; Translational Genomics Research Institute David W. Craig48 (Principal
Investigator), Nils Homer49; US National Institutes of Health Deanna Church24,
Chunlin Xiao24; University of California, San Diego Jonathan Sebat51,52 (Principal
Investigator), Vineet Bafna53, Jacob J. Michaelson88, Kenny Ye54; University of
Maryland School of Medicine Scott E. Devine63 (Principal Investigator), Xinyue Liu63,
Ankit Maroo63, Luke J. Tallon63; University of Oxford Gerton Lunter1 (Principal
Investigator), Gil A. McVean1,2 (Principal Investigator), Zamin Iqbal1; University of Utah
David Witherspoon76, Jinchuan Xing77; University of Washington Evan E. Eichler11

(Principal Investigator) (Co-Chair), Can Alkan22,79, Iman Hajirasouliha80, Fereydoun
Hormozdiari22, Arthur Ko22, Peter H. Sudmant22; Washington University in St Louis
Ken Chen81, Asif Chinwalla20, Li Ding20, Michael D. McLellan20, John W. Wallis20;
Wellcome Trust Sanger Institute Matthew E. Hurles6 (Principal Investigator)
(Co-Chair), Ben Blackburne6, Heng Li3,6, Sarah J. Lindsay6, Zemin Ning6, Aylwyn
Scally6, Klaudia Walter6, Yujun Zhang6; Yale University Mark B. Gerstein84,85,86

(Principal Investigator), Alexej Abyzov84,86, Jieming Chen84, Declan Clarke87, Ekta
Khurana86, Xinmeng Jasmine Mu84, Cristina Sisu84

Exome group: Baylor College of Medicine Richard A. Gibbs13 (Principal Investigator)
(Co-Chair), Fuli Yu13 (Project Leader), Matthew Bainbridge13, Danny Challis13, Uday S.
Evani13, Christie Kovar13, Lora Lewis13, James Lu13, Donna Muzny13, Uma
Nagaswamy13, Jeff Reid13, Aniko Sabo13, Jin Yu13; BGI-Shenzhen Xiaosen Guo25,
Yingrui Li25, Renhua Wu25; Boston College Gabor T. Marth21 (Principal Investigator)
(Co-Chair), Erik P. Garrison21, Wen Fung Leong21, Alistair N. Ward21; Broad Institute of
MIT and Harvard Guillermo del Angel3, Mark A. DePristo3, Stacey B. Gabriel3, Namrata
Gupta3, Chris Hartl3, Ryan E. Poplin3; Cornell University Andrew G. Clark10 (Principal
Investigator), Juan L. Rodriguez-Flores10; European Bioinformatics Institute Paul
Flicek12 (Principal Investigator), Laura Clarke12, Richard E. Smith12, Xiangqun
Zheng-Bradley12; Massachusetts General Hospital Daniel G. MacArthur41 (Principal
Investigator); Stanford University Carlos D. Bustamante43 (Principal Investigator),
Simon Gravel43; Translational Genomics Research Institute David W. Craig48

(Principal Investigator), Alexis Christoforides48, Nils Homer49, Tyler Izatt48; US
National Institutes of Health Stephen T. Sherry24 (Principal Investigator), Chunlin
Xiao24; University of Geneva Emmanouil T.Dermitzakis60,61,62 (Principal Investigator);
University of Michigan Gonçalo R. Abecasis7 (Principal Investigator), Hyun Min Kang7;
UniversityofOxfordGil A.McVean1,2 (Principal Investigator);Washington University in
St Louis Elaine R. Mardis20 (Principal Investigator), David Dooling20, Lucinda Fulton20,
Robert Fulton20, Daniel C. Koboldt20; Wellcome Trust Sanger Institute Richard M.
Durbin6 (Principal Investigator), Senduran Balasubramaniam6, Thomas M. Keane6,
Shane McCarthy6, James Stalker6; Yale University Mark B. Gerstein84,85,86 (Principal
Investigator), Suganthi Balasubramanian86, Lukas Habegger84

Functional interpretation group: Boston College Erik P. Garrison21; Baylor College of
Medicine Richard A. Gibbs13 (Principal Investigator), Matthew Bainbridge13, Donna
Muzny13, Fuli Yu13, Jin Yu13; Broad Institute of MIT and Harvard Guillermo del Angel3,
Robert E. Handsaker3,5; Cold Spring Harbor Laboratory Vladimir Makarov32; Cornell
University Juan L. Rodriguez-Flores10; Dankook University Hanjun Jin33 (Principal
Investigator), Wook Kim34, Ki Cheol Kim34; European Bioinformatics Institute Paul
Flicek12 (Principal Investigator), Kathryn Beal12, Laura Clarke12, Fiona Cunningham12,
Javier Herrero12, William M. McLaren12, Graham R. S. Ritchie12, Xiangqun
Zheng-Bradley12; Harvard University Shervin Tabrizi3,36, Massachusetts General
Hospital Daniel G. MacArthur41 (Principal Investigator), Monkol Lek41; Stanford
University Carlos D. Bustamante43 (Principal Investigator), Francisco M. De La Vega10;
Translational Genomics Research Institute David W. Craig48 (Principal Investigator),
Ahmet A. Kurdoglu48; University of Geneva Tuuli Lappalainen60,61,62; University of
Medicine and Dentistry of New Jersey Jeffrey A. Rosenfeld64,65 (Principal
Investigator), Leslie P. Michelson64,65; University of Montréal Philip Awadalla73
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