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1 Introduction

Recently it was discovered that there exists a continuous one-parameter family of inequiv-

alent gauged SO(8) supergravities characterized by one angular parameter ω [1]. The new

theories were found by using the embedding tensor approach [2–4] to couple an ω-dependent

linear combination of 28 electric and 28 magnetic gauge fields and elevate their gauge group

to SO(8). As is well known one can convert these theories by performing an ω-dependent

electric-magnetic duality transformation so that the gauging becomes purely electric. The

theories thus obtained correspond to a one-dimensional variety of N = 8 supergravity

Lagrangians in which the 28 abelian gauge transformations have been extended to a non-

abelian SO(8) electric gauge group in the conventional way; the consistency of this gauging

can be directly inferred by making use of the T -tensor identities presented in [5], which

remain applicable for non-zero ω. The inequivalence of the new gauged SO(8) supergravi-

ties for different (generic) values of ω was confirmed in [1] by examining stationary points

of the potential in a G2-invariant sector of the theory which showed that the multiplicities

of SO(7)-invariant and G2-invariant stationary points are different from those found for

the original gauging [6–8]. The discovery of the continuous deformations has meanwhile

stimulated further work on more general solutions of gauged SO(8) supergravities [9, 10].

The existence of a continuous family of gauged SO(8) supergravities is a rather sur-

prising fact and its discovery demonstrates the power of the embedding tensor method.

In this paper we first rederive and clarify this result in the context of the electric duality

frame, following as much as possible the original construction of the SO(8) gauging [5]. The

analysis in the electric frame is interesting in its own right. It enables us to compare the

SO(7)± solutions that were found in the electric frame for ω = 0 [6, 7] to the corresponding

solutions in the ω-deformed theory. Besides confirming the consistency of the gaugings, it
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provides an independent verification of the phenomenon, noted in [1], that the independent

deformations cover only part of the full interval ω ∈ (0, 2π]. In the electric duality frame

this is caused by the fact that certain changes in ω can be compensated for by performing

various field redefinitions in the Lagrangian, so that different values of ω will correspond

to the same Lagrangians. Ultimately this reduces the interval of inequivalent deformations

to ω ∈ (0, π/8]. In establishing this result the diagonal SU(8) subgroup of E7(7) × SU(8)

plays an important role, where E7(7) is the symmetry group of the ungauged theory [11].

The prime motivation for our work is to explore whether the continuous deformation

has a possible interpretation from the perspective of 11D supergravity [12], or, more pre-

cisely, whether the deformed theories can be consistently embedded into 11D supergravity.

The original gauged SO(8) supergravity has been proven to correspond to a consistent

truncation of 11D supergravity associated with S7 [13, 14]; this proof made use of the

SL(8) invariant formulation of the 4D theory with the SO(8) gauge group embedded into

SL(8). Therefore we first address the question whether or not this proof can be extended

to the ω-dependent electric duality frame. The answer turns out to be negative. There-

fore the only option seems to remain within the context of the SL(8) covariant duality

frame and to investigate whether one can consistently incorporate the magnetic charges

in this frame in the context of the higher-dimensional theory. As we intend to show in

this paper, the SU(8) covariant reformulation of 11D supergravity given in [15, 16] does

indeed allow for the necessary dual structures. On the other hand, the assumption that the

ω-deformed theories also have a consistent embedding in 11D supergravity, would imply

that any solution of 11D supergravity that is known to have a 4D counterpart for ω = 0

will belong to one-parameter family of similar solutions of 11D supergravity. In view of the

fact that the ω-deformation commutes with SO(8) the solutions belonging to such a family

should share the same invariance subgroup of SO(8). For instance, a continuous family

should exist of SO(7) invariant solutions associated with the 11D solutions of [17, 18] that

have been shown to correspond to similar solutions of 4D SO(8)-gauged supergravity with

ω = 0 [13, 14, 19]. It seems that this is only possible when 11D supergravity is somehow

extended such that it will be equipped with the deformation parameter ω as an extrane-

ous parameter, which would require an extension of the version of 11D supergravity given

in [12]. The nature of such an extension is at present not known. We discuss these issues

in the concluding section 6.

While a complete resolution of the important question concerning the possible 11D

relation of the ω-deformed supergravities remains open for the moment, the consideration

of dual vectors in the 11D context leads us to two unexpected and important new results

which generalize the SU(8) invariant reformulation of 11D supergravity given in [15, 16]

on which the consistency proof of [13, 14] was based. The first one is the existence of a

new ‘generalized vielbein’ that is related to the 28 dual magnetic vectors in the same way

as the original generalized vielbein was related to the 28 electric vectors. More specifically,

the latter is a soldering form emAB associated to the Kaluza-Klein vector fields Bµ
m (con-

tained in the elfbein EM
A of 11D supergravity (cf. 4.2)), while the new vielbein emnAB

is associated to the components Aµmn and Amnp of the three-form potential AMNP of
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11D supergravity.1 The combination of the two generalized vielbeine then yields the for-

mula (5.12) for the non-linear flux ansatz, analogous to the non-linear metric ansatz first

presented in [13, 21]. A formula for the flux had already been derived in [13, 14], but that

formula was in terms of the four-form field strength rather than the three-form potential

and appears to be too unwieldy for practical applications. This is not so with the new and

much simpler formula (5.12) which is directly in terms of the three-form potential Amnp.

It is remarkable that the detour via the ω-deformed gaugings thus yields the answer to a

question that has remained open for almost 30 years!

This paper is organized as follows. Section 2 summarizes a number of characteristic

features of N = 8 supergravity and of the relevant electric-magnetic duality frames. Subse-

quently the ω-deformed SO(8) gaugings are discussed in the electric frame and we analyze

the inequivalence of supergravities corresponding to different values of ω. In section 3 an

analysis is presented of the SO(7)± solutions for arbitrary values of ω. The results are in

agreement with those presented in [1]. In the subsequent section 4 the possible embedding

of the ω-deformed theories is considered. The first conclusion is that such an embedding

can only be given in the SL(8) duality frame, which implies that a possible embedding

should involve dual magnetic gauge fields as well as related quantities. The search for such

dual quantities is then undertaken in section 5. Although such quantities can indeed be

identified, it still does not enable the formulation of a consistent embedding scheme of the

ω-deformed 4D theories into 11D supergravity. On the other hand the newly found dual

gauge fields and generalized vielbeine give substantial new insights of the embedding of the

original ω = 0 theory into 11D supergravity. In particular a non-linear expression is found

for the tensor field Amnp of 11D supergravity in the S7 and T 7 truncations. Conclusions

and a further outlook are presented in section 6. An appendix A presents a number of

definitions and the algebraic details related to the supersymmetry transformation rule of

the dual generalized vielbein.

2 SO(8) gaugings of maximal D=4 supergravity

As is well known, four-dimensional Lagrangians with abelian gauge fields are ambiguous,

as different Lagrangians can lead to equivalent field equations and Bianchi identities. This

phenomenon is known as electric-magnetic duality. Generic electric-magnetic duality trans-

formations do not constitute an invariance but an equivalence. These transformations can

be effected by performing a real symplectic rotation of the field strengths Fµν and the dual

fields strengths Gµν . The latter are defined such that the Bianchi identity on the latter

equals precisely the field equations of the vector fields. For N = 8 supergravity we have 28

vector fields so that the number of field strengths and dual field-strengths equals 56. The

general analysis of [22] therefore implies that the electric-magnetic duality group is equal to

Sp(56;R). After applying the symplectic rotation of the field strengths, the new dual field

strengths Gµν take a different form that will in turn follow from a different Lagrangian. In

1A similar extension has already appeared in a previous study [20] in the context of 3D supergravity

and E8(8), where the vectors are dual to scalar fields, but where it is not possible to compare the relevant

formulae to non-trivial compactifications of 11D supergravity.
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the absence of a gauging, all these Lagrangians are physically equivalent as they describe

the same set of field equations and Bianchi identities.

The corresponding theory may in principle be invariant under a subgroup of the

electric-magnetic dualities combined with related transformations on the other fields, mean-

ing that the Lagrangian will not change under this subgroup (which does not imply that

the Lagrangian is invariant in the naive sense, as the Lagrangian does not transform as

a function under duality). This happens for ungauged N = 8 supergravity where the in-

variance group corresponds to the non-compact E7(7) subgroup of Sp(56;R) [11]. When

working with a formulation that is gauge invariant under local chiral SU(8), which acts on

the fermions and on the scalars, the theory is invariant under the group E7(7)×SU(8) which

is linearly realized. Once a gauge is adopted with respect to the local SU(8), the group

action of E7(7) will be non-linearly realized on the spinors and the scalars of the theory.

The latter then parametrize an E7(7)/SU(8) coset space; here it is relevant that SU(8) is

the maximal compact subgroup of E7(7). We prefer to work with the linear version of the

theory with manifest local SU(8) invariance.

However, the Lagrangian can only be invariant under a subgroup of E7(7), such as,

for instance, SL(8), under which the vector fields transform in the real 28 representation.

While the usefulness of real representations is obvious for the gauge fields, it is not con-

venient for the remaining fields which transform under SU(8) in complex representations.

A crucial quantity in the formulation of the theory is the so-called 56-bein V , which is a

56 × 56 matrix that belongs to the 56 representation of E7(7). The usual representation

of this matrix is given in a pseudo-real decomposition of E7(7) based on 56 = 28 + 28,

where 28 and 28 denote two conjugate representations of the maximal subgroup SU(8).

The 56-bein V will transform under E7(7) rigid transformations and under lcoal SU(8) by

right- and left-multiplication, respectively.2

To set the stage let us briefly discuss some properties of the group E7(7) ⊂ Sp(56;R).

We start with the fundamental representation 56 of Sp(56;R), written as a pseudo-real

vector (zIJ , z
KL) with zIJ = (zIJ)

∗, where the indices are anti-symmetric index pairs [IJ ]

and [KL] and I, J,K,L = 1, . . . , 8. Hence the (zIJ , z
KL) span a real 56-dimensional vector

space. Consider infinitesimal transformations of the form,

δzIJ =ΛIJ
KL zKL +ΣIJKL z

KL ,

δzIJ =ΛIJ
KL z

KL +ΣIJKL zKL . (2.1)

where ΛIJ
KL = Λ[IJ ]

[KL] and ΣIJKL = Σ[IJ ] [KL] are subject to the conditions,

(ΛIJ
KL)∗ = ΛIJ

KL = −ΛKL
IJ , (ΣIJKL)

∗ = ΣIJKL = ΣKLIJ . (2.2)

Note that complex conjugation is effected by raising or lowering of indices. The corre-

sponding group elements g constitute the group Sp(56;R) in a pseudo-real basis provided

that they satisfy the conditions,

g∗ = ω g ω , g−1 = Ω g†Ω , (2.3)

2There are different conventions used in the literature. Here we will follow [5].
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where ω and Ω are given by

ω =

(
0 1l

1l 0

)
, Ω =

(
1l 0

0 −1l

)
. (2.4)

The above properties ensure that the sesquilinear form, (z1, z2) = zIJ1 z2IJ − z1IJ z
IJ
2 , is

invariant. The generators associated with ΛIJ
KL generate the maximal compact U(28)

subgroup of Sp(56;R), and a GL(28) subgroup is generated by real matrices ΛIJ
KL and

purely real or purely imaginary ΣIJKL, whose compact subgroup equals SO(28).

Let us now consider the E7(7) subgroup, for which ΣIJKL is fully anti-symmetric and

the generators are further restricted according to

ΛIJ
KL = δ

[K
[I ΛJ ]

L] , ΛI
J = −ΛJ

I ,

ΛI
I = 0 , ΣIJKL =

1

24
εIJKLMNPQΣMNPQ . (2.5)

Obviously the matrices ΛI
J generate the group SU(8), which has dimension 63; since the

ΣIJKL comprise 70 real parameters, the dimension of E7(7) equals 63 + 70 = 133. Because

SU(8) is the maximal compact subgroup, the number of non-compact generators minus

the number of compact ones equals 70 − 63 = 7. It is straightforward to show that these

matrices close under commutation and generate the group E7(7) [5, 11]. To show this

one needs a variety of identities for self-dual tensors. Note that E7(7) has another maximal

63-dimensional subgroup, which is real but not compact, namely the group SL(8). It is gen-

erated by those matrices in (2.5) for which the sub-matrices ΛI
J and ΣIJKL are both real.

Let us now define the 56-bein V , which describes the scalar fields,

V(x) =



uij

IJ(x) vij KL(x)

vkl IJ(x) uklKL(x)


 , (2.6)

and which is an element of E7(7). Therefore it can transform by left-multiplication under

local SU(8) and by right-multiplication under rigid E7(7). Hence the indices [ij] and [kl]

are local SU(8) indices and [IJ ] and [KL] are rigid E7(7) indices. A standard SU(8) gauge

condition leads to the following coset representative (‘unitary gauge’),

V(x) = exp




0 −1
4

√
2φijkl(x)

−1
4

√
2φmnpq(x) 0


 , (2.7)

where the φijkl are complex fields transforming as an anti-symmetric four rank tensor under

the linearly realized rigid SU(8). The complex conjugate fields, φijkl, are related to the

original fields by a complex self-duality constraint,

φijkl =
1

24
εijklmnpq φ

mnpq . (2.8)

Observe that in this gauge the indices I, J,K, . . . are no longer distinguishable from the

SU(8) indices i, j, k, . . .. We also note that the reflection φijkl → −φijkl maps (u, v) →
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(u,−v) in (2.6) and therefore corresponds to a trivial reparametrization of the E7(7)/SU(8)

coset space.

Subsequently we consider the 28 field strengths Fµν
IJ and their dual field strengths,

G+µν
IJ = −4

e

∂L
∂F+

µνIJ
. (2.9)

The Bianchi identies and the field equations of the vector fields are summarized in the

following equations,

∂µ
[
e F+µνIJ − e F−µνIJ

]
= 0 = ∂µ

[
eG+µν

IJ + eG−µν
IJ

]
. (2.10)

These equations can be written in terms of a 56-component array of selfdual field strengths,

(F+
1µνIJ , F

+
2µν

IJ), defined by

F+
1µνIJ =

1

2

(
G+µν

IJ + F+µνIJ
)
,

F+
2µν

IJ =
1

2

(
G+µν

IJ − F+µνIJ
)
, (2.11)

and their anti-selfdual ones (F−
1µν

IJ , F−
2µνIJ) that follow by complex conjugation, in a form

that is manifestly covariant under Sp(56;R) [22].

What remains is to specify GµνIJ in terms of Fµν
IJ and terms depending on the matter

fields. This will then determine all terms involving the vector fields of the Lagrangian. As

long as we have not switched on the gauging, the matter field contributions come exclusively

from fermionic bilinears, which we denote by Oµν . Since the fermions transform under local

SU(8) and not under E7(7), this relation must necessarily involve the 56-bein V and can be

written as follows [5],

V
(
F+
1µν IJ

F+
2µν

KL

)
=

(
F̄+
µν ij

O+kl
µν

)
, (2.12)

where O+
µν

ij is an SU(8) covariant tensor quadratic in the fermion fields and independent

of the scalar fields, which appears as a moment coupling in the Lagrangian. Without going

into the details we mention that chirality and self-duality restricts the form of O+
µν

ij up to

some normalization constants. The tensor F̄+
µν ij is an SU(8) covariant field strength which

appears in the supersymmetry transformation rules of the spinors, which is simply defined

by the above condition. For future reference we give the definition of O+
µν

ij ,

O+
µν

ij = − 1

288

√
2 εijklmnpq χ̄klmγµνχnpq −

1

4
ψ̄ρkγµνγ

ρχijk +
1

4

√
2 ψ̄ρ

iγ[ργµνγ
σ]ψσ

j .

(2.13)

The form of (2.12) emphasizes the covariance under the group SL(8), as both F+
1µνIJ

and F+
2µν

IJ defined in (2.11) transform in the 28 and 28 representations of that group.

As long as we have not switched on the gauging, we have the option of changing the

basis of these field strengths by a matrix E ∈ Sp(56;R). It thus seems that the possible

Lagrangians are encoded in these matrices E. However, this is not the case, because, when
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E belongs to GL(28) or to E7(7), it can be absorbed into either the field strengths (2.11)

or into the 56-bein, respectively. Hence it follows that (2.12), and thus the Lagrangian has

an ambiguity encoded in a matrix [3, 23]

E ∈ E7(7)\Sp(56;R)/GL(28,R) . (2.14)

When one is interested in SO(8) invariant Lagrangians, the matrix E must preserve the

SO(8) subgroup, so that the relevant matrices E are restricted to

E =

(
eiω1l 0

0 e−iω1l

)
, (2.15)

where 1l ≡ 1l28 denotes the 28 × 28 unit matrix. Hence these Lagrangians are encoded in

a single angle ω.3 For special values of ω this matrix will constitute an element of E7(7),

because the compact SU(8) subgroup of E7(7) has a non-trivial center Z[SU(8)] = Z8,

which is reduced to Z4 when acting on bosons (as these come with an even number of

SU(8) indices). The center Z[SU(8)] consists of the matrices eiω/21l8 with ω a multiple of

π/2. Consequently, SO(8) invariant Lagrangians corresponding to ω-values that differ by

an integer times π/2 must be equivalent, as they are related by an element of SU(8) (and

therefore of E7(7)). Other than these there are no matrices E belonging to E7(7). We return

momentarily to a more detailed analysis of possible equivalences.

The exponential factor in (2.15) can now be incorporated directly into the supergravity

Lagrangian by simply including ω-dependent phase factors into the submatrices u and v

in the Lagrangian according to

uij
IJ → eiωuij

IJ , vijIJ → e−iωvijIJ . (2.16)

This defines the deformed supergravity Lagrangians in the electric frame. As already

mentioned in section 1, the inequivalent theories do not cover the full interval ω ∈ (0, 2π],

but are restricted to the smaller interval ω ∈ (0, π/8], as was shown by [1] in a mixed

electric-magnetic duality frame. We will now verify this result in the electric frame. We

distinguish three types of equivalence transformations for ω:

i) The shift ω → ω + π/2, which can be undone by a special SU(8) transformation

belonging to Z[SU(8)].

ii) The shift ω → ω+π/4, which can be undone by an SU(8) transformation that belongs

to a square root of an element of Z[SU(8)] accompanied by a linear redefinition of

the gauge fields Aµ
IJ .

iii) The reflection ω → −ω, which can be undone by a parity transformation.

To analyze these three equivalences we consider the ω-deformed Lagrangians. The terms

that involve the field strengths are encoded in (2.12) subject to the deformation (2.16).

3Angles such as ω were first introduced in the context of gauged N = 4 supergravity in [24].
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Writing this equation in terms of the separate components, one obtains

(
uijIJ + e2iωvijIJ

)
G+

µνIJ =
(
uijIJ − e2iωvijIJ

)
F+
µν

IJ + 2 eiωO+
µν

ij ,

2 e−iωF̄+
µνij =

(
uij

IJ + e−2iωvijIJ
)
G+

µνIJ +
(
uij

IJ − e−2iωvijIJ
)
F+
µν

IJ . (2.17)

Let us first consider the effect of the shift ω → ω+π/2 in (2.17), which we can clearly

undo by performing the following redefinitions,

vijIJ → e−iπvijIJ = −vijIJ , O+
µν

ij → e−iπ/2O+
µν

ij , F̄+
µνij → eiπ/2F̄+

µνij . (2.18)

We have to ensure that these redefinitions are consistent for the full Lagrangian. This

follows rather straightforwardly by noting that the redefinitions (2.18) are precisely gen-

erated by applying a uniform SU(8) transformation belonging to the diagonal subgroup

of E7(7) × SU(8) and equal to eiπ/2 1l28, which constitutes an element of Z[SU(8)]. Note

that on uijIJ the effect of this transformation cancels, as it acts on both index pairs [ij]

and [IJ ], while it correctly accounts for the phase factor in the redefinition of vijIJ .4 The

SU(8) transformation is also realized on the fermions where it takes the form,

ψµ
i → e−iπ/4ψµ

i , χijk → e−3iπ/4χijk , (2.19)

and this generates the desired redefinition of O+
µν

ij and F̄+
µνij . As far as the ungauged

Lagrangian and the supersymmetry transformations are concerned (we remind the reader

that F̄+
µνij and its anti-selfdual component appear in the supersymmetry transformations),

the shift ω → ω+π/2 combined with a special SU(8) transformation leaves the Lagrangian

and the supersymmetry transformations unaffected. Note that the fact that the Lagrangian

and the supersymmetry transformations are consistent with respect to local SU(8) plays a

crucial role for the remaining terms in the Lagrangian.

To prove that the terms depending on the SO(8) gauging are not affected by the shift

and the various field redefinitions, we consider the so-called T -tensor associated with the

SO(8) gauging, which takes the following form in the ω-deformed theory,

Ti
jkl(ω ; u, v) =

(
e−iω uklIJ + eiω vklIJ

) (
uim

JK ujmKI − vimJI v
jmKL

)

= cosω T (e)
i
jkl(u, v) + sinω T (m)

i
jkl(u, v) . (2.20)

where in the second line, we explicitly display the decomposition of the T -tensor into an

‘electric’ and a ‘magnetic’ component. As the reader can check, the consistency of the

gauging is not affected by the ω-deformation (2.16), because the analysis given in [5] still

applies, in the sense that all the ‘T -identities’ remain valid.5 This is consistent with the

general outline given in [3, 4] and the specific application described in [1]. When applying

the shift ω → ω + π/2 in (2.20) we follow the same strategy as before and obtain the

relation,

Ti
jkl (ω + π/2 ; u, v) = e−iπ/2 Ti

jkl(ω ; u, eiπ v) , (2.21)

4Note that the diagonal SU(8) transformations induce a corresponding change on the field φijkl in the

coset representative (2.7). For this reason the pseudo-reality constraint (2.8) will be preserved throughout.
5These identities encode the same information as the linear and quadratic identities that the embedding

tensor has to satisfy.
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where u and v denote uijIJ and vijIJ , respectively. Again the changes take the form of

an SU(8) transformation, and are precisely cancelled by the redefinitions found previously

in (2.18) and (2.19).

The discussion of the second equivalence transformation ω → ω + π/4 proceeds along

the same lines, but there are new features. First of all, because the transformation eiπ/8 1l8
is clearly not an element of SU(8), we must replace the identity matrix in this product by

some other real matrix P8. Hence we consider eiπ/8 P8, which constitutes an element of

SU(8) provided that P8 is real and orthogonal with det[P8] = −1. As its square should

belong to Z[SU(8)], it follows also that (P8)
2 = 1l8. Obviously such matrices P8 exist!

Examples are diagonal matrices with p eigenvalues equal to −1 and 8−p eigenvalues equal

to +1, with p odd, but there exist more matrices that satisfy these requirements. The

SU(8) transformation can also be written in the 28 representation, where it takes the form

eiπ/4Π, with Πij
kl = P8

[i
[k P8

j]
l].

Now let us return to (2.17), but now multiplied by the matrix Π from the left. Fur-

thermore we multiply the field strength tensors with Π2 = 1l28. Obviously the shift in ω

can now be absorbed by making the following redefinitions,

uijIJ→Πij
kl u

kl
KLΠKL

IJ ,

vijIJ→e−iπ/2Πij
kl v

klKLΠIJ
KL ,

O+
µν

ij→e−iπ/4Πij
kl O+

µν
kl ,

F̄+
µνij→eiπ/4Πkl

ij F̄
+
µνkl .

(2.22)

combined with a linear redefinition of the vector gauge fields,

Aµ
IJ → ΠIJ

KLAµ
KL . (2.23)

The latter induces the same redefinition of the field strengths G+
µνIJ and F+

µν
IJ , even in the

presence of the non-abelian completion. Obviously the transformations (2.22) correspond

to SU(8) transformations belonging to the diagonal subgroup of SU(8) × E7(7), just as

before. On the fermions they act according to

ψµ
i → e−iπ/8 P8

i
j ψµ

j , χijk → e−3iπ/8 P8
i
l P8

j
m P8

k
n χ

lmn . (2.24)

For completeness we consider also the change of the T -tensor under the ω → ω + π/4

transformation,

Ti
jkl (ω + π/4 ; u, v) = e−iπ/4 P8

m
i P8

j
n P8

k
p P8

l
q Tm

npq(ω ; ΠuΠ, eiπ/2Π vΠ) , (2.25)

with u and v as defined below (2.21). As a result the redefinitions noted above cancel

precisely the effect of the shift in ω, which establishes the equivalence in the same fashion

as before.

Finally we consider the third equivalence relation, ω → −ω, whose effect can be ab-

sorbed by performing parity reversal on the fields. To explain this we note that original

gauged SO(8) supergravity is invariant under parity. Under this discrete symmetry anti-

selfdual and selfdual field strengths are interchanged simultaneously with the exchange of

positive- and negative-chiral fermion components and of scalar fields with their complex

conjugates. The ω-deformation breaks the invariance under parity. More precisely, when
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applying parity reversal to the Lagrangian for finite ω one obtains the same Lagrangian

with ω replaced by −ω. Hence, theories related by ω → −ω are equivalent, as the sign

change can be undone by applying a parity transformation directly on the fields. Note that

the sign change will also apply to the T -tensor given in (2.20), showing that the magnetic

embedding tensor will change sign.

The three equivalence transformations analyzed in this section imply that inequivalent

Lagrangians are encoded by values of ω in the restricted interval ω ∈ (0, π/8]. This result,

derived in the electric frame, is in full agreement with [1], where a fixed duality frame

is used and where ω encodes the mixture of the electric and magnetic components of the

embedding tensor. In the next section we will analyze the solutions that are invariant under

an SO(7)± subgroup of the SO(8) gauge group. As we shall demonstrate those solutions

reflect precisely the equivalences exhibited in this section.

3 The potential and SO(7)± invariant solutions

The potential of the gauged theory is constructed from the T -tensor. We recall that this

tensor can generally be decomposed into two irreducible SU(8) tensors,

Ti
jkl = −3

2
A1

j[k δl]i −
3

4
A2 i

jkl , (3.1)

where A1
ij is symmetric in (ij) and A2 i

jkl is anti-symmetric in [jkl] and traceless, A2 i
ikl =

0; together, these two irreducible components can be assigned to the 912 of E7(7) [7]. The

scalar potential equals

P = g2
[
−3

4
|A1

ij |2 + 1

24
|A2 i

jkl|2
]
, (3.2)

where g is the SO(8) gauge coupling constant. As shown in [7], this potential has a

stationary point whenever 4A1m[iA2
m

jkl] − 3A2
m

n[ij]A2
n
kl]m is an anti -selfdual tensor.

The simplest examples of special scalar field configurations for which stationary points

exist, and where the effect of the ω-deformation can be studied in detail, are the back-

grounds preserving SO(7)±-invariance [6–8]. For these the 56-bein takes the form

V(t) = exp

(
0 αtC±

ij KL

α∗t C±kl IJ 0

)
, (3.3)

with t ∈ R and α = 1 for SO(7)+, and α = i for SO(7)−. Here the SO(7)± invariant tensors

are (anti-)selfdual,

C±
IJKL = ± 1

24
εIJKLMNPQC

±
MNPQ , (3.4)

and obey the condition,

C±
IJMN C±

MNKL = 12 δIJ
KL ± 4C±

IJKL . (3.5)

Note that (3.3) denotes the coset representative so that we make no distinction between

rigid SL(8) indices I, J, . . . and local SU(8) indices i, j, . . .. Note also that field φijkl ap-

pearing in (2.7) is just equal to −2
√
2 t C+ijkl or 2

√
2 it C−ijkl, respectively, so that the

pseudo-reality relation (2.8) is satisfied.
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Using the relations (3.4) and (3.5), one shows that

uij
IJ(t) = cosh3(2t) δij

IJ ± 1

2
cosh(2t) sinh2(2t)C±

ijIJ ,

vijIJ(t) = ± α sinh3(2t) δij
IJ +

1

2
α sinh(2t) cosh2(2t)C±

ijIJ . (3.6)

With these results one can evaluate the corresponding T -tensors (2.20). A straightforward

calculation yields the following results for the component functions A1 and A2,

A1
ij = δij A(t) , A2 i

jkl = A2(t)C
±
i
jkl . (3.7)

Note that the parameter t parametrizes the vacuum expectation value of either a selfdual or

an anti-selfdual field. We will not consider both vacuum-expectation values simultaneously

for reasons of simplicity. When allowing both vacuum-expectation values simultaneously,

this would define a G2 invariant background, as G2 = SO+(7) ∩ SO−(7). For the special

configurations defined by (3.3) the potential takes the simple form,

P(t) = g2
[
− 6 |A1(t)|2 + 14 |A2(t)|2

]
. (3.8)

Its stationary points are determined by the condition that αA2(t)
(
A1(t)+3A2(t)

)
is imag-

inary.

Making use of (3.6) and inserting the deformation parameter ω according to (2.16),

leads to the following expressions for the two functions A1(t) and A2(t) defined in (3.7),

A1(ω, t) = e−iω
[
c7 + 7c3s4

]
± α∗eiω

[
s7 + 7c4s3

]
,

A2(ω, t) = ∓ e−iω
[
c s6 + 4c3s4 + 3c5s2

]
− α∗eiω

[
c6s+ 4c4s3 + 3c2s5

]
, (3.9)

where c ≡ cosh(2t) and s ≡ sinh(2t). It is convenient to present these results as follows.

For the SO(7)+-invariant background, we obtain

A+
1 (ω, t) = e−iω

[
c7 + 7c3s4

]
+ eiω

[
s7 + 7c4s3

]
,

A+
2 (ω, t) = − e−iω

[
c s6 + 4c3s4 + 3c5s2

]
− eiω

[
c6s+ 4c4s3 + 3c2s5

]
, (3.10)

whereas for the SO(7)−-invariant background we write

A−
1 (ω, t) = eiπ/4

{
e−iω̃

[
c7 + 7c3s4

]
+ eiω̃

[
s7 + 7c4s3

]}
,

A−
2 (ω, t) = − eiπ/4

{
−e−iω̃

[
c s6 + 4c3s4 + 3c5s2

]
− eiω̃

[
c6s+ 4c4s3 + 3c2s5

]}
, (3.11)

with ω̃ = ω + π/4.

Interestingly the two SO±(7) backgrounds lead to the same expression for the T -tensor,

up to an overall phase factor and a shift in ω, although the overall phase factors for A±
1 (ω, t)

and A±
2 (ω, (t) are clearly not the same. Because of this relation the two expressions (3.10)

and (3.11) enable us to write the same formula for both potentials, but in terms of different

parameters,

P+(ω, t+) =
g2

8

{
cos2 ω

(
x14+ − 14x6+ − 35x−2

+

)
+ sin2 ω

(
x−14
+ − 14x−6

+ − 35x2+
)}
,

P−(ω, t−) =
g2

8

{
cos2 ω̃

(
x14− − 14x6− − 35x−2

−

)
+ sin2 ω̃

(
x−14
− − 14x−6

− − 35x2−
)}
, (3.12)
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with x± ≡ e2t± . For ω = 0 and ω = π/2, respectively, these formulas reproduce the results

of [7]; in particular, for ω̃ = π/4 we re-obtain the SO(7)− potential,

P−(t−) = −2g2 cosh5(4t−)
[
5− 2 cosh(8t−)

]
. (3.13)

Let us first briefly discuss the stationary points of P±, suppressing the distinction

between the parameters, x± and between ω and ω̃. Defining z ≡ x4 = e8t ≥ 0, the

condition for the potentials to be stationary (3.12) is

(z2 − 1)
[
cos2 ω z3(z2 − 5)− sin2 ω

(
5 z2 − 1

)]
= 0 . (3.14)

As it turns out this equation has three solutions. One is z = 1 ⇔ t = 0. A second solution

exists with 0 ≤ z ≤ 1/
√
5 and a third one with

√
5 ≤ z. When sinω = 0, there is a

regular solution with z =
√
5 as well as a ‘run-away solution’ z = 0 ⇔ t = −∞; the

corresponding solutions for cosω = 0 are obtained by interchanging z ↔ z−1 or t ↔ −t.
For the SO(7)± solutions, we see that there is only a single SO(7)+ solution, z+ =

√
5 or

z+ = 1/
√
5 (as already explained above) when ω = 0 and ω = π/2, respectively. For the

SO(7)− backgrounds we recover the two solutions at ω̃ = π/4 (corresponding to ω = 0

with coth 4t− = ±
√
5. These two solutions are related by parity reversal. For ω̃ = 0 or

ω̃ = π/2, there is again a run-away solution.

Let us now examine the consequences of the various equivalences between different ω-

values noted in section 2. First of all, under a shift ω → ω+π/2 the potentials (3.12) change

according to P±(ω + π/2, t) = P±(ω,−t), which is in agreement with what was derived

more generally in section 2. Furthermore the functions A±
1,2 satisfy A±

1,2(ω + π/2, t) =

−eiπ/2A±
1,2(ω,−t) which is consistent with (2.21). Under the other equivalence associated

with the reflection ω → −ω the two potentials change according to P±(−ω, t) = P±(ω,±t),
which reflects the fact that for ω = 0, t+ is a scalar and t− is a pseudoscalar.

It is rather obvious that the separate potentials P± will exhibit no other equivalence

relations, and in particular no relation associated with the shift ω → ω+π/4. Indeed, this

equivalence is qualitatively different because it also involves a change of basis for SO(8), as

is shown in (2.23). Therefore the two potentials are interchanged! Inspection shows that

the actual relation is given by

P+(ω + π/4, t) = P−(ω, t) , P−(ω + π/4, t) = P+(ω,−t) . (3.15)

Before explaining this relation in more detail, we note that by applying this change twice,

one recovers the result noted above for the shift ω → ω + π/2.

Let us now clarify the details associated with the equivalence shift ω → ω+π/4. In the

new SO(8) basis the duality assignments of the SO(7) invariant tensors change according to

C±
IJKL −→ −C∓

IJKL , (3.16)

The change in the duality phase is due to the fact that det[P8] = −1 so that the 8-

dimensional Levi-Civita symbol changes sign. Furthermore, the overall sign in (3.16) is
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required in order to re-establish the normalization condition (3.5). Using the correspon-

dence noted below (3.5), which explains that φijkl = 2
√
2
(
− t+C

+ijkl + it−C
−ijkl

)
, we

note the relation,

eiπ/2 P8
i
m P8

j
n P8

k
p P8

l
q φ

mnpq = 2
√
2
(
t−C

+ijkl + it+C
−ijkl

)
, (3.17)

where we made use of (3.16). With this result we can evaluate (2.25), which leads to the

following result,

Ti
jkl
(
ω + π/4 ; t+ = t, t− = 0

)
=e−iπ/4 Ti

jkl
(
ω ; t+ = 0, t− = t

)
,

Ti
jkl
(
ω + π/4 ; t+ = 0, t− = t

)
=e−iπ/4 Ti

jkl
(
ω ; t+ = −t, t− = 0

)
. (3.18)

This result is in line with (3.15) and can also be verified explicity on the functions A±
1,2

shown in (3.10) and (3.11). One then observes that A2 acquires an extra minus sign, which

is due to the fact that in the T -tensor, A2 is multiplied by the tensor C± (cf. 3.7).

Hence we have explicitly verified all the equivalence relations for the SO(7)± solutions.

While it is clear that the equivalence based on the shift ω → ω+ π/4 is more subtle, these

subtleties have been fully accounted for. Our conclusions are in full agreement with those

of [1]. Obviously this pattern will persist for solutions with less symmetry.

4 The embedding in eleven dimensional supergravity

An important question concerns the possible relation of the deformed SO(8) gauged super-

gravities to 11D supergravity as originally formulated in [12]. More specifically, can the

deformed 4D supergravities be understood as consistent truncations of the 11D theory?

For the undeformed theory this embedding was studied long ago and it was shown to corre-

spond to a consistent truncation of 11D supergravity [13]; a particular subtlety related to

the 11D field strengths was resolved only recently in [14]. By a ‘consistent embedding’ we

mean that the full field configuration space of gauged N = 8 supergravity can be obtained

by consistently truncating 11D supergravity, so that all the solutions of the 4D theory

(including x-dependent ones) can be uplifted to solutions of the higher-dimensional theory.

The original work made use of the SL(8) invariant formulation of N = 8 supergravity,

and therefore our first task is to investigate whether or not the original approach can be

extended to the electric duality basis of the deformed theories based on (2.15).

We first recall that the consistency proof of [13, 14] is based on the reformulation

of the 11D theory with local SU(8) invariance that has been presented in [15, 16]. This

reformulation relies on a 4+7 split of the 11D theory [12] where the original tangent space

group SO(1, 10) is replaced by SO(1, 3) × SU(8), so that the 4D R-symmetry group is

realized on the full 11D supergravity. In this construction various features associated with

E7(7) emerge, although E7(7) is not a symmetry group of the theory. A key ingredient in

that construction was the so-called generalized vielbein, which is a soldering form defined by

emAB(x, y) = i∆−1/2 ea
m
(
ΦTΓaΦ

)
AB

, emAB ≡ (emAB)
∗ (4.1)
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where these quantities depend on all eleven coordinates zM ≡ (xµ, ym). Here em
a is the

internal siebenbein that is part of the elfbein of 11D supergravity in a triangular gauge

adapted to the 4+7 split of space-time,

EM
A(x, y) =

(
∆−1/2eµ

α Bµ
m em

a

0 em
a

)
, (4.2)

where ∆ ≡ det[em
a] is the metric determinant for the compact internal space. Tangent-

space indices have been denoted by α and a, respectively. Appendix A contains some of the

definitions for the gamma matrices and the spinor fields. The indices A,B, . . . = 1, 2, . . . , 8

are initially Spin(7) indices associated with the spinor indices of the fermions and the

gamma matrices, but they are elevated to chiral SU(8) in the reformulation of the theory.

This is achieved by means of the matrix Φ(x, y) ∈ SU(8) which is required to rewrite the

theory into SU(8) covariant form. While this matrix is thus undetermined prior to trunca-

tion, its precise form will be fixed in a specific truncation modulo the residual (x-dependent)

local SU(8) symmetry of the N = 8 theory. The underlying idea here is that the resulting

4D spinors can in principle transform under the SU(8) R-symmetry, although only the

Spin(7) subgroup is initially realized as a local symmetry. Introducing the compensating

phase Φ generalizes the local symmetry to the full R-symmetry group. To make this ap-

proach viable, it is required that the bosonic quantities that appear in the supersymmetry

transformations of the fermions, constitute SU(8) representations.

Subsequently, consider the supersymmetry transformations as they emerge for the

components of the 11D metric, evaluated in the context of the standard Kaluza-Klein

decompositions [16],

δeµ
α =

1

2
ǭAγαψµA + h.c. ,

δBµ
m =

1

8

√
2 emAB

(
2
√
2 ǭAψµ

B + ǭCγµχ
ABC

)
+ h.c. ,

δemAB = −
√
2ΣABCD e

mCD , (4.3)

where

ΣABCD ≡ ǭ[AχBCD] +
1

24
εABCDEFG ǭ

EχFGH . (4.4)

We stress that at this point the various quantities all depend on the coordinates xµ and ym.

The fermions have been rewritten according to the same standard Kaluza-Klein procedure;

in particular, the spin-12 fields χABC are the chiral components of the 56 fermions that

emerge from the 11D gravitino fields Ψa, see (A.3) for the precise definitions.

To truncate the 11D fields to the 4D fields the dependence on the extra seven coordi-

nates ym is extracted in the form of the Killing vectors and Killing spinors of S7 such as

to make contact with the round sphere of a given radius. Then the deviations of the fields

away from the S7 solution are encoded in terms of the x-dependent fields of 4D SO(8)-

gauged maximal supergravity. The spinors and vierbein fields can be expressed in the

corresponding quantities of the 4D maximal supergravity by exploiting S7 Killing spinors

ηA
i(y) with i = 1, 2, . . . , 8 and their inverses obeying ηi

A ηB
i = δAB (note that the fermionic

– 14 –
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quantities on the left-hand side have all been supplied with the appropriate compensating

SU(8) rotation Φ),

ψµA(x, y) =ψµi(x) ηA
i(y) ,

χABC(x, y) =χijk(x) ηA
i(y) ηB

j(y) ηC
k(y) ,

eµ
α(x, y) = eµ

α(x) ,

ǫA(x, y) = ǫi(x) ηA
i(y) ,

U(x, y)AB =U(x)ij ηA
i(y) ηBj(y) , (4.5)

where U(x, y)AB is the SU(8) transformation matrix of the full 11D theory written in the

formulation of [16], whereas U(x)ij is the corresponding matrix in the 4D theory.

In accordance with the standard Kaluza-Klein ansatz, the vector gauge fields Bµ
m

are assumed to be proportional to the 28 S7 Killing vectors KmIJ(y), labeled by the 28

antisymmetric index pairs [IJ ] (with I, J = 1, 2, . . . , 8), and related to the Killing spinors by

KmIJ = i
◦
ea
m ηIA ΓaAB ηJB , (4.6)

where
◦
ea
m(y) is the S7 background siebenbein, so that

Bµ
m(x, y) = −1

4

√
2KmIJ(y)Aµ

IJ(x) . (4.7)

Defining as before,

emij(x, y) ≡ emAB(x, y) ηi
A(y) ηj

B(y) , emij ≡ (emij)
∗ , (4.8)

it follows that Bµ
m and emij must have the same y-dependence. Comparing with the 4D

result from [5] for the variation of the 28 electric vectors,6

δAµ
IJ = −1

2

(
uij

IJ + vijIJ
)(
ǭkγµχ

ijk + 2
√
2ǭiψj

µ

)
+ h.c. , (4.9)

one infers the following ansatz for the generalized vielbein,

emij(x, y) =KmIJ(y)
[
uij

IJ(x) + vijIJ(x)
]
,

emij(x, y) =KmIJ(y)
[
uijIJ(x) + vijIJ(x)

]
, (4.10)

where uij
IJ and vijIJ are defined by the 56-bein V of the 4D theory given in (2.7). With

these definitions the reader can easily verify that the y-dependence assigned to both sides

of the supersymmetry transformations (4.3), is consistent.

Let us comment on the above results. First of all, it is remarkable that the transfor-

mations (4.3), although still based to the full 11D theory, reflect already the structure of

the known 4D results. Undoubtedly the underlying reason for this is that the results were

written in a form in which the invariance under the local R-symmetry group SU(8) of the

maximal 4D theory is manifest. This was, of course, an important motivation for following

6We rescaled the 4D supersymmetry parameter ǫ used in e.g. [4, 5] with a factor 1
2

in order to be

consistent with the 11D definitions in [16].
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the approach initiated in [16]. Another point is that the structure exhibited in (4.3) is also

present in the general gaugings of N = 8 supergravity by means of the embedding tensor

approach [4]. We will return to this aspect in due course.

Another aspect that deserves attention concerns the way in which the sub-matrices

uij
IJ and vijIJ appear in the ansatz (4.10) for the generalized vielbein. But, as we already

explained in section 2, there are alternative possiblities by changing the electric-magnetic

duality frame. For instance, the electric frame for the new SO(8) gaugings requires a

different linear combination, namely eiωuij
IJ + e−iωvijIJ , as is indicated by (2.16). As we

will now argue, it is, however, no longer possible to have a consistent ansatz with this linear

combination, unless exp[2iω] is real, so that ω must be equal to an integer times π/2. This

implies that the embedding of the 4D fields into the fields of 11D supergravity, according

to the scheme followed in [13], can only be defined provided the 4D theory is formulated

in an SL(8) invariant duality frame. The underlying reason for this restriction is related

to the fact that the generalized vielbein emij , by virtue of its 11D origin (4.1), must obey

the ‘Clifford property’,

emik e
nkj + enik e

mkj =
1

4
δi

j emkl e
n lk . (4.11)

As shown in [13], (4.11) is indeed satisfied with (4.10) as a consequence of the properties

of the E7(7) matrix V and its submatrices u and v. For non-vanishing angle ω, the obvious

generalization of the formula (4.10) would read

emij(ω;x, y) = KmIJ(y)
[
eiωuij

IJ(x) + e−iωvijIJ(x)
]

(4.12)

together with its complex conjugate. However, substituting this ω-dependent ansatz for

the vielbein into (4.11), it turns out that this relation no longer holds for arbitrary values

of ω. To see why this is the case, let us for instance reconsider equation (2.21) of [13]

and the subsequent equations. There (4.11) is proven by showing that e(mkl e
n)ij vanishes

upon contraction with an anti-hermitean traceless SU(8) matrix Λij
kl = Λ[i

[kδj]
l] where

Λi
j = −Λj

i and Λi
i = 0. Inserting the modified ansatz (4.12) into the left-hand side

of (4.11) the part of the argument involving the ω-independent combination uΛū+vΛv̄ goes

through as before. By contrast, the second part of the argument involves the replacement

[
(uΛv̄)IJ,KL + (vΛū)IJ,KL

](
KmIJKnKL + KmIJKnKL

)
→

→
[
e2iω(uΛv̄)IJ,KL + e−2iω(vΛū)IJ,KL

](
KmIJKnKL + KmIJKnKL

)
. (4.13)

While for the first line, one could exploit the complex selfduality of both terms together

with the anti-hermiticity of the matrix Λ to show that these terms cancel, this argument

fails, however, in presence of the non-trivial phase factor in the second line, even though the

supersymmetry variations based on (4.5), (4.7) and (4.12) do remain mutually consistent

(provided that ones uses the 4D transformations in the corresponding ω-dependent electric-

magnetic duality frame). The breaking of U(8) to its subgroup SU(8) through the presence

of the ε-tensor also vitiates other parts of the proof in [13]: in fact, all arguments relying

on selfduality or anti-selfduality (e.g. in the later equations (5.11) and (5.25)) fail for

ω 6= 0, π/2 for precisely this reason.
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The conclusion is therefore that the embedding of ω-deformed SO(8) gaugings into

11D supergravity has to be effected based on the 4D theory written in the SL(8) covariant

formulation. This implies that one has to deal with an electric-magnetic duality frame that

is not purely electric, while the concept of magnetic charges does not exist in the context

of eleven dimensions. The formulation of the 4D theory that accomplishes this in four

dimensions, is the embedding-tensor formulation of maximal N = 8 supergravity given

in [4]. In this approach all the couplings of the ungauged theory retain their original form

given in [5], but the SO(8) generators will change and will involve magnetic components.

In the embedding tensor formalism there are also magnetic gauge fields that couple to

these magnetic components, but at the same time there are additional tensor fields with

certain gauge invariances and constraints that ensure that 28 linear combinations of the

electric and magnetic gauge fields are suppressed. Therefore only 28 gauge fields remain

which will correspond to ω-dependent linear combinations of the original 28 electric and

28 magnetic gauge fields. A natural question is therefore whether some of the ingredients

of the embedding tensor formalism will also play a role in this context and reveal how the

magnetic sector of the 4D theory can emerge in a possible embedding in 11D supergravity

for arbitrary values of ω.

Let us therefore further clarify some details of the 4D embedding tensor approach

in the SL(8) frame. Casting the results of [4] in this frame shows that the electric and

magnetic gauge fields transform under supersymmetry as,

δAµ
IJ = − 1

2

(
uij

IJ + vijIJ
)(
ǭkγµχ

ijk + 2
√
2 ǭiψµ

j
)
+ h.c. ,

δAµIJ =− 1

2
i
(
uij

IJ − vijIJ
)(
ǭkγµχ

ijk + 2
√
2 ǭiψµ

j
)
+ h.c. . (4.14)

Obviously the identification of these ‘magnetic’ gauge fields in 11D supergravity should be

a crucial element in establishing a possible 11D origin of the ω-deformed theories.

Another aspect concerns the relation between the 4D T -tensors and the 11D theory.

In 4D the T -tensor is generated by the embedding tensor that defines how the 56 gauge

fields couple to the generators of the group E7(7), and therefore to the electric and the

magnetic generators. The latter generate composite electric ‘connections’ BIJ and AIJ ,

belonging to the 63 and 70 representations of SU(8), which together comprise the 133

representation of E7(7). Likewise there are also magnetic ‘connections’ BIJ and AIJ .7

Obviously these connections do not constitute vectors in some underlying continuous space,

but nevertheless they are the straightforward generalization of the space-time connections

Bµ and Aµ that are already present in the ungauged supergravity. For instance, the Bµ

provide the composite gauge fields for the SU(8) gauge group.

In the locally SU(8) invariant formulation of 11D supergravity, there is a similar sit-

uation, namely there exist connections BM and AM , but now these are vector fields in

the 11D space-time, decomposing into the 4D vectors Bµ and Aµ, and the 7D vectors

Bm and Am. These connections are present in the supersymmetry transformations of the

7In [4] these ‘connections’ were denoted by QM and PM , where the index M is an index belonging to the

56 representation of E7(7), which decomposes into the electric and magnetic 28-dimensional representations

of SL(8).
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fermion fields. But they also emerge as composite E7(7) connections in the so-called gener-

alized vielbein postulate, which expresses the fact that the generalized vielbein is covariantly

constant [16]. Obviously the connections Bm and Am are expected to be related to the

analogous ‘connections’ BIJ and AIJ (and possibly their magnetic duals) that appear in

the 4D theories. Indeed, this expectation is precisely confirmed for the case of the original

ω = 0 supergravity as was exhibited in [13], where the connections Bm and Am yield the

electric T -tensor in the SL(8) duality frame.

5 Dual quantities and the non-linear flux ansatz

In the past the question whether 11D supergravity possesses certain structures in the

context of a lower-dimensional formulation that more fully exhibits the duality symmetry,

has been analyzed in the case of 3D where the duality group equals E8(8), implying a kind

of ‘generalized geometry’ based on E8(8) [20]. This effort (as well as more recent efforts in

connection with ‘generalized geometry’) was based on a quest for further unification, while

in the context of this paper one is confronted with a more concrete motivation, namely of

how to reconcile the deformed SL(8) supergravities in 4D with the full 11D theory. Another

main difference is that in 4D we have the possibility of testing the various formulas for

non-trivial compactifications, whereas in 3D most gaugings cannot be obtained from (and

thus not compared with) spontaneously compactified solutions of the 11D theory. A rather

surprising consequence of the present analysis is that we are in this way led to a simple

formula for the non-linear flux ansatz!

As was pointed out in the previous section, it is obviously important in this context to

have both electric gauge fields and their dual magnetic ones. Taking this as a guideline, we

are led to ask whether the 11D theory contains such dual gauge fields, and whether those

have a relation to components of the three-form tensor fields AMNP . The latter fields were

avoided in the analysis of [13], because the equations of motion and the supersymmetry

variations of 11D supergravity only involve the four-form field strengths, and the truncation

to 4D usually involves tensor-scalar dualities which require more detailed knowledge of the

truncated Lagrangian. Furthermore, for the S7 compactification of 11D supergravity all

28 spin-1 degrees of freedom are known to reside in the Kaluza-Klein vector Bµ
m according

to (4.7). By contrast, for the toroidal truncation of [11] only seven (electric) spin-1 degrees

of freedom originate from Bµ
m, while the remaining 21 (magnetic) spin-1 degrees of freedom

reside in Aµmn.

We therefore proceed on the assumption that the dual magnetic gauge fields are con-

tained in the fields

Bµmn ≡ Aµmn −Bµ
pApmn , (5.1)

which follow from the standard Kaluza-Klein ansatz and define covariant vector fields in 4D.

A somewhat subtle calculation (see [16] and appendix) shows that these fields transform
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as follows under supersymmetry,

δBµmn = − i∆−1/2

[
1

48
(Γmn)AB +

1

8

√
2Amnp (Γ

p)AB

] (
2
√
2 ǫAψµ

B + ǭCγµχ
ABC

)
+ h.c. ,

(5.2)

where again all redefinitions required in the passage from 11D to 4D must be taken into

account. As for (4.3), this result still reflects the full 11D situation since we have not

imposed any restrictions on the dependence on the internal coordinates ym. Remarkably,

the spinor bilinears that appear in (5.2) are exactly as in δBµ
m, as well as in the 4D

supersymmetry variations of the electric and magnetic gauge fields, δAµ
IJ and δAµIJ , that

follow from the embedding tensor formalism (cf. 4.14) . This indicates that we are dealing

with a dual generalized vielbein, in terms of which the supersymmetry variations of Bµ
m

and Bµmn acquire the same form,

δBµ
m =

1

8

√
2 emAB

(
2
√
2 ǭAψµ

B + ǭCγµχ
ABC

)
+ h.c. ,

δBµmn =
1

8

√
2 emnAB

(
2
√
2 ǭAψµ

B + ǭCγµχ
ABC

)
+ h.c. . (5.3)

Here the normalization of emnAB has been chosen such that the two factors on the right-

hand side of the above two equations are equal. The generalized vielbein (4.1) is thus

complemented by the following new vielbein-like object

emnAB = − 1

12
i
√
2∆−1/2

[
em

aen
b
(
ΦTΓabΦ

)
AB + 6

√
2Amnp

(
ΦTΓpΦ

)
AB

]
,

emn
AB ≡

(
emnAB

)∗
, (5.4)

characterized by a pair of lower world indices m,n. Note that this new vielbein is complex

even in the special gauge Φ = 1l. It remains to determine its supersymmetry variation. In

analogy with the third equation of (4.3), which was originally derived in [16], one finds

that both vielbeine transform uniformly,

δemAB = −
√
2ΣABCD e

mCD ,

δemnAB = −
√
2ΣABCD emn

CD . (5.5)

We relegate a derivation of this result to appendix A, where we also summarize a number of

other relevant definitions. The new vielbein (5.4) and the SU(8) covariant supersymmetry

variations (5.5) are in precise analogy with results found for the 3 + 8 split appropriate to

D = 3 dimensions [20].

Defining

emn ij(x, y) ≡ emnAB(x, y) ηi
A(y) ηj

B(y) , emn
ij ≡ (emn ij)

∗ , (5.6)

one can now derive certain relations for products of the generalized vielbein, in analogy to

the Clifford relation (4.11). The most obvious one is,

emn ij e
p ij = −8∆−1 gpq Amnq , (5.7)
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which defines Amnp in terms of the generalized vielbeine. This formula is the analog of

the corresponding formula for the inverse densitized metric ∆−1gmn, obtained by tracing

the Clifford relation (4.11). An important consequence of that formula was the non-linear

metric ansatz [13, 21],

∆−1gmn(x, y) =
1

8
KmIJ(y)KnKL(y)

[
(uijIJ + vijIJ)(uij

KL + vijKL)
]
(x) , (5.8)

where we note that explicit symmetrization in the indices m and n is not necessary owing

to the properties of the matrices u and v. With the previously derived formulas (4.14)

and (5.3) we can now deduce, in complete analogy with (4.10), a similar ansatz for the

dual guage field and the dual vielbein in the truncation of the 11D to the 4D fields, viz.

Bµmn(x, y) = − 1

4

√
2λKmn

IJ(y)AµIJ(x) ,

emn ij(x, y) = iλKmn
IJ(y)

[
uij

IJ − vijIJ
]
(x) , (5.9)

where λ is an undetermined constant and

Kmn
IJ(y) ≡ ◦

ema(y)
◦
enb(y) η

I
A(y) Γ

abAB ηJB(y) . (5.10)

Using (5.7), (5.8) and (5.9) we get8

iλKmn
IJ(y)KpKL(y)

[
(uijIJ − vijIJ)(uij

KL + vijKL)
]
(x) =

= −KpIJ(y)KqKL(y)
[
(uijIJ + vijIJ)(uij

KL + vijKL)
]
(x)Amnq(x, y) , (5.11)

where we remember that the curved indices on the Killing vector K and its derivative are

always to be raised and lowered with the round S7 metric. Using properties of the matrices

u and v given in [5] this can be rewritten as

iλKmn
IJ KpKL

[
vijIJvijKL − vijIJv

ijKL + uij
IJvijKL − uijIJvijKL

]
=

=
[
8

◦
g pq −KpIJKqKL

(
vijIJvijKL + vijIJv

ijKL + uij
IJvijKL + uijIJvijKL

)]
Amnq .

(5.12)

Observe that both sides of this equation are purely imaginary provided that Amnp is real,

which is precisely as expected. Alternatively the reality can be proven from the fact that

emn ij e
p ij = emn

ij epij , which follows by making use of the properties of the matrices u and

v. The expressions (5.11) and (5.12) are the analog of the non-linear metric ansatz (5.8),

but now for the three-form field Amnp(x, y) (alias the ‘flux field’). The formulae (5.11)

and (5.12) are rather similar to the conjectured formula (6.2) in [21]. Both results reproduce

the same linear ansatz for Amnp. This illustrates the difficulty in obtaining consistent non-

linear ansätze: there is no way of guessing the correct answer from the linearized expression!

To verify that (5.9), and hence (5.11) are really correct we perform a number of con-

sistency checks. One such check concerns the constraint,

emn ij e
n ij = 0 , (5.13)

8Although Amnp is only determined up to an (x, y)-dependent tensor gauge transformation, the trunca-

tion fixes the y-dependence so that Amnp is obtained in a particular gauge.
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which follows from (5.7) and the antisymmetry of Amnp. To prove it we make use of the

identity

Kmn
IJKnKL = −4 δ[J [KKm

L]I] +Kmn
[IJKnKL] (5.14)

Now we observe that the first two terms in brackets on the left-hand side of (5.12) are anti-

symmetric under interchange of the index pairs [IJ ] and [KL], whence for them, only the

first term on the right-hand side of (5.14) contributes, so the result of the index contraction

is proportional to

δ[J [KKm
L]I]
[
uij

IJuijKL − vijIJv
ijKL

]
= 0 . (5.15)

The vanishing of this expression follows from the fact that, with uncontracted SU(8) index

pairs [ij] and [kl],

δ[J [KKL]I]
m

[
uij

IJuklKL − vijIJv
klKL

]

must belong to the Lie algebra of E7(7) and must therefore vanish when traced with δijkl
over the SU(8) index pairs [ij] and [kl]. The same argument applies to the remaining two

terms in the bracket on the left-hand side of (5.12) which are each symmetric under the

interchange [IJ ] ↔ [KL], leaving us with

Kmn
[IJKnKL]

[
uij

IJvijKL − uijIJvijKL

]
= 0 , (5.16)

because Kmn
[IJKnKL] is (complex) selfdual.

A stronger test, which implies the previous one, is to verify the complete anti-symmetry

of Amnp in the indices [mnp] from the definition (5.11). Since the anti-symmetry in

[mn] is manifest we need only ascertain the anti-symmetry with respect to the other in-

dex pair [mp], or equivalently [np]. This is equivalent to checking the anti-symmetry of

(∆−1gnr)(∆−1gps)Amrs in the indices [np]. Using (5.14) this requires

KnKLKpPQ
(
− 4 δK

′MKL′N
m +KK′L′MN

m

)

×
(
ukl

KL + vklKL

)(
uklK′L′ + vklK

′L′)(
uij

MN − vijMN

)(
uijPQ + vijPQ

)
(5.17)

to be anti-symmetric in [np]. We now invoke the previous argument to show that the

expression involving the (u + v)(u − v) factor in the middle is E7(7) Lie-algebra valued in

the index pairs [ij] and [kl] and hence can be written as δ[k[i Λ
l]
j], with Λi

j anti-hermitean

and traceless. Hence we are left with the task to show that

Λk
i ×

(
KnKLKpPQ +KpKLKnPQ

)(
ukl

KL + vklKL

)(
uilPQ + vilPQ

)
= 0 . (5.18)

Now we invoke the E7(7) Lie algebra once again: upon symmetrization under [KL] ↔ [PQ]

it follows that

uKL
ikΛ

i
ju

jk
PQ + vKLikΛ

i
jv

jkPQ ∼= uKL
ikΛ

i
ju

jk
PQ + vPQikΛ

i
jv

jkKL

= uKL
ikΛ

i
ju

jk
PQ − vKLikΛi

jvjkPQ

= δ[K[PX
L]

Q] (5.19)
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is Lie-algebra valued in the index pairs [KL] and [PQ] with an anti-hermitean and traceless

matrix XI
J . Hence, this contribution is proportional to

(
KnKLKpKQ +KnKLKpKQ

)
XK

Q ∝
◦
g npXK

K = 0 . (5.20)

For the remaining two terms we use for the first term that

uik
KLΛi

jv
jkPQ + uik

PQΛi
jv

jkKL = uik
KLΛi

jv
jkPQ − vikKLΛl

iuik
PQ

= complex selfdual in [KLPQ] . (5.21)

For the second term we note,

vikKLΛ
i
ju

jk
PQ + vikPQΛ

i
ju

jk
KL = −

(
uikKLΛi

jvjkPQ − vikKLΛ
i
ju

jk
PQ) , (5.22)

which equals minus the hermitean conjugate of the first term (5.21). Hence, after con-

traction with Kn[KLKpPQ], the sum of the two terms gives zero. Therefore Amnp(x, y) as

determined from (5.11) is indeed fully anti-symmetric.

6 Outlook

The present work opens unexpected new perspectives on 11D supergravity, and the link

between this theory and the duality symmetries of 4D maximal supergravity. Although the

duality between electric and magnetic vector fields is normally viewed as a phenomenon

strictly tied to four space-time dimensions, our analysis has revealed 11D structures directly

associated to electric-magnetic vector duality, yielding as a by-product the long sought

formula for the non-linear flux ansatz. These new structures appear in the form of a dual

generalized vielbein emnAB, whose properties need to be explored further. For instance

there is the question whether this object obeys a generalized vielbein postulate analogous

to the one satisfied by emAB [16]. The fact that the solution of the vielbein postulate is not

unique, but only determined up to an homogeneous contribution [14] is likewise expected

to play a role here.

The subtleties regarding the emergence of electric vs. magnetic gauge fields have not

been explored much in the present Kaluza-Klein context. Therefore we briefly return to

the issue of the origin of the dual vector fields from 11 dimensions, and to the question

whether and how the ω-rotation might be implemented in eleven dimensions. One im-

portant feature here is that the distribution of the 28 physical spin-one degrees between

electric and magnetic vectors depends on the compactification. This is very similar to what

happens in four dimensions in the context of the embedding tensor formalism, where the

embedding tensor determines which combination of the electric and magnetic gauge fields

will eventually carry the physical spin-one degrees of freedom. For the S7 compactification,

all 28 vector fields reside in the Kaluza-Klein vector field Bµ
m(x, y) and are electric. By

contrast, for the torus reduction of [11] there are only seven electric vectors associated to

the seven Killing vectors on T 7, while the remaining 21 vectors come from Aµmn and are

magnetic. For the S7 compactification, this raises the question how the theory manages to
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prevent the massless excitations contained in Aµmn from appearing as independent spin-one

degrees of freedom on the mass shell.

One may wonder why, now that a number of the appropriate dual quantities in the

11D theory has been identified, it is not possible to give a more precise scenario of how

the ω-deformations might be embedded. Let us recall that in [13], the T -tensor of the 4D

supergravity followed from the composite connections Bm and Am, which belong to the 133

representation of E7(7). The actual expressions for these connections in the truncation were

determined by solving the generalized vielbein postulate. When going through the actual

derivation in [13], it is difficult to envisage a modification of the solution that would enable

one to include the magnetic duals. On the other hand, as mentioned above, the solution of

the generalized vielbein postulates is not unique [14], a fact that could possibly be explored

to somehow include the magnetic duals. However, it was also noted in that work that the

ambiguities in Bm and Am are such that they will cancel in the final expression for the

T -tensor. Clearly, it is still premature to draw any definite conclusions from this, given

the fact that the dual structures have not been explored extensively so far, but we expect

that the further analysis of these structure, and in particular, of the generalized vielbein

postulate for the new vielbein may provide valuable hints as to the ‘hiding place’ of the

embedding tensor in eleven dimensions.

To better understand the possible origin of the full set of 28 vectors and their 28

magnetic duals from eleven dimensions it may be helpful to recall that the 11D theory also

allows for dual fields, although these do not appear in the Lagrangian and transformation

rules of [12]. These are the 6-form field AMNPQRS (dual to the three-form field AMNP ) and

the ‘dual graviton’ hM |N1···N8
(which is dual to the linear graviton field hMN ; see e.g. [25]

and references therein). The latter belongs to a non-trivial Young tableau representation,

which is fully antisymmetric in the last eight indices N1 · · ·N8 and obeys the irreducibility

constraint h[M |N1···N8] = 0. We note here that the incorporation of the dual graviton has so

far been achieved only at the linearized level, and one may therefore anticipate difficulties in

re-formulating the 11D theory in a way that would consistently incorporate these dual fields

at the interacting level, and in a way maintaining full 11D covariance.9 Upon dimensional

reduction on a 7-torus these fields give rise to the full set of 28 + 28 vector fields (cf.

eqs. (4.2) and (5.1) for the first two lines)

EM
A → Bµ

m ∈ 7

AMNP → Bµmn ∈ 21

AMNPQRS → B̃µnpqrs ∈ 21

hM |N1···N8
→ Bm|µn1···n7

≡ B̃µm εn1···n7 ∈ 7 (6.1)

at least in the linearized analysis (note that Bm|µn1···n7
does satisfy the irreducibility con-

straint appropriate to the dual graviton field, because the Latin indices only run over

1, . . . , 7). Here we have indicated the SL(7) (or GL(7)) representation on the right-hand

9In fact, it has been known for a long time that even the consistent incorporation of the dual 6-form

field in the Lagrangian encounters problems, although this field can be incorporated in the equations of

motion [26, 27].
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side. These representations can be re-combined into the proper SL(8) representations of the

electric and magnetic vectors of N = 8 supergravity in accordance with the decomposition

28⊕ 28 → 7⊕ 21⊕ 7⊕ 21 (6.2)

This is consistent with the fact that the electric and magnetic fields must transform in

conjugate (‘dual’) representations. However, as we said, the distribution of the physical

spin-one degrees of freedom between these fields depends on the compactification. Of

course, for the torus reduction the (ungauged) 4D theory cannot tell the difference between

‘electric’ and ‘magnetic’, but the distinction does become relevant for the gauged theory,

as is evident from the existence of inequivalent ω-deformed SO(8) gaugings [1], and from

our discussion in section 2.

The decomposition (6.2) suggests that our set of vielbeine (emAB , emnAB) is still in-

complete, and that there should exist a complementary set (emAB , e
mn

AB) of yet another

set of 28 vielbein components that would complete the generalized vielbein to a full 56-

bein in D = 11 dimensions — this was, in fact, the conclusion reached in [20] for E8(8)

and the 3+8 decomposition of 11D supergravity. Accordingly, the supersymmetry trans-

formations (4.3) would have to generalize to this hypothetical 56-bein, and the vector

transformations (4.9) and (4.14) would likewise have to follow from a single variation in

11D. However, in order to derive these relations we would have to know the full non-linear

11D transformations of the dual fields in (6.1)! The ω-dependent vielbein ansatz (4.12)

would then simply follow from

emij(ω;x, y) = cosω emij(x, y) + sinω emij(x, y) (6.3)

thus involving a U(1) rotation between the Kaluza-Klein vector Bµ
m and the dual graviton

vector B̃µm from (6.1). This indicates why the ω-rotation may not be implementable

in terms of the vielbein components emAB and emnAB only. We note that the above

combination breaks GL(7) invariance (and hence diffeomorphism invariance in the internal

dimensions); in fact, it just corresponds to the U(1) rotation coming from the Ehlers

SL(2,R) symmetry which enlarges the E7(7) of the 4D theory to the E8(8) symmetry of 3D

maximal supergravity.

Note added in proof. Since this paper was submitted it has been shown that the

parameter λ introduced in (5.9) takes the universal value λ = 1
2

√
2 by considering the

non-linear flux formula in a variety of non-trivial backgrounds [28].
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A The supersymmetry variation of the dual generalized vielbein

Here we present the evaluation of the supersymmetry transformation (5.5) of the dual

generalized vielbein, defined in (5.4). The derivation proceeds in close analogy with the

derivation of the third equation in (4.3) given originally in [16] (for further details the

reader is invited to consult eqs. (3.10) - (3.15) of that reference).

First let us summarize some of the definitions introduced in [16]. The 11D fermion

fields ΨM and gamma matrices Γ̃A are decomposed as,

ΨM (x, y) =

{
Ψµ(x, y) ,

Ψm(x, y) ,
Γ̃A =

{
Γ̃α = γα ⊗ 1l ,

Γ̃a = γ5 ⊗ Γa ,
(A.1)

where the vielbeine eµ
α and em

a have been defined in (4.2) and the gamma matrices Γa

satisfy,

{Γa, Γb} = 2 δab 1l , Γ[aΓb · · ·Γg] = −iεabcdefg 1l. (A.2)

Furthermore the resulting chiral spinors, which carry upper and lower SU(8) indices

A,B, . . ., are defined by

ψµ
A(x, y) =

1

2
(1 + γ5) e

−iπ/4∆1/4

(
Ψµ −Bµ

mΨm − 1

2
γµ∆

−1/2ΓmΨm

)

A

,

ψµA(x, y) =
1

2
(1− γ5) e

iπ/4∆1/4

(
Ψµ −Bµ

mΨm +
1

2
γµ∆

−1/2ΓmΨm

)

A

,

ǫA(x, y) =
1

2
(1 + γ5) e

−iπ/4∆1/4 ǫA ,

ǫA(x, y) =
1

2
(1− γ5) e

iπ/4∆1/4 ǫA ,

χABC(x, y) =
3

4

√
2 (1 + γ5) e

−iπ/4∆−1/4iΓa[ABΨ
a
C] ,

χABC(x, y) =
3

4

√
2 (1− γ5) e

iπ/4∆−1/4iΓa[ABΨ
a
C] , (A.3)

where for the 11D spinors on the right-hand side we made no distinction between upper

and lower spinor indices and suppressed the dependence on xµ and ym.

To derive the second equation in (5.5), we first evaluate the right-hand side of the

equation, going ‘backwards’ from the SU(8) covariant expressions as in [11, 16], but sup-

pressing the SU(8) compensating phase Φ. Using SO(8) Fierz identities given in [16], we

obtain in this way

−
√
2
(
ǭ[AχBCD+

1

24
εABCDEFGH ǭ

EχFGH
)
emn

CD

= − 1

12
i
√
2∆−1/2

{
− 1

32
ǭ(1− γ5)(ΓbcΓaΓmn + ΓmnΓaΓbc)Ψ

a Γbc
AB

+
1

16
ǭ(1− γ5)(ΓbΓaΓmn + ΓmnΓaΓb)Ψ

a Γb
AB

− 1

4
ǭ(1− γ5)ΓmnΨ

a ΓaAB

− 1

12
ǭ(1 + γ5)Γb[mΨn] Γ

b
AB
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− 1

12
ǭ(1 + γ5)Γ

bΨ[m Γn]bAB

− 1

4
ǭ(1 + γ5)Γ[mnΨ

a Γa]AB

− 1

4
ǭ(1 + γ5)Γ[aΨ

a Γmn]AB

− 1

96
ǭ(1 + γ5)(Γd[mΓbcΓd + ΓdΓbcΓd[m)Ψn] ΓbcAB

+
1

48
ǭ(1 + γ5)(Γd[mΓbΓd + ΓdΓbΓd[m)Ψn] ΓbAB

− 1

32
ǭ(1 + γ5)(Γ[aΓ

bcΓmn] + Γ[mnΓ
bcΓa])Ψ

a ΓbcAB

+
1

16
ǭ(1 + γ5)(Γ[aΓ

bΓmn] + Γ[mnΓ
bΓa])Ψ

a ΓbAB

}
, (A.4)

This result should be compared to the left-hand side of the second equation in (5.5), which

arises from the variation of (5.4) as obtained from the 11D variations of the siebenbein

em
a and the three-form field Amnp,

− 1

12
i
√
2
{
δ
(
∆−1/2em

aen
b
)
ΓabAB + 6

√
2
(
δAmnp

)
∆−1/2 Γp

AB

}

= − 1

12
i
√
2∆−1/2

{
− ǭγ5Γ

pΨ[m Γn]pAB − 1

4
ǭγ5ΓaΨ

a ΓmnAB − 3

2
ǭΓ[mnΨp] Γ

p
AB

}
. (A.5)

where we suppressed the contribution proportional to Amnp δ
(
∆−1/2ea

p
)
Γa

AB, as this part

of the variation is already taken care of by the calculation in [16], which corresponds to the

result in the first line of (5.5). As it turns out, the two contributions (A.4) and (A.5) are

equal provided we add an infinitesimal SU(8) transformation to (A.5) acting on emnAB,

δSU(8)emnAB =2ΛC
[A emnB]C

= − 1

12
i
√
2∆−1/2

[
− 1

8
ǭΓabΨc ΓabcmnAB+

3

4
ǭΓ[mnΨa] Γ

a
AB (A.6)

− 1

2
ǭγ5Γa[mΨa Γn]AB+

1

2
ǭγ5Γ

aΨ[m Γn]aAB− 1

2
ǭγ5Γ[mΨa Γn]aAB

]
,

where the parameter of this transformation takes the form

ΛA
B = −ΛB

A ≡ 1

8
ǭγ5ΓabΨ

bΓa
AB − 1

8
ǭγ5ΓaΨbΓ

ab
AB − 1

16
ǭΓabΨcΓ

abc
AB . (A.7)

The expression for the SU(8) parameter (A.7) is identical to the one given in eq. (3.13)

of [16], where it was found by determining the SU(8) covariant form of the supersymmetry

transformation of emAB. This remarkable coincidence is not only crucial for the correctness

of the second equation (5.5), but it is also another non-trivial consistency check of the SU(8)

invariant reformulation of 11D supergravity presented in [16].
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