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Most mitochondrial proteins are encoded in the nucleus. They are synthesized as precursor forms in the
cytosol and must be imported into mitochondria with the help of different protein translocases. Distinct
import signals within precursors direct each protein to the mitochondrial surface and subsequently onto
specific transport routes to its final destination within these organelles. In this review we highlight common
principles of mitochondrial protein import and address different mechanisms of protein integration into
mitochondrial membranes. Over the last years it has become clear that mitochondrial protein translocases
are not independently operating units, but in fact closely cooperate with each other. We discuss recent studies
that indicate how the pathways for mitochondrial protein biogenesis are embedded into a functional network
of various other physiological processes, such as energy metabolism, signal transduction, and maintenance of
mitochondrial morphology. This article is part of a Special Issue entitled: Protein Import and Quality Control in
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1. Introduction

Mitochondria are ubiquitous organelles surrounded by two mem-
branes, the outer and the inner membrane, which confine two aqueous
compartments, the matrix and the intermembrane space (IMS). Tubular
invaginations of the inner mitochondrial membrane form the cristae,
which harbor the enzyme complexes of the oxidative phosphorylation
system. In addition to their central role in ATP synthesis mitochondria
accommodate central metabolic pathways, like the Krebs cycle and the
[-oxidation of fatty acids. They provide cells with a large number of
metabolites, such as amino acids and steroids, and are involved in the
formation of heme and iron-sulfur clusters. Based on proteomic analyses
it has been estimated that mitochondria contain ~1500 different proteins
in mammals and ~1000 different proteins in yeast [1-3]. Because of their
endosymbiotic origin mitochondria still contain their own small genome
encoding for a limited amount of proteins that are mostly subunits of re-
spiratory chain complexes and the F;F,-ATPase synthase. Thus, nearly all
mitochondrial proteins are encoded by nuclear genes, synthesized as
precursor forms on cytosolic ribosomes and subsequently transported
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into the organelle. Our knowledge on the general principles of protein
import into mitochondria mainly originates from genetic and biochem-
ical studies with the model organism baker's yeast (Saccharomyces
cerevisiae). Most of the mechanisms described in the following were
initially discovered in S. cerevisiae, but the vast majority of the protein
machineries involved were later found to be highly conserved in higher
eukaryotes (Fig. 1). It is widely accepted that import of precursor pro-
teins into mitochondria generally occurs in a post-translational manner.
For some proteins, like Sod2 or fumarase, however, there are clear indi-
cations for a co-translational import mechanism [4,5]. Cytosolic ribo-
somes translating mRNAs for mitochondrial precursor proteins have
been found in proximity to the outer mitochondrial membrane [6-8].
Specific signals within both the 3’ untranslated and the coding regions
of these mRNAs have been shown to mediate their targeting [9-12].
In yeast, recruitment of mRNAs to the mitochondrial surface involves
the Puf3 protein and the outer membrane precursor protein receptors
Tom20 and Tom70 [13-16].

Precursor protein targeting to mitochondria and sorting to distinct
mitochondrial subcompartments requires the presence of specific import
signals within the transported polypeptides (Fig. 1). The most frequently
found mitochondrial import signal is an N-terminal extension termed
presequence. These presequences are amphipathic a-helical segments
with a net positive charge and show a prevalent length distribution of
15 to 55 amino acids [17]. In general, N-terminal presequences are
proteolytically removed after import by the mitochondrial processing
peptidase and other proteases [18,19]. An interesting exception is the
helicase Hmi1, which is channeled into mitochondria by a presequence-
like structure at its C-terminus [20]. Often less well defined internal signal
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Fig. 1. Different targeting signals direct nuclear encoded precursor proteins on specific
transport routes to their final localization within mitochondria. After translocation of
precursors through the general translocase of the outer membrane (TOM complex), dis-
tinct downstream import pathway diverge in the intermembrane space (IMS): Biogenesis
of 3-barrel proteins of the outer membrane (OM) requires the small Tim chaperones of the
IMS and the sorting and assembly machinery (SAM). Proteins of the IMS that contain
cysteine-rich signals (Cx,C) are imported via the mitochondrial intermembrane space im-
port and assembly (MIA) pathway. Carrier proteins of the inner membrane (IM) are trans-
ported with the help of the small Tims and the translocase of the inner membrane 22
(TIM22 complex). Presequence-containing proteins are inserted into the inner membrane
or imported into the matrix by the translocase of the inner membrane 23 (TIM23 com-
plex; presequence translocase). Matrix translocation requires the activity of the pres-
equence translocase-associated import motor (PAM). Presequences are proteolytically
removed by the mitochondrial processing peptidase (MPP) upon import. A, membrane
potential across the inner mitochondrial membrane.

sequences direct the transport of other mitochondrial proteins. Different
forms of these internal import signals target the precursors to diverse
destinations within mitochondria and will be further discussed in the re-
spective sections of this review.

To prevent misfolding and aggregation, hydrophobic segments of
mitochondrial precursor proteins are shielded from the aqueous cyto-
solic milieu by dedicated chaperones that escort them to the organelle's
surface [21-23]. The outer membrane receptors Tom20 and Tom70
serve as initial docking sites for precursor proteins and function as
quality control checkpoints, which only permit access to mitochondria,
if a given protein contains an appropriate targeting signal. Except for
some o-helical outer membrane proteins, virtually all precursors
initially enter mitochondria by passing a common entry gate formed
by the Translocase of the Outer Membrane (TOM complex). Upon trans-
location across the outer membrane different transport routes exist that
are specifically required for transport of a subset of precursor proteins to
their final destination (Fig. 1). Many IMS proteins are imported by the
Mitochondrial Intermembrane space import and Assembly (MIA) ma-
chinery, which couples sorting of client proteins to their oxidative fold-
ing through a disulfide relay mechanism. Outer membrane (3-barrel
proteins are bound by small Tim chaperones of the IMS that transfer
precursors to the Sorting and Assembly Machinery (SAM), where they
are integrated into the outer membrane. Mitochondrial metabolite carri-
er proteins are also guided by small Tim chaperones through the IMS and
subsequently integrated into the inner membrane by the Translocase of
the Inner Membrane 22 (TIM22 complex) in a membrane potential
(Ays)-driven manner. Presequence-containing precursor proteins are
directly passed on from the TOM complex to the Translocase of the
Inner Membrane 23 (TIM23 complex; presequence translocase) without

the need for soluble IMS chaperones. Dependent on the presence or
absence of additional import signals, the TIM23 complex mediates
either the translocation of presequence-carrying precursors into the ma-
trix or their lateral sorting into the inner membrane. Whereas lateral
membrane integration depends on Ays as the sole energy source,
complete import into the matrix additionally requires the ATP-driven
Presequence translocase-Associated import Motor (PAM).

2. Protein translocation across the outer membrane:
the TOM complex

The TOM complex is a particularly fascinating protein translocase, as
it mediates the transport of various different types of precursors with
highly diverse import signals across the outer membrane and then se-
lectively distributes them to multiple downstream protein sorting ma-
chineries. Tom40, the central component of the TOM complex, is
integrated into the outer membrane in a 3-barrel conformation and
forms aqueous pores, through which mitochondrial precursor proteins
pass [24-26]. Additional subunits support or modulate the quaternary
structure of the TOM complex and/or function as receptors: Tom20,
Tom?70/Tom71, Tom22, and the small Tom proteins Tom5, Tom6 and
Tom7. The primary receptors Tom20 and Tom70/Tom71 selectively
bind to different subsets of mitochondrial precursor proteins [27].
Tom20 mainly recognizes N-terminal presequences by binding the hy-
drophobic face of their amphipathic a-helical conformation [28,29].
Precursor proteins with hydrophobic internal targeting signals are pref-
erentially bound by Tom70 and Tom71 [30,31]. Tom70 and Tom71 have
high sequence homology and overlapping functions, however Tom71 is
expressed only in small amounts [32-34]. Apart from their role in pro-
tein import, the Tom70 and Tom71 receptors have been suggested to
participate in mitochondrial morphology maintenance by recruiting
the morphogenesis factor Mfb1 to the organellar surface [35]. The cen-
tral receptor Tom22 is critical for the integrity of the TOM complex and
exposes presequence binding domains to both the cytosol and the IMS
[36-39]. Tom5 is thought to assist the transfer of precursor proteins
from Tom22 to the Tom40 channel and to support the biogenesis of
Tom40 [40,41]. Tom6 and Tom7 antagonistically regulate the dynamic
assembly of the TOM complex: Whereas Tom6 promotes TOM biogen-
esis through its association with early assembly intermediates, Tom7
destabilizes both intermediate and mature TOM complex forms, likely
to facilitate the incorporation of newly imported subunits [42-45].
Interestingly, the assembly and activity of the TOM complex was re-
cently shown to be controlled by cytosolic protein kinases: Whereas ca-
sein kinase 2 (CK2) phosphorylates Tom22 to facilitate its biogenesis,
the receptor activity of Tom70 is decreased through phosphorylation
by protein kinase A [46,47]. These findings demonstrate that the func-
tional state of the TOM complex is intimately linked to large-scale reg-
ulatory circuits of cellular physiology.

The pathway of precursor passage through the TOM complex is best
understood for presequence-containing proteins. After their initial rec-
ognition by the Tom20 receptor, precursors bind to cytosolic domains
of Tom22 and Tomb5, engage a polar slide formed within the pore of
Tom40 and finally contact an acidic binding site on the trans side of
the TOM complex formed by Tom40, Tom7 and the IMS domain of
Tom?22 [36,37,48-51]. The increasing affinity of these interactions is
considered to drive the inward-directed movement of precursors. For
presequence-containing proteins, the transport across the outer mem-
brane is tightly coupled to the translocation across or into the inner
membrane via the TIM23 machinery through a direct hand-over of sub-
strates as soon as they emerge from the TOM complex [52,53].

3. Biogenesis of outer membrane B-barrel proteins:
the SAM complex

The presence of membrane proteins with a 3-barrel conformation
is a key feature of the outer membrane of Gram-negative bacteria. In
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eukaryotic cells B-barrel proteins are exclusively found in the outer
membranes of endosymbiotic organelles, as they originate from
prokaryotic ancestors [54]. Porin, Tom40, Sam50 and Mdm10 are
3-barrel proteins of the outer mitochondrial membrane. (3-barrel pre-
cursors are recognized by the receptors of the TOM complex and guided
through the Tom40 pore by a series of hydrophobic binding sites
that are thought to prevent precursor aggregation in a chaperone-like
manner [25,55,56]. Subsequently, precursor proteins are handed over
to soluble chaperone complexes of the IMS that are formed by the
small Tim proteins (Fig. 2). Two types of small Tim chaperone com-
plexes consisting of two homologues small Tim proteins each are
found in the IMS: the Tim9-Tim10 and the Tim8-Tim13 complex.
Tim9-Tim10 plays a crucial role in the translocation of 3-barrel proteins
and metabolite carriers [57-60], whereas Tim8-Tim13 has mainly been
implicated in the biogenesis of the Tim23 protein (see below) [61-64].
Both small Tim complexes are organized as hexameric, ring-like struc-
tures of alternating subunits that resemble a six-bladed propeller with
a central cavity [60,65].

Integration of p-barrel proteins from the IMS side into the
outer membrane is initiated by a specific import signal within
the last p-strand of the precursors. This targeting sequence has
been termed (3-signal and consists of a large polar amino acid (lysine
or glutamine), an invariant glycine and two hydrophobic amino acids
[66]. Guided by the R-signal precursor proteins are delivered from the
small Tim chaperones to the SAM complex (TOB complex) in the
outer mitochondrial membrane for folding and insertion into the lipid
bilayer (Fig. 2) [56,66-68]. The core components of the SAM complex
are conserved amongst eukaryotes and comprise the integral outer
membrane protein Sam50 (Tob55), which is a member of the Omp85
protein family, and two peripheral membrane proteins, termed
Sam35 (Tob38) and Sam37 in yeast, that are exposed to the cytosolic
side of the SAM complex [54,56,67-73]. Sam50 is integrated into the
outer membrane with its C-terminal (3-barrel domain. Electrophysio-
logical measurements have demonstrated that recombinant Sam50
forms aqueous pores across membranes [66,67]. Current models sug-
gest that Sam35 protrudes into these pores from the cytosolic side of
the SAM complex to provide a binding site for 3-signal-containing pre-
cursors [66]. It has been suggested that Sam50 oligomers constitute a
hydrophilic, proteinaceous chamber within the outer membrane
that promotes the folding of 3-barrel precursors [66,67]. Finally, release
of folded substrates into the lipid bilayer is supported by Sam37 and

the N-terminal polypeptide-transport-associated (POTRA) domain of
Sam50 [74,75]. The molecular mechanism of substrate release from
the SAM complex is unknown. Major conformational rearrangements
seem to be required to allow the escape of a 3-barrel protein from the
postulated protein folding chamber largely composed of Sam50 mole-
cules. Notably, also in the case of the TOM complex the existence of a
large central pore formed by several Tom40 molecules has been
suggested that appears to be capable of lateral release of a-helical pre-
cursor proteins into the outer membrane [76].

For the biogenesis of the Tom40 precursor the SAM complex associ-
ates with the Mdm10 protein (Fig. 2) [77,78]. A recent study indicated
that the SAM-Mdm10 complex supports the assembly of Tom40 with
the a-helical Tom22 protein [79]. Mdm10 not only associates with the
SAM complex, but is also a subunit of the Endoplasmic Reticulum
(ER)-Mitochondria Encounter Structure (ERMES). The distribution of
Mdm10 between the SAM and ERMES complexes is regulated by the
small Tom protein Tom7 [45,80,81]. The ERMES complex is composed
of the mitochondrial outer membrane proteins Mdm10, Mdm34 and
Gem1, the integral ER membrane protein Mmm1 and the adaptor pro-
tein Mdm12, and thus forms a direct physical connection between mi-
tochondria and the ER [78,82-86]. Distinct mitochondria-ER contact
sites have been implicated in the coordination of phospholipid biosyn-
thesis, intracellular calcium homeostasis and programmed cell death
(apoptosis) (summarized in ref [87]). Gem1 is a calcium-dependent
GTPase that has been suggested to modulate mitochondria-ER contacts
by regulating the size and quantity of ERMES complexes [86]. However,
the exact role of ERMES in the coordination of mitochondrial and ER ac-
tivities and the role of Gem1 are still under debate [88]. Earlier studies
had shown that mutations affecting ERMES components lead to alter-
ations of mitochondrial morphology with the formation of giant globu-
lar mitochondria and defects in mitochondrial inheritance [82,89,90].
Moreover, not only Mdm10, but also other ERMES subunits are required
for the biogenesis of mitochondrial 3-barrel proteins (Fig. 2) [78]. Upon
conditional inactivation of Mmm1, 3-barrel protein assembly defects
are observed before morphological alterations of mitochondria become
evident [78]. Moreover, several mutations affecting the TOM and SAM
complexes were found to cause morphology defects similar to those
of ERMES mutants [77,78]. These findings suggest that ERMES is pri-
marily involved in protein biogenesis at mitochondria-ER contact
sites. Such a model raises the question, why protein import and
mitochondria-ER contact sites should be linked. There is currently no
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Fig. 2. Multiple mechanisms exist to integrate proteins with different transmembrane topologies into the outer mitochondrial membrane (OM). A few a-helical proteins of the
outer membrane, like Fis1, seem to insert without the help of proteinaceous translocases. OM proteins with an N-terminal a-helical membrane anchor, like Tom20 or Tom70,
and multi-spanning a-helical OM proteins, like Ugo1, depend on Mim1 for membrane integration. Tom22 is recognized by the TOM complex receptors and subsequently inserted
into the OM via the SAM complex. The SAM complex also mediates the membrane integration of 3-barrel OM proteins, which are handed over from the TOM to the SAM complex by
the small Tim chaperones Tim9-Tim10. Mdm10 has a dual function in the SAM complex and in the endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES). Further
ERMES proteins have been implicated in the biogenesis of 3-barrel proteins as well. IMS, intermembrane space.
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experimental data that gives a clear answer, but it seems plausible that
protein insertion into the outer mitochondrial membrane may be
coupled to the import of membrane phospholipids from the ER. In
any case, these intriguing relationships indicate that ERMES connects
mitochondrial protein assembly to other pathways of mitochondrial
biogenesis and function and may represent a cornerstone of a larger
organizing system that coordinates protein transport and membrane
architecture at the interface of mitochondria and ER [91].

Further evidence for the presence of an ER-mitochondria organizing
network is provided by the finding that both TOM and SAM complexes
associate with components of the recently discovered Mitochondrial
Inner membrane Organizing System (MINOS), which has also been ter-
med mitochondrial contact-site (MICOS) complex or mitochondrial or-
ganizing structure (MitOS) and is required for the maintenance of
mitochondrial inner membrane architecture [91-98]. The evolutionary
conserved core of MINOS is formed by the mitochondrial inner mem-
brane proteins mitofilin/Fcjl and Mio10 (Mos1, Mcs10; MINOS1 in
mammals). MINOS appears to represent a central integrating factor
that links mitochondrial protein import to membrane architecture:
The formation of contact sites between outer and inner mitochondrial
membranes through the interaction of mitofilin/Fcj1 with the TOM
complex was shown to facilitate protein import into the IMS via the
MIA pathway (see below) [91,92]. The mechanistic implications of the
MINOS-SAM interaction, e.g. for the biogenesis of outer membrane pro-
teins, are not understood so far. Several further observations, however,
support a model, which functionally links the MINOS, TOM/SAM and
ERMES complexes (summarized in ref. [91]): (i) Mdm10 shuttles be-
tween SAM and ERMES complexes and promotes the biogenesis of
the TOM complex. (ii) ERMES mutations affect mitochondrial protein
biogenesis, mitochondrial morphology and phospholipid transfer be-
tween ER and mitochondria. Notably, the levels of the negatively
charged phospholipid cardiolipin, which is synthesized at the inner
mitochondrial membrane, is reduced by mutations that inactivate the
outer membrane ERMES complex [83]. (iii) MINOS and ERMES are
connected to each other and to the mitochondrial phospholipid biosyn-
thesis machinery through multiple genetic interactions [94]. Taken
together, the MINOS, TOM/SAM and ERMES complexes are likely part
of an extended network that structurally and functionally connects
different intracellular membranes, regulates membrane morphology
and may facilitate the transfer of both molecules and signal information
between the mitochondrial matrix and the ER lumen.

4. Biogenesis of a-helical outer membrane proteins

Diverse targeting and insertion pathways have been identified for
the biogenesis of different classes of outer membrane proteins with
a-helical membrane-spanning segments. Tom20 and Tom70 are
membrane-anchored via single, N-terminal transmembrane domains
(signal-anchored). The outer membrane protein Mim1 supports the
insertion of these proteins into the lipid bilayer (Fig. 2) [99-101].
Like the central Tom receptor Tom22, Mim1 is phosphorylated by
CK2 [46]. Elimination of two serine residues of Mim1 that are targeted
by CK2 inhibits the biogenesis of Tom20 and Tom70 [46]. Mim1 also
assists the integration of multi-spanning outer membrane proteins,
like Ugo1 (Fig. 2) [102,103]. This process depends on the Tom70 receptor,
whereas the remainder of the TOM complex is dispensable [102-104].
No proteinaceous insertion machinery has been identified so far for
the integration of outer membrane proteins with a single C-terminal
transmembrane segment (tail-anchored), like the fission protein Fis1
[105,106]. Instead, the lipid composition of the target membrane seems
to be critical [106]. The transmembrane domains of both, signal-
anchored and tail-anchored outer mitochondrial membrane proteins
are relatively short and moderately hydrophobic [107]. Together with
their flanking positively charged residues they are thought to act as mito-
chondrial import signals. Why specifically tail-anchored proteins would
not require a proteinaceous membrane insertion machinery, is still

unclear. Both, the TOM complex and the SAM-Mdm10 complex were
shown to be involved in the biogenesis of Tom22 that comprises a cen-
tral, a-helical membrane-spanning segment (Fig. 2) [79,108]. In contrast
to the assembly of outer membrane (3-barrel proteins, no factors of the
IMS have been found to be involved in the biogenesis of the topologically
different a-helical proteins, which indicates that they are integrated from
the cytosolic side of the outer membrane.

5. Protein transport into the intermembrane space:
the MIA pathway

Many IMS proteins contain multiple cysteine residues that are im-
plicated in the formation of disulfide bridges, like for Tim9 and Tim10,
or the binding of cofactors and metal ions, like for Cox17. These cys-
teine residues are generally found in characteristic Cx5C or CxoC mo-
tives (Fig. 1). A mitochondrial IMS sorting signal (MISS) around these
cysteine motives has been identified that targets such proteins to the
destined compartment via the MIA pathway [109,110]. The import
receptor Mia40 and the sulfhydryl oxidase Ervl are the essential
core components of the MIA machinery that operates as a disulfide
relay system in the IMS [111-116]. Mia40 forms transient inter-
molecular disulfides with incoming precursor proteins as soon as
they emerge from the outer membrane TOM complex thereby trap-
ping client proteins in the IMS [92,111,117]. The initial binding of pre-
cursor proteins to Mia40 occurs at a hydrophobic cleft that contains a
redox-active CPC (cysteine-proline-cysteine) motive, which engages
in mixed disulfide formation [118-121]. In yeast, this early substrate
interaction of Mia40 is facilitated by its transient interaction with
mitofilin/Fcj1, which is an integral inner membrane protein [92].
Mitofilin/Fcj1 is implicated in multiple contact sites between inner
and outer mitochondrial membranes, thereby recruiting Mia40 to
the IMS side of the TOM complex and thus into the proximity of the
arriving precursors [92].

In the next step, Mia40 catalyzes the formation of intramolecular
disulfide bridges within the precursors, which leads to substrate re-
lease into the IMS and reduction of Mia40 [111,115-117]. Interesting-
ly, substrate oxidation by Mia40 in the IMS was demonstrated to
regulate the subcellular distribution of the chaperone protein Ccs1,
which is found both in mitochondria and the cytosol [122-125]. Re-
oxidation of Mia40 for another round of import is mediated by Erv1
that shuttles electrons to cytochrome c and finally to the cytochrome
¢ oxidase complex of the respiratory chain [113,121,126-128]. The
active form of Erv1 is a homodimer, and an exchange of electrons be-
tween the two monomers has been identified as a central aspect of
the reaction mechanism [129]. Erv1l also associates directly with
Mia40 and precursor proteins in a ternary complex that has been
suggested to assist the formation of multiple disulfide bonds in a con-
certed manner [121,128].

6. Biogenesis of inner membrane metabolite carriers:
the TIM22 complex

The mitochondrial inner membrane is one of the most protein-
rich membranes known. Integral inner membrane proteins span the
phospholipid bilayer in an a-helical conformation and are mainly dis-
tinguished by the presence or absence of N-terminal presequences in
their precursor forms. Multi-spanning inner membrane proteins that
lack such presequences contain several internal import signals that
overlap with the transmembrane segments of the mature proteins
and closely cooperate to govern mitochondrial targeting and mem-
brane integration. The majority of these proteins belong to the family
of mitochondrial metabolite carriers, like the ADP/ATP carriers (AAC)
or the phosphate carrier (PiC). They are characterized by a modular
structure with three pairs of transmembrane domains connected by
hydrophilic loops. Additional substrates of this pathway are the
three homologues proteins Tim17, Tim22 and Tim23 that are essential
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core subunits of inner membrane protein translocation machineries.
These proteins exhibit a structural organization similar to metabolite
carriers, but contain only four transmembrane segments.

Experimental dissection of the carrier import pathway led to the
identification of five distinct stages [130,131]. Due to the particularly
hydrophobic nature of carrier proteins chaperones of the Hsp70 and
Hsp90 families are required to bind the precursors in the cytosol, to
prevent their aggregation, and to assist their targeting to mitochon-
dria (stage I) [21,23]. Precursor-chaperone complexes are recruited
to the mitochondrial surface through binding to multiple tetra-
tricopeptide repeats in the cytosolic domain of the Tom70 receptor
[21,132,133]. A hydrophobic groove in the C-terminal domain of
Tom70 was suggested to comprise a binding site for precursors
[31,134]. It is assumed that the three structural modules of a carrier
precursor recruit three Tom70 dimers (stage II) [30]. The receptor
function of Tom70 was recently shown to be regulated by reversible
phosphorylation via protein kinase A in yeast [46,47]. In the presence
of glucose, when yeast cells produce ATP mainly in the cytosol by fer-
mentation, protein kinase A phosphorylates Tom70 and inhibits the
recruitment of cytosolic precursor-chaperone complexes. In this
way, the import of carrier proteins into mitochondria may be adapted
to the energetic status of the cell in response to global catabolic
switches between fermentative and respiratory metabolism.

After binding to Tom70, carrier precursors are handed over to the
protein-conducting channel of the TOM complex. At the IMS site of
this pore, the precursors are bound by the small Tim chaperones
Tim9 and Tim10 (Fig. 1) [135-139]. Binding of the Tim9-Tim10 com-
plex to the hydrophobic segments protects carrier precursors from
aggregation in the aqueous environment of the IMS (stage Illa) [57].
The Tim9-Tim10 complex is organized as a helical wheel-like struc-
ture with protruding tentacles that have been suggested to associate
with two adjacent transmembrane segments of an incoming carrier
precursor [60]. The homologous Tim8-Tim13 complex was shown
to promote the biogenesis of Tim23, the central subunit of the pres-
equence translocase (see below), likely through a similar mechanism
[63-65,140]. Kinetic measurements indicated a cooperative binding
of peptides derived from the Tim23 precursor to hydrophobic patches
in the Tim8-Tim13 complex [65]. Targeting of precursors to the
TIM22 complex (Fig. 1) for inner membrane insertion is initiated by
the association of a further small Tim protein, Tim12, with the
Tim9-Tim10 complex. Tim12 mediates the subsequent tethering of
the IMS translocation intermediate to the inner membrane trans-
locase (stage IlIb) [136,141]. In the absence of a Ays across the inner
mitochondrial membrane, carrier biogenesis does not proceed be-
yond this stage [130].

The membrane-embedded core of the TIM22 complex is com-
posed of the central pore-forming subunit Tim22 together with
Tim54, Tim18 and Sdh3 [130,142-147]. Tim54 exposes a large do-
main into the IMS providing a binding site for the Tim9-Tim10-
Tim12 complex [148,149]. Additionally, the function of Tim54 was
found to be required for the assembly of the Ymel complex, an
inner membrane protease of the AAA superfamily that is a key player
of the mitochondrial protein quality control system [148]. Tim18 sup-
ports the assembly of Tim54 into the TIM22 complex [ 149]. Tim18 is ho-
mologous to Sdh4, a membrane-integral subunit of the respiratory
chain complex II (succinate dehydrogenase) [144,145,150]. Within
complex II Sdh4 is tightly associated with the Sdh3 subunit. A recent
study demonstrated the Sdh3 is not only a component of complex II,
but also a genuine subunit of the TIM22 complex, where it interacts
with Tim18 [147]. This surprising finding sheds an intriguing light on
the co-evolution of mitochondrial protein transport machineries and
respiratory chain complexes: Apparently, a common structural module
composed of the Sdh3 protein and Sdh4/Tim18 has been used as a
building block to form both, complex Il and the TIM22 machinery.

After docking of the substrate-loaded Tim9-Tim10-Tim12 com-
plex to the Tim54 receptor, the carrier precursor is inserted into the

TIM22 complex, which contains two pores with an estimated diame-
ter that is large enough to accommodate two o-helices each (stage
IV) [130]. How the import signals in carrier precursors are recognized
by the TIM22 complex remains to be defined. The opening of the
protein-conducting pores requires a Ay and the internal targeting
signals within the precursor. It is further assumed that the Ays exerts
an electrophoretic force on positively charged residues located in the
loops that connect the carrier's hydrophobic transmembrane seg-
ments. Finally, the precursor is laterally released from the TIM22
complex into the inner membrane by a yet unknown mechanism
and assembles to its mature, functional form, which is most likely a
homo-dimer in the case of metabolite carriers (stage V).

7. Biogenesis of presequence-carrying proteins:
the TIM23 complex

The majority of mitochondrial precursor proteins in yeast carries
N-terminal, cleavable presequences that govern targeting and sorting
of these proteins to the mitochondrial inner membrane or matrix
[17]. Presequence-containing precursor proteins (hereafter named
preproteins) pass the outer membrane TOM complex and associate
with the IMS domain of the central receptor Tom22 [36,37]. At this
early stage of import the preproteins are already in close proximity
to the TIM23 complex in the inner mitochondrial membrane. Transfer
of the N-terminal portion of a preprotein to the protein-conducting
pore of the TIM23 complex in fact occurs, when the C-terminal region
is still inside the TOM complex. In this manner, two-membrane-
spanning translocation intermediates composed of a TOM complex
and a TIM23 complex connected by a translocating polypeptide are
formed that localize to contact sites between outer and inner mitochon-
drial membranes [151-155]. Such TOM-TIM23 supercomplexes can be
accumulated both in vivo and in organello by the fusion of a stably folded
protein domain, like dihydrofolate reductase in complex with metho-
trexate, to the C-terminus of a preprotein [52,53,156-162]. At the
inner membrane preproteins are either translocated into the mitochon-
drial matrix or inserted into the lipid bilayer depending on their specific
import signals (Fig. 1). Hydrophobic sorting signals downstream of the
N-terminal presequences induce translocation arrest and the lateral re-
lease of preproteins into the inner mitochondrial membrane by a stop-
transfer mechanism [163-166].

Three essential membrane-integral subunits form the catalytic
core of the TIM23 complex (TIM23<CRE): Tim23, Tim17 and Tim50
(Fig. 3). Tim23 forms a Ays-dependent protein-conducting pore across
the inner membrane [165,167-169]. The N-terminal IMS region of
Tim23 (Tim23yys) is part of the preprotein receptor domain of the
TIM23 complex [37,170]. Tim17 is involved in the stabilization and
regulation of the channel formed by Tim23 and the differential
sorting of preproteins [162,171-173], however, its function is not un-
derstood at the molecular level. Tim50 has been proposed to maintain
the Tim23 channel across the inner membrane in a closed state to
prevent ion leakage and dissipation of Ay in the absence of a
preprotein [168]. The large IMS domain of Tim50 (Tim50;ys) associ-
ates with Tim23yys to form the preprotein receptor module of the
TIM23 complex [161,174-179]. Crosslinking studies indicate that
Tim50yys is located in close proximity to the Tom22 subunit of the
TOM complex [39]. This spatial arrangement allows Tim50ys to in-
teract with preproteins at early stages of import, when the bulk of
the preprotein in still inside the TOM complex [161,174,175]. Two
distinct preprotein binding sites within Tim50;s have been pro-
posed: one in the central core domain and one in the C-terminal re-
gion [180,181]. The crystal structure of the conserved core domain
of Tim50yys shows the presence of an extended groove on the surface
with negatively charged amino acid residues at the bottom that could
accommodate an amphipathic o-helical peptide [180]. Adjacent to
this groove a B-hairpin that is crucial for the binding of Tim50;ys to
Tim23yys protrudes from the surface of the molecule [180]. Binding
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Fig. 3. Modular rearrangements and coupling to different partner protein complexes trigger functional switches in the presequence translocase (TIM23 complex). The membrane
potential (Als) across the inner mitochondrial membrane (IM) drives the transfer of positively charged presequences from the TOM complex into the protein-conducting pore of
the TIM23 complex in a process that involves Tim21. For membrane integration of preproteins the TIM23-Tim21 complex (TIM235°RT) associates with respiratory chain super-
complexes composed of cytochrome bc; complexes and cytochrome ¢ oxidase (COX). Matrix translocation requires the recruitment and activation of the presequence
translocase-associated import motor (PAM). In the working model illustrated here, Pam17 displaces Tim21 from the TIM23 core complex and together with Tim44 triggers the
binding of the Pam16-Pam18 module. Pam17 itself is released again during later assembly steps of PAM. In the fully active PAM machinery, mtHsp70 cooperates with Pam16-
Pam18, Tim44 and Mgel to mediate ATP-driven import of preproteins into the mitochondrial matrix. TIM23 complex: Tim17-Tim23 (Tim17-23), Tim50 (50), Tim21 (21);

PAM: Tim44 (44), Pam16 (16), Pam17 (17), Pam18 (18); IMS, intermembrane space.

of presequences to the C-terminal portion of Tim50;s was demon-
strated by a photo-affinity labeling approach [181]. Taken together,
these data suggest that the Tim23/Tim50 receptor module is engaged
in multiple interactions with an incoming preprotein that coopera-
tively function to mediate the transfer of the preprotein from the
outer mitochondrial membrane to the protein-conducting channel
of the inner membrane. This transfer reaction appears to be facilitated
by Tim21, an additional, membrane-integral component of the TIM23
machinery that dynamically associates with TIM23°RE (Fig. 3). Tim21
was shown to directly interact with the Tom22 subunit of the TOM
complex in vitro and to compete with presequences for binding to
Tom22 [171,182,183].

From the energetic perspective, direct handover of preproteins from
the TOM complex to the TIM23 complex and the initiation of preprotein
translocation across the inner membrane are driven by the Ays, which
triggers opening of the TIM23 protein-conducting channel and exerts
an electrophoretic force on the positively charged presequence
[167,184]. The reconstitution of TIM23 complexes (purified via tagged
Tim21) into proteoliposomes directly demonstrated that the energy de-
rived from A is sufficient for the membrane insertion of preproteins
with a hydrophobic stop-transfer signal adjacent to the presequence
[165]. This TIM23 complex form composed of TIM23°RE and Tim21
has therefore been termed TIM235°RT, The Auy-dependent step of
preprotein insertion via TIM23°RT is supported by the recruitment of
the proton-pumping respiratory chain complexes III (cytochrome bcy)
and IV (cytochrome c oxidase) (Fig. 3) [185-187]. These respiratory
chain complexes associate with each other to form different types of
supercomplexes in the inner mitochondrial membrane [188-190].
Binding of such supercomplexes to TIM235°RT is at least in part mediated
by an interaction of Tim21 with the Qcr6 subunit of complex III
[185,186]. In the absence of Tim21 the connection between TIM23SCRT
and respiratory chain complexes is impaired and preprotein insertion
into the membrane via the stop-transfer pathway shows an increased
sensitivity to partial uncoupling of Ays [185,186].

For the full translocation of soluble preproteins (or large hydro-
philic domains of membrane-anchored preproteins) into the matrix

the Ay-dependent activity of TIM235°RT is not sufficient. Additional
energy derived from ATP hydrolysis in the mitochondrial matrix is
required.

8. Matrix translocation of preproteins: the import motor PAM

The ATP-dependent steps of preprotein import via the TIM23 ma-
chinery require the presequence translocase-associated import motor
(PAM). The inward-directed force on the incoming preprotein is pro-
vided by the ATPase activity of mitochondrial heat shock protein 70
(mtHsp70). A nucleotide-dependent sequence of concerted conforma-
tional changes in both the ATPase domain and the peptide binding do-
main of mtHsp70 provides the mechanistic basis for the translocation of
preproteins into the matrix [191-195]. The mtHsp70 is recruited to the
TIM23 channel and tightly regulated by several co-chaperones: Pam18
(Tim14), Pam16 (Tim16), Mgel, Tim44, and Pam17 (Fig. 3). Pam18 is
a member of the J-protein family and activates the ATPase activity of
mtHsp70 at the TIM23 complex [196-200]. Pam18 is composed of an
N-terminal IMS domain, a single transmembrane segment and a
matrix-localized J-domain. All three domains contribute to the binding
of Pam18 to TIM23°RE [171,201-206]. Pam18 forms a stable complex
with the J-like protein Pam16, which is crucial for the recruitment of
Pam18 to import sites [201-208]. Additionally, Pam16 was suggested
to control the activity of Pam18 and thus to directly participate in the reg-
ulation of the mtHsp70 reaction cycle [199]. Mge1 is also crucial for ma-
trix preprotein import, as it mediates nucleotide exchange on mtHsp70
[209-212]. Tim44 interacts with mtHsp70 in an ATP-dependent manner
to mediate the dynamic association of mtHsp70 with the TIM23ORE
complex [213-219]. Mutational analyses and crosslinking studies indi-
cate that Tim44 is also implicated in the interaction of the Pam16/
Pam18 complex with TIM23CRE and modulates the functional coopera-
tion of Pam16/Pam18 with mtHsp70 [198,202,208,220]. Taken together,
Tim44 may provide a platform that brings together the different compo-
nents of the PAM machinery and orchestrates their activities at the ma-
trix site of the TIM23 complex. To fulfill this role Tim44 cooperates
with Pam17, which is involved in the recruitment of the Pam16/Pam18



280 J. Dudek et al. / Biochimica et Biophysica Acta 1833 (2013) 274-285

complex to TIM23°RE and is thought to trigger the assembly of the active

import motor [208,221-223].

9. Modular switches in the TIM23 machinery coordinate
different activities

Over the last years, many studies have illustrated that the TIM23
complex is a highly versatile molecular machine with different activ-
ities: Ayi-dependent lateral sorting of inner membrane proteins and
ATP-dependent matrix translocation. How this functional dualism is
brought about is still a matter of debate. One model suggests that a
persistent TIM23-PAM machinery mediates the transfer of all
preproteins from the outer to the inner mitochondrial membrane
and their subsequent sorting to either the inner membrane or the ma-
trix [177,222,224,225]. However, there are several lines of evidence
that the TIM23 machinery is more dynamic: Switches between the
different activities are controlled by the import signals of preproteins
and accompanied by the coupling of distinct partner protein com-
plexes to TIM23“°RE (Fig. 3). For the transfer of preproteins from
the outer membrane, components of the TIM23 complex, including
Tim21, associate with the TOM complex [39,171,177,182,183]. It is
therefore conceivable that the Tim21-containing TIM235°RT complex
mediates the initial steps of preprotein import at the inner mitochon-
drial membrane (Fig. 3). Indeed, early translocation intermediates also
of matrix-targeted preproteins have been found associated with
TIM235°RT[162]. Only small substoichiometric amounts of PAM compo-
nents have been co-isolated with TIM235°RT upon purification via
tagged Tim21 [162,165,171,185,221,222]. Instead, for the Ays-driven in-
sertion of preproteins into the inner membrane, TIM235°RT associates
with respiratory chain supercomplexes in a Tim21-dependent manner
[185,186]. Import of preproteins into the matrix, however, requires
ATP and thus the stepwise recruitment of PAM to TIM23<CRE (Fig. 3).
This process appears to be facilitated by Pam17 and leads to the release
of Tim21 from Tim23“°RE [162,171,208,222]. Taken together, these
findings suggest that the TIM23 complex dynamically switches be-
tween a Tim21-bound state that has a low affinity for PAM and a
PAM-coupled state with a low affinity for Tim21. However, more
work is certainly needed to understand in detail the mechanisms of
preprotein sorting to different mitochondrial subcompartments by the
TIM23 machinery and the modular rearrangements that control func-
tional switches in this sophisticated translocase.

A remarkable example for a complex sequence of functional
switches in the TIM23 machinery can be deduced from the recently
unraveled biogenesis pathway of the ABC transporter Mdll, a
presequence-carrying multi-spanning inner membrane protein [166].
MdI1 exhibits a modular structure with three pairs of two transmem-
brane segments, which were shown to be inserted into the inner mem-
brane by different mechanisms. Whereas membrane integration of the
first and the third module occurs independently of PAM via a lateral
sorting mechanism, the second central module is initially translocated
across the inner membrane in a PAM-dependent manner and subse-
quently membrane-inserted with the help of the evolutionary con-
served export translocase Oxal [166]. The latter mechanism is known
as “conservative sorting” [226]. Oxal is also a crucial factor for the
Ay-dependent, co-translational export of mitochondrially encoded
subunits of respiratory chain complexes [227-229]. For the biogenesis
of nuclear encoded multi-spanning inner membrane proteins Oxal
closely cooperates with the TIM23-PAM machinery [166,230,231].
Thus, the biogenesis of the topologically complex inner membrane pro-
tein MdlI1 requires multiple switches between distinct TIM23 activities
and the cooperation with different partner protein complexes.

10. Concluding remarks and future perspectives

Sorting of proteins to the correct subcellular compartment is
essential for the survival of every eukaryotic cell. The structural

complexity of mitochondria as double-membrane-bound organelles
has led to the evolution of diverse protein sorting and translocation
machineries that must thoroughly coordinate their activities. In the
last decade a striking number of novel mitochondrial protein sorting
pathways and additional components of known protein transport
machineries has been identified by many different research groups.
These discoveries have been greatly enhanced by the comprehensive
analysis of the mitochondrial proteome in the widely used model
organism S. cerevisiae [1] and have had a massive impact on our un-
derstanding of the biogenesis and organization of mitochondria.
However, there are still many unsolved questions regarding the mo-
lecular mechanisms that ensure the reliable and efficient sorting of
proteins to and within mitochondria. How are import signals within
precursor proteins read out and how is the containing information
translated into large-scale conformational changes in protein trans-
locases? How are precursor proteins passed on from one transloca-
tion machinery to the next? What are the principles that allow
protein sorting machineries to catalyze very different reactions, like
translocation across and insertion into a membrane, that require con-
trolled transversal and lateral openings of protein-conducting pores?
Finally, only a few studies so far have addressed how membrane
phospholipids modulate the activities of the different mitochondrial
protein sorting devices [165,232-234].

Apart from questions regarding the function of the individual mi-
tochondrial protein translocation systems, it will be a major challenge
for the future to understand how protein import into mitochondria is
regulated in space and time on a global scale. Thinking about these
problems inevitably leads to questions about, how mitochondrial bio-
genesis is coordinated with other cellular activities including metab-
olism as well as developmental programs, like cell division and
differentiation. A number of recent studies that have been highlighted
in this review have provided first hints how mitochondrial protein
import is embedded into extended physiological frameworks: i) the
regulation of the biogenesis and the receptor activity of the TOM
complex through cytosolic kinases [46,47]; ii) the multiple branched
links between mitochondrial membrane architecture, mitochondria-
ER communication, phospholipid metabolism and protein biogenesis
by an organizing network that includes the MINOS, TOM/SAM and
ERMES complexes [77,78,80,81,83-86,91-98]; iii) the direct coupling
of proton-pumping respiratory chain complexes to preprotein inser-
tion into the inner mitochondrial membrane by the TIM23 machinery
[185-187]. It will be most exciting to learn more about these intrigu-
ing connections and further yet unrecognized processes that also im-
pact mitochondrial biogenesis.
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