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Summary

Nucleosomes are the basic building blocks of chromatin. They consist of an octamer
of histone proteins, around which the DNA is wrapped. Rather than only packag-
ing and compacting the DNA, they also play an active role in the regulation of many
processes such as transcription, DNA repair or development. The histone tails, which
protrude out of the nucleosome as unstructured polypeptide chains, are subject to a
variety of post-translational modifications. These modifications are believed to form
a “histone code” that extends the information contained in the genetic code. Histone
modifications can recruit so-called chromatin readers, which in turn modify nearby
chromatin or influence chromatin-asssociated processes. Despite tremendous research
efforts during the last years, the precise function of most histone modifications remains
unclear. A first step towards understanding the molecular mechanisms of the histone
code is to elucidate the repertoire of chromatin readers. Mass spectrometry-based pro-
teomics offers a uniquely suited tool to uncover chromatin readers and their associated
interaction partners.
The aim of this thesis was to develop workflows to study protein-protein interactions
of chromatin associated complexes by quantitative mass spectrometry. These technolo-
gies are applied to discover novel chromatin readers and their associated complexes.
In the first project, a SILAC-based quantitative proteomics screen using peptide pull-
downs was performed in HeLa cells to discover readers for the major lysine trimethy-
lation marks on histone H3 and H4. The study analyzed the activating H3K4me3 and
H3K36me3 as well as the repressive H3K9me3, H3K27me3 and H4K20me3 marks.
Many known chromatin readers and associated proteins could be retrieved, as well
as several novel putative readers. The SAGA complex was shown to be recruited to
the H3K4me3 mark via the double tudor domain of its subunit SGF29. The PWWP do-
main of the H3K36me3 associated protein NPAC was demonstrated to be necessary for
chromatin binding. GFP pull-downs using stable cell lines generated by BAC Transge-
nOmics allowed the assignment of putative readers into protein complexes. Genome
wide profiling of histone modifications and their readers show a good overlap, which
verified the peptide pull-down approach in vivo. H3K4me3 readers, which are found
on the promoters of actively transcribed genes, could be clustered into distinct sub-
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groups.
In the second project, a high-throughput label-free interaction pipeline was established,
enabling chromatin reader interaction screens from unlabeled protein extracts. A proof-
of-concept study applied this technology to screen for readers of the activating H3-
K4me3 and the repressive H3K9me3 mark from four different mouse tissues – brain,
liver, kidney and testis. This screen generated the currently most comprehensive list of
chromatin readers for these marks. Screening from different tissue extracts provided
the unique opportunity to discover chromatin readers, which are only present in very
specialized cell types and are thus not accessible in standard cell line-based assays.
CHD5 is a brain specific NuRD complex subunit, which replaces CHD3/CHD4 and
directly binds to the H3 tail via its two PHD finger domains. The largest number of
tissue-specific chromatin readers was found in testis, most likely due to its special-
ized chromatin. Known testis-specific readers like MBD3L and DNMT3A and putative
novel readers like SSTY1 and SSTY2 were retrieved.
The replacement of canonical histones with histone variants is an alternative possibility
to index chromatin. In a collaborative project we investigated a novel histone variant
splice isoform. Histone variants are incorporated into chromatin in a highly controlled
fashion by histone chaperones. A novel splice variant for H2A.Z with a distinct C-
terminus was discovered and termed H2A.Z.2.2. Quantitative proteomics was applied
to investigate which proteins associate with H2AZ.2.2 and H2A.Z.2.1 outside of chro-
matin. Both splice variants were found to interact with the TIP60 and SRCAP histone
chaperone complexes.
In summary, generic workflows were established to screen for protein-protein inter-
actions of chromatin associated protein complexes and to discover chromatin readers
from SILAC labeled as well as unlabeled protein extracts. These technologies were
succesfully applied to uncover novel chromatin associated complexes and to describe
general and tissue-specific chromatin readers.
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1 Introduction

1.1 Chromatin biology

The genetic information of an organism is encoded in the DNA i a one dimensional se-
quence of the four bases adenine, guanine, cytosine and thymine. In eukaryots, DNA
is stored in the nucleus in a highly ordered manner in the form of chromatin. The term
chromatin describes the structure formed by DNA, the small basic histone proteins and
other associated proteins. As every human cell contains about 2 m of DNA which has
to be packaged into a nucleus with a diameter of around 6 µm, one major function of
chromatin is to compact and store the DNA. Nucleosomes, the basic building blocks of
chromatin are formed by wrapping the DNA around an octamer of core histone pro-
teins. A three dimensional arrangement of nucleosomes can generate a higher order
structure to achieve further compaction. Histones, however, are not only compacting
DNA, but they are a carrier of information themselves. An additional layer of infor-
mation is added to the underlying genetic code by modifying histones or replacing the
canonical histones with histone variants.
In the 1930s, Emil Heitz, who studied mitotic chromosomes in moss, described two
different chromatin compaction states. Certain parts of chromosomes remained con-
densed throughout interphase which he termed heterochromatin. He further sug-
gested the term euchromatin for those parts of chromosomes which become invisible
during late telophase [82, 178]. The macroscopically observable chromatin compaction
states were later associated with inactive and active transcription. The human genome
consists of around 3.2 billion base pairs, of which only a small fraction encodes genes.
Gene rich regions, in which active transcription takes place, are euchromatic. Euchro-
matin adopts an open state to allow access for the transcriptional machinery. Because
of its reduced density these regions are not observable by light microscopy. Conversely,
heterochromatin is highly compacted and generally not accessible to the transcriptional
machinery. Heterochromatic regions span large parts of the genome which are either
not protein coding or code for genes whose expression is not beneficial or even detri-
mental for the current status of the cell. Heterochromatin, for instance, can be found
on the inactive X chromosome, on telomeres or centromers.
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1 Introduction

Histones, the most abundant proteins in chromatin, can be found in all eukaryots and
in archea [235], but not in prokaryots. The formation of a chromatin structure could
be a way for organisms with a more complex genome to organize and structure their
genetic information. It is beyond debate that processes on chromatin play crucial roles
in regulating almost all aspects of the life of a cell. The importance of chromatin can
also be seen by the large number of diseases and developmental defects that are associ-
ated with malfunctioning chromatin processes [34, 58, 182]. Despite enormous research
efforts over the last years, understanding of many mechanisms in chromatin biology
is still lacking. Moreover, for many processes all of the players involved are still not
known.

1.1.1 Epigenetics

The term epigenetics was first used by Conrad Waddington in the context of devel-
opmental biology. To him, epigenetics was “the branch of biology which studies the
causal interactions between genes and their products, which bring the phenotype into
being” [255].

Figure 1.1.1: The Epigenetic land-
scape after Waddington Phenotypic
decision are illustrated as a ball
rolling down a complex landscape
(from [69]).

He generated the metaphor of the “epigenetic
landscape” (Figure 1.1.1), in which a cell, repre-
sented by a ball, roles down a landscape, and
can take several decision which lead to specific
cell fates. With the growing knowledge in chro-
matin biology, the term epigenetics received a
more chromatin centric meaning. Currently, epi-
genetics is defined as the “stably heritable phe-
notype resulting from changes in a chromosome
without alterations in the DNA sequence” [15].
However, as the fact of heredity poses a source of
discussion, Adrian Bird suggested to define epi-
genetics as “the structural adaptation of chromo-
somal regions so as to register, signal or perpet-
uate altered activity states” [19]. Regardless of
whether heredity is a essential feature of epigenetics, it describes processes on chro-
matin which influence gene expression, phenotype and cell fate decisions without
changing the underlying DNA sequence.
Most epigenetic phenomena can be attributed to three major mechanisms: DNA
methylation, histone modifications and regulation by non-coding RNAs. The trans-
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fer of a methyl group from S-adenosyl methionine to the 5’ position of the pyrimidine
ring of cytosine is referred to as DNA methylation. Most DNA methylation in mam-
mals occurs on CpG dinucleotides; a high density of CpG dinucleotides is referred to
as a CpG island. Methylation of these islands correlates with transcriptional repres-
sion [71]. Histone modifications are far more complex than DNA methylation, as a
wide variety of modifications can occur on histones. Moreover, histone modifications
are associated with gene control, but also other chromatin based processes like DNA
repair or mitosis (see Section 1.1.3). The importance of non-coding RNAs for epige-
netic and chromatin related processes only emerged recently [17]. Non-coding RNAs
play a crucial role in controlling processes as diverse as X chromosome inactivation or
silencing of repetitive DNA sequences by acting in concert with the cellular chromatin
modification and DNA methylation machinery.

wild type peloric

Figure 1.1.2: Epimutation in Linaria vulgaris
Wild type flower is dorsoventrally asymmetri-
cal, whereas the mutant peloric flower is radi-
ally symmetrical with all petals resembling the
ventral petal of the wildtyp flower (from [43]).

A striking example of a heritable epige-
netic phenomenon is an epimutation ob-
served in the flower Linaria vulgaris. Al-
ready more than 250 years ago, a mutant
with a characteristic symmetric (peloric)
flower instead of the asymmetric wild
type (Figure 1.1.2) was described by Lin-
naeus. This phenotype is not based on a
DNA mutation, but on DNA methylation
and thus repression of the LCYC gene
which controls flower asymmetry [43].
DNA methylation is transmitted through
the germ line and propagated similar to
a DNA sequence mutation. X chromo-
some inactivation in mammals is another
example of a complex developmental process that is regulated by epigenetics. Female
cells have to inactivate one of their two X chromosomes to achieve the correct gene
dosage [139]. Early during development, one of the two X chromosomes is chosen
randomly and silenced. Once one of the X chromosomes is silenced, this state is stably
propagated over all following cell divisions. X chromosome silencing is a complex pro-
cess which involves the combination of various repressive epigenetic mechanisms [36].
The long non-coding RNA XIST (X inactive specific transcript) is exclusively expressed
from the inactive X chromosome [21] and plays a crucial role in silencing [264]. Further-
more, methylation of CpG islands [83] and modification of histones, e.g. trimethylation
of lysine 27 on histone H3 contribute to X chromosome silencing [190].
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1 Introduction

1.1.2 The structure of chromatin

Nucleosomes, which form the basic buildings blocks of chromatin, consist of two copies
of each of the core histones H2A, H2B, H3 and H4. Isolated histones in solution form
heterodimers of H2A and H2B, as well as H3 and H4. 146 base pairs of DNA are
wrapped in 1.65 turns around the nucleosome and specific interactions can be observed
between the outer surface of the nucleosome and the DNA bases. Seminal work was
performed by Luger et al., who described, for the first time, a high resolution crystal
structure of the nucleosome (Figure 1.1.3 A) [137]. In the structure, a globular histone
octamer directly contacts the DNA and forces it into a bent conformation. The histone
tails, especially the amino-termini of H3 and H2B are protruding out of the nucleo-
some. They could not be resolved in the crystal structure and are believed to form
unstructured extensions. The individual nucleosomes are connected by a short stretch
of interconnecting DNA. In electron micrographs, a “beads on a string” structure of
regularly interspaced nucleosomes can be observed (Figure 1.1.3 B). This fiber has a
diameter of 11 nm and represents the first level of chromatin organization.

A) B)

Figure 1.1.3: The nucleosome is the basic building block of chromatin A)The crystal structure
of the nucleosome (from [138]). B) Different chromatin compaction states observed by electron
microscopy. Upper panel: 30 nm thick fiber from interphase chromatin. Lower panel: Prepa-
ration of loose chromatin shows nucleosomes, which are spaced on the DNA like “beads on a
string” (from [3]).

Binding of the linker histone H1 generates a more condensed fiber of 30 nm diameter,
which is considered the next level of structural organization of chromatin [200]. How-
ever, due to different preparation methods and analysis techniques, the exact structure
of this fiber in vivo [73] and even its existence [141] are still a matter of intense debate.
Two basic structural models are suggested for the 30 nm fiber based on EM studies:
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In a one-start-helix (solenoid), individual nucleosomes form a superhelix with about
six to eight nucleosomes per turn [261]. The linker DNA is bent to follow the helical
path and each nucleosome interacts with its fifth or sixth neighboring nucleosome. The
two-start-helix forms a zigzag structure in which the linker DNA is straight and each
nucleosome interacts with the second neighbour nucleosome [50]. Higher order struc-
tures are thought to be generated by fiber-fiber interactions and further loop formation
[129].

1.1.3 Histone modifications and the histone code hypothesis

A characteristic feature of histones is their high content of the basic amino acids argi-
nine and lysine. These amino acids not only serve to provide a positive charge that fa-
cilitates interaction with the negatively charged DNA, but are also subject to a variety
of post-translational modifications (PTMs). The highest diversity can be observed on
lysines, which can be mono- (me1), di- (me2) and trimethylated (me3), acetylated (ac)
as well as ubiquitinated and sumoylated. Recently, lysine crotonylation was described
as a novel histone modification [236]. Arginines can be mono- (me1) and dimethylated.
If both methyl groups are added onto the same amino group it is called asymmetric
dimethylation (Rme2a), if both amino groups of the guanidinium are monomethylated,
it is called symmetric dimethylation (Rme2s) (Figure 1.1.4). Moreover, the classical sig-
nal transduction modification phosphorylation can be observed on serines (Sph), thre-
onines (Tph) and tyrosines (Yph). Histone modifications can be associated with a wide
array of cellular processes by influencing transcriptional rates and chromatin structure
[115].

Modifications on the core histone fold domains mostly influence the biochemical and
biophysical properties of the nucleosome. PTMs can change the chemical properties
of amino acids by either affecting the charge of the side chain or by introducing a
bulky group (Figure 1.1.4 A). This can disrupt the contacts between adjacent nucle-
osomes, or between the modified histone and the DNA. The basic charge of lysines
is neutralized by acetylation, which can lead to a less compacted chromatin structure.
For example, acetylation of lysine 16 on histone H4 (H4K16ac) interferes with forma-
tion of higher order chromatin structure and also prevents chromatin remodeling by
the chromatin remodeler ACF [223]. Modifications on the unstructured histone tails
mostly serve as recruiting platforms for proteins. These proteins, which specifically
recognize histone modifications in an amino acid sequence context, are generally re-
ferred to as “chromatin readers”. The recognition of the modified amino acid is accom-
plished by specialized protein domains, which are capable of distinguishing modified
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Figure 1.1.4: Histones are subject to a variety of post-translational modifications A) Chemical
structure of the major histone modifications. Pink: hydrogen, green: methyl group, red: oxy-
gen, blue: nitrogen (from [237]). B) The N-terminal tail of histone H3 and its modifications. C)
Histone modifications on the unstructured tails recruit proteins which contain specific binding
domains (modified from [115]).

and unmodified histone tails. Methylated lysines, for example, can be recognized by
chromodomains [9, 122], PHD fingers [130, 181], double tudor domains [87], MBT do-
mains [243], PWWP domains [254] and ZW type zinc fingers [80]. Figure 1.1.5 shows
the PWWP domain of BRPF1 binding to a trimethylated histone peptide. The PWWP
domain recognizes the amino acid sequence surrounding the modification site (Figure
1.1.5 A). A hydrophobic pocket (Figure 1.1.5 B) allows the distinction between the un-
modified and the trimethylated peptide.
Bromo domains specifically bind to acetylated lysines [47]. Phosphorylated serines can
be recognized by 14-3-3 proteins [140]. All these modification dependent interactions
are very specific due to highly specialized binding pockets [237]. Many proteins or pro-
tein complexes contain more than one histone modification binding module to achieve
combinatorial binding. BPTF, for example, binds via its PHD finger to H3K4me2/3 and
via its bromodomain to H4K16ac on the same nucleosome [205]. The CHD4 subunit of
the NuRD complex interacts with both histone H3 tails on the same nucleosome, which
are either unmodified or K9 trimethylated [161]. Recruitment of the general transcrip-
tion factor TFIID to H3K4me3 is further augmented by acetylation of adjacent lysines
(K9 and K14) [252]. In this case, the binding modules are placed on two separate com-
plex subunits. The TAF3 PHD finger binds to H3K4me3 and the TAF1 subunit contains
a tandem bromodomain module which can bind to acetylated lysines [95].
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A) B)

Figure 1.1.5: The PWWP domain as an example for a trimethyl lysine binding domain A) The
crystal structure of the PWWP domain of BRPF1 shows an extended interaction surface, which
contacts the modified and its adjacent amino acids. B) Stick and ribbon representation of the
peptide binding domain. The side chains of tyrosine and phenylalanine form a hydrophobic
cage, which accommodates the trimethyl lysine moiety (from [254]).

The distribution of histone modifications can be correlated to the transcriptional state
of the neighboring chromatin. Active genes, for example, are marked by trimethyla-
tion of H3K4 [208], which peaks at the transcription start site [106], while the gene
body is covered by trimethylation of H3K36 [119]. Lysine acetylation is almost exclu-
sively associated with active genes, whereas repressive chromatin is usually marked
by trimethylation of H3K9 and H3K27 [115]. Whereas most modifications on their own
could be linked to specific processes in gene regulation or cellular differentiation, their
combinatorial patterns could only be analyzed due to improvements in sequencing
technologies. Chromatin immunoprecipitation in combination with next generation
sequencing was used to study the combinatorics of chromatin marks in human T cells
[55]. A total of 51 distinct chromatin states have been described that possess a unique
chromatin signature, for example promoter-associated, active intergenic or large-scale
repressed regions. Using the DamID technology [249], the van Steensel group ana-
lyzed 53 broadly selected chromatin components (histone marks and chromatin asso-
ciated proteins) in Drosophila. In contrast to the abovementioned studies, they describe
only five principle chromatin types, each of which was assigned a color [59]. Yellow
and red are both actively transcribed chromatin regions, but show a different compo-
sition of histone marks and associated proteins and also differences in the timing of
DNA replication. Repressive chromatin can be grouped into three types: classical HP1
and H3K9me3 heterochromatin (green), polycomb and H3K27me3 marked heterochro-
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matin (blue) and a very abundant additional type, which is marked by histone H1, D1,
IAL and SUUR (black).
The correlation between histone modifications and the transcriptional state of the neigh-
boring genes prompted David Allis and co-workers to suggest the histone code hy-
pothesis [96, 231]. This hypothesis states that the combinations of histone modifica-
tions provide a code that can be read by the cellular machinery and regulates almost
all chromatin associated processes. Proteins involved in the histone code can be sep-
arated into three groups. “Chromatin writers” modify histones, “chromatin readers”
bind to modified histones and “chromatin erasers” remove histone modifications. Al-
though this theory explains the importance of histone modifications and relates them
to a direct output, it is controversially debated [84]. The major point of criticism to-
wards a histone code is, that, according to the theory, histone modifications would
dictate the transcriptional outcome. However, so far histone modifications could only
be correlated to a transcriptional outcome, and experimental data showing a causal re-
lation between a modification and an outcome are still missing. In addition, for some
histone modifications there is even no causal relation between them and a specific out-
put. For example, knockout of SET1, the only methyltransferase for H3K4 in yeast,
generates strains without K4 trimethylation. However, despite the clear correlation of
H3K4me3 with active transcription, these strains are viable. Surprisingly, a very spe-
cific phenotype – defects in mating type loci silencing and telomeres – was observed
[168]. Furthermore, yeast lacking the amino-termini of histone H3 or H4 are viable
[133]. These yeast strains are devoid of several histone modifications at once and can
still accomplish transcriptional regulation.
Nucleosome occupancy is another mechanism which plays an important role in regu-
lating chromatin associated processes. In addition to a combination of histone modi-
fications on active genes, a clearly defined nucleosome occupancy pattern also exists
[124]. As the presence of histones inhibits transcription, a nucleosome pattern – maybe
defined by the underlying DNA sequence – could contain enough information to guide
transcription. Furthermore, nucleosome patterns can be modified by chromatin re-
modelers, thus allowing regulation. Taken together, two phenomena — histone mod-
ification patterns and nucleosome occupancy — can be correlated to a transcriptional
output. It remains to be discovered which mechanism is cause and which consequence,
or if they are both equally important. Nevertheless, irrespective of whether histone
modifications generate a code that defines the transcriptional output or only act by
fine tuning gene expression, their importance is beyond debate. Loss of proteins as-
sociated with histone modifications often leads to severe developmental defects and
loss or misregulation of these proteins can also frequently be observed in malignancies
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[7, 18, 34, 182].

1.1.4 Lysine methylation of histone proteins

Methylation of lysine residues on histone proteins is one of the most prevalent and
versatile histone modifications (Figure 1.1.4). Up to three methyl groups can be trans-
ferred to a lysine side chain. Although lysine methylation has so far only been studied
in detail on histone proteins, other cellular proteins are also methylated [270]. Among
the well described lysine methylation sites on histones, five of them can be found on
histone tails: H3K4, H3K9, H3K27, H3K36 and H4K20 and one site in the histone core:
H3K79 [144, 271]. At physiological pH, all methylated forms are believed to be cationic
and trimethyl lysines carry a positive charge. Despite their charge, the addition of
methyl groups increases the hydrophobicity of the side chain. Proteins specifically
recognizing methylated lysines contain a hydrophobic pocket that accommodates the
methylated side chain. Especially trimethyl lysine binders evolved very specialized
binding domains, that not only provide a hydrophobic environment but also make
contacts with the charged nitrogen atom [237].

Figure 1.1.6: Histone modification pattern on
a representative gene Schematic representation
of the distribution of histones and histone mod-
ifications in relation to a gene. The sidebar in-
dicates the correlation of the respective modifi-
cation with transcription rates (modified from
[128]).

Lysines are methylated by protein lysine
methyl transferases (PKMTs). PKMTs
catalyze the transfer of a methyl group
from S-adenosyl methionine to the ep-
silon amino group of lysine [226]. Cur-
rently at least 27 PKMTs are known in
human [4]. For a long time, lysine
methylation was considered to be irre-
versible. First of all, no protein with
the necessary enzymatic capability to re-
move methyl groups from amino side
chains was known. And, more impor-
tantly, studies observed that half-lives of
histones and total histone methyl groups
were comparable [27, 240], which led
to the interpretation that no turnover of
the methyl group takes place. A revi-
sion of this paradigm happened when
the first lysine demethylase LSD1 was
found [221]. LSD1 demethylates mono-
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and di- but not trimethylated H3K4 by an FAD dependent oxidative reaction that
generates formaldehyde. An additional family of proteins capable of performing ly-
sine demethylation reactions is formed by proteins containing a Jumonji (JmjC) do-
main. The Jumonji domain of JHDM1 specifically demethylates H3K36me2 via an ox-
idative reaction [244]. JMJD2A, which demethylates H3K9me3 and H3K36me3, was
the first protein described to remove lysine trimethylation [260]. In the same year the
H3K9me2/3 demethylase GASC-1 (JMJD2C) was discovered [38]. Recently, an addi-
tional mechanism to remove lysine trimethylation was described: LOXL2, a lysyl ox-
idase, specifically deaminates H3K4me3, but not the mono- and dimethylated lysine,
and generates a deaminated lysine (allysine) [85]. More than 20 lysine demethylases
have been described so far in human. As they play a crucial role in maintaining the
homeostasis of lysine methylation, it is not surprising that deregulation or loss is often
associated with diseases or developmental defects [182].
Lysine methylation can – depending on the methylation state and on the position of the
lysine on the histone – be associated with active as well as repressive chromatin. Some
methylation sites are linked to active transcription, such as H3K4, H3K36, H3K79,
whereas others, including H3K9, H3K27, H4K20 are linked to transcriptional repres-
sion [115] (Figure 1.1.6).

Lysine methylations associated with transcriptional activation

H3K4: Methylation of lysine 4 of histone H3 is highly conserved and is associated
with the initiation of transcription [232]. Lysine trimethylation marks active genes
[208] and in ChIP profiles a distinct peak at the 5’ end of genes can be observed [191].
In yeast, all three methylation states of H3K4 depend on the SET1 protein [208], which
belongs to the COMPASS complex (Complex proteins Associated with Set1) [153, 202].
In mammalian cells, the situation is more complex, as a diversification and specializa-
tion of K4 methylating enzymes occurred. There are at least eight enzymes belong-
ing to the MLL and SET1 families [222], which can methylate H3K4. Whereas the di-
and trimethylated forms still mark active promoters [11, 16], K4me1 marks distant en-
hancers in mammals [81].
Methylation of H3K4 serves as an interaction surface for chromatin readers, which in-
fluence nearby chromatin and transcription. A large number of proteins directly bind-
ing to these marks have been described [253]. PHD fingers [130, 181], double tudor
domains [87] and ZW type zinc fingers [80] are domains that recognize trimethylated
H3K4. The basal transcription factor complex TFIID for example, directly binds to
H3K4me3 via the PHD finger domain of its subunit TAF3 and this binding seems to
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play a role for efficient gene expression [252]. Another example is the interaction of
the ING (inhibitor of growth) proteins with H3K4me3. ING2 binds to H3K4me3 via its
PHD finger domain on promoters of proliferation genes upon DNA damage and re-
presses their expression [220]. In this way, genes specifically marked to be transcribed
can be silenced upon a cellular stress situation.

H3K36: Trimethylation of H3K36 marks actively transcribed genes. The PKMT SET2
associates with elongating RNA Polymerase II and methylates K36 in the body of tran-
scribed genes [119, 267]. Exonic regions were shown to be enriched in trimethyla-
tion of K36 compared to intronic regions [113]. The PWWP domains of BRPF1 [254]
and DNMT3A [48] were shown to directly bind to this modification. H3K36me3 on
gene bodies acts as a transcriptionally repressive mark, and thereby suppresses cryptic
transcription initiation [29, 99, 103]. Moreover, overexpression of the H3K36 demethy-
lases JHD1 or RPH1 in S. cerevisiae bypasses the requirement for the positive elongation
factor gene BUR1 [105]. Although H3K36me3 is associated with actively transcribed
genes, its molecular function seems to be repressive.

H3K79: In contrast to the methylation sites discussed above, H3K79 is not located on
the unstructured histone tail, but on the surface of the nucleosome core. H3K79 methy-
lation was originally discovered in S. cerevisiae where it plays a role in heterochromatin
formation [248], telomeric silencing [163], DNA damage response and checkpoint con-
trol [68, 265]. In yeast, DOT1 methylates H3K79 [163], and in mammals its homologue
DOT1L possesses this activity [154]. So far, DOT1 and its homologues are the only
PKMTs that were found to methylate K79. A demethylase has not been discovered yet.
In chromatin immunoprecipitations H3K79me3 was primarily found on transcription-
ally active regions in the genome [229, 259], despite the phenotypic associations of this
modification with heterochromatic functions. 53BP1 directly interacts with H3K79me3,
which plays a role in the DNA damage response [91]. The tandem tudor domain of
53BP1 recognizes methylated H3K79 at sites of DNA double strand breaks. Although
methylation of H3K79 is regarded a mark of active transcription because of its occur-
rence on actively transcribed genes, it is implicated in a very wide variety of functions
including transcriptional repression [164].

Lysine methylations associated with transcriptional repression

H3K9: Methylation of H3K9 is a classical repressive chromatin mark, which can be
found at centromers, telomeres and repressed stretches of chromatin [115]. H3K9
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methylation is among the best studied histone modifications, as it is one of the central
hubs for the genetic phenomenon of position effect variegation. Position effect var-
iegation describes the observation in Drosophila, that euchromatic regions which are
rearranged into the vicinity of heterochromatin acquire a variegated pattern of expres-
sion [160]. Fly mutants with either a positive or negative effect on this phenomenon
were isolated. It turned out that many of these gene products were linked to methy-
lated H3K9. Su(var)3-9 is one of the PKMTs that methylate H3K9 [196] and Su(var)2-5,
which is also called HP1 binds to di- and trimethylated H3K9. Based on the prop-
erties of methyl-K9 associated proteins, a model for heterochromatin spreading was
suggested. HP1 binds to K9me3 and recruits Su(var)3-9, which in turn methylates ad-
jacent histones to provide a new binding platform for HP1 [45]. Several additional
proteins with an affinity for methylated H3K9 have been described. The abovemen-
tioned HP1 protein, of which the three isoforms HP1 α, β and γ are present in higher
eukaryots, contains a chromodomain, which interacts with methylated H3K9 [9, 122].
The chromodomains of CDYL and CDYL2 also specifically recognize di- and trimethy-
lated HK9 [60]. Moreover, direct interaction of MPHOSPH8 [112], UHRF1 [268] and
UHRF2 [189], as well as ATRX [49, 56] with this chromatin mark were demonstrated.
Although H3K9me3 is generally regarded as a repressive modification, it seems to have
additional functions. It was also found in the coding region of actively transcribed
genes [246] which is consistent with a report showing HP1 and H3K9me3 staining in
heat-shocked genes in Drosophila [188]. Whereas di- and trimethylation of K9 are gen-
erally found in areas with repressed chromatin, K9me1 was found to be enriched in
more active promoters [11].

H3K27: Trimethylation of H3K27 is a repressive mark, which plays a role in develop-
ment especially in the epigenetic model systems X chromosome inactivation [180, 190]
and parental imprinting [218]. Polycomb group proteins play a crucial role for estab-
lishing this modification and its consequences on adjacent chromatin and transcrip-
tional regulation. Polycomb is a Drosophila mutant with improper body segmentation,
and the polycomb gene was suggested to be a negative regulator of homeotic genes re-
quired for proper body segmentation [126]. Genes, leading to a phenotype reminiscent
of polycomb, are generally referred to as Polycomb group (PcG). A simplified model
describes two main polycomb complexes: The Polycomb repressive complex 2 (PRC2)
contains the SET domain methyltransferase enhancer of zeste (EZH2 in humans) and
methylates H3K27 [28, 44, 121, 157]. Trimethylated H3K27 recruits the Polycomb re-
pressive complex 1 (PRC1) [28, 44, 121], which ubiquitinates H2A and leads to chro-
matin compaction. However, the system is far more complex as many specialized sub-
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complexes exist [158]. Additional mechanisms like long non-coding RNAs and DNA
methylation act in concert with polycomb group proteins in gene silencing [225].
Whereas trimethylation of H3K27 has been studied extensively, the two other methy-
lation states of H3K27 are less well understood. H3K27me2 seems to have a similar
distribution as H3K27me3 [11]. In contrast, monomethylation of H3K27 is enriched on
pericentric heterochromatin [187]. Moreover, depletion of H3K27me1 in the vicinity of
transcribed genes [247] as well as enrichment of H3K27me1 at active promoters [11]
have been described.

H4K20: Methylation of H4K20 is associated with very diverse processes, including
replication, DNA damage repair and transcriptional repression [8]. In mammals, PR-
SET7 is the only enzyme generating monomethylated H4K20 [266]. Di- and trimethyla-
tion are catalyzed by SUV4-20H1 and SUV4-20H2 [211]. PHF8 demethylates H4K20me1
[13], however, so far no demethylase for the higher methylation states of H4K20 has
been described.
During the cell cycle progressive methylation of H4K20 can be observed [186]. H4-
K20me1 has been linked to active as well as to repressive loci. Whereas an enrich-
ment of H4K20me1 on actively transcribed genes was reported [247], other studies link
H3K20me1 to transcriptional repression [100] and X chromosome inactivation [111].
H4K20me1 shows a dynamic behaviour during the cell cycle and is enriched in S phase
[100, 197]. Loss of the H4K20 methyltransferase PR-SET7, and consequently loss of
H4K20me1, has severe effects on cell cycle progression and genome stability (reviewed
in [13]). H4K20me2 has not been studied in detail, but it is also believed to be a repres-
sive mark [8]. H4K20me3 is generally associated with repressed chromatin and was
found in constitutive heterochromatin [114] and on telomeres [14]. Loss of trimethy-
lation either by chemical inhibition [155] or knock-out of the responsible methyltrans-
ferases (SUV4-20H1, SUV4-20H2) [211] confirmed that H3K20me3 plays a role in gene
repression.

1.1.5 Histone variants

Histone variants are specialized histone isoforms that differ in the primary amino acid
sequence from their canonical paralogues. Canonical histones can be replaced by hi-
stone variants to generate nucleosomes with modified properties. Whereas the main
functions of the canonical histones are packaging of the genome and gene regulation,
histone variants are associated with many different processes, like DNA damage re-
pair, transcription initiation and termination as well as sex chromosome condensation
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and sperm packaging. Similar to PTMs on histones and nucleosome remodeling, the
use of histone variants contributes to the regulatory repertoire of chromatin. Histone
variants are not incorporated randomly into chromatin, but each of them shows a dis-
tinctive pattern. This incorporation is tightly controlled by histone chaperones, which
ensure that variants are only deposited in their proper places. Genes encoding canoni-
cal histones are found in repeat arrays and their transcription is tightly coupled to DNA
replication [146]. In contrast, histone variants are found as singly copy genes and are
mostly constitutively expressed. The majority of histone variants are described for hi-
stone H3 and histone H2A. Most histone variants, like the H3 variants CENP-A and
H3.3, or the H2A variants H2A.Z and H2A.X are of nearly universal occurrence in all
eukaryotes [235].

H3 variants

Mammals have two canonical H3 variants: histone H3.1 and H3.2. Histone H3.1 differs
from H3.2 in only one amino acid – a cysteine instead of a serine in position 96. H3.1
and H3.2 are both synthesized and incorporated into chromatin in a DNA replication
dependent manner. Deposition of canonical H3 is catalyzed by a protein complex con-
sisting of CAF-1, ASF1 and NASP [234]. Most H3 variants show very high identity to
canonical H3 (Figure 1.1.7) but still exhibit different properties and genome localiza-
tion.

G P R R R S R K P E A P R R R S P S P T P T P G P S R R G P S L G A S S HQ H S R R R Q G - - WL K E I R K L Q K S T H L L I R K L P F S R L A R E I C

A R T K Q T A R K S T G G K A P R K Q L A T K A A R K S A P S T G G V K K P H - R Y R P G T V A L R E I R R Y Q K S T E L L I R K L P F Q R L V R E I A

A R T K Q T A R K S T G G K A P R K Q L A T K A A R K S A P A T G G V K K P H - R Y R P G T V A L R E I R R Y Q K S T E L L I R K L P F Q R L V R E I A
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A R T K Q T A R K A T AWQ A P R K P L A T K A A R K R A S P T G G I K K P H - R Y K P G T L A L R E I R K Y Q K S T Q L L L R K L P F Q R L V R E I A
A R T K Q T A R K A T AWQ A P R K P L A T K A A G K R A P P T G G I K K P H - R Y K P G T L A L R E I R K Y Q K S T Q L L L R K L P F Q R L V R E I A

CENP-A

H3.3

H3.1
H3.2

H3.X
H3.Y
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Histone fold domain

N-terminal tail

Figure 1.1.7: Amino acid sequence alignment of human H3 variants. All variants of histone
H3, except for CENP-A, show very high identity with only very few amino acid exchanges.
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H3.3: Two conserved differences distinguish histone H3.3 from the canonical histone
H3. First, its expression is cell cycle independent and not coupled to DNA replica-
tion. Second, an amino acid substitution of residues 87-90 in the histone core region
(’SAVM’ in the canonical H3 and ’AAIG’ in H3.3) is necessary and sufficient for selec-
tive deposition [2]. H3.3 is incorporated at active chromatin and a strong enrichment
of H3.3 could be observed at actively transcribed rDNA arrays [2]. In line with its de-
position at sites of active transcription, H3.3 is preferentially marked with activating
histone modifications [150]. Nucleosomes containing H3.3 instead of canonical his-
tone H3 were described to be less stable [97], which contributes to the formation of
accessible chromatin structures at transcriptionally active loci. In addition to its en-
richment on actively transcribed loci, H3.3 has been found on regulatory elements [98]
and constitutive heterochromatin at telomeres [263]. The precise localization of H3.3 on
chromatin demands a very specialized deposition machinery. Two separate chaperone
complexes are described for H3.3. Deposition of H3.3 at actively transcribed regions
is dependent on the histone chaperone HIRA [195]. ATRX and DAXX are essential for
H3.3 deposition at telomeres and repression of the telomeric repeat containing RNA
(TERRA) in a HIRA independent pathway [70]. DAXX directly interacts with H3.3,
and the amino acid residues 80-94 of H3.3 but not H3.1 are necessary and sufficient for
this specific interaction [127].

H3.X and H3.Y: Recently two novel histone H3 variants, H3.X and H3.Y, were dis-
covered [262]. H3.Y expression is increased upon cellular stress and it seems to play a
role in regulating cell growth and expression of cell cycle control genes [262].

CENP-A: The centromere specific H3 variant CENP-A [54] is essential for assembly
of the kinetochor and for proper chromosome segregation [5]. It has 50-60 % identity
to H3 in the histone fold domain, but no conservation in the N-terminal tail (Figure
1.1.7). CENP-A expression peaks in G2 phase and it is incorporated into chromatin in
telophase and early G1 phase [224]. Purification of CENP-A associated histone chap-
erones identified HJURP (Holliday junction-recognizing protein) [52, 62] as an inter-
action partner. HJURP directly binds to the centromere targeting domain (CATD) of
CENP-A and is necessary for centromeric deposition of CENP-A [62].

H2A variants

The H2A variants form a very heterogeneous group and are less conserved than H3
variants (Figure 1.1.8). Their genome-wide localization patterns and their very differ-
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ent functional associations cover a wide array of chromatin templated processes.
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Macro  domain -->H3/H4 docking domain

Figure 1.1.8: Amino acid sequence alignment of histone fold domains of human H2A vari-
ants. H2A variants show high conservation in the central part. H2A.BBd deviates most from
canonical H2A (macro domains are omitted).

H2A.Z: H2A.Z is encoded by one gene in S. cerevisiae (Htz1) and two genes in ver-
tebrates (H2A.Z.1 and H2A.Z.2). Despite only three amino acid difference between
H2A.Z.1 and H2A.Z.2, H2A.Z.2 cannot rescue a H2A.Z.1 knock-out in mice [57], which
points to non-redundant functions. H2A.Z containing nucleosomes are enriched adja-
cent to nucleosome free regions at transcription start sites, where they co-localize with
H3.3 [98]. An in vivo study reported that H2A.Z/H3.3 nucleosomes are highly unstable
[98]. However, no such instability could be detected in an in vitro study [238]. In S. cere-
visiae, the SWR1 complex, which consists of 13 subunits including the ATPase SWR1P
mediates the ATP dependent exchange of H2A for HZT1 [118]. The INO80 complex
removes H2A.Z/H2B dimers and thus also controls H2A.Z localization [177]. In mam-
mals, two complexes — the SRCAP complex and the TIP60 complex — are responsible
for H2A.Z deposition (reviewed in [120]). The function of H2A.Z is controversially
debated, as it seems to be involved in many, sometimes contradictory processes such
as gene activation and silencing, nucleosome turnover, DNA repair, heterochromatin,
boundary element and chromatin fiber formation [273].

H2A.X: H2A.X is mainly studied for its role in DNA double strand break repair.
H2A.X contains a C-terminal Ser-Gln (Glu/Asp)-φ motif, where φ stands for a hy-
drophobic residue, in which the serine becomes phosphorylated upon DNA damage
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[201]. Phosphorylated H2A.X is commonly referred to as γ -H2A.X. This phospho-
rylation is most likely accomplished by the ATM kinase [22]. γ -H2A.X foci around
the site of a DNA double strand break form already one minute after induction of the
break [201]. This signal plays an important role in the recruitment and assembly of
the DNA damage repair machinery. The phosphorylated C-termini of γ -H2A.X serve
as an interaction platform for chromatin readers. The DNA damage response pro-
teins MDC1 (mediator of DNA damage checkpoint protein 1) [230] and NBS1 [110]
have been shown to be directly recruited to DNA damage sites by binding to the phos-
phorylated C-terminus. Interestingly, H2A.X -/- or H2A.X point mutants defective for
phosphorylation of Ser139 are viable and could perform the initial recruitment of DNA
repair factors to sites of DNA double strand breaks [30]. Despite the fast kinetics of
H2A.X phosphorylation, γ -H2A.X is not the initial recruiter of DNA repair factors.
However, γ -H2A.X may be necessary to concentrate proteins in the vicinity of DNA
lesions, as H2A.X -/- cells fail to form irradiation induced foci (IRIF).

MacroH2A: Among all H2A variants, macroH2A differs most from the canonical
counterpart. In addition to the histone fold domain it contains a linker and a C-
terminal macro domain [183]. The macro domain is about twice the size of the histone
fold domain and protrudes out of the nucleosome. Two genes code for macroH2A in
vertebrates, macroH2A.1 and macroH2A.2; macroH2A.1 can be alternatively spliced.
MacroH2A.1 and macroH2A.2 are both enriched on the inactive X chromosome [31, 39]
suggesting a function in gene silencing. On autosomes of human pluripotent cells, both
macroH2A variants were found to occupy repressed key developmental genes. More-
over, macroH2A was necessary for the exact temporal activation of HOX gene clusters
during neuronal development [24]. Several proteins were described to specifically in-
teract with the macro domain, among them SPOP, HDAC1, HDAC2 and PARP1 [23].
The distinct localization pattern of macroH2A argues for a dedicated histone chaper-
one machinery for this variant. ATRX was recently suggested to serve not only as a
histone chaperone for H3.3, but also for macroH2A [194].

H2A.Bbd: The histone variant H2A.Bbd is the least well understood histone vari-
ant. H2A.Bbd is excluded from the inactive X chromosome [32], hence its name “Barr
body deficient”. Among H2A variants, H2A.Bbd has the least conservation towards
canonical H2A. It lacks the flexible C-terminus and has a unique N-terminal tail of six
consecutive arginines (Figure 1.1.8). Furthermore, significant differences in the dock-
ing domain, which is responsible for the contacts to histone H3, contribute to struc-
tural alterations of H2A.Bbd containing nucleosomes. Only 118 base pairs of DNA are
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wrapped around H2A.Bbd containing nucleosomes [10] as opposed to 146 in nucleo-
somes containing canonical H2A. These smaller nucleosomes are less stable in vitro [10]
and in vivo [63]. The presence of H2A.Bbd not only affects the nucleosome stability, but
the whole chromatin fiber is in a less compacted state when H2A.Bbd is present [272].
Although a biological function has not yet been attributed to H2A.Bbd, it is generally
regarded to be associated with active gene expression.
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1.2 Mass spectrometry-based quantitative proteomics

Mass spectrometry (MS) based proteomics developed over the last years from a tech-
nique applied by some specialists to an indispensable method for molecular cell biol-
ogy [1]. The unbiased identification of proteins and protein modifications from com-
plex mixtures greatly contributed to our current understanding of protein interactions,
dynamics and post-translational modifications. Proteomics can be performed in an as-
sumption free manner to identify all possible proteins – a so-called discovery approach.
In contrast, targeted methods only analyze a priori defined subsets of the proteome and
mostly aim at describing the behaviour of this fraction under multiple conditions. Cur-
rent proteomic approaches allow the identification of several thousand proteins from
complex organisms [46, 162], analysis of protein interactions [251] and mapping of
post-translational modifications [35].
Mass spectrometry can be used to identify peptides as well as whole proteins. The
analysis of intact proteins by MS, which is referred to as “top-down” mass spectrome-
try, is challenging and has severe technical limitations. An example for the complexity
of top-down proteomics is the analysis of modification combinatorics on histone H4
[185]. In most proteomic studies, “bottom-up” proteomics (also called shotgun pro-
teomics) approaches are applied in which proteins are digested into peptides prior to
MS analysis. Peptides have better ionization efficiencies than proteins, produce less
complex spectra and yield fragmentation spectra which are easier to interpret.

Figure 1.2.1 depicts the steps of a classical bottom-up proteomics workflow. Proteins
derived from cells or tissue or a preceding biochemical experiment are digested into
peptides. A fractionation step at the protein level, for example by one-dimensional
gel-electrophoresis, or at the peptide level, for example by isoelectric focusing, can be
included to reduce sample complexity. Peptides are further fractionated by nanoscale
reverse phase chromatography and directly sprayed into the mass spectrometer via
electrospray ionization. Contemporary MS instruments perform analysis of the intact
masses of the peptides (MS1 scan, precursor mass) and in addition, selected peptides
are isolated and fragmented and their mass is measured (MS2 scan). By transferring
energy to the ions in the gas phase, they fragment in a characteristic manner at the
peptide bonds [228]. Most commonly, collision induced dissociation (CID) is applied,
in which the peptide collides with an inert gas. Alternative fragmentation techniques
like higher energy collisional dissociation (HCD), electron transfer dissociation (ETD)
and pulsed Q dissociation (PQD) are also frequently used. Ideally, the fragmentation
generates a “ladder”, from which the amino acid sequence can be directly derived.
As most spectra contain only partial sequence information, statistical algorithms are
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Figure 1.2.1: Bottom-up proteomics workflow Schematic depiction of the major steps in a pro-
teomic experiment. During sample preparation proteins are digested into peptides. Nanoscale
chromatography fractionates peptides and electrospray ionization transfers them into the mass
spectrometer. In the mass spectrometer, masses of the intact and fragmented peptides are mea-
sured. The data analysis pipeline identifies peptides, infers protein identities and determines
regulated proteins by statistical analysis (modified from [35]).

applied to determine the best match in a database search. A search engine (e.g. Mascot
[184] or Andromeda [42]) performs a database search in which the observed mass of
the intact peptide (precursor mass) and its fragment masses are matched with the in
silico digested and fragmented peptides derived from a protein database. Identified
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peptides are reassembled into proteins and statistical analysis is performed to identify
proteins which are regulated significantly.

1.2.1 Contemporary mass spectrometry instrumentation

Analysis of peptides in the mass spectrometer is the central step in a proteomic experi-
ment. A large variety of MS instruments is currently available in which different phys-
ical principles are exploited to manipulate and analyze ions in the gas phase. Different
mass analyzers, fragmentation principles and mass detectors have been combined. The
application range of an instrument depends on which parts are incorporated and how
they are combined. A thorough understanding of the underlying principles is crucial
to choose the instrument required for the desired application. In general, contempo-
rary MS instruments for proteomics are capable of recording parent masses at high
resolution and accuracy in combination with a high sequencing speed for fragment
ions.

Mass analyzers

The mass analyzer is the core element of every mass spectrometer. Depending on the
underlying physical principles, mass analyzers exhibit unique characteristics which
make them suitable for different tasks. The following properties are used to describe
the performance of mass analyzers: Mass precision describes the “repeatability”, mean-
ing the variation between several measurements for the same mass. The term mass
accuracy describes the deviation of the measured to the theoretical mass [41]. Current
instruments can achieve mass accuracy in the low parts per million (ppm) range. Reso-
lution is a dimensionless number calculated by dividing the mass of an observed peak
by its width. Resolution is important for proper quantification, separation of neighbor-
ing peaks, and also influences mass accuracy by the separation of isotope clusters. A
high “dynamic range”, which describes the ratio of the strongest signal to the weakest
signal that can still be detected in a spectrum, is a prerequisite for sampling deeply into
a complex peptide mixture.
Two of the most common mass analyzers, which were also used in this thesis, the lin-
ear ion trap and the Orbitrap analyzer, are described below. Time of flight (TOF) mass
analyzers are also popular, however, as they were not used in this thesis, they will not
be discussed.

Ion trap: The linear ion trap is a very versatile mass analyzer capable of mass selec-
tion, fragmentation and detection. The trap consists of four hyperbolic rods, each of
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Figure 1.2.2: The ion trap mass analyzer A) Schematic view of a linear two dimensional ion
trap. B) Application of DC voltage on the front and back sections forms a potential well, which
traps ions in z direction. C)Ions stored in the ion trap follow a radial motion guided by the
application of an RF voltage to the quadrupole rods (from [214]).

which is cut into three axial sections (Figure 1.2.2 A). Each section has a discrete DC
level which generates a potential well and traps ions in axial direction (Figure 1.2.2 B).
The rods are paired, and a radio frequency (RF) voltage is applied to the rod pairs. This
leads to a potential well in radial direction confining the trajectories of the ions (Figure
1.2.2 C). To reduce ion motion and dispersion, a dampening gas (usually helium) is
introduced into the trap. Ions in the ion trap collide with the helium gas leading to a
loss of kinetic energy. The stability of the ions in the ion trap can be described by the
Mathieu equations:

a = 8zeU ′

m(x2+y2)Ω2

q = 4zeV ′

m(x2+y2)Ω2

with
m = mass of a trapped ion
e = charge of a trapped ion
z = number of charges on the trapped ion
V’ = RF power (amplitude of RF oscillation)
U’ = DC offset
Ω’ = frequency of RF
x = distance from the center of the trap to the X rods
y = distance from the center of the trap to the Y rods
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Combinations of a and q leading to stable ion trajectories can be seen in Figure 1.2.3.
With some assumptions, these equations can be simplified. The geometric parameters
x and y, as well as Ω’ are fixed by the machine design. As the DC offset is never
changed, it is set to 0 in the equation. This leads to a value of 0 for a, and leaves a one
dimensional stability definition for ions which only depends on q. Ions are stable in
the ion trap as long as their q value is below 0.908.

Figure 1.2.3: Stability of ions in the ion trap
Depiction of a and q combinations which lead
to stable ion trajectories in x and y direction.
The overlapping area indicates a-q combina-
tions under which ions are stable in the ion trap
(from [206]).

Moreover, a smaller ion will always have
a larger q than a larger ion. By mod-
ulating the RF amplitude and thus rais-
ing the q value, ions can be ejected from
the ion trap in a size dependent manner.
This is used for two processes. First of
all, by selectively removing ions of a spe-
cific m/z, the ion trap can perform mass
selection. Second, the ejection can be
guided towards the slits on the rods be-
hind which the multipliers are positioned
(see figure 1.2.2). By successively increas-
ing the m/z of ejected ions and detecting
them with the multipliers, mass spectra
can be recorded. Although ion traps can

be used to obtain full scan spectra of the precursor masses, in proteomics they are of-
ten only employed for fragmentation. For fragmenting selected ion populations, a m/z
range of interest is isolated. Afterwards, the q of these ions is reduced to the so-called
activation q – a standard value would be 0.25. As fragmentation generates many ions
that are smaller, many of those would be lost if their q would be above 0.908. The small-
est mass fragment, which can still be observed after fragmentation, can be calculated
as activation q divided by 0.908 times the precursor mass. At a standard activation
q of 0.25, fragments with a mass about a quarter of the precursor mass cannot be re-
tained in the ion trap, which is referred to as the “ 1⁄3 mass cutoff”. In summary, the ion
trap is capable of storing, isolating, fragmenting and, in combination with a multiplier,
detecting ions. It has a very high sensitivity and a high sequencing speed, but mass
accuracy and mass resolution are relatively low compared to high resolution devices
like TOF or Orbitrap analyzers. In hybrid instruments, ion traps are preferentially used
for fragmentation as only few ions are necessary and fast cycle times can be achieved.
However, due to the 1⁄3 mass cutoff for collision induced dissociation, fragment ions in
the low mass range cannot be observed.
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Orbitrap: The Orbitrap traps and measures ions in an electrostatic field. Its design is
based on the Kingdon trap [107], and the actual Orbitrap was first described in 2000
by Alexander Makarov [142]. The Orbitrap consists of an inner spindle-like central
electrode, surrounded by an outer barrel-like split electrode (Figure 1.2.4). Before en-
tering the Orbitrap cell, ions are accumulated and stored in the C-trap. The C-trap is
an RF-only quadrupole in the shape of the letter “C”. From there, ions are injected as
a compacted package into the Orbitrap cell off its plane of symmetry (red arrow in
Figure 1.2.4).

Figure 1.2.4: The Orbitrap mass analyzer
Schematic cross section of an Orbitrap mass an-
alyzer. Blue arrows indicate radial (r) and axial
(z) directions. Red arrow indicates ion move-
ment (from [215]).

Once in the Orbitrap, two forces are act-
ing on the ions. First, a radial force gen-
erated by the radial field Er attracts ions
towards the central electrode. If the cen-
trifugal force produced by the tangen-
tial velocity equals the attractive force to-
wards the central electrode generated by
the electrostatic field, the ions orbit in
a circular trajectory around the central
electrode. This oscillation in radial direc-
tion is highly dependent on the initial en-
ergy of the ions. Second, an axial field is
generated in the Orbitrap, which is zero
at the equator plane and increases with
the distance from the center. Ions are at-
tracted towards the equator plane, tra-
verse it and upon entering the other half
of the Orbitrap cell, a force opposite to their movement direction pulls them back to
the equator plane. This force increases with distance from the equator plane until the
kinetic energy in axial direction is zero. Now ions are accelerated back to the equator
plane. These forces generate an axial oscillation. Axial and radial movements sum up
to a stable spiral-like trajectory around the central electrode. Importantly, the axial os-
cillation component is independent of the initial energy of the ion and depends only
on the mass to charge ratio m/z. A Fourier transformation can convert the frequency
readout generated from axial oscillation of all ions present in the Orbitrap into an m/z
spectrum. The Orbitrap mass analyzer is capable of generating high resolution, high
mass accuracy measurements in a short time frame compatible with chromatography
coupled settings. Its performance is comparable with a Fourier transform ion cyclotron
resonance (FTICR) cell, however no large superconducting magnets are needed and a
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higher resolution in the high mass range can be achieved [215]. As the Orbitrap is
not capable of performing fragmentation, it is normally coupled to ion selection and
fragmentation devices like a linear ion trap, or a quadrupole and a dedicated collision
cell.

Mass spectrometers containing the Orbitrap as a mass analyzer

The Orbitrap analyzer is exclusively incorporated into mass spectrometers manufac-
tured by Thermo Fisher Scientific and currently five different instruments are equipped
with the Orbitrap cell. LTQ Orbitrap, Orbitrap Velos and Orbitrap Elite are hybrid in-
struments, which use the Orbitrap for high accuracy and precision recording of precur-
sor masses and HCD fragment masses, but include a linear ion trap capable of rapid
peptide fragmentation. The benchtop instruments Exactive and Q Exactive contain
the Orbitrap as sole mass analyzer, which is used for recording precursor as well as
fragment ions. Measurements for this thesis were performed on the LTQ Orbitrap, Or-
bitrap Velos and Q Exactive and these instruments will be introduced in more detail
(Figure 1.2.5).

LTQ Orbitrap: The LTQ Orbitrap was the first mass spectrometer that incorporated
an Orbitrap mass analyzer [171] (Figure 1.2.5 A). This hybrid instrument consists of an
Orbitrap cell for measuring precursor ion masses at high resolution and a linear ion
trap for rapid acquisition of fragment spectra. In the beginning of a recording cycle,
ions are guided through the ion optics and the linear ion trap and are accumulated in
the C-trap. From there, a compacted package of ions is transferred into the Orbitrap
cell and a prescan at low resolution is recorded to define the most abundant ions. TopN
methods, in which the N most abundant ions (often five or ten) from the MS1 scan are
chosen for fragmentation, are routinely used in data dependent acquisition. Isolation,
fragmentation and measurement of these ions is performed in the ion trap, concurrent
with acquisition of the high-resolution spectrum of the precursor masses in the Orbi-
trap. One cycle, including an MS1 scan in the Orbitrap at a resolution of 60,000 and
five fragmentation events, takes around 2.5 seconds. The high mass accuracy of the
Orbitrap can be even further increased by injecting ambient ions from laboratory air
as internal recalibration standard [171]. An upgrade (called Orbitrap XL) contains a
dedicated collision cell for HCD fragmentation [172].

Orbitrap Velos: The Orbitrap Velos was released after the LTQ Orbitrap [174], and
has the same principle design (Figure 1.2.5 B). It is also a hybrid instrument consisting
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Figure 1.2.5: Three important members of the Orbitrap family A) The LTQ Orbitrap was the
first hybrid instrument containing an Orbitrap cell [171]. B) The Orbitrap Velos is an improved
hybrid instrument [174]. C) The benchtop instrument Q Exactive contains only an Orbitrap
mass analyzer [152].

of a linear ion trap and an Orbitrap mass analyzer. The front part was significantly
modified: an S-lens replaces the tube lens/skimmer and allows better transmission of
ions into the instrument, thus increasing the sensitivity. The linear ion trap in the LTQ
Orbitrap was replaced by a dual linear ion trap. The first ion trap is operated at a higher
pressure of helium bath gas (5.0 x 10-3 Torr) which allows very efficient trapping, iso-
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lation and fragmentation of ions. Ions are transferred into the second trap operated at
lower pressure (3.5 x 10-4 Torr), in which mass spectra can be recorded at higher speed.
HCD fragmentation could already be performed in the Orbitrap XL. However, a large
number of ions had to be accumulated due to inefficient ion transfer. Because of im-
provements in design and electronics, five to ten times more ions per unit time enter the
HCD cell in the Orbitrap Velos. This development has made HCD fragmentation suit-
able for standard proteomic experiments. The availability of rapid fragmentation and
scanning in the ion trap, or efficient quadrupole-like fragmentation in the C-trap com-
bined with high resolution mass analysis in the Orbitrap, allows two analysis strate-
gies. In the high-low strategy, precursor masses are recorded at high resolution and
high mass accuracy in the Orbitrap, with concomitant rapid analysis of fragment ions
at low resolution and low mass accuracy in the linear ion trap. In contrast, the high-
high strategy makes use of the improved HCD setup, and the fragment spectra are
also recorded at high resolution and high mass accuracy in the Orbitrap. As all mass
measurements are performed in the Orbitrap cell, full scans and fragmentation scans
are recorded successively. The high resolution recording of fragment spectra allows
deconvolution of multiply charged fragment ions and the higher mass accuracy allows
smaller mass tolerances thereby increasing confidence in spectra matching. In addition,
fragmentation in the HCD cell does not suffer from the 1⁄3 mass cutoff, and produces
spectra that contain more information. In summary, the Orbitrap Velos has improved
sensitivity and speed compared to the Orbitrap XL and enables efficient shotgun pro-
teomics experiments with the high-high strategy.

Q Exactive: The Q Exactive is the latest member of the Orbitrap family and is based
mainly on the Exactive. The Exactive is a benchtop instrument with only one mass
analyzer, an Orbitrap, which can only perform precursor mass detection and all ion
fragmentation [66]. An additional quadrupole in the Q Exactive enables isolation of
selected ions to perform data dependent acquisition [152]. Proteomic measurements
on the Q Exactive yield high-high data similar to HCD experiments with the Orbitrap
Velos. Improved sensitivity and increased sequencing speed can be achieved with the
Q Exactive due to a shorter ion path, the lack of a linear ion trap and further improve-
ments on electronics and software. The introduction of a benchtop instrument, which
is at least equally powerful for shotgun proteomics as the Orbitrap Velos, is a major
step forward to make high quality mass spectrometry available for the larger biologi-
cal community.
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1.2.2 Quantitative proteomics

Proteomics has developed into a powerful technique for biology and biochemistry by
providing the means to reliably identify many proteins in complex mixtures in a rel-
atively small time frame. However, information about the presence or absence of a
protein in a sample is in most cases not enough to draw valid biological conclusions. It
is more important to obtain quantitative information on proteins, as often a change in
protein abundance rather than their appearance or disappearance per se is responsible
for a biological effect. Mass spectrometry can be used to obtain not only qualitative,
but also this quantitative information. There are two principle types of quantification.
Absolute quantification aims to determine the absolute amount of a protein in a solu-
tion or a cell system and yields concentrations or copy numbers per cell. In relative
quantification, only the abundance difference between two samples is determined.
Two basic strategies can be applied to obtain quantitative information: label-free and
stable isotope labeling approaches (Figure 1.2.6). Whereas label-free approaches sim-
ply prepare and measure the samples separately, labeling approaches introduce stable
isotopes which generate a mass difference. Stable isotopes can be introduced at dif-
ferent stages during the experiment (Figure 1.2.6). Differently labeled samples can be
distinguished in the mass spectrometer and this allows to combine proteins (or pep-
tides) and analyze them together. Parallel sample processing steps and, to an even
greater extend, separate measurements as in label-free approaches, introduce variabil-
ity which reduces the precision of the quantification. A more accurate quantification
allows more reliable identification of significantly changed protein hits from the ob-
served protein population. The earlier samples can be combined, the more accurate
the quantification will be. In principle, metabolic labeling produces the most accurate
quantification, whereas label-free approaches are more prone to accumulate variability
and demand more replicates and more sophisticated statistical analysis.

Relative quantification by stable isotope labeling

Isotopic labeling strategies are always based on introducing defined stable isotopes
into a sample to make it distinguishable from another sample by mass spectrometry.
It can be either achieved by chemical derivatization of an unlabeled sample or by ex-
ploiting metabolic pathways to incorporate heavy isotopes.

Chemical labeling: Chemical labeling strategies use a reactive group on a polypep-
tide to fuse it to an isotopic label. All samples that are to be compared are treated in
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Figure 1.2.6: Labeling strategies and their impact on quantitative accuracy The scheme de-
picts typical stable isotope labeling and label-free workflows. Empty boxes represent samples
without a label which cannot be distinguished in the mass spectrometer. Once samples are
isotopically labeled (represented by colored boxes) they can be distinguished in the mass spec-
trometer and are pooled. The earlier the samples are pooled, the less variability is introduced
during the sample workflow (modified from [176]).

the same manner, but using isotopically different reagents. For quantification at the
MS1 level, reagents are used that introduce a mass difference between the peptides.
The advantage of these methods is high quantification accuracy; however, samples in-
crease in complexity by a factor of two for double labeling. The ICAT (isotope-coded
affinity tag) reagent consists of a thiol specific reactive group, a linker which contains
the isotope label and a biotin group for affinity enrichment [76]. Only cysteine contain-
ing peptides can be labeled and are subsequently enriched via the biotin moiety prior
to MS analysis. Although this approach is very specific and reduces complexity, only
a subset of peptides can be labeled and quantification of many proteins will rely on
very few data points. Another method to introduce a mass shift is dimethyl labeling
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[20]. Up to three different isotopomeres of formaldehyde react with alpha and epsilon
amino groups to form dimethyl amines. This reaction adds two methyl groups to all
lysine side chains and all free N-termini and achieves labeling of all peptides present.
A different approach performs quantification on the MS2 level. TMT (tandem mass
tag) [241] and iTRAQ (isobaric Tag for Relative and Absolute Quantitation) [203] use
isobaric tags. Isobaric tags consist of a reporter group and a balancing group, which
add up to the same mass for all tags, hence the name isobaric. Pooled samples which
have been treated with isobaric reagents generate a single ion cluster in the MS1 space
for every peptide. Upon fragmentation, the different reporter ions are released and
their intensity is used for relative quantification. This approach can be easily multi-
plexed, without concomitant increase in the complexity in the MS1 space. However,
quantification at the MS2 level can have some disadvantages. Standard collision in-
duced fragmentation in the ion trap does typically not cover fragments in the low mass
region. Instead, pulsed Q dissociation (PQD) or a triple quadrupole like fragmentation
(HCD) must be used. Furthermore, every peptide quantification is based on a single
observation in a fragmentation event, whereas in MS1 based methods a peptide is ob-
served during consecutive full scans allowing several quantification events. Finally,
co-eluting peptides, which are in the fragmentation window, also contribute their re-
porter ions which leads to ratio dampening [151].
In summary, chemical labeling provides a possibility to perform isotope labeling based
quantification on material that was initially unlabeled . These chemical labeling meth-
ods have the disadvantage of additional processing steps that can introduce variability
and artifacts.

Metabolic labeling: Metabolic labeling strategies already introduce the isotopic atoms
through growth medium or food. This can be done in a global manner, e.g. by replac-
ing all nitrogen atoms by heavy nitrogen [170]. Unfortunately, this approach produces
broad isotope distributions which are complicated to analyze and it is therefore only
used for specialized applications in plant and bacterial biology. A very defined incor-
poration can be achieved by replacing essential amino acids in the growth medium
with their heavy counterpart, an approach termed SILAC (stable isotope labeling with
amino acids in cell culture) [175]. Labeling all proteins with heavy arginine and lysine
in combination with usage of the protease trypsin which cleaves C-terminal to these
amino acids [173] for digestion ensures that every peptide contains at least one labeled
amino acid (except the C-terminal peptide of the protein). Two isotope clusters can
be observed for every peptide, forming a so-called SILAC pair. From the intensities

30



1 Introduction

of the SILAC pair, a ratio can be directly assigned to the identified peptide. In princi-
ple, nearly every cell line can be SILAC-labeled, including cell lines that demand more
sophisticated culturing like mouse and human embryonic stem cells [72, 199]. More-
over, whole organisms are also amenable to SILAC labeling. A lysine auxotroph Sac-
charomyces cerevisiae strain [74], Drosophila melanogaster [233], Mus musculus [116] and
Caenorhabditis elegans [123] were successfully labeled.
By spiking in a heavy-labeled human cell line to human samples (e.g. tumour biop-
sies), the high-accuracy SILAC based quantification can be applied for human samples
which are otherwise not accessible for metabolic labeling. As the internal standard (the
heavy labeled cell line) is the same in all samples, the “ratio of ratios” allows a direct
comparison of protein abundance between different samples. Combining several rep-
resentative cell lines to a super-SILAC mix further enhances quantification accuracy
[67].

Relative quantification by label-free approaches

Label-free proteomics aims at performing quantification without the introduction of
stable isotopes. In general, these approaches have to cope with higher variability be-
cause sample preparation and measurement are performed separately. As a conse-
quence, a more complex statistical analysis is required. Comparing the number of
peptide spectra recorded for a protein in two samples is the most straightforward rel-
ative quantification. This spectral counting approach [134] correctly classifies highly
regulated proteins. However, especially proteins with few sequenced peptides cannot
be quantified accurately and this approach is generally prone to a high false negative
rate. Better results can be obtained by an intensity-based label-free quantification as it
is computed in the MaxQuant software platform [40, 136]. To overcome experimentally
introduced variability, the algorithm contains several normalization steps.

Absolute quantification

To obtain absolute protein concentrations, a defined amount of standard, in most ap-
proaches a heavy-isotope-labeled reference, needs to be spiked into the sample. La-
beled synthetic peptides can be used for this purpose in an approach often referred
to as AQUA (for absolute quantification) [108]. To control for variability introduced
during sample preparation (mainly missed cleavages and protein adsorption), heavy
protein fragments or full length proteins can be spiked in before digestion [78, 269].
The abovementioned methods can provide very accurate quantification, but their high-
throughput capability is severely limited as for every protein to be quantified a separate
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standard has to be spiked in.
Although the intensity between two different peptides cannot be directly used to in-
fer quantitative information, approaches were developed that can estimate absolute
amounts without using isotope labeled spike in standards. The empirical abundance
index (emPAI), for example, is computed as ten to the power of the number of observed
peptides divided by the number of theoretical peptides minus one. Interestingly, the
emPAI shows direct proportionality to the absolute protein amount [92].
A more refined method is to calculate a so-called iBAC (intensity-based absolute quan-
tification) intensity [213]. In this method the intensities of all identified peptides of a
protein are summed up, divided by the number of theoretically observed peptides and
log transformed. To perform absolute quantification, a non-labeled standard of accu-
rately quantified proteins is spiked into the sample before sample preparation. Using
iBAC intensities for the standard proteins, the absolute protein amount of all identified
proteins can be estimated using a linear regression [213].

1.2.3 Interaction proteomics

MS-based proteomics is a powerful tool for studying protein-protein interactions. Its
major power is the unbiased identification and quantification of proteins, thereby al-
lowing the rapid and reliable identification of interacting proteins without prior knowl-
edge. Classical approaches used very clean purifications, for example by employing a
TAP-tagging strategy [198] and defined all identified proteins as specific interactors.
The TAP-tagging approach was successfully applied in large-scale interactome studies
[64, 65, 117]. However, using highly-sensitive contemporary mass spectrometers, back-
ground binding proteins will be identified which give rise to false positive interactors.
A superior alternative combines truly quantitative proteomics techniques with affin-
ity enrichments. True interactors are separated from background binders via the ratio
observed between specific affinity purification and control purification. Furthermore,
as every protein is assigned a ratio, it is not necessary to perform rigorous purifica-
tions, but instead single step purifications and mild washing conditions can be applied
[251]. This strategy opens up the field of interaction proteomics to any kind of pro-
tein interaction as long as a bait can be immobilized. High quality results could be
achieved for protein-protein interactions [88], modification dependent peptide-protein
interactions [79, 212, 252], sequence specific DNA-protein [25, 156] or RNA-protein in-
teractions [26] as well as interactions with small molecules [219]. As discussed above,
several semiquantitative approaches based on spectra-counting have been developed
[143, 167, 209, 227], however, the focus here will be on SILAC and intensity-based label-
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free approaches because they were used in this thesis.

SILAC-based interaction proteomics

SILAC currently offers the best and most reliable quantification method for interaction
proteomics. Proteins are already metabolically labeled before the pull-down, thus labe-
ling artifacts or incomplete labeling, which can happen for chemical labeling approa-
ches, are circumvented. The experimental design of SILAC-based interaction screens
in general follows the same standard principles: In the forward experiment, the spe-
cific pull-down is performed with the heavy and the control pull-down with the light
labeled extracts. For the reverse experiment labels are swapped (Figure 1.2.7 A). Pull-
downs are generally performed separately to avoid subunit exchange reactions [102].
Beads are pooled after washing and bound proteins are eluted together. Whether sam-
ples are fractionated or not depends on the complexity of the sample. For specific
elutions single MS runs are usually sufficient.
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Figure 1.2.7: SILAC based interaction workflows A) Overview of a typical SILAC forward and
reverse experiment. B) Ratio-ratio plot of a SILAC interaction experiment. Background cloud
in green, proteins specifically binding (blue) can be found in the lower right quadrant, proteins
specifically repelled (orange) can be found in the upper left quadrant.

Nonspecific binders show a ratio of around one in both experiments, whereas specific
outliers have a high ratio in the forward and a low ratio in the reverse experiment. For
visualization, logarithmized ratios from the forward and the reverse experiment are
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plotted in a so-called ratio-ratio plot (Figure 1.2.7 B). Specific outliers can be found in
the lower right quadrant. In some cases, enrichment on both baits makes biological
sense (e.g. when comparing modified and unmodified peptides as baits) and outliers
can be found in the lower right and the upper left quadrants. Ideally the background
cloud forming around 0 is compressed and dense, and outliers are clearly offset. In
almost all cases a visual inspection of the data is sufficient to pinpoint the specific hits,
however, if necessary a statistical significance value can provide a robust p-value [25].

In most SILAC interaction studies, two enrichment experiments are compared: a spe-
cific pull-down and a control pull-down. For some questions, it is desirable to directly
compare two samples to a control. Triple labeling approaches enable such an analysis
of three different states. This allows, for example, the dissection of co-operative effects
of recruiting modifications on histone tails. Enhanced binding of TFIID to H3K4me3
upon acetylation of K9 and K14 was discovered using a triple labeling strategy [252].
In another study, the composition of the interactome of APC (Adenomatous polypo-
sis coli) and AXIN1, two important proteins in the Wnt pathway, were investigated in
their native and stimulated state [86].

Label-free interaction proteomics

Label-free approaches were recently shown to yield comparable results to SILAC-based
quantification for interaction studies [88]. Samples from specific pull-down and control
are prepared and measured separately, which gives rise to a higher variability. This can
be minimized by automation, either by using a robotic workstation [88] or by setting
up interaction experiments on 96-well plates as applied in this thesis. Intensity-based
label-free quantification was performed by the MaxQuant software platform by com-
puting a label-free intensity at the protein level [136]. In contrast to a SILAC approach
which is very intuitive to analyze, label-free approaches need a more complex statisti-
cal analysis to define outliers. A modified t-test statistic [245] that takes reproducibility
and fold change into account has proven to provide a good separation of outliers from
background binding proteins [88]. An additional parameter (termed s0) is introduced,
which puts more weight on the relative difference between the groups.

d(i) = x̄I(i)−x̄U (i)
s(i)+s0

Although label-free approaches need more replicates and are more complex to analyze
than SILAC experiments, they offer some advantages. First of all, any protein source
can directly be used. This allows interaction experiments from cells, which are compli-

34



1 Introduction

cated to label and from organisms which are otherwise not accessible for SILAC-based
studies. Near unlimited multiplicity is another advantage of label-free approaches.
Whereas in SILAC a maximum of three samples can be directly compared, label-free
approaches allow the comparison of any number of baits.

Full-length protein-protein interactions

Protein-protein interactions are usually studied by enriching the protein of interest
from a cell or tissue extract and analyzing the co-purified proteins. Pull-downs can be
performed using antibodies against endogenous proteins, or by expression of tagged
proteins and purifying them with an antibody against the tag. For the latter, good an-
tibodies are available and furthermore a generic pull-down setup can be applied, mak-
ing it very convenient for large scale interaction studies. Using FLAG-tagged protein
over-expression, the protein interactions of 5,000 individually tagged Drosophila pro-
teins were analyzed [75]. However, the addition of a tag to a protein can interfere with
protein-protein interactions by occluding interaction surfaces or by preventing proper
protein folding. Moreover, protein over-expression can lead to artifacts. For example,
mislocalization of the bait protein into cellular compartments where it normally would
not be present, can force unphysiological protein interactions.
Co-IPs using antibodies against endogenous proteins and isotype antibodies as control
circumvent many of the abovementioned problems. Endogenous Co-IPs heavily rely
on the quality of the antibodies. First of all, antibodies against the bait proteins need to
be available. Second, they need to be highly specific as cross-reactions with other pro-
teins would generate artifacts. Although Co-IPs of endogenous proteins are not easily
streamlined, a large interaction screen in human cells was recently performed [143]. To
overcome the problem of cross-reactivity, the QUICK approach (QUantitative Immuno
precipitation Combined with a Knockdown) was developed [216]. By using a cell line
in which the protein of interest is knocked down, the same antibody can be used for
Co-IP and control. Proteins which cross-react with the antibody will be equally en-
riched in both purifications, and thereby not lead to false positive interactors.
BAC TransgeneOmics [192] is a powerful method to generate cell lines with tagged pro-
teins at near endogenous expression levels. BACs (bacterial artificial chromosomes),
encoding the gene of interest including introns and the gene-specific promoter, are
modified by recombineering to include a GFP-tag and an antibiotic resistance marker.
These modified BACs are transfected into cell lines where they stably integrate into the
genome. As the whole genomic region including the endogenous promoter is used,
the resulting tagged proteins are expressed at near endogenous level. Moreover, cell
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cycle-dependent protein expression patterns as well as cell type-specific isoforms can
be obtained. The GFP tag is a very versatile tool, as it can be used for immunofluores-
cence and ChIP assays [192]. It is also an excellent tag for protein-protein interaction
studies [242]. The combination of BAC TransgenOmics and quantitative mass spec-
trometry, termed QUBIC (Quantitative BAC InteraCtomics), is a powerful approach in
interaction proteomics [88, 89]. Due to the large interest in GFP as a purification tag,
GFP nanotraps were developed recently [204]. These are engineered proteins based
on a single chain antibody from Llama which show excellent binding affinities to GFP.
Due to its much smaller size, nanotraps do not generate as many peptides as normal
antibodies which would interfere with the subsequent MS analysis.

Modification-dependent protein-protein interactions

Many protein interactions in a cell are not constitutive, but only take place after a spe-
cific stimulus. One way to accomplish this in a cell is by making protein interactions
dependent on post-translational modifications. Several protein domains binding to a
partner protein in a modification-dependent manner have evolved. For example, SH2
domains specifically bind to phosphorylated tyrosines [179], bromo domains bind to
acetylated lysines [47] and many binding domains for methylated lysines are described
[237].
A Peptide pull-downs approach using modified and unmodified bait peptides to screen
for modification-dependent protein-protein interactions is a robust method. Bait pep-
tides are coupled to beads via a biotin moiety and incubated with protein extracts.
Quantitative mass spectrometry (e.g. SILAC) is used to separate background binders
from modification-dependent protein interactions [212]. The quantitative read-out is
absolutely crucial, as a large number of proteins will bind unspecifically to the un-
structured peptide bait [251]. This workflow was successfully applied to study phos-
photyrosine binders [79, 217] and readers of lysine trimethylation [252].
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2 Results

2.1 Quantitative interaction proteomics and genome-wide
profiling of epigenetic histone marks and their readers

2.1.1 Project aim and summary

Histone modifications play a crucial role in the regulation of chromatin-associated pro-
cesses and very often serve as binding platforms to recruit so-called chromatin readers.
Knowing all the possible binding partners for these modifications is a first prerequisite
for a detailed investigation of their functions. Mass spectrometry-based proteomics of-
fers powerful and unbiased methods to identify novel chromatin readers by combining
peptide pull-downs of modified and unmodified peptides with a SILAC-based quan-
titative read-out [212]. The direct binding of the general transcription factor TFIID to
H3K4me3 has been discovered in such an approach [252].

ChIP-Seq

Genome wide profiling

Peptide pull-downs

Chromatin readers

GFP

GFP pull-downs

Interaction partners

GFP
me3

me3

Figure 2.1.1: Three techniques were com-
bined to study trimethyl lysine readers
Peptide pull-downs were used to identify
proteins associated with the respective chro-
matin marks. GFP pull-downs of selected
hits from the peptide pull-downs were
used to define chromatin reader complexes.
ChIP-Seq of selected chromatin readers was
used to verify in vivo the interaction with the
chromatin mark and to define the genome
wide binding pattern.

We used this workflow to screen for chromatin readers of the major trimethylation sites
on histone H3 and H4. The screen included the activating H3K4me3 and H3K36me3
marks, as well as the repressive H3K9me3, H3K27me3 and H4K20me3 marks. To as-
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sign proteins enriched in our peptide pull-down screens into complexes, we employed
the BAC recombineering technology [192] to generate stable cell lines expressing GFP-
tagged potential new readers under their endogenous promoter. We then performed
GFP pull-downs to identify their interaction partners to define an interaction network.
Combining this network with prior biochemical knowledge, we were able to develop
hypotheses about direct binders. We demonstrated biochemically that the SAGA com-
plex subunit SGF29 directly binds to H3K4me3 via its double tudor domain, and that
the PWWP domain of NPAC is necessary for H3K36me3 binding. We further used
our stable cell lines for ChIP-Seq profiling. By comparing the genome-wide bind-
ing of chromatin readers to the ChIP-Seq profiles of the actual chromatin marks, we
could verify the interaction with the histone modification in vivo. In addition, we ob-
served that some H3K4me3 readers were binding to all occurrences of this modifica-
tion, whereas others only bound a subset. In summary, this was the first large scale
screen for chromatin readers of the major trimethyl lysine marks. It combined pro-
teomics, protein biochemistry and ChIP-Seq (Figure 2.1.1) and provided a detailed and
unbiased view on five important epigenetic marks.
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2.1.2 Contribution

This project was initiated and coordinated by Michiel Vermeulen, who also co-super-
vised the first part of this PhD thesis. When I joined the project, the initial peptide pull-
down screen as well as some biochemical verification was already done. I established
the protocol for GFP pull-downs of nuclear protein complexes and performed most
protein-protein interaction studies. To increase our confidence in the data, I repeated
some of the peptide pull-downs to confirm new chromatin readers. I confirmed the
association of the novel chromatin reader NPAC with the H3K36me3 chromatin mark
and showed furthermore that the PWWP domain is necessary for binding. Finally,
I analyzed the proteomic data and prepared all proteomic figures and tables for the
publication.

2.1.3 Publication

This project was published as a Resource article in 2010:

Quantitative interaction proteomics and genome-wide profiling of epigenetic his-
tone marks and their readers

Michiel Vermeulen*, H. Christian Eberl*, Filomena Matarese*, Hendrik Marks, Sergei
Denissov, Falk Butter, Kenneth K. Lee, Jesper V. Olsen, Anthony A. Hyman, Henk G.
Stunnenberg and Matthias Mann

* these authors contributed equally

Cell 2010, 142, 967-980
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SUMMARY

Trimethyl-lysine (me3) modifications on histones are
the most stable epigenetic marks and they control
chromatin-mediated regulation of gene expression.
Here, we determine proteins that bind these marks
by high-accuracy, quantitative mass spectrometry.
These chromatin ‘‘readers’’ are assigned to com-
plexes by interaction proteomics of full-length
BAC-GFP-tagged proteins. ChIP-Seq profiling iden-
tifies their genomic binding sites, revealing functional
properties. Among the main findings, the human
SAGA complex binds to H3K4me3 via a double
Tudor-domain in the C terminus of Sgf29, and
the PWWP domain is identified as a putative
H3K36me3 binding motif. The ORC complex, in-
cluding LRWD1, binds to the three most prominent
transcriptional repressive lysine methylation sites.
Our data reveal a highly adapted interplay between
chromatin marks and their associated protein
complexes. Reading specific trimethyl-lysine sites
by specialized complexes appears to be a wide-
spread mechanism to mediate gene expression.

INTRODUCTION

In the eukaryotic nucleus, DNA is wrapped around an octamer of

histone proteins, which constitute the nucleosomes. Rather than

merely serving as a means to store genetic material, nucleo-

somes play an active role in regulating processes such as tran-

scription, DNA repair, and apoptosis. The N-terminal tails of

the four core histones that protrude from the core structure of

the nucleosome are subject to a variety of posttranslational

modifications such as acetylation, methylation, and phosphory-

lation. One role of these modifications is the recruitment of regu-

latory proteins that in turn exert their function on chromatin

(Jenuwein and Allis, 2001; Kouzarides, 2007).

The major lysine methylation sites on the N terminus of histone

H3 and histone H4 with a clearly defined biological function are

H3K4me3, H3K9me3, H3K27me3, H3K36me3, and H4K20me3,

which are associated with different functional states of

chromatin. H3K4me3 is almost exclusively found on promoter

regions of actively transcribed genes while H3K36me3 is

linked to transcription elongation. H3K9me3, H3K27me3, and

H4K20me3 are generally found on silent heterochromatic

regions of the genome. Part of the functional distinction between

these methylation sites relates to the proteins interacting with

them. A number of these ‘‘chromatin readers’’ for various histone

methyl lysine sites have already been identified and character-

ized (Kouzarides, 2007; Shilatifard, 2006; Taverna et al., 2007),

but this list is unlikely to be exhaustive. To obtain a comprehen-

sive map of the histone methyl lysine interactome, unbiased

screening methods are required.

Mass spectrometry (MS)-based proteomics is increasingly

used in functional biological studies and has proved to be

a powerful tool to characterize histone modifications (Garcia

et al., 2007; Vermeulen and Selbach, 2009). For protein-protein

interactions a quantitative format is desirable, as this enables

to distinguish specific and background binders (Vermeulen

et al., 2008). In particular, the technology of stable isotope

labeling by amino acids in cell culture (SILAC) (Ong et al.,

2002) can be used to expose peptide baits bearing a posttrans-

lational modification to ‘‘heavy’’ SILAC-labeled cell extracts,

whereas the unmodified peptide is exposed to ‘‘light’’ labeled

cell extract. Binders specific to the modified form of the peptide

appear in mass spectra with a significant ratio between heavy

and light form of the protein. Using this approach, we discovered

that TFIID binds to H3K4me3, thereby providing a link between
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this modification and activation of transcription (Vermeulen et al.,

2007).

Here, we refine this technology and perform an unbiased inter-

action screen for the known activating and repressive trimethyl

histone marks on H3 and H4. We apply the BAC-GFP transge-

neOmics technology (Poser et al., 2008) to characterize

chromatin readers and their complexes. Chromatin immunopre-

cipitation followed by massive parallel sequencing (ChIP-Seq)

with the same BAC-GFP lines identifies the in vivo target genes,

which are found to overlap with the histone marks they interact

with. This integrative approach provides not only an interactome

of the studied histone marks, including many previously unchar-

acterized factors, but also mechanistic insights into epigenetic

regulation of gene expression.

RESULTS

A Large-Scale Methyl Lysine Interactome
To characterize the interactome of trimethyl-lysine chromatin

marks, we developed an interaction screen based on a recently

described technology (Vermeulen et al., 2007). In brief, nuclear

extracts derived from HeLaS3 cells grown in ‘‘light’’ or ‘‘heavy’’

medium were incubated with immobilized biotinylated histone

peptides (Figure 1A). After incubation, beads from both pull-

downs were pooled, run on a one-dimensional PAGE gel, and

subjected to in-gel trypsin digestion. The resulting peptide

mixtures were measured by high-resolution on-line electrospray

MS on a hybrid linear ion trap, Orbitrap (see Experimental Proce-

dures). Computational analysis was done with the MaxQuant
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Figure 1. A Histone Peptide Pulldown Approach Using SILAC Technology

(A) Schematic representation of the experimental approach (M indicates trimethyl lysine).

(B) The H3K4me3 interactome. Proteins are plotted by their SILAC-ratios in the forward (x axis) and reverse (y axis) SILAC experiment. Specific interactors should

lie close to the diagonal in the upper right quadrant. The two major transcriptional coactivator complexes that were found to interact with this mark (TFIID and

SAGA) are encircled. TAF9b, which is localized between TFIID and SAGA in the figure, is a shared subunit between these two complexes.

(C) The H3K36me3 interactome. Proteins carrying a PWWP domain are colored yellow.

(D–F) The interactome of H3K9me3, H3K27me3 and H4K20me3, respectively. Note that the ORC complex, including LRWD1, binds to these three marks.

See also Figure S1 and Table S1.

968 Cell 142, 967–980, September 17, 2010 ª2010 Elsevier Inc.

2 Results

41



algorithms (Cox and Mann, 2008), which enabled sub parts-per-

million mass assignment and accurate quantitation even for very

low abundance SILAC pairs. Eluates from methylated and non-

methylated peptides each contained hundreds of proteins and

are visually indistinguishable on 1D gels (Figure S1A available

online). Nevertheless, the SILAC-ratios reliably retrieved specific

binders even when they were hundred-fold less abundant than

background binders (Figure S1B). We determined the interac-

tome of the two activating marks H3K4me3 and H3K36me3

and three repressive marks, H3K9me3, H3K27me3, and

H4K20me3 (Table S1; Figures 1B–1F). Each measurement iden-

tified between 600 and 1200 proteins at a confidence level of

99%. Of these, between 10 and 60 had highly significant ratios

indicating specific binding to the respective marks.

In our previous study, we identified interactions of members of

the TFIID complex with H3K4me3. Here, we performed the inter-

action screen in the ‘‘forward’’ and ‘‘reverse’’ format to obtain

higher discrimination between specific baits and background.

The forward experiment consists of incubating the modified

peptide with heavy labeled cell lysate and the nonmodified

peptide with light labeled cell lysate, whereas in the reverse

format the labels are switched. These two experiments also

constitute a biological replicate. With a minimum of two quanti-

fication events, every significant interactor is supported by at

least four quantitative measurements. Plotting interaction data

for H3K4me3 in a two-dimensional space and inverting the

SILAC-ratios of the reverse experiment places the true interac-

tors into the top right quadrant (Figure 1A). Nonlabeled contam-

inants, such as keratin and proteins derived from themediumwill

not change the ratio in the reverse experiment and are located in

other quadrants. Furthermore, a number of other proteins, such

as polypyrimidine tract-binding protein 2, were automatically

filtered out because they show significant ratios only in one of

the labeling experiments, and are color coded accordingly in

Table S1. In some cases, interactions may be biophysically

correct but they may not occur in vivo because of compartmen-

talization in the cell (for example, mitochondrial hsp60 binding to

H3K9me3). We noticed that the entire TFIID protein complex

clustered together in the two-dimensional plot, indicating very

similar SILAC ratios in the forward and reverse experiments

(Figure 1B). This prompted us to inspect the interaction plots

for other protein complexes binding to specific chromatin marks.

Sgf29 Links the Human SAGA Complex to H3K4me3
The measured H3K4me3 interactome contained eight subunits

of the human SAGA complex, which tightly clustered together

in the two-dimensional plot (green circle in Figure 1B). Inspection

of the sequences of all known SAGA subunits revealed a double

Tudor domain in the C terminus of Sgf29 (Figure 2A). Double

Tudor domains are known to have affinity for H3K4me3 (Huang

et al., 2006). We therefore speculated that Sgf29 could be the

subunit within the SAGA complex that directly binds to

H3K4me3. To address this question, we used RNAi to knock

down Sgf29 in HeLa cells (Figure 2B). The nuclear extracts

derived from these cells as well as nuclear extracts derived

from cells transfected with control oligonucleotides were used

for peptide pulldowns. Western blotting shows that the SAGA

subunit GCN5 only binds to H3K4me3 and not to H3K4me0

(Figure 2B). This binding is abolished upon knockdown of

Sgf29, while GCN5 levels in these cells are similar to those in

the cells treated with mock siRNA. These experiments also imply

that, at least in mammalian cells, Sgf29 is responsible for the

observed interaction between H3K4me3 and SAGA, and not

CHD1, as has been suggested in yeast (Pray-Grant et al., 2005).

To biophysically characterize this interaction, we expressed

Sgf29 as a recombinant protein in E. coli and used the induced

bacterial lysates for histone peptide pulldowns. As shown in

Figure 2C, Sgf29 binds to histone H3 peptides, with a clear pref-

erence for H3K4me3. This binding is specific as no interaction

with other histone lysine methylation sites such as H3K9me3

or H3K36me3 was observed. Sgf29 binds to both H3K4me2

and H3K4me3 with a slight preference for H3K4me3 (Figure 2D).

Based on sequence alignments between yeast, Drosophila and

human Sgf29 we selected conserved and nonconserved

residues for mutational analyses (Figure 2A). Results of nine

pulldown experiments revealed that conserved residues in the

second Tudor domain of Sgf29 are particularly important for

H3K4me3 binding. As expected, mutating nonconserved resi-

dues did not affect the binding (Figure 2E). We used isothermal

calorimetry experiments to measure the affinity of the interaction

between Sgf29 and H3K4me3 (Figure 2F). The binding constant

of 4 mM is comparable to that of other trimethyl-lysine marks to

their readers and in particular to the interaction constant of the

Tudor domain of JMJD2A, which is 10 mM (Huang et al., 2006).

No affinity between Sgf29 and the unmethylated histone H3

peptide could be observed. Together, these results demonstrate

that the human SAGA complex binds to H3K4me3 and that the

double Tudor domain in its subunit Sgf29 is both necessary

and sufficient to mediate this interaction.

Functional Insights into Chromatin Readers Using BAC
transgeneOmics
Our screening of the H3K4me3 and H3K36me3 interactome, two

lysine methylations associated with actively transcribed genes,

revealed a large number of chromatin readers of unknown func-

tion. To gain insight into the molecular mechanism of their inter-

action with the lysine methylation sites, we tagged a selection of

these proteins with GFP using the recently developed BAC

transgeneOmics technology (Poser et al., 2008). In this strategy,

a GFP-tagged fusion of the protein of interest is stably integra-

tedpreserving the endogenous genomic context—in HeLa cells

by recombineering (Zhang et al., 1998). Fusion proteins are

therefore expressed at near endogenous levels, as demon-

strated previously (Poser et al., 2008). Furthermore, we tested

expression levels of several of the GFP-tagged BAC lines and

found very similar expression levels to the endogenous proteins

(Figures S2E–S2H).

Quantitative SILAC-based GFP pulldowns employing wild-

type parental cells as control were optimized such that protein

complexes can be identified and visualized in a single two hour

MS analysis without the need to separate proteins on an SDS

PAGE gel (Hubner et al., 2010). As a proof of principle we applied

this workflow to the K4me3 binding protein Sgf29, which is

known to assemble into either the SAGA or the ATAC complex

(Nagy et al., 2010). Both SAGA and ATAC complex subunits cop-

urified with GFP-Sgf29 demonstrating the applicability of single
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step GFP affinity purification to identify protein-protein interac-

tions for chromatin readers (Figure 3A; Table S2). We then

applied this approach to the as-yet uncharacterized protein

C17orf49, which we had found to interact with H3K4me3

(Figure 1B). C17orf49 is an 18 kDa protein that carries a SANT

domain, which commonly occurs in chromatin associated

proteins. Pulldown of the GFP fusion protein from stably trans-

fected HeLa cells specifically copurified subunits of the human

NuRF/BPTF complex (Figure 3B; Table S2). Strikingly,

HMG2L1, another highly significant interactor of H3K4me3

(Figure 1B) is one of the most prominent interactors of

C17orf49. Thus, this experiment established C17orf49 and

HMG2L1 as subunits of the human NuRF/BPTF complex. Their

association with H3K4me3 is explained by their interaction with

the H3K4me3 reader BPTF. We name the uncharacterized

open reading frame C17orf49 as ‘‘BPTF associated protein of

18 kDa’’ (BAP18).

GATA zinc finger domain containing 1 (GATAD1) is another

protein of unknown function that was identified as a H3K4me3

interactor. Using the GFP pulldown approach, we identified

subunits of the Sin3b/HDAC complex, the H3K4me3-specific

lysine demethylase Jarid1A/RBBP2, and the breast cancer
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Figure 2. Sgf29 Links the SAGA Complex to H3K4me3
(A) Alignment of the C-terminal part of human, Drosophila, and yeast Sgf29. Tudor domains are indicated in yellow.

(B) siRNA experiments followed by peptide pulldowns show that Sgf29 links the SAGA complex to H3K4me3.

(C and D) Bacterial lysates expressing recombinant his-tagged Sgf29 were incubated with the indicated peptides. Following incubation and washes, the amount

of bound Sgf29 protein was determined by western blotting using an anti-His antibody.

(E) Bacterial lysates expressing the indicated Sgf29 mutants were used for histone peptide pulldowns to determine their binding affinity for H3K4me3. The first

lane represents peptides without the me3 modifications.

(F) Isothermal calorimetry experiment revealing the affinity of the full-length Sgf29 protein for H3K4me3.
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associated protein EMSY (Hughes-Davies et al., 2003) as inter-

actors for GATAD1 (Figure 3C; Table S2). Because all of the

subunits in this complex were identified as H3K4me3 readers

with similar ratios, we hypothesized that they form an as-yet un-

characterized chromatin reading complex (Figures S2A–S2D).

Jarid1a was recently reported to bind tightly to H3K4me3 with

a Kd of 0.75 mM (Wang et al., 2009a) and therefore forms the

direct link between the complex and the chromatin mark. Further

evidence for our hypothesis comes from a subsequently pub-

lished Drosophila Lid complex (Lee et al., 2009; Moshkin et al.,

2009). Lid is the Drosophila homolog of the mammalian Jarid1

family of proteins, consisting of Jarid1a, Jarid1b and Jarid1c.

The complex furthermore contains homologs of the Sin3

proteins, as well as an EMSY and GATAD1 homolog. In

mammals, interactions between the Sin3/HDAC complex and

Jarid1a have also been reported (van Oevelen et al., 2008).

However, EMSY has not been tied to any of these proteins yet.

EMSY is known to be a repressor of transcription (Hughes-Da-

vies et al., 2003) but the mechanisms underlying this repressive

activity are poorly understood. The identification of the

above-described complex provides important clues as to how

EMSY represses transcription. We hypothesize that gene

repression involves histone deacetylation coupled with

H3K4me3 demethylation.

Localizing the Chromatin Readers on the Genome
To further investigate the function of our proteins of interest

in vivo, we performed ChIP-Seq profiling using an anti-GFP anti-

body on the BAC-GFP lines. Figure 4A shows a representative

snapshot of the ChIP-Seq data. Profiling of GFP-tagged proteins

interacting with H3K4me3 and H3K36me3 was performed on

biological replicas and showed that the approach is highly

reproducible (Pearson correlation >0.85; Figures S3F and

S3G). In agreement with our peptide pulldown data, the identi-

fied H3K4me3 readers Sgf29, TRRAP, PHF8, GATAD1, and

BAP18, are associated mainly with promoters (Figures S3A

and S3B) and coincide with H3K4me3 marking (Figures 4B and

4C; Figure S3C). We also identified a small number of binding

sites of H3K4me3 readers outside of annotated promoters

(Figure S3A). As these are not associated with H3K4me3

(Figure S3B), the interactor proteins are apparently recruited to

these loci byH3K4me3 independentmechanisms. Nevertheless,

for each of these five proteins we observed a good genome-wide

correlation with H3K4me3 (Pearson correlation BAP18: 0.71,

GATAD1: 0.71, PHF8: 0.66, TRRAP: 0.66, SGF29: 0.55).

For Sgf29, TRRAP, and BAP18, it was expected that they

would localize to promoters, as they are part of conserved

complexes associated with active transcription– SAGA/ATAC,

SAGA/NuA4, and BPTF/NuRF, respectively (Nagy et al., 2010;

Wysocka et al., 2006). PHD finger protein 8 (PHF8) belongs to
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Figure 3. GFP Pulldowns for H3K4me3 Readers

HeLa Kyoto cells expressing GFP-Sgf29 (A), GFP-C17orf49/BAP18 (B), and

GFP-GATAD1 (C) were SILAC-labeled and subjected to single-step affinity

purifications in a ‘‘forward’’ and reverse’’ pulldown using GFP nanotrap beads.

In each panel the ratio of the identified proteins in the forward and reverse pull-

down is plotted. Proteins interacting with the baits are indicated.

See also Figure S2 and Table S2.
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Figure 4. ChIP Sequencing of H3K4me3 and H3K36me3 Readers

(A) ChIP-Seq profiles of three histone modifications and the interactors across the Eif3B gene on human chromosome 7.

(B) Distance distribution of the binding sites for the H3K4me3 interactors and the three histone modifications relative to the closest transcription start site (TSS).

x axis is in 1000 bp; on the y axis the number of binding sites is indicated. Values for H3K36me3 are plotted on a separate scale (right side).

(C) Number of reads for H3K4me3 and H3K36me3 (indicated with K4 and K36, respectively) within the binding sites for the H3K4me3 interacting proteins. The

ends of the whiskers represent the 9th and 91st percentile, respectively. Values for SGF29, TRRAP, BAP18, PHF8, andGATAD1 are on the scale on the left side of

the plot, while values for N-PAC are on a separate scale on the right.

(D) Promoters clustered by the binding sites for the H3K4me3 interacting proteins (Figure S3). Co-occurrence of binding sites is indicated with gray circles under
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the JmJc domain-containing family of proteins that can remove

methyl groups from arginine or lysine residues (Cloos et al.,

2008). PHF8 can remove the repressive mark H3K9me2 (Horton

et al., 2010), associating it with activation of transcription, which

is in agreement with our ChIP-Seq analyses.

We found GATAD1 to interact with Jarid1a/EMSY/Sin3

(Figure 3C). Jarid1a is a JmJc domain-containing protein that

demethylates H3K4me3 (Cloos et al., 2008). In addition, the

GATAD1 purification enriched for components of the Sin3/

HDAC transcriptional corepressor complex, including two

histone deacetylases, HDAC1 and HDAC2. Despite the repres-

sive enzymatic activities associated with GATAD1, our ChIP-

Seq analysis reveals that this complex binds to promoters

marked with H3K4me3. These data may be explained by

invoking a mechanism of cyclical recruitment of ‘‘writers’’ and

‘‘erasers’’ to sites of active transcription (Wang et al., 2009c).

Interestingly, our ChIP-Seq analyses showed that many target

genes can be occupied by each of the five H3K4me3 readers.

Analysis of all identified target genes resulted in four discrete

clusters (Figures S3D and S3E; Table S3). PHF8 and GATAD1

were the only factors found to be common to all clusters and

therefore are likely to have a general role in transcription. The

two largest clusters combined genes whose promoters were

bound by Sgf29 and/or TRRAP, indicating that transcriptional

regulation of these genes involves SAGA/NuA4-related

complexes. Gene ontology (GO) annotation of the genes in these

clusters revealed a number of highly enriched (p < 10�5)

functional terms that agree very well with the biological functions

of these complexes (Figure 4D). For example, SAGA/ATAC and

NuA4 complexes are crucial regulators of transcription, DNA

repair, DNA replication, and the cell cycle (Squatrito et al.,

2006). Distinct GCN5/PCAF-containing complexes function as

coactivators and are involved in transcription factor and global

histone acetylation (Nagy and Tora, 2007). SAGA was shown

to regulate various stress-response genes (Huisinga and Pugh,

2004; Nagy et al., 2010), while TRRAP-containing complex

NuA4 regulates apoptosis (Ikura et al., 2000; Tyteca et al.,

2006). Thus, each functional category of the GO analysis corre-

sponds to an established function of the SAGA and NuA4

complex, which independently validates the connection

between the activating histone mark and its reader found in

our experiments.

N-PAC, MSH-6, and NSD1 as well as NSD2 were identified as

H3K36me3 interactors (Figure 1C; Table S2). Interestingly, these

four proteins share a PWWP domain which is part of the Tudor

domain ‘‘Royal Family’’ and includes the Tudor, chromo and

MBT domains that can interact with methylated lysine residues.

The PWWPdomain of Set9was recently identified as a reader for

H4K20me1 (Wang et al., 2009b). Our peptide pulldown data

suggest that this domain is also capable of recognizing

H3K36me3, which is associated with elongation of transcription

and peaks in coding regions of genes (Shilatifard, 2006). Very

recently the PWWP domain of Brpf1 was shown to bind specif-

ically to H3K36me3 (Vezzoli et al., 2010). Indeed, deletion

analyses revealed that the PWWPdomain of N-PAC is necessary

for H3K36me3 binding (Figure 4E). This PWWPdomainmediated

K36me3 binding is most likely direct, since purification of

N-PAC-GFP from a BAC line did not reveal protein-protein inter-

actions (data not shown). To investigate the genomic binding

pattern of N-PAC, we generated the corresponding BAC-GFP

line and performed ChIP-Seq analysis. Consistent with our

peptide pulldown data, N-PAC binds to coding regions of active

genes correlating with the presence of H3K36me3 (Figures 4C

and 4F). N-PAC and H3K36me3 increase toward the 30 end

(Figures 4A and 4G). Together our data establish the PWWP

domain as a putative binder of H3K36me3. In addition to

a PWWP domain, N-PAC also contains an AT-hook that is often

found in proteins that are associated with elongation of tran-

scription and an enzymatic domain of unknown function. Our

ChIP-Seq analysis revealed that both H3K36me3 and N-PAC

are present almost exclusively over gene bodies (data not

shown), and that the vast majority of H3K36me3 marked regions

are also bound by N-PAC, indicating a broad or universal func-

tion of this protein in transcriptional elongation.

The Interactome of the Repressive Histone Methyl
Marks
We next investigated the chromatin readers of H3K9me3,

H3K27me3 and H4K20me3, histone methyl marks associated

with gene repression (Figures 1D–1F). H3K9me3 yielded the

richest set of interactors, including all three HP1 isoforms

(CBX1, CBX3, and CBX5). The chromodomain-containing HP1

proteins are classical readers of H3K9me3 (Jenuwein and Allis,

2001) and our analysis confirms that they are restricted to this

repressive modification. Two chromodomain proteins, CDYL

and CDYL2, were identified as binders for both H3K9me3 and

H3K27me3 but not H4K20me3. These proteins are members of

a family of three chromodomain proteins, the third one being

chromodomain Y protein, whose gene is located on the Y chro-

mosome and whose expression is testis specific. Recently,

direct binding of CDYL and CDYL2 to H3K9me3 and

H3K27me3 has been reported (Fischle et al., 2008; Franz et al.,

2009). As expected, Polycomb group proteins represent the

major readers for H3K27me3, but many of these proteins were

also identified as specific interactors for H3K9me3. Given the

high degree of sequence identity surrounding H3K9 and

H3K27 (TARKST and AARKSA for K9 and K27, respectively), it

is not surprising to find Polycomb group proteins as interactors

the corresponding interactor names. Four major groups of promoters were identified, for which the number of genes within each group and highly enriched GO

terms (p value < 10�5) are listed.

(E) Full-length N-PAC-GFP and D1-69 N-PAC-GFP were transfected into HeLa Kyoto cells. Extracts from these cells were subsequently used for K36/K36me3

peptide pulldowns. Unlike the wild-type protein, D1-69 N-PAC-GFP, that lacks most of the PWWP domain, does not bind to H3K36me3.

(F) Dotplot showing the correlation between H3K36me3 and N-PAC (R2 = 0.86). Every dot represents the number of N-PAC or H3K36me3 ChIP-Seq tags per

gene.

(G) All genes containing H3K36me3 (>5 kb) were each divided in 15 bins followed by counting and averaging of the H3K36me3 and N-PAC ChIP-Seq tags within

each bin.

See also Figure S3 and Tables S3 and S4.
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for H3K9me3. Literature evidence also supports the interaction

of Polycomb group proteins with H3K9me3, although their

affinity for H3K27me3 is higher (Fischle et al., 2003b; Ringrose

et al., 2004). Finally, we identified the origin recognition complex

(ORC) as an interacting complex for all three repressive sites.

We purified complexes associated with the HP1 family

members to ascertain if the H3K9me3 readers physically interact

with them using BAC-GFP constructs (Figures 5A–5C). Among

the specifically interacting proteins, known HP1 interactors

were identified, such as chromatin assembly factors CHAF1A/

CHAF1B and ADNP (Lechner et al., 2005; Mandel et al., 2007).

Two uncharacterized proteins, POGZ and Znf828, consistently

interacted with high ratios with all HP1 family members. We

confirmed the binding of POGZ to H3K9me3 by western blotting

(Figure S1C). POGZ and Znf828 have an interesting domain

structure and multiple zinc fingers, suggesting that these

proteins may specifically bind DNA sequences. POGZ or

POGO transposable element with a ZNF domain is a 1410 amino

acid protein containing two domains that are also present in the

centromeric protein B (CenPB). Next, we generated BAC-GFP

constructs for these proteins. Pulldowns with POGZ and

Znf828 reciprocally confirmed interaction with HP1 and, interest-

ingly, with each other (Figures 5D and 5E). Additionally, POGZ in-

teracted specifically with mitotic spindle checkpoint protein,

Mad2l2. To substantiate this possible connection to a prominent

cell cycle protein, we performed a GFP pulldown with a cell line

of this protein, which clearly demonstrated reciprocal binding

(Figure 5F). Thus, a combination of repressive mark interactors

and full-length protein interactomes allows us to deconstruct

the majority of protein interactions involved in the biology of

the repressive marks.

We noticed that LRWD1 clusters together in the two-dimen-

sional interaction plots with the ORC complex in the pulldowns

of each of the repressive marks (Figures 1D–1F). LRWD1 has

not been characterized but obtains its name from a leucine-

rich repeat and a stretch of WD40 domains. To test if this protein

is a subunit of the ORC complex, we generated the BAC-GFP

cell line of Orc2L. Pulldown with this ORC subunit indeed

demonstrated specific interaction with LRWD1 (Figure 5G).

Furthermore, ChIP-Seq of the BAC LRWD1-GFP line revealed

a strong enrichment on satellite repeats, correlating with high

levels of H3K9me3 which is known to be enriched over satellites

(Figure 5H) (Martens et al., 2005).

Triple SILAC Pulldowns Reveal Differential Fine-Tuning
of Trimethyl Lysine Binding
The five trimethyl lysine marks that we screened for interactors

are flanked by numerous residues that can also be subjected

to posttranslational modifications. These modifications could,

either agonistically or antagonistically, affect trimethyl lysine

binding. To study such potential interplay between different

posttranslational modifications (PTMs) occurring in close prox-

imity on the histone H3 tail, we applied triple pulldown experi-

ments involving a combination of methylation and other PTM

marks, in this case acetylations or phosphorylations (Vermeulen

et al., 2007). In this approach, cells are grown in three different

SILAC media, each containing different stable isotopic versions

of lysine and arginine. These extracts, which are distinguishable

by MS, are each incubated with a differently modified histone

peptide (triple pulldown). Peptides appear as triplets in the MS

spectra and a significant ratio between the first two peaks indi-

cates specific binding to the H3K4me3 mark. The highest

mass peak in the triplet originates from the eluate of the combi-

natorially modified peptide and its intensity compared with the

eluate from the singly modified peptide (middle peak) indicates

either agonistic or antagonistic binding or no effect. On genes

that are actively being transcribed, H3K4me3 often co-occurs

with acetylation of H3K9 and H3K14. A number of readers for

H3K4me3 carry both a domain that recognizes H3K4me3 as

well as one or multiple bromodomains, which bind to acetylated

lysine residues. We therefore wondered whether these acetyla-

tions would function agonistically with H3K4me3 to bind

H3K4me3 readers to the histone H3 tail. Consistent with our

previous findings (Vermeulen et al., 2007), TFIID and BPTF

bound more strongly to the H3K4me3 mark when it was flanked

by acetylation on H3K9 and H3K14 acetylation (Figures S4A and

S4B). In addition, we also observed—by quantitative proteomics

and by western blotting—agonistic binding to the methylated

and acetylated peptide for the SAGA complex (Sgf29 in Figures

6A and 6C). In contrast, recombinant Sgf29 does not display

preferential H3K9,14Ac binding (Figure 6D), indicating that the

observed effects in the triple pulldown are due to the agonistic

binding effects of the Sgf29 double Tudor domain and the

GCN5 bromodomain. Finally, we also observed agonistic

binding of PHD finger protein 8 (PHF8) to H3K4me3 and

H3K9,14 Ac (Figure 6B). PHF8 carries an H3K4me3-binding

PHD finger (Horton et al., 2010), but it does not contain a bromo-

domain. Therefore, we hypothesize that this protein either carries

an unidentified acetyl lysine binding motif, or interacts with an

as-yet unidentified bromodomain-containing protein. These

results indicate that agonistic H3K4me3 and H3K9,14Ac recog-

nition occurs in several chromatin readers. The mechanisms are

diverse; for example, a PHD finger domain can be combinedwith

a bromodomain in one protein (BPTF), or in different subunits of

the same complex (TAF3 PHD finger and TAF1 bromodomains in

the TFIID complex). Moreover, a different recognition domain

combination can be used (Tudor domain of Sgf29 with the

bromodomain of GCN5 in the SAGA complex). Clearly, these

chromatin readers have each evolved the ability to target combi-

natorially marked nucleosomes allowing regulation of specific

subsets of genes.

To study potential antagonistic histone PTM crosstalk, we

decided to focus on phosphorylations on the histone H3 tail.

Phosphorylation of histone H3S10 results in the release of HP1

from chromatin during mitosis even though levels of H3K9me3

remain unchanged (Fischle et al., 2005). H3K27me3 is also

flanked by a serine residue that can be phosphorylated (Winter

et al., 2008). To investigate if these trimethylations co-occur

with the respective adjacent phosphorylations, we analyzed

our recent large-scale study of the proteome and the phospho-

proteome of the cell cycle (Olsen et al., 2010). Indeed, we found

the corresponding doubly modified peptides. Moreover cell

cycle data indicates that they are specific for mitotic cells

(Figures S4G–S4J). As shown in Figure 6E, H3S10 phosphoryla-

tion does not appear to drastically affect the binding of HP1 to

H3K9me3. These results are in agreement with data reporting
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Figure 5. GFP Pulldowns for Readers of the Repressive Histone Marks

(A–G) GFP-fusions proteins expressed in SILAC-labeled HeLa cells were enriched onGFP-nanotrap beads. In each figure, the ratio of the identified proteins in the

forward and reverse pulldown is plotted. Proteins interacting with the baits are indicated.

(H) The total number of ChIP-Seq reads present on either satellite repeats or simple repeats for the indicated proteins and histone marks is shown.

See also Table S2.
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stabilization of HP1 binding by H3S10 phosphorylation

(Mateescu et al., 2004). Indicating that our assay can indeed

reveal antagonistic effects, we observed that CDYL as well as

the ORC complex subunits do show reduced H3K9me3 binding

in combination with H3S10 phosphorylation (Figures 6F and 6G).

These experiments were further confirmed by western blotting,

also making use of a phosphomimetic peptide where H3S10

was mutated to glutamic acid (Figure 6H). Similarly, H3S28

phosphorylation destabilizes the binding of CDYL and ORC

complex subunits to H3K27me3, whereas this phosphorylation

only mildly affects the binding of Polycomb group proteins

(Figures S4C–S4F). Taken together, these results suggest that

phosphorylations on the N-terminal tails of histones selectively

affect the binding of proteins to adjacent modified lysines resi-

dues. Such so-called phospho-methyl switches are quite

common on core histones (Fischle et al., 2003a). We have also

identified H3S57 and H3T80 as phosphorylation sites on histone

H3 (for H3S57P and H3T80, Figures S4K and S4L), both of which

are adjacent to modified lysine residues. Thus, almost all of the

modified lysine residues on histone H3 can be flanked by phos-

phorylated residues. An important function of these phosphory-

lation sites could be the differential regulation of protein binding

to neighboring methylated or acetylated lysines in specific

cellular situations and for specific genes.

DISCUSSION

Here, we have characterized the association of chromatin

readerswith histone trimethyl-lysinemodifications byacombina-

tion of three technologies. Themajor findings from our integrated

approach are visualized and summarized in Figure 7. High-accu-

racy, quantitative proteomics based on SILAC identified known

and previously unknown binders to each of the chromatin marks.

Plotting SILAC ratios from forward and reverse experiments

grouped distinct protein clusters together, representing func-

tional complexes. To investigate these complexes, we turned
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Figure 6. Triple SILAC Pulldowns Revealing

Histone Modification Crosstalk

(A) Three-dimensional representation of the MS

signal of an Sgf29 peptide identified in a triple

pulldown SILAC experiment (the m/z scale is the

x axis, the chromatographic retention time is the

y axis, and the MS-signal is the z axis). Each group

of signals represents the natural isotope pattern of

the peptide. The relative intensities of the triplet

peak of the Sgf29 peptide indicates the preference

of binding to themodification states (unmethylated

histone H3 peptide [left peak], H3K4me3 peptide

[middle peak], and the double-modified

H3K4me3/H3K9,14 Ac peptide [right peak]).

(B) Same as (A) for a PHF8 peptide identified in the

same triple pulldown.

(C) Nuclear extracts derived from HeLa cells were

incubated with the indicated histone peptides. The

amount of Sgf29 protein bound to these peptides

was determined by western blotting using an anti-

body against endogenous Sgf29.

(D) Bacterial lysates expressing recombinant His-

tagged Sgf29 were incubated with the indicated

peptides. Following incubation and washes, the

amount of bound Sgf29 protein was determined

by western blotting using an anti-His antibody.

Note that Sgf29 does not bind to a peptide con-

taining H3K9,14 acetylation and that the binding

of Sgf29 to H3K4me3 is not affected by asym-

metric dimethylation of H3R2.

(E–G) Three-dimensional representation of an

HP1a (E), Orc5 (F), and CDYL (G) peptide identified

in a triple pulldown SILAC experiment. The spectra

show the MS-signal representing the relative

binding of these peptides to the unmethylated

histone H3 peptide (left peak), the H3K9me3

peptide (middle peak), and the double-modified

H3K9me3/H3S10P peptide (right peak).

(H) Histone peptide pulldowns in HeLa nuclear

extracts were performed with the indicated

peptides. The amount of HP1a and CDYL binding

to these peptideswas determined bywestern blot-

ting using an antibody against HP1a and CDYL.

See also Figure S4.
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to the recently developed BAC-transgeneOmics technology

(Poser et al., 2008), which allowed rapid generation of stable

cell lines containing the entire gene of interest fused to GFP in

its endogenous context. Therefore, this technology provides

a generic ‘‘handle’’ for the members of chromatin reader

complexes while maintaining endogenous control. We used

these cell lines in a next round of SILAC-based quantitative inter-

action screens to establish physical interactions between the

chromatin readers. Furthermore, the GFP-tag was utilized for

chromatin immunoprecipitation followed by next generation

DNA sequencing to localize the readers on the genome. The

synergistic use of these three approaches enabled us to create

data sets and reagents that provide a resource for researchers

interested in epigenetic questions. While shown here for histone

modifications, our approach can be extended to posttransla-

tional modifications on other chromatin-associated proteins

and to other cellular systems such as stem cells. Illustrating

the usefulness of this resource, we were able to dissect several

mechanisms of chromatin reader associations with their chro-

matin marks starting from basic interaction data.

One such example is the human SAGA complex, all identified

members of which clustered tightly in the two-dimensional inter-

action plot (Figure 1B). SAGA is a highly conserved complex,

which plays key roles in the activation of transcription of RNA

polymerase II target genes. However, the mechanisms of activa-

tion are not completely understood. In yeast, it has been sug-

gested that CHD1 links the complex to H3K4me3 (Pray-Grant

et al., 2005). However, this association is controversial as it

has been reported that yeast CHD1 does not bind to H3K4me3

(Sims et al., 2005). While we identified human CHD1 as a specific

binder to this mark, it did not co-cluster with the SAGA subunits

in our H3K4me3 peptide pulldowns. Furthermore, we were not

able to identify CHD1 as an interactor of the SAGA subunit

Sgf29 in a GFP pulldown. Instead, starting with the observation

that Sgf29, which we identified as a H3K4me3 interactor, has

a double Tudor domain (Lee and Workman, 2007) and given

me3

me3 me3

me3

S G R G K G G K G L G K G G A K R H R K V L R D N I Q G I T 

me3

PHF8

CHD1
CHD6
DIDO
DPY-30
SUPT3H
TAF6L
PPIB

PWWP domain:
N-PAC

NSD2

(NSD1)
(NSD3)
(MSH6)

CDYL1
CDYL2

Histone

H4

Histone

H3

PTBP1
PCGF6
NCL
NONO
C1orf103
MIER1
MGA
SFPQ
HNRNPA1
HNRNPA2
HNRNPA2B1
HNRNPAB
HNRNPK
HNRNPL

BAP18RBAP48*

HMG2L1
SMARCA5* SMARCA1*

BPTF

GATAD1

PHF12
RBAP48RBAP46*

HDAC2*

HDAC1

MRGX* JARID1A

SIN3B MRG15

EMSY

TAF1

TBP

TAF13

TAF12 TAF11

TAF10TAF9B

TAF9TAF8TAF7

TAF6TAF5TAF4B

TAF4TAF3TAF2

ORC2L
ORC1L*

LRWD1

ORC5L
ORC4L

ORC3L

PHC2

RING1

CBX8CBX4
PHC3BMI1 RNF2

SGF29

ZZZ3*

SF3B3*

ACTG1*

TADA2B*

WDR5*

SF3B5*
TAF12

PCAF*

ATXN7L3*

FAM48A

TRRAP

ENY2*

ATXN7L2*

SUPT7L* USP22*

ATXN7*

TAF10

TADA1L

MBIP*
CSRP2BP*

GCN5L2

TAF5L YEATS2*

TADA3L

DR1*

A R T K Q T A R K S T G G K A P R K Q L A T K A A R K S A P A T G G V K K P H R Y R P G T

CBX1

THRAP3*
ADNP

CHD4*
AHDC1

BCLAF1*
POGZ

ZNF828
ZNF280D*

CBX3

POGZ
CBX5

ADNP

CHAF1A

CHAF1B

ZNF828
TRIM28*

NIPBL*

CBX5
AHDC1

CBX3

POGZ
THRAP3*

CHAF1B
BCLAF1*

ZNF828

CBX2

POGZ

ZNF828

CBX1
CBX3

CBX5

MAD2L2*

HDGFRP2*ZMYM4

Figure 7. Visualization of the Histone Trimethyl-Lysine Interactome

Proteins interacting with the five trimethyl lysinemarks are indicated. Encircled are proteins that were additionally identified in GFP pulldown experiments; baits in

these pulldowns are underlined. Proteins in those circles marked with an asterisk were not identified as interactors in the peptide pulldowns. Proteins clustered in

rectangles were identified in the peptide pulldowns and were previously shown to interact with each other (TFIID for H3K4me3 and PRC1 for H3K9me3 and

H3K27me3). For proteins that are color coded red in vivo verification by ChIP-Seq is also provided. The arrows and associated labels indicate histone modifi-

cation crosstalk investigated in this study. In the globular part of histone H3, two identified histone phosphorylations (H3S57P and H3T80), are indicated.
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the fact that Tudor domains can bind methylated lysines (Huang

et al., 2006), we established by biochemical and biophysical

means that the double Tudor domain of Sgf29 forms the direct

molecular link between SAGA and H3K4me3. This binding

mode is likely conserved down to yeast, which has a homolog

of Sgf29 that also contains a double Tudor domain (Figure 2A).

Such conservation is not universal as it is not the case for asso-

ciation of TFIID with H3K4me3. This interaction is mediated by

the PHD-finger domain of human TAF3, but yeast TAF3 lacks

the PHD-finger domain (Vermeulen et al., 2007).

Bioinformatic analysis of the interactors of the activating

H3K36me3 mark revealed that four of the most prominent

specific interactors shared the same domain. This PWWP

domain is part of the Tudor domain ‘‘Royal family’’ of domains

(Maurer-Stroh et al., 2003) and therefore almost certainly medi-

ates direct binding to H3K36me3. In agreement with this,

deletion analysis revealed that the PWWP domain of N-PAC is

essential for its interaction with H3K36me3 (Figure 4E).

In the interactome of the repressive marks we identified, in

addition to expected heterochromatin associated proteins,

several other proteins. Interaction studies with BAC GFP-fusion

proteins uncovered many interactions with members of the HP1

family. This HP1 family and associated proteins represent a large

portion of the H3K9me3 interactome and establish the HP1

proteins as interaction hubs in mediating repressive gene func-

tions. Interestingly, several HP1 interactors contain zinc finger

domains (such as POGZ and Znf828), which may serve to recruit

HP1 to specific sites in the genome.

The origin recognition complex (ORC) has a key function in

replication firing. It is known to localize to heterochromatic

regions (Prasanth et al., 2004) and it interacted with all three

repressive marks. LRWD1 grouped with the ORC complex

members in the two-dimensional interaction plots. Pulldowns

with an Orc2L BAC-GFP cell line demonstrated that LRWD1 is

indeed an ORC complex subunit and ChIP-Seq experiments

established that it co-enriches with H3K9me3 on satellite

repeats. The WD40 repeat domain of LRWD1 may mediate the

interaction of the ORC complex with the repressive marks as it

was recently shown that the WD40 repeats of the Polycomb

group protein EED directly binds to H3K27me3 (Margueron

et al., 2009).

A triple-encoding variant of the SILAC peptide pulldown

allowed us to directly address the question of agonistic and

antagonistic binding to combinatorial histone modifications.

These experiments recapitulated several known combinatorial

interactions, such as the agonistic effects between H3K4me3

and nearby acetylations. The general conclusion from these

experiments is that the trimethyl marks constitute the major

docking sites for chromatin readers and that other nearby modi-

fications fine-tune these primary interactions by augmenting or

destabilizing specific interactions. For example, our data show

that H3S10 phosphorylation destabilizes the ORC complex

and CDYL binding to H3K9me3, whereas HP1 binding does

not appear to be affected. Consistent with this paradigm, we

have not been able to determine specific interactors with

peptides bearing only the ancillary modifications. This is unlikely

to be an artifact due to pulldowns with synthetic peptides

because similar results are obtained when performing pulldowns

with entire immobilized nucleosomes carrying particular epige-

netic marks (T. Bartke, M.V., M.M., and T. Kouzarides, unpub-

lished data). In this context, mass spectrometry can also

contribute by identifying and quantifying the combinatorially

modified peptides in vivo, as shown for several examples here.

A striking finding that emerges from our integrative investiga-

tion into the nature of the relationship between histone marks

and their readers is the degree of overlap between the known

biological functions of the marks and the biological functions of

their associated readers (Figure 7). Histone modifications are

usually studied by techniques such as ChIP, ChIP-Seq, or immu-

nofluorescence that associate them with particular genes or

nuclear processes. The same holds true for transcription factors

or other chromatin regulators. By its nature, our strategy

combines investigation of chromatin marks and transcriptional

regulators and is thereby uniquely suited as an integrative tool

for the investigation of epigenetic regulation of gene expression.

EXPERIMENTAL PROCEDURES

Recombinant Protein Expression and ITC Calorimetry

Full-length Sgf29 constructs were expressed with an N-terminal His-tag and

a maltose binding protein (MBP) domain using expression plasmid pETM44

(Novagen). For histone peptide pulldown experiments, crude induced bacterial

lysates were used as described (Vermeulen et al., 2007). His-tag westerns

were performed using a penta-His antibody (QIAGEN). For isothermal calorim-

etry (ITC) experiments the Sgf29 protein was enriched using Ni NTA beads

after which the protein was further purified on a Superdex 200 column. ITC

measurements were performed on a VP-ITC Microcal calorimeter (Microcal,

Northampton, MA) at 25�C. During titration, 7 ml of H3K4me3 peptide

(aa 1–17) at a concentration of 300 mM was injected into a solution of 25 mM

Sgf29 protein.

GFP Pulldowns

Generation of the BACs with GFP-fusion constructs was done as described

(Poser et al., 2008). Nuclear extracts from BAC-GFP-tagged or wild-type

HeLa cells were SILAC labeled with heavy lysine (Isotec, Sigma). For CBX3,

no BAC was available and SILAC-labeled HeLa cells were transfected with

plasmid pBCHGN-CBX3 (Addgene). GFP nanotrap beads (Chromotek) were

used to precipitate GFP-tagged proteins from these lysates. Approximately

500–1000 mg of nuclear extract was used per pulldown in a buffer containing

300 mM NaCl, 0.25% NP40, 0.5 mM DDT, 20 mM HEPES KOH (pH 7.9),

and protease inhibitors. Following incubation and washes with the same

buffer, beads from both pulldowns were combined, proteins were eluted

with acidic glycine (0.1 M [pH 2.0]) and digested overnight with LysC (Wako

Biochemicals, Japan) using the FASP protocol (Wisniewski et al., 2009) prior

to LC/MS-MS analysis.

Mass Spectrometry of Proteins

Gel lanes representing each pulldown were cut into eight equally sized slices

as described (Vermeulen et al., 2007). Peptide identification was performed on

an LTQ-Orbitrap mass spectrometer (Thermo Fisher Scientific, Germany)

essentially as described (Olsen et al., 2004). Full-scan MS spectra were

acquired with a resolution of 60,000 in the Orbitrap analyzer. For every full

scan, the five most intense ions were fragmented in the linear ion trap. Raw

data were processed and analyzed using the MaxQuant software (version

1.0.12.33) and searched with the Mascot search engine against a human IPI

database 3.52 as described (Butter et al., 2010). Phosphopeptide enrichment

of core histones and MS analysis of these were performed as described (Hurd

et al., 2009).

Deposition of MS-Related Data

Mass spectrometric data for peptide pulldowns and GFP pulldowns, con-

sisting of raw data files, unfiltered ‘‘proteingroups’’ tables, and identified
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peptides, can be accessed at the TRANCHE repository (https://

proteomecommons.org/) under the name ‘‘Quantitative interaction proteo-

mics and genome-wide profiling of epigenetic histone marks and their

readers.’’

Chromatin Immunoprecipitation and Deep Sequencing

ChIP experiments were performed using 3.33 106 cells per ChIP according to

standard protocols (Denissov et al., 2007), with two minor modifications.

Crosslinking of the cells was done on the culture plates for 20 min, while

ChIP’ed DNA was purified by Qiaquick PCR purification Kit (QIAGEN cat.

no. 28106). ChIP enrichment levels were analyzed by qPCR using specific

primers (available upon request) for quality control. ChIP-Seq samples were

prepared and analyzed according to the manufacturer (Illumina). Enriched

regions were identified by FindPeaks (Fejes et al., 2008). Table S4 summarizes

the ChIP-Seq output. For the repeat analysis of the H3K9me3 and LRWD1

ChIP-Seq profiles, mappings were performed by maq aligner (Li et al.,

2008). For further information about the ChIP-Seq methods and data analysis

see Extended Experimental Procedures. All ChIP-Seq data are present in the

NCBI GEO SuperSeries GSE20303.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, four

figures, and five tables and can be found with this article online at doi:10.

1016/j.cell.2010.08.020.
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2 Results

2.2 A map of general and specialized chromatin readers in
mouse tissues generated by highly sensitive, label-free
interaction proteomics

2.2.1 Project aim and summary

Quantitative interaction proteomics has been an invaluable tool for the discovery of
chromatin readers. After the success of our trimethyl lysine interactome (2.1.1), we
wanted to shift from cell lines to tissues to discover chromatin readers that are not
present in standard in vitro systems. Our initial plan was to use the SILAC mouse [116]
and perform peptide pull-downs from SILAC labeled mouse tissue extracts. However,
due to a limited amount of available heavy mice, we decided to establish a label-free
pipeline instead. In label-free approaches many peptide baits can be directly com-
pared and we established a generic workflow that is applicable for any tissue from
any organism. First, we demonstrated that we could obtain comparable results as with
the established SILAC-based work-flow in our label-free approach. We then used this
pipeline to screen for readers of the activating H3K4me3 and the repressive H3K9me3
mark from the four different mouse tissues brain, kidney, liver and testis. In these
experiments, we obtained the currently most comprehensive list of chromatin readers
for these marks from a proteomic screen. Interestingly, the majority of enriched pro-
teins (direct binders and associated complex members) did not show differences be-
tween the tissues, arguing for general functions of these readers and reader complexes.
Nevertheless, we detected several organ-specific chromatin readers, such as the brain-
specific NuRD complex subunit CHD5, and several testis specific readers, like MBD3L
or SSTY1 and SSTY2. In this project we significantly enlarged the list of chromatin
readers obtained in our previous study [250]. In addition, we demonstrated the fea-
sibility to move away from pure cell culture-based screens to tissue-based approaches
(moving from in vitro to in vivo).
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2.2.2 Contribution

The initial plan for this project was developed by me and Michiel Vermeulen. Almost
all experiments were designed, carried out and analyzed by myself. The GFP pull-
downs for ZMYND8 and ZNF687 were performed by Cornelia C. Spruijt according to
a protocol that I developed previously [250]. The pull-down setup on 96-well plates
was developed together with Christian D. Kelstrup.

2.2.3 Publication

The project was published as an Resource article in 2013:

A map of general and specialized chromatin readers in mouse tissues generated by
label-free interaction proteomics

H. Christian Eberl, Cornelia G. Spruijt, Christian D. Kelstrup, Michiel Vermeulen and
Matthias Mann

Mol Cell. 2013 Jan 24;49(2):368-78
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SUMMARY

Posttranslational modifications on core histones can
serve as binding scaffolds for chromatin-associated
proteins. Proteins that specifically bind to or ‘‘read’’
these modifications were previously identified in
mass spectrometry-based proteomics screens
based on stable isotope-labeling in cell lines. Here
we describe a sensitive, label-free histone peptide
pull-down technology with extracts of different
mouse tissues. Applying this workflow to the clas-
sical activating and repressive epigenetic marks on
histone H3, H3K4me3, and H3K9me3, we identified
known and putative readers in extracts from brain,
liver, kidney, and testis. A large class of proteins
were specifically repelled by H3K4me3. Our screen
reached near-saturation of direct interactors, most
of which are ubiquitously expressed. In addition, it
revealed a number of specialized readers in tissues
such as testis. Apart from defining the chromatin
interaction landscape inmouse tissues, our workflow
can be used for peptides with different modifications
and cell types of any organism.

INTRODUCTION

The genetic information of eukaryotes is stored in the nucleus by

wrapping the DNA around octamers of histone proteins, forming

the basic building blocks of chromatin, the nucleosomes (Luger

et al., 1997). Besides compacting and storing DNA, nucleo-

somes play an active role in regulated processes such as

transcription and DNA repair. Post-translational modifications

(PTMs) of the N-terminal tails of the core histones often serve

as docking sites for ‘‘chromatin readers,’’ which can subse-

quently modify chromatin in cis or directly activate or repress

transcription (Kouzarides, 2007). Prominent examples include

the binding of HP1 proteins to H3K9me3 (K9me3) or the wide

variety of H3K4me3 (K4me3) binding modules like, e.g., BPTF

(Li et al., 2006), ING proteins (Peña et al., 2006), SGF29 (Vermeu-

len et al., 2010), or PHF8 (Feng et al., 2010). A number of reader

domains have evolved that recognize specific PTMs in a protein

sequence. These domains form special binding pockets, which

probe the surrounding amino acid sequence in addition to con-

taining a very selective interaction surface discriminating the

unmodified from the modified state of a specific amino acid

(Taverna et al., 2007).

Histone modifications and their readers play important roles

during cellular differentiation and development and in tumorigen-

esis (Berdasco and Esteller, 2010; Wang et al., 2009). They

contribute to maintaining gene expression differences between

tissues. Even at the bulk histone levels, differences in the

modification pattern between tissues can be observed (Garcia

et al., 2008). Clearly the repertoire of chromatin readers and

associated proteins varies between cell types and develop-

mental stages. A classical example is the PHD finger-containing

protein RAG2, which is expressed in B cells during VDJ recom-

bination. Its binding to K4me3 is crucial for the recombination

event that these cells undergo during maturation (Matthews

et al., 2007). Currently it is not known if RAG2 is an example

for a larger group of specific chromatin readers or a specialized

exception.

Mass spectrometry (MS)-based proteomics has played a

crucial role in defining the global histone modification landscape

in cells and in characterizing the subunit composition of

chromatin-related protein complexes (reviewed in Eberl et al.,

2011). A principal strength of MS-based methods is that they

are hypothesis free, making them well suited to discovering

new interactors (Vermeulen et al., 2008). The combination of

histone peptide pull-downs from crude nuclear extracts with

quantitative MS is a particularly powerful approach to identify

novel chromatin readers. Pull-downs are performed with

modified and unmodified peptides, and a quantitative filter

distinguishes specific PTM readers from the vast amount of

background binders that are typically present. We first applied

this approach in HeLa cells that were metabolically labeled as

heavy or light using SILAC (Ong et al., 2002) to identify TFIID

as a reader for K4me3 (Vermeulen et al., 2007) and later charac-

terized readers for five major lysine trimethylation sites on

histone H3 and H4 (Vermeulen et al., 2010). Similar workflows

368 Molecular Cell 49, 368–378, January 24, 2013 ª2013 Elsevier Inc.

2 Results

56



identified proteins that specifically recognize combinations of

histone modifications and DNA methylation (Bartke et al.,

2010), and enabled the study of interactions with reconstituted

modified nucleosomal arrays (Nikolov et al., 2011).

All of the abovementioned studies were performed in a single

cancer cell line, which restricted the identifiable interactors to

proteins and protein complexes expressed in that system.

Because reader complexes could differ by cell type and tissue

or developmental stage, we wished to remove this limitation

and develop a label-free technology that would be applicable

to any sample and organism. Investigation of the binding to the

activating K4me3 and the repressive K9me3mark across tissues

resulted in a very high coverage of known reader complexes,

most of which are ubiquitously expressed in all the tissues we

screened. We also observe a large group of proteins that are

repelled by the K4 trimethyl mark as well as tissue-specific

subunits of chromatin reader complexes. Whereas the majority

of chromatin reader complexes is conserved between tissues,

some of the ubiquitously expressed chromatin reader com-

plexes have evolved to contain tissue-specific subunits, which

could enable regulation of tissue-specific target genes or fine-

tune enzymatic activities. Some of these tissue-specific subunits

of chromatin-reading complexes are DNA binding transcription

factors which may serve to recruit reader complexes to tissue-

specific target genes in the genome.

RESULTS

A Label-free Interaction Pipeline Allows Rapid
Screening for Chromatin Readers
Our previous workflow required individual analysis of each pull-

down including separation by 1D gel electrophoresis followed

by LC-MS/MS analysis of eight fractions (Vermeulen et al.,

2007, 2010). Here we placed Sepharose beads in wells with

a coarsely meshed bottom, which are impenetrable for aqueous

solutions under normal conditions but enable liquid removal by

slow centrifugation. This allowed switching to a 96-well format,

increasing throughput and reproducibility. Furthermore, we

made use of the increased sequencing speed of a linear ion

trap—Orbitrap mass spectrometer (Olsen et al., 2009)—as

well as longer gradients, to reduce the measurement of pull-

downs to single LC-MS/MS runs. Finally, we replaced isotope-

based quantification by a sophisticated label-free quantification

algorithm within the MaxQuant software suite (Luber et al.,

2010).

To test this workflow, we performed SILAC-based and label-

free peptide pull-downs in parallel for K4me3 readers from

a mouse liver cell line (Table S1). The SILAC experiment was

done in forward (i.e., incubating the modified peptide with the

heavy and the unmodified peptide with the light extracts) and

reverse (swapping of the labels). We found 46 proteins to be

enriched and 23 proteins to be repelled by K4me3; these

outliers encompassed many of the known K4me3 interactors

(Figure 1A). Label-free pull-downs were performed in triplicate

and analyzed by amodified t test (Tusher et al., 2001) (Figure 1B).

The K4me3 mark enriched 49 proteins and specifically repelled

18. The large majority of the outliers were found in both experi-

ments (blue in Figure 1C). Several proteins were only identified

or quantified in one of them (green in Figure 1C). In accordance

with a previous comparison (Hubner et al., 2010), the larger

dynamic range of the label-free experiment led to proteins only

identified in this set of experiments (red in Figure 1C), whereas

the higher quantitative accuracy of SILAC ensured statistical

significance for borderline cases. For instance, the K4me3

interactor MORC3 or the K4me3-associated EMSY was sig-

nificant in the SILAC experiment but close to threshold in the

label-free experiment. The fact that some proteins are outliers

in one experiment but not the other is expected based on

the different statistical behavior of binders in label-free and

SILAC analysis. Overall, we concluded that label-free quantifica-

tion is a viable alternative to SILAC for discovering chromatin

reader, especially if quantitative accuracy is further boosted by

increasing the number of replicates.

Having established a label-free high-throughput histone

peptide pull-down interaction screening platform, we decided

to use it to screen for tissue-specific chromatin readers of the

key activating and repressive histone modifications K4me3 and

K9me3, respectively. Nuclear extracts were prepared from

pooledmouse brain, liver, and kidney, and thesewere separately

incubated with unmodified and K4me3- and K9me3-modified

peptides (Figure 1D). Every pull-down was analyzed in quintupli-

cate to maximize statistical significance.

We tested significant binding between the three possible pairs

of bait peptides for each organ (nine t test comparisons). Hierar-

chical clustering of all outliers generated in this way showed

distinct groups (Figure 1E): enriched on K4me3 (115 proteins),

enriched on K9me3 (64 proteins), and de-enriched on K4me3

(41 proteins) (Table S1).

Inspecting the group of proteins significantly binding to these

chromatin marks, we found almost only proteins annotated to

be nuclear and very few apparent interactors from unexpected

cellular compartments. Of the 31 K4me3 binders found by both

Vermeulen et al. (Vermeulen et al., 2010) and Nikolov et al. (Niko-

lov et al., 2011), our tissue-based screen included 28. For the

repressive K9me3 mark, these studies had only 14 interactors

in common, of which 11 are statistically significant in our data

set. Thus our tissue-based screen appears to have reached

very high coverage of previously established chromatin readers.

As an example of a tissue that cannot easily be mimicked in

cell culture, we chose testis. This is a particularly interesting

system to study chromatin readers, as sperm maturation and

concomitant massive chromatin remodeling take place in this

organ. Although nucleosomes are replaced to a large extent by

protamines during sperm maturation, conventional histones,

histone variants, and modifications such as K4me3 can still be

detected in mature sperm cells in developmentally important

loci (Hammoud et al., 2009). Because of the relatively low tissue

mass, we performed pull-downs from total tissue extract.

Although the different extraction procedure precludes a direct

comparison to the pull-downs with the other organs, many of

the same interactors were found, showing that chromatin

readers can efficiently be retrieved even from total tissue

extracts available in small amounts. In total we found 21 proteins

associated with K4me3, 29 proteins associated with K9me3,

and 19 proteins being repelled by K4me3 in testis (Figure 1F;

Table S1).
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General and Organ-Specific Chromatin-Associated
Complexes
The large majority of reader proteins were found as specific

binders in all three organs studied. Table 1 lists these proteins,

grouped into known chromatin reader complexes where

possible. We found ten such complexes for the K4me3 mark,

and in most of these cases the entire set of established complex

members were found as significant interactors. This indicates

that our screen reached unprecedented coverage. Interestingly,

the SET1 complex, which itself methylates H3K4, was one of

the complexes bound to K4me3. In yeast, direct binding of

SET1 complex member SPP1 to H3K4me3, which recruits yeast

SET1, has been described (Shi et al., 2007); however, in

mammals none such interaction has been described yet. We

therefore tested the PHD finger of the complex member

CXXC1 for binding to K4me3 and indeed observed a specific

interaction with H3K4me3 (Figure 2A). Moreover, overexpressed

CXXC1 devoid of the PHD finger still interacts with Set1 (Fig-

ure 2B). Furthermore, it shows a dominant-negative effect on

Set1 binding to the H3K4me3 peptide (Figure 2C). Thus we

conclude that CXXC1 recruits SET1 to H3K4me3.

The proteins associated with K9me3 encompass most of the

known direct readers of this modification, including several

that were only described very recently (Table 1). As expected

among the specific binders to this repressive mark were many

Polycomb group members as well as many HP1 interactors

reported in a recent HP1 interactome study (Nozawa et al.,

2010). It is noteworthy that both among the already known and

the newly described K9me3-associated proteins were many

with zinc finger motifs. These proteins could couple a DNA

sequence specific readout to the detection of the repressive

mark in a similar manner as already described for the HP1 inter-

actor POGZ (Nozawa et al., 2010).

We tested several of the outliers of specific interest as well as

some completely uncharacterized proteins by western blotting.

In each of the cases, the western blot verified the result of our

global analysis (Figure 2E).

Next, we inspected our quantitative data for tissue-specific

chromatin readers and associated proteins. MS and western

blotting found ZNF462 as a specific binder to K9me3 in brain

and kidney but not in liver, where this protein appears not to

be expressed (Figures 2D and 2E). ZNF462 is a zinc finger

protein with a role in development (Massé et al., 2011), and its

knockdown leads to mislocalization of HP1 alpha (Massé et al.,

2010). In conjunction with the enrichment of ZNF462 on

K9me3, this suggested that it is an HP1 alpha interactor. Indeed

ZNF462 is present in HP1 alpha immunoprecipitations frombrain

and kidney, but not from liver extracts (Figure 2D). Thus we

conclude that ZNF462 is a tissue-specific and restricted HP1

interactor.

In brain extracts but none of the other extracts, CHD5 was

enriched with the unmodified and K9me3-modified peptide as

compared to K4me3. This was also confirmed by western blot-

ting, which furthermore indicated absence of the protein in the

input material in kidney and liver extracts (Figure 2E). To obtain

insights into the function of CHD5, we performed interaction

proteomics with the above-described platform but coupling an

antibody against CHD5 to the beads. Members of the NuRD

complex (MBD2/3, MTA1/2/3, GATAD2A/B, HDAC1/2, and

RBBP7) were significantly enriched, except for CHD3 and

CHD4 (Figure 2F). Together with a very recent report (Potts

et al., 2011), this demonstrates that CHD5 is a member of

a NuRD-like complex. The NuRD complex represses transcrip-

tion by nucleosome remodeling and deacetylation (Tong et al.,

1998; Xue et al., 1998). As its interaction with the H3 tail is

mediated by the two PHD fingers of CHD3 or CHD4 (Mansfield

et al., 2011), neither of which interacted with CHD5, we tested

if CHD5 could take over this function. We expressed the PHD

fingers of CHD5 and found that both bind to the unmodified

peptide and are repelled by K4me3 (Figure 2G). The binding

pattern of the CHD5 PHD fingers mirrors that of CHD4, whose

two PHD fingers bivalently recognize both H3 tails on a single

nucleosome (Musselman et al., 2012). We hypothesize that

CHD5 takes the position of CHD3 or CHD4 in a neuronal NuRD

complex and that it is responsible for binding to the H3 tail.

Several readers were exclusively found in testis, reflecting the

unique chromatin-remodeling events in spermatogenesis.

Among the known testis-specific readers and associated

proteins, we detected MBD3L, a testis-specific NuRD subunit

(Jiang et al., 2004) that clusters with other NuRD complex

members in the typical repulsion pattern from K4me3. TRIM66

(TIF1 delta) is an HP1 interactor predominantly expressed in

testis (Khetchoumian et al., 2004) and was enriched on the

K9me3 modification. DNMT3A is a DNA methyltransferase pref-

erentially expressed in cells undergoing de novo methylation

such as testis, and was enriched on unmodified H3 as described

before (Otani et al., 2009). In addition, the testis-specific proteins

SSTY1 and SSTY2 were specifically enriched on K4me3. Both

proteins are encoded in many copies on the Y chromosome of

mice and are expressed during sperm development (Touré

et al., 2004a). Deletions of these genes lead to severe sperm

head defects and sterility (Touré et al., 2004b). Interestingly,

Figure 1. Label-free Quantification Is as Powerful as SILAC-Based Quantification

(A) Peptide pull-down H3K4me3 versus H3 unmodified SILAC forward and reverse; significant outliers are marked in blue.

(B) Same pull-down in label-free; outliers that show significance in modified t test-based analysis are marked in blue.

(C) Overlap of outliers between SILAC and parallel label-free experiment: blue, outliers that were identified and significant in both; green, outliers that were only

identified in one experiment; red, outliers significant in one experiment but not in the other, n.q., not quantified; n.s., not significant.

(D) The workflow for screening chromatin readers from mouse tissue extracts is as follows: nuclear extract pools were prepared from mouse brain, liver,

and kidney. Pull-downs were performed with each extract with three different peptides (H3 unmodified, K4me3 and K9me3 modified), resulting in a total of

45 samples. Samples were measured separately, and a label-free quantification algorithm was applied.

(E) Heat map of significant outliers from peptide pull-downs for H3K9me3 and H3K4me3 from brain, kidney, and liver nuclear extracts. Readers with the same

pattern are clustered together and are indicated on the right (see also Table S1).

(F) Similar heat map as in (E) for testis. In contrast to (E), whole-cell extracts were used (see also Table S1).

Molecular Cell

Tissue-Specific Chromatin Readers

Molecular Cell 49, 368–378, January 24, 2013 ª2013 Elsevier Inc. 371

2 Results

59



SPIN1, a known K4me3 reader (Wang et al., 2011), has 55% and

52% sequence identity toward SSTY1 and SSTY2, respectively.

These proteins share the same domain, and the amino acids

suggested to mediate the interaction with the modified lysine

residue in SPIN1 (F141, Y170, and Y177) (Wang et al., 2011)

are conserved. We therefore speculate that SSTY is a direct

binder of K4me3 in testis. Additional testis-specific proteins

that specifically bound to K4me3 include SLX, SLXL1, and SLY.

Complexes Specifically Repelled by K4 Trimethylation
Apart from readers for K4me3 and K9me3, our screen also iden-

tified a group of proteins that specifically showed reduced

binding to the K4me3 modification (Table 1). Among these is

the already-mentioned NuRD complex with its known subunits

and BHC80, the first PHD finger-containing protein described

to bind preferentially to unmodified H3K4 via its PHD finger

(Lan et al., 2007). In proteomic data sets published so far, the

Table 1. Chromatin Readers and Associated Proteins

Reader Group Complex Direct Binder Complex Members

K4me3 TFIID TAF3 TAF1, 2, 3, 4a, 4b, 5, 6, 7, 8, 9, 9b, 10, 11, 12, 13, TBP

SAGA SGF29 ATXN7, ATXN7L1, ATXN7L2, ATXN7L3, CHD1, FAM48A,

USP22, TAF5L, TAF6L, SUPT3H, SUPT7L, TADA1L, SGF29

SET1 CXXC1 ASH2L, SETD1A, SETD1B, CXXC1,

NuA4 HAT ING3 BRD8, DMAP1, EP400, EPC1, TIP60, ING3, MORF4L1,

MORF4L2, RUVBL1, RUVBL2, YL1, YEATS4, MRGBP, TRRAP

ATAC TADA3L, CSRP2BP, GCN5L2, PCAF, SGF29, YEATS2,

MBIP, TADA2L, ZZZ3

JARID1A EMSY, GATAD1, JARID1A, SIN3B, PHF12, MORF4L1,

HBO1 (ING5 complex) ING4/5 HBO1, ING4/5, PHF15, PHF16, PHF17, MEAF6, BRD1, BRPF3,

SIN3A ING2 ING2, SIN3A, SAP130, SAP30L, SUDS3, SAP180,

ARID4A, BRMS1L

MLL DPY30, HCFC1, HCFC2, JMJD3, MLL2, MLL5, CHD8,

RBBP5, MEN1

NURF BPTF C17ORF49(BAP18), HMGB2L1, SMARCA1

Not yet assigned

to complexes

DIDO1, ING1, JHDM1D (KDM7),

JHDM1B, JmJD2A, PHF8,

MORC3, PHF13, PHF2,

PHF23, SPIN1

BOD1L, BAF53B, EPC2, GTF2A1, H2AFV, JARID1B, JAZF1,

PCYOX, MBTD1, SMARCA5, TADA2B, C11ORF84 homolog,

SMC1A, SMC3, UBXD7,c EHMT1,c EHMT2,c BRWD1,c CRCP,c

SSTY1,c SSTY2,c SLY,c SLX,c SLXL1,c KLHL36 c

K9me3 HP1 alpha ADNP, AHDC1, FBXL11, ZNF828, POGZ, SENP7, RLF, NIPBL,

PRR14, C1ORF103 homolog, ZNF462,b TRIM66,c CHAF1Ac
HP1 beta

HP1 gamma

ORC LRWD1, ORC2

Polycomb SUZ12, RING1A, RING1B, EED, EZH1, EZH2, MGA, L3MBTL2,

MAX, PCGF6, PHF1, CBX4

Not yet assigned

to complexes

CDYL, CDYL2, ATRX,

MPHOSPH8, UHRF1, UHRF2

hypothetical protein LOC72123, ADNP2, PRDM10, HDGFRP2,

HOMEZ, ZMYM2, ZMYM3, ZMYM4, ZMYM5, ZMYM6, SMCHD1,

TRIM33, MIER1, MIER2, ZFP280C, ZFP280D, ZNF518B, PAP20,

TRIM28, PPHLN1, NSD3, P91A, TRIM24, ZFP15, ZFP524,

ZFP597, C19ORF68 homolog, FAM208A, SFRS2, SCAI,

C19ORF68 homolog, UBR7,c PHF10,c KPNA3,c KPNA4c

repelled

by K4me3

NuRD CHD3, CHD4, CHD5a RBAP48, RBAP46, HDAC1, HDAC2, MBD2, MBD3, MTA1,

MTA2, MTA3, CHD3, CHD4, CHD5,a FOG2,a GATAD2A,

GATAD2B, DOC1, MBD3Lc

NuRD associated CHD4 ZNF687, ZMYND8, ZNF592, ZNF532

RAI1, PHF14, TCF20

BHC80 (PHF21A)

Not yet assigned

to complexes

DNMT3A,c DNMT3B c BCL7A, CFL1, DGKE, DHX30, FLYWCH1, PRMT5, PWWP2A,

PPIG, KBTBD7, MYT1L,a PABP1, ZBTB43, ZNF428, GABRG1,c

H1FX,c HAT1,c RPS10

Summary of all specific interaction partners for the investigated chromatin marks (for details, see Table S1). Proteins are grouped into complexes or

interaction networks according to their description in literature.
aOnly found in brain.
bOnly found in brain and kidney.
cOnly found in testis.
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Figure 2. Verification of General and Tissue-Specific Chromatin Readers and Associated Proteins

(A) Peptide pull-down using purified CXXC1 PHD finger 1: specific binding of the SET1 complex subunit CXXC1 to H3K4me3.

(B) Overexpression of GFP-tagged mouse CXXC1 full-length and delta PHD in 293 cells. SET1 coprecipitates with both constructs.

(legend continued on next page)
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focus has been on readers of modified amino acids, rather than

proteins that are specifically repelled by a modification. We

found 41 such proteins, all of which were repelled by K4me3,

whereas no readers specifically repelled by K9me3 were

apparent, in accordance with an absence of literature reports

of proteins specifically recognizing unmodified H3K9. As all of

these repelled proteins—with the exception of CHD5—showed

nearly equal binding in all three tissues, they appear to perform

general and non-tissue-specific functions.

To further elucidate these functions, we used cell line-based

methods to assign them into complexes. Specifically, we em-

ployed the recently developed BAC technology (Poser et al.,

2008) to perform SILAC-based GFP pull-downs of proteins ex-

pressed at endogenous levels (Hubner et al., 2010). We analyzed

protein-protein interactions for three proteins not described in

the context of reading unmodified histone H3 (Table S2). Of

particular interest was a series of zinc finger proteins, including

ZMYND8, a zinc finger protein that also contains a PWWP

domain, a bromodomain, and a PHD type zinc finger. It interacts

with CHD4, the NuRD complex member that is responsible for

binding of the complex to unmodified and K9me3 (Musselman

et al., 2009), thereby explaining the observed binding pattern

(Figure 3A). The zinc finger proteins ZNF592, ZNF687, and

ZNF532, which we also found to be enriched in our peptide

pull-down, likewise specifically interacted with ZMYND8. More-

over, when pulling down ZNF687, we reciprocally enriched

ZMYND8, as well as ZNF592 and ZNF532 (Figure 3B). CHD4

and further NuRD complex members specifically interacted with

ZNF687 as well. The zinc finger proteins ZMYND8, ZNF592, and

ZNF687 have been shown to form a subcomplex (Malovannaya

et al., 2011), and our data now link them to the NuRD complex

as auxiliary members. Given the large number of zinc fingers in

these proteins, we hypothesize that someof them serve to recruit

the NuRD complex to specific target genes in the genome.

Another protein associated with unmodified histone H3 was

retinoic acid-induced protein 1 (RAI1), which is implicated in

Smith-Magenis syndrome, a developmental disorder character-

ized by mental retardation and craniofacial and skeletal abnor-

malities (Slager et al., 2003). In the GFP pull-down we found

PHF14, TCF20 (Kiaa0292), and HMG20A specifically associated

with RAI1 (Figure 3C); these four proteins may form a chromatin-

associated complex whose members possess several PHD

fingers.

Chromatin Readers of the H3K4me1 Mark
To demonstrate extensibility of our pull-down methodology

not only for specialized tissues (Figure 1F) but also for different

baits, we performed pull-downs with brain and liver nuclear

extracts for monomethylated H3K4 (Figure 4A, Table S3),

a histone modification generally associated with enhancers

(Heintzman et al., 2007). We enriched for the known H3K4me1

readers CHD1 (Flanagan et al., 2005) and the TIP60 complex

(Jeong et al., 2011) with its members EP400, EPC1, BRD8,

YL1, and ING3. Interestingly, the H3K4me3 readers MORC3,

Spindlin1, PHF2, and PHF23 were also significantly enriched

compared to the unmodified peptide. In contrast, the large

group of direct H3K4me3 interactors described above (Table 1)

were not significantly enriched in the H3K4me1 pull-downs.

Finally, we observed tissue-specific interactions, like the already

observed FOG2 andCHD5, which are brain specific and repelled

by H3K4me1, as well as ZHX2 and ZHX3, which are repelled by

H3K4me1 in liver.

Deep Proteomic Quantification Supports
Tissue-Binding Patterns of Chromatin Readers
Nextwe complemented our interaction studies by a deepproteo-

mic profile of nuclear extracts across the tissues (biological trip-

licates; more than 5,000 proteins identified, see also Table S4).

This demonstrated that organ-specific chromatin readers in our

interaction screen also showorgan-specific expression patterns.

This is exemplified by the brain-specific CHD5 (Figure 4B). The

testis-specific readers SSTY1 and SSTY2, as well as SLY or

SLX,were not identified in brain, kidney, or liver. TheHP1 interac-

tor ZNF462, which was absent in the interaction screen in liver,

also was not detected in the nuclear liver proteome. In line with

the pull-down results, the large majority of chromatin readers

observed in our screen showed approximately equal expression

levels in all three tissue nuclear extracts (Figure 4C).

DISCUSSION

Here we have developed and demonstrated a high-resolution

and high-accuracy workflow to detect interactions with modified

peptides. It uses label-free quantification and is completely

generic, as it can be used for any synthesizable peptide modifi-

cation as well as any suitable protein extract. The technology is

highly sensitive, streamlined, and scalable. The absence of any

protein or peptide fractionation steps, with concomitant reduc-

tion in measurement time, enabled us to perform a relatively

large number of replicates in different tissues, increasing statis-

tical confidence. Compared to previous proteomics efforts on

identifying chromatin readers, we obtained much improved

coverage. This was evident, for instance, by the fact that sub-

units of chromatin reader complexes were in most cases com-

pletely recovered.

We applied our workflow to generate a reader map of inter-

actors of the activating K4me3 and the repressive K9me3 chro-

matin mark from mouse tissue, which not only covers the large

majority of known interactors, but also describes many associa-

tions for the first time. The increased depth and completeness of

(C) Peptide pull-down with HEK293 nuclear extracts overexpressing CXXC1-GFPWT and delta PHD. CXXC1WT is enriched on the H3K4me3 peptide compared

to the unmodified peptide. The delta PHD mutant only shows background binding. SET1 binding to H3K4me3 is seen in the CXXC1 WT extracts, but not when

CXXC1 delta PHD is overexpressed, demonstrating that CXXC1 recruits SET1 to H3K4me3.

(D) HP1 alpha coIP is as follows: ZNF462—which is enriched on H3K9me3—is enriched from brain and kidney but not from liver extracts.

(E) Western blot verification of selected readers.

(F) CHD5-coIP from brain nuclear extracts, followed by label-free quantitative proteomics: CHD5 enriches members of the NuRD complex.

(G) Peptide pull-down using purified CHD5 PHD fingers reveals specific repulsion by H3K4me3.
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the measured interactome should make it a useful resource to

the community. It also highlights the diversity and complexity

of chromatin-associated proteins for these marks. This is espe-

cially apparent for the activating K4me3 mark, for which we

recover 17 direct binders and most of their associated complex

members as well as cofactors. These proteins represent a strik-

ingly broad variety of different functions that they can perform on

the surrounding chromatin, even including writing and erasing

the K4me3mark itself. Furthermore, some readers play a general

role for gene expression, such as TFIID, whereas others are only

important for expression of a specialized subset of genes. One

important question that remains is how all these different chro-

matin readers are recruited to their specific target genes in the

genome, since it is clear that different K4me3 reading complexes

bind to distinct and only partially overlapping clusters of K4me3-

marked genes in human cells (Vermeulen et al., 2010). Part of this

specificity may be brought about by additional chromatin marks

that serve to differentially enhance or reduce the binding of

readers to genes. We have previously shown how such fine-

tuning modifications including H3R2me2a and H3S10P can

selectively enhance or repress the binding of readers to

K4me3 and K9me3, respectively (Vermeulen et al., 2010). But

beyond these auxiliary modifications, many of the chromatin-

reading complexes described here most likely gain binding

specificity for their target genes by DNA sequence-driven

recruitment events.

The combination of DNA sequence-specific and histone

modification-mediated recruitment of chromatin-associated

complexes can best be seen on the repressive K9me3 mark,

for which we describe new associated proteins. Among them,

many harbor DNA binding modules like zinc finger domains.

Furthermore, even a tissue-specific function can be connected

to a general machinery by auxiliary factors like ZNF462 in brain

and kidney, or TRIM66 in testis.

In addition to the interaction screen, we also used proteomics

to correlate our results to organ-specific expression patterns.

The large majority of chromatin readers showed similar expres-

sion patterns across the tissues. However, all tissue-specific

binders also had tissue-specific expression patterns. This

restricted expression suggests unique functions necessary in

the respective tissue.

The combination of interaction and deep expression proteo-

mics can also be used in an inverse approach: the tissue, cell

type, or developmental stage-specific expression of a putative

chromatin reader could guide subsequent targeted experiments

to determine if this protein binds to a specific mark in those

contexts.

In conclusion, advances in proteomics technology increas-

ingly make it possible to move from in vitro cell culture to in vivo-

derived tissues extracts. This allows surveying the binding

of proteins expressed in diverse tissues, including ones not ex-

pressed in standard cell lines. In particular, it allows surveying

the interactome in specialized tissues that cannot be easily

mimicked in cell culture, such as testis. Scalable and accurate
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Figure 3. Interaction Proteomics for Proteins Repelled by H3K4me3
SILAC GFP pull-downs from HeLa nuclear extracts for ZMYND8 (A), ZNF687

(B) and RAI1 (C); proteins are expressed at near-endogenous levels in HeLa

cells. Interaction partners can be found on the right lower quadrant and are

marked with their names.
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mapping of the binders to single and combined chromatin

marks should contribute to increased understanding of

protein-chromatin interactions and their role in regulating tissue-

and cell-type-specific gene expression programs and cell-fate

decisions.

EXPERIMENTAL PROCEDURES

Extract Preparation

Nuclear extracts from cell lines were prepared as previously described (Ver-

meulen et al., 2007).

Nuclei from brain, liver and kidney were purified by homogenization followed

by pelleting through a sucrose cushion, modified from Lavery and Schibler

(1993). Nuclei were lysed in 2 volumes 420 mM NaCl, 20 mM HEPES

(pH 7.9), 20% v/v glycerol, 2 mMMgCl2, 0.2 mM EDTA, 0.1% NP40, complete

protease inhibitor w/o EDTA (Roche), 0.5 mM DTT.

Testes were snap frozen in liquid nitrogen and grinded in a beadmill (2 3

3 min, 300 Hz), and 4 volumes lysis buffer (50 mM Tris [pH 8.0], 20 mM

NaCl, 0.25% NP40, 1 mM MgCl2, complete Protease inhibitor, 0.5 mM DTT)

were added followed by sonication. Samples were incubated with Benzonase

until no pellet was visible anymore and subsequently precleared at 15,000 g

for 10 min. Extracts were pooled for pull-downs to minimize variability intro-

duced by extract preparation.

All mice were housed in the animal facility of the Max Planck Institute of

Biochemistry, Munich. Animal experiments were approved by the Regierung

of Oberbayern.

Peptide Pull-Downs

Peptide pull-downs were performed on 96-well plates modified from Vermeu-

len et al. (2010). In brief, histone peptides containing the N-terminal 17 amino

acids of the histone H3 tail followed by two glycines and a biotinylated lysine

were synthesized using the Fmoc strategy as described (Schulze and Mann,

2004). An excess of peptide was coupled to Sepharose streptavidin beads

(GE Healthcare). Beads were transferred to 96-well multiscreen filter plates

(Millipore, MSBVN1210). Nuclear extracts (400 mg total protein) in 200 ml

incubation buffer (150 mM NaCl, 50 mM Tris [pH 8.0], 1% NP40, 0.5 mM

DTT) were added and incubated for 3 hr at 4�C while gently shaking. Beads

were washed three times (30 s, 60 g) with 200 ml wash buffer 1 (320 mM

NaCl, 50 mM Tris [pH 8.0], 0.5% NP40), followed by five washes with wash

buffer 2 (150 mM NaCl, 50 mM Tris [pH 8.0]) to minimize residual detergent.

A volume of 25 ml 2 M urea, 1 mM DTT supplemented with 120 ng trypsin

(Promega) was added and incubated for 30 min at room temperature and

eluted, followed by two additional elution steps (50 ml 2 M urea, 5 mM
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Figure 4. Extension of the Proteomic Screen

(A) Label-free interaction screen for readers of H3K4me1 from mouse brain and liver nuclear extracts.

(B) Protein expression profiles of selected chromatin readers. General chromatin readers show nearly equal expression levels over the analyzed tissues, whereas

organ-specific chromatin readers show organ-specific expression profiles.

(C) Proteomic expression profiles of chromatin readers identified in this study.
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iodoacetamide, 10 min incubation each). Proteins were digested overnight at

room temperature.

LC-MS/MS Analysis

Samples were measured using the LTQ-Orbitrap Velos or Q Exactive pro-

teomic pipeline. Raw mass spectrometric data were analyzed using the

MaxQuant pipeline (Cox and Mann, 2008).

GFP Pull-Downs

GFP pull-downs were performed as described before (Vermeulen et al., 2010)

followed by FASP andmeasurement as single run (ZMYND8 and ZNF687) or in

gel digest and fractionation into eight slices (RAI1). All samples weremeasured

on a LTQ Orbitrap Velos using 120 min segmented gradients.

Protein CoIPs

Chd5 antibody and rabbit control antibody or HP1 alpha antibody and goat

control antibody were crosslinked to protein G sepharose (GE Healthcare)

using dimethyl pimilidate. CHD5 coIPs were performed on 96-well multiscreen

plates as described above using brain nuclear extracts (350 mg total protein).

HP1 alpha coIPs were performed in tube (600 mg total protein) and eluted by

boiling in loading buffer.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four tables, Supplemental Experimental

Procedures, and Supplemental References and can be found with this article

at http://dx.doi.org/10.1016/j.molcel.2012.10.026.

ACKNOWLEDGMENTS

We thank T. Viturawong and J. Cox for helpful discussions; S. Hake for critical

reading of the manuscript; and D. Walther, M. Robles, and S. Dewitz for help

with mouse work. We would like to acknowledge S. Uebel and S. Suppmann

from the MPI Microchemistry Core facility for peptide synthesis and providing

material, respectively. We are indebted to T. Hyman and I. Poser for providing

BAC cell lines for ZMYND8, ZNF687, and RAI1. This work was supported by

the German National Genome Research Network (From Disease Genes to

Protein Pathways, DiGtoP) and by the HEROIC grant (LSHG-CT-2005-

018883) from the 6th EU Framework program. Research in the Vermeulen

lab is supported by a grant from the Netherlands Organization for Scientific

Research (NWO-VIDI).

Received: March 28, 2012

Revised: August 30, 2012

Accepted: October 23, 2012

Published: November 29, 2012

REFERENCES

Bartke, T., Vermeulen, M., Xhemalce, B., Robson, S.C., Mann, M., and

Kouzarides, T. (2010). Nucleosome-interacting proteins regulated by DNA

and histone methylation. Cell 143, 470–484.

Berdasco, M., and Esteller, M. (2010). Aberrant epigenetic landscape in

cancer: how cellular identity goes awry. Dev. Cell 19, 698–711.

Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification

rates, individualized p.p.b.-range mass accuracies and proteome-wide

protein quantification. Nat. Biotechnol. 26, 1367–1372.

Eberl, H.C., Mann, M., and Vermeulen, M. (2011). Quantitative proteomics for

epigenetics. ChemBioChem 12, 224–234.

Feng, W., Yonezawa, M., Ye, J., Jenuwein, T., and Grummt, I. (2010). PHF8

activates transcription of rRNA genes through H3K4me3 binding and

H3K9me1/2 demethylation. Nat. Struct. Mol. Biol. 17, 445–450.

Flanagan, J.F., Mi, L.Z., Chruszcz, M., Cymborowski, M., Clines, K.L., Kim, Y.,

Minor, W., Rastinejad, F., and Khorasanizadeh, S. (2005). Double chromodo-

mains cooperate to recognize the methylated histone H3 tail. Nature 438,

1181–1185.

Garcia, B.A., Thomas, C.E., Kelleher, N.L., and Mizzen, C.A. (2008). Tissue-

specific expression and post-translational modification of histone H3 variants.

J. Proteome Res. 7, 4225–4236.

Hammoud, S.S., Nix, D.A., Zhang, H., Purwar, J., Carrell, D.T., andCairns, B.R.

(2009). Distinctive chromatin in human sperm packages genes for embryo

development. Nature 460, 473–478.

Heintzman, N.D., Stuart, R.K., Hon, G., Fu, Y., Ching, C.W., Hawkins, R.D.,

Barrera, L.O., Van Calcar, S., Qu, C., Ching, K.A., et al. (2007). Distinct and

predictive chromatin signatures of transcriptional promoters and enhancers

in the human genome. Nat. Genet. 39, 311–318.

Hubner, N.C., Bird, A.W., Cox, J., Splettstoesser, B., Bandilla, P., Poser, I.,

Hyman, A., and Mann, M. (2010). Quantitative proteomics combined with

BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189,

739–754.

Jeong, K.W., Kim, K., Situ, A.J., Ulmer, T.S., An, W., and Stallcup, M.R. (2011).

Recognition of enhancer element-specific histone methylation by TIP60 in

transcriptional activation. Nat. Struct. Mol. Biol. 18, 1358–1365.

Jiang, C.L., Jin, S.G., and Pfeifer, G.P. (2004). MBD3L1 is a transcriptional

repressor that interacts with methyl-CpG-binding protein 2 (MBD2) and

components of the NuRD complex. J. Biol. Chem. 279, 52456–52464.

Khetchoumian, K., Teletin, M., Mark, M., Lerouge, T., Cerviño, M., Oulad-

Abdelghani, M., Chambon, P., and Losson, R. (2004). TIF1delta, a novel

HP1-interacting member of the transcriptional intermediary factor 1 (TIF1)

family expressed by elongating spermatids. J. Biol. Chem. 279, 48329–48341.

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128,

693–705.

Lan, F., Collins, R.E., De Cegli, R., Alpatov, R., Horton, J.R., Shi, X., Gozani, O.,

Cheng, X., and Shi, Y. (2007). Recognition of unmethylated histone H3 lysine 4

links BHC80 to LSD1-mediated gene repression. Nature 448, 718–722.

Lavery, D.J., and Schibler, U. (1993). Circadian transcription of the cholesterol

7 alpha hydroxylase gene may involve the liver-enriched bZIP protein DBP.

Genes Dev. 7, 1871–1884.

Li, H., Ilin, S., Wang, W., Duncan, E.M., Wysocka, J., Allis, C.D., and Patel, D.J.

(2006). Molecular basis for site-specific read-out of histone H3K4me3 by the

BPTF PHD finger of NURF. Nature 442, 91–95.
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2 Results

2.3 H2A.Z.2.2 is an alternatively spliced histone H2A.Z
variant that causes severe nucleosome destabilization

2.3.1 Project aim and summary

Histone variants play an important role in chromatin biology by providing a means to
alter the properties of nucleosomes and to generate distinct chromosome regions. One
very important H2A variant is H2A.Z, which is implicated in transcriptional regula-
tion, chromosome segregation and mitosis [51]. Two isoforms, encoded by two differ-
ent genes, are known: H2A.Z.1 and H2A.Z.2. Here, we describe a novel splice variant
of H2AZ.2, which we term H2A.Z.2.2. H2A.Z.2.2 is incorporated into chromatin in a
replication-independent process by the H2A.Z-specific TIP60 and SRCAP chaperone
complexes. Nucleosomes containing this variant exhibit major structural changes and
are less stable than nucleosomes containing H2A or H2A.Z.2.1. These drastic effects on
the nucleosomes can be attributed to the unique C-terminus of H2A.Z.2.2. This project
adds a novel member with very special biochemical properties to the large list of H2A
variants.
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2.3.2 Contribution

This project was initiated and headed by the group of Sandra Hake at the Adolf Bu-
tenandt Institute (Ludwig Maximilian University, Munich). The main driving force
behind the experiments was Clemens Boenisch. To answer the question of histone
chaperones for this novel H2A variant, I performed protein pull-downs of H2A.Z.2.1
and H2A.Z.2.2 from the soluble nuclear fraction. In addition, we investigated the C-
terminus of H2A.Z.2.2, which is strikingly different to the C-terminus of H2A.Z.2.1. As
the C-terminus is described to be important for several protein-protein interactions, I
used peptide pull-downs with both C-termini to screen for proteins binding there.

2.3.3 Publication

This project was published in 2012 as an article in Nucleic Acid Research:

H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nu-
cleosome destabilization

Clemens Boenisch, Katrin Schneider, Sebastian Puenzeler, Sonja M. Wiedemann, Christina
Bielmeier, Marco Bocola, H. Christian Eberl, Wolfgang Kuegel, Juergen Neumann, Elis-
abeth Kremmer, Heinrich Leonhardt, Matthias Mann, Jens Michaelis, Lothar Scher-
melleh and Sandra B. Hake

Nucleic Acids Res. 2012 Mar 29. (Epub ahead of print)
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ABSTRACT

The histone variant H2A.Z has been implicated in
many biological processes, such as gene regulation
and genome stability. Here, we present the identifi-
cation of H2A.Z.2.2 (Z.2.2), a novel alternatively
spliced variant of histone H2A.Z and provide a com-
prehensive characterization of its expression and
chromatin incorporation properties. Z.2.2 mRNA is
found in all human cell lines and tissues with highest
levels in brain. We show the proper splicing and
in vivo existence of this variant protein in humans.
Furthermore, we demonstrate the binding of Z.2.2 to
H2A.Z-specific TIP60 and SRCAP chaperone
complexes and its active replication-independent
deposition into chromatin. Strikingly, various inde-
pendent in vivo and in vitro analyses, such as bio-
chemical fractionation, comparative FRAP studies
of GFP-tagged H2A variants, size exclusion chroma-
tography and single molecule FRET, in combination
with in silico molecular dynamics simulations,
consistently demonstrate that Z.2.2 causes major
structural changes and significantly destabilizes
nucleosomes. Analyses of deletion mutants and

chimeric proteins pinpoint this property to its
unique C-terminus. Our findings enrich the list of
known human variants by an unusual protein
belonging to the H2A.Z family that leads to the
least stable nucleosome known to date.

INTRODUCTION

In the eukaryotic nucleus, DNA is packaged into chroma-
tin. The fundamental unit of this structure is the nucleo-
some consisting of a histone octamer (two of each H2A,
H2B, H3 and H4) that organizes �147 bp of DNA (1). In
order to allow or prevent nuclear regulatory proteins
access to the DNA, the chromatin structure has to be
flexible and dynamic. Several mechanisms ensure
controlled chromatin changes, one being the incorpor-
ation of specialized histone variants (2,3).
Variants of the histone H2A family are the most diverse

in sequence and exhibit distinct functions (4,5), com-
prising DNA damage repair, transcriptional regulation,
cell cycle control and chromatin condensation, though
the exact mechanisms of action are not fully understood
yet. Interestingly, the highest sequence variation among
H2A variants is found in the C-terminus, suggesting that
differences in structure and biological function might be
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primarily attributed to this domain (6–9). One of the best
investigated and highly conserved but also functionally
enigmatic histone variant is H2A.Z. This variant is essen-
tial in most eukaryotes and possesses unique functions
(10,11). H2A.Z is involved in transcriptional regulation,
chromosome segregation and mitosis, acting in an
organism- and differentiation-dependent manner (12,13).
Furthermore, H2A.Z has been implicated in regulating
epigenetic memory (14) and in inhibiting read-through
antisense transcription (15). In higher eukaryotes,
H2A.Z might play a role in heterochromatin organization
(16), genome stability and chromosome segregation (17).
Despite many efforts to elucidate the exact biological
functions of H2A.Z, its roles have been and remain con-
troversial (18). Furthermore, deregulation of H2A.Z ex-
pression or localization seems to be connected to the
development of several neoplasias (19–23). Interestingly,
in vertebrates two non-allelic genes coding for two highly
similar H2A.Z proteins, H2A.Z.1 and H2A.Z.2, exist (24)
(previously named H2A.Z-1 and H2A.Z-2, prefixes were
changed due to a new histone variant nomenclature;
Talbert P.B., manuscript in preparation). They have a
common origin in early chordate evolution, are both
acetylated on the same N-terminal lysines (25–27) and
might be ubiquitinated on either one of the two
C-terminal lysines (28).
Here, we report the identification and structural char-

acterization of H2A.Z.2.2 (Z.2.2), an unusual alternative
splice form of H2A.Z. We show that Z.2.2 mRNA is
expressed to different degrees in all human cell lines and
tissues examined, with highest levels found in brain. Cell
biological and biochemical analyses consistently reveal the
presence of two distinct Z.2.2 populations within the cell.
The majority of Z.2.2 is freely dispersed in the nucleus,
whereas only a minority is stably incorporated into chro-
matin, most likely through the H2A.Z-specific p400/
NuA4/TIP60 (TIP60) and SRCAP chaperone complexes.
In vivo and in vitro analyses, in agreement with molecular
dynamic (MD) simulations, demonstrate that due to its
unique docking domain Z.2.2 chromatin incorporation
leads to severely unstable nucleosomes. Our data
provide compelling evidence that a novel H2A.Z variant
exists in humans that plays a distinct and novel role in
chromatin structure regulation.

MATERIALS AND METHODS

See Supplementary Materials and Methods section for
detailed protocols.

Cell culture, transfection, FACS and cloning

Cell lines were grown in DMEM medium (PAA) supple-
mented with 10% FCS (Sigma) and 1% penicillin/strepto-
mycin at 37�C and 5% CO2. Cells were transfected using
FuGene HD (Roche Applied Science) according to the
manufacturer’s instructions. For details on cell selection,
FACS and cloning of expression plasmids see Sup-
plementary Materials and Methods section.

RNA expression analysis

RNA isolation and cDNA generation were performed as
previously described (29). Data were analyzed with the
advanced relative quantification tool of the Lightcycler
480 (Roche) software including normalization to HPRT1
and HMBS levels. Statistical evaluation was done using
t-test (two-tailed distribution, heteroscedastic). Total
RNA from different human tissues was commercially
acquired from: Applied Biosystems: normal lung, breast
and tumor breast, lung and ovary; Biochain: tumor lung,
breast, thyroid and bone, normal testis, cerebellum,
cerebral cortex, hippocampus, thalamus and total fetal
brain; amsbio: frontal lobe.

Histone extraction, RP–HPLC purification, sucrose
gradient, cellular fractionation and salt stability
experiments

Acid extraction of histones was done as previously
described (30). Histones were separated by RP–HPLC as
previously described (29). Fractions were dried under
vacuum and stored at �20�C.

Details on MNase digest and sucrose gradient fraction-
ation can be found in Supplementary Materials and
Methods section.

Fractionation and salt stability experiments were
carried out as described previously (31–33) with minor
changes. For details on these methods see Supplementary
Materials and Methods section.

Antibodies

For the generation of a Z.2.2-specific antibody (aZ.2.2), a
peptide spanning the last C-terminal amino acids
GGEKRRCS of Z.2.2 was synthesized (Peptide Specialty
Laboratories GmbH) and coupled to BSA and OVA,
respectively. Development of Z.2.2-specific monoclonal
antibodies in rats was done as previously described (29).
The aZ.2.2 clone 1H11-11 of rat IgG1 subclass was
applied in this study. Rabbit aZ.2.2 antibody (rabbit 2,
bleed 3) was generated by the Pineda-Antikörper-Service
company using the identical peptide epitope followed by
affinity purification. Following other primary antibodies
were used: aGAPDH (sc-25778, Santa Cruz), aGFP
(Roche Applied Science), aH2A (ab 13923, abcam), aH3
(ab1791, abcam) and aH2A.Z (C-terminus: ab4174,
abcam; N-terminus: ab18263, abcam). Following second-
ary antibodies and detection kits were used in imm-
unoblots: GFP-Z.2.2 and GFP-Bbd histones (aGFP)
and endogenous Z.2.2 (aZ.2.2) were detected using
HRP-conjugated secondary antibodies (Amersham) with
ECL advance (Amersham), all other proteins were
detected using ECL (Amersham). Detection of recombin-
ant proteins to evaluate histone stoichiometry of in vitro
assembled nucleosomes was carried out using
IRDye-labeled secondary antibodies (LI-COR).

Fluorescence microscopy of cells and chromosomes

Preparation of cells and chromosome spreads for fluores-
cence microscopy was done as previously reported (34).
Wide-field fluorescence imaging was performed on
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a PersonalDV microscope system (Applied Precision)
equipped with a 60�/1.42 PlanApo oil objective
(Olympus), CoolSNAP ES2 interline CCD camera (Pho-
tometrics), Xenon illumination and appropriate filtersets.
Iterative 3D deconvolution of image z-stacks was per-
formed with the SoftWoRx 3.7 imaging software
package (Applied Precision).

FRAP and exponential fitting

For details see Supplementary Materials and Methods
section.

Stable isotope labeling with amino acids in cell culture
(SILAC) and mass spectrometric identification of
H2A.Z-specific chaperone complexes

HeLa cells expressing GFP-Z.2.1 or GFP-Z.2.2 were
SILAC labeled and nuclear extracts were prepared as
described before (35,36). High-resolution LC MS/MS
analysis was performed on an Orbitrap platform: details
on the experimental procedure are found in Supple-
mentary Materials and Methods section. Mass spectro-
metric (MS) operation and raw data analysis (37) are
described in Supplementary Materials and Methods
section. A complete list of all proteins identified is found
in Supplementary Table S1.

Immunoflurescence microscopy of cell cycle-dependent
GFP-Z.2.1 and GFP-Z.2.2 chromatin incorporation

Details on the experimental labeling (38) and microscopy
procedures are found in Supplementary Materials and
Methods section.

Expression of recombinant human histone proteins in
Escherichia coli, in vitro octamer and nucleosome
reconstitution

Histones were expressed, purified and assembled into
octamers as described (39) and mononucleosomes were
assembled on DNA containing the 601-positioning
sequence (40) according to (39,41). For details on
in vitro octamer and nucleosome reconstitution, see Sup-
plementary Materials and Methods section.

Single molecule Förster resonance energy transfer

Single molecule Förster resonance energy transfer
(smFRET) single molecule burst analysis followed by the
removal of multi-molecular events (42–45) are described in
detail in the SupplementaryMaterials andMethods section.

Molecular modeling and MD simulations

The molecular modeling suite YASARA-structure version
9.10.29 was employed, utilizing the AMBER03 force field
(46) for the protein and the general amber force field
(GAFF) (47) throughout this study. The partial charges
were computed using the AM1/BCC procedure (48) as
implemented in YASARA structure (49). The starting
point for molecular modeling was the crystal structure of
a nucleosome core particle containing the histone variant
H2A.Z (PDB 1F66) (50). Missing side chain atoms were
added (Glu E 634). The missing N-terminal and C-terminal

residues were not modeled, although they might interact
with the neighboring DNA, e.g. in the case of missing
C-terminal residues in H2A.Z (119–128;
GKKGQQKTV). All structures were solvated in a water
box with 0.9% NaCl and neutralized (51). The structures
were initially minimized using steepest descent and
simulating annealing procedures. All deletions and muta-
tions were introduced sequentially using YASARA struc-
ture. MD simulations were carried out at 300K over 2.5 ns
in an NPT ensemble using PME. All simulations were per-
formed four times using various starting geometries. The
2.5 ns MD trajectories were sampled every 25 ps, resulting
in 100 simulation frames per run, which were evaluated
after an equilibration phase of 500 ps to derive statistical
averages and properties of the corresponding variant.
Finally, the interaction energy of H2A and H3 was
calculated from a simulation of the solvated octamer and
the isolated (H3–H4)2 tetramer or the isolated respective
H2A.Z–H2B dimer. The interaction energy is calculated as
energy difference of the solvated octamer minus the
solvated (H3–H4)2 tetramer and H2A.Z–H2B dimer.

RESULTS

Alternative splicing of H2A.Z.2 occurs in vivo

Two non-allelic intron-containing genes with divergent
promoter sequences that code for H2A.Z variants exist in
vertebrates (24,27). In humans, the H2A.Z.2 (H2AFV)
primary transcript is predicted to be alternatively spliced
thereby generating five different gene products
(Supplementary Figure S1A). Using PCR and confirmed
by sequencing we detected not only H2A.Z.2.1 (Z.2.1) but
also H2A.Z.2.2 (Z.2.2) mRNA, though none of the other
splice variants in human cells (Supplementary Figure S1B)
showing that the H2A.Z.2 primary transcript is indeed al-
ternatively spliced in vivo. Interestingly, database searches
found Z.2.2 mRNA to be predicted in chimpanzee (Pan
troglodytes) and Northern white-cheeked gibbon
(Nomascus leucogenys) as well. In addition, the coding
sequence of the unique exon 6 was present downstream
of the H2AFV locus of several other primate genomes,
such as gorilla (Gorilla gorilla gorilla), macaque (Macaca
mulatta), orangutan (Pongo abelii) and white-tufted-ear
marmoset (Callithrix jacchus) (data not shown). In all of
these primates, with the exception of marmoset, the result-
ing protein sequence, if translated, is 100% identical to the
unique human Z.2.2 peptide. Further searches revealed
that the genomes of horse, and to a certain extent also
rabbit and panda bear, contain sequences downstream of
their H2AFV loci that could, if translated, lead to proteins
with some similarities to human Z.2.2, although they are
much more divergent and even longer (rabbit, panda bear).
Due to these differences, it is highly likely that those species
do not express a Z.2.2 protein homolog. Surprisingly, we
could not detect Z.2.2-specific sequences in mouse, rat or
other eukaryotic genomes, suggesting that Z.2.2 might be
primate specific.
Next, we wanted to determine to what degree all three

H2A.Z mRNAs are expressed in different human cell lines
and tissues and performed quantitative PCR (qPCR).
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Z.2.2 mRNA was present to different degrees in all human
cell lines and tissues tested, though less abundant than Z.1
and Z.2.1 mRNAs that are expressed in similar amounts
(Supplementary Figure S1C and D). Z.2.2 constituted
between 5% and 15% of total Z.2 transcripts in all cell
lines and tissues, with the exception of brain, where it was
statistically significant upregulated (p=1.7� 10�4; Figure
1A). In some regions of this particular organ Z.2.2 ac-
counted for up to 50% of all Z.2 transcripts pointing
toward an exciting brain-specific function of this novel
variant.
Encouraged by our findings we next investigated

whether the endogenous protein is present in vivo. The
distinctive feature of Z.2.2 is its C-terminus that is 14
amino acids shorter and contains six amino acids differ-
ences compared to Z.2.1 (Figure 1B). Due to this
shortened C-terminal sequence, ubiquitination sites at
positions K120 and K121 (28) and part of the H3/H4
docking domain (50) are lost in Z.2.2. We generated
antibodies against Z.2.2’s unique C-terminal amino acids
(aZ.2.2) in rats and rabbits and confirmed their specificity
in immunoblots (IB) with recombinant Z.2.1 and Z.2.2

proteins (Supplementary Figure S1E and data not
shown). We extracted histones from several human and
mouse cell lines, purified them by reversed phase–high
performance liquid chromatography (RP–HPLC) and
analyzed obtained fractions by IB (Figure 1C). Using
aZ.2.2 (polyclonal rabbit), we observed a signal of the
calculated weight of Z.2.2 that elutes shortly before Z.1-
and Z.2.1-containing fractions in all human samples.
Similar results were obtained with a monoclonal aZ.2.2
rat antibody (data not shown). In agreement with the
finding that Z.2.2-specific exon 6 sequences are mainly
restricted to primate genomes, we could detect Z.2.2
protein in human but not in mouse cells (Figure 1C). In
summary, our data show that Z.2.2 protein indeed exists
in vivo, albeit at a low expression level.

GFP-Z.2.2 is partially incorporated into chromatin

Having demonstrated the existence of this novel variant
in vivo, we next sought to clarify whether Z.2.2 constitutes
a bona fide histone by being part of the chromatin struc-
ture. Due to high background of all our aZ.2.2 antibodies
in IB with cell extracts (data not shown), we generated
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Figure 1. Identification of Z.2.2. (A) qPCR with cDNA from different human cell lines and tissues using primers specific for Z.2.1 and Z.2.2. Data
were normalized to HPRT1 and HMBS expression levels. Controls generated without reverse transcriptase (no RT) were used to assess amplification
threshold. Shown are the levels of Z.2.2 mRNA as percentages of total Z.2 transcripts (Z.2.1+Z.2.2). For an evaluation of absolute expression levels
see Supplementary Figure S1C and D. (B) Amino acid alignment of human Z.1, Z.2.1 and Z.2.2 proteins using ClustalW Alignment (MacVector
10.0.2). Identical amino acids are highlighted in dark gray, similar amino acids in light gray and changes are set apart on white background. Known
acetylation sites are depicted with stars and ubiquitination sites with circles. A schematic representation of the secondary structure of Z.1 and Z.2.1 is
shown below the alignment, including depiction of the H3/H4 docking domain (50). M6 and M7 boxes indicate regions important for H2A.Z-specific
biological functions in D. melanogaster (60). (C) IB analyses of RP–HPLC purified fractions from different human (HEK293, HeLa, HeLa Kyoto
and U2OS) and mouse (NIH3T3) cell lines using a polyclonal rabbit aZ.2.2 and aH2A.Z (aZ, C-terminal) antibodies. Recombinant Z.2.2 protein
(rZ.2.2) was loaded in the first lane as positive control for aZ.2.2 antibody. Similar results were obtained when using a monoclonal rat aZ.2.2
antibody (data not shown).
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HeLa Kyoto cell lines stably expressing GFP-tagged H2A
variants (HK-GFP cells) for subsequent analyses.
Expression levels of GFP-tagged histone variants were
determined by FACS (Supplementary Figure S2A) and
by comparing expression levels of GFP-tagged variants
with endogenous H2A.Z proteins in IB (Supplementary
Figure S2B). GFP-Z.1 and -Z.2.1 were expressed in
similar amounts as the endogenous H2A.Z protein, and
GFP-Z.2.2 expression levels were considerably lower than
those of other GFP-tagged H2A variants, with the excep-
tion of GFP-H2A.Bbd (Barr body deficient; Bbd). These
data show that all GFP-H2A variants were not expressed
in abnormal amounts in cell clones used for further
analyses.

In fluorescence microscopy, GFP-Z.2.2 exhibited a sole
but rather diffuse nuclear distribution similar to GFP-
Bbd, suggesting that both variants might have similar
properties (Figure 2A). Additionally, GFP-Z.2.2 was
detected in condensed mitotic chromosomes, with a faint
residual staining in the surrounding area (Figure 2B), sug-
gesting that it is incorporated into chromatin, although to
a lesser extent than other GFP-H2A variants. To discrim-
inate between a potential non-specific DNA binding and
nucleosomal incorporation of Z.2.2 we purified mono-
nucleosomes by sucrose gradient centrifugation.
GFP-Z.2.2 was detected by IB in fractions containing
mononucleosomes (Figure 2C), suggesting that Z.2.2 is
indeed a nucleosomal constituent.

To analyze the extent of Z.2.2 chromatin incorporation
in more detail, we isolated soluble (sol) and chromatin
(chr) fractions from HK-GFP cells. IB analyses revealed,
as expected, that similar to GFP-Bbd, GFP-Z.2.2 is pre-
dominantly nuclear soluble, with only minor amounts
present in chromatin (Figure 3A). Based on fractionation
and fluorescence imaging results, we hypothesized that
this novel variant behaves in a different manner as
compared to other H2A variants with regard to chromatin
exchange mobility in vivo. To test this prediction, we per-
formed fluorescence recovery after photobleaching
(FRAP) experiments with HK-GFP cells. Using spinning
disk confocal microscopy we monitored the kinetic
behavior of H2A variants with variable intervals over
2min (short-term) up to several hours (long-term) after
bleaching a 5mm� 5 mm square nuclear region (Figure
3B and Supplementary Figure S3). As expected, GFP
alone showed the highest mobility. In contrast,
GFP-H2A, -Z.1 and -Z.2.1 showed a slow recovery,
which is in agreement with a previous report (52).
GFP-Bbd has been described to exhibit low nucleosomal
stability and a fast FRAP kinetic (53), which we also
observed in our experiment. Interestingly, GFP-Z.2.2
showed an even faster recovery than GFP-Bbd, with
�80% of initial fluorescence reached after 1min. Careful
assessment and bi-exponential fitting of FRAP data
allowed us to also calculate ratios of fractions with fast,
intermediate and slow recovery and their respective
half-time of recovery (t1/2) as an indication of exchange
rate thereby revealing quantitative differences between
Z.2.2 and other H2A variants (Figure 3D, Supplementary
Figure S3C and E). For Z.2.2 as well as for Bbd, we
identified a fast fraction of unbound or very transiently

interacting molecules (78%, t1/2� 1.1 s and 52%, t1/2
� 2.5 s, respectively; for comparison GFP t1/2 � 0.4 s)
and a substantially slower fraction with a t1/2 in
the range of 7–9min. In contrast, GFP-H2A, -Z.1
and -Z.2.1 showed no fast mobile fraction but intermedi-
ate slow fractions with t1/2 in the range of 8–17min and a
second even slower class exchanging with a t1/2 of a few
hours. For comparison, we measured the linker histone
H1.0 (54–57) and the histone binding protein HP1a
(58,59), both DNA-associated proteins, and found that
HP1a shows an overall much faster recovery than all
H2A variants. In contrast to Z.2.2 and Bbd, no
unbound fraction of H1.0 was detected. More import-
antly, with regards to the bound Z.2.2 and Bbd fractions
overall H1.0 showed a faster recovery, arguing against
an unspecific DNA-association of Z.2.2 and Bbd. In
agreement with cell biological and biochemical analyses,
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Figure 2. Z.2.2 localizes to the nucleus and is partially incorporated
into chromatin. (A) Fluorescence imaging of stably transfected HeLa
Kyoto cells shows nuclear localization of all GFP-H2A variants
(middle). DNA was counterstained with DAPI (top). Overlay of both
channels in color is shown at the bottom (Merge; GFP: green, DAPI:
blue). Scale bar=5 mm. (B) Deconvolved images of metaphase spreads
of HeLa Kyoto cells stably expressing GFP-H2A variants (middle).
Merged images in color are shown below (GFP: green; DAPI: blue).
Scale bar=10 mm. (C) Chromatin from HeLa Kyoto cells stably ex-
pressing GFP-Z.2.2 was digested with MNase followed by a purifica-
tion of mononucleosomes using sucrose gradient centrifugation.
Isolated DNA from subsequent sucrose gradient fractions was
analyzed by agarose gel electrophoresis (left). Fractions containing
pure mononucleosomes (marked with asterisk) were combined and
analyzed by IB (right) using aGFP antibody for the presence of
GFP-Z.2.2 (top), and aH3 (bottom).
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these data clearly demonstrate that a large fraction of the
splice variant Z.2.2 is very rapidly exchanged or chromatin
unbound, and a minor population is incorporated into
chromatin.

Z.2.2’s unique docking domain, but not its shortened
length, weakens chromatin association

The functional importance of specific C-terminal domains
of H2A.Z has previously been demonstrated by nucleo-
somal structure analyses (7,50) and in rescue experiments
in flies (60). Since the C-terminus of Z.2.2 is shorter and
has a distinct sequence when compared to Z.1 and Z.2.1, it
is not clear which of these features determines Z.2.2’s
unusual chromatin-association.
Therefore, we generated deletion and domain-swap

constructs (Supplementary Figure S3D) for FRAP experi-
ments (short-term: Figure 3C and long-term:
Supplementary Figure S3B). Surprisingly, C-terminal
deletions of GFP-H2A (H2A111) and GFP-Z.2.1
(Z.2.1113) to mimic the shortened length of Z.2.2 did not
affect their original mobility in short-term and only
modestly in long-term FRAP. Hence, the mere shortening
of the C-terminus is not sufficient to weaken stable
chromatin association.
To investigate whether the unique six C-terminal amino

acids of Z.2.2 are sufficient to generate highly mobile
proteins, we created a further C-terminally truncated
GFP-H2A construct (H2A105) and added the Z.2.2
specific C-terminal six amino acids (H2A105+CZ.2.2).
Although both mutant constructs are slightly more
mobile than H2A111, their indistinguishable recovery
kinetics demonstrate that the unique six C-terminal
amino acids of Z.2.2 alone are not sufficient to cause its
extreme mobility in vivo.
To explore whether the complete Z.2.2 docking domain

is able to induce high-protein mobility, we transferred the
respective domain of either Z.2.1 (amino acids 91–127) or
Z.2.2 (amino acids 91–113) onto a C-terminally truncated
H2A (H2A88+CZ.2.1 and H2A88+CZ.2.2, respectively).
Interestingly, only the docking domain of Z.2.2, but not
the one of Z.2.1, confers high mobility. In conclusion,
the six unique C-terminal amino acids of Z.2.2 prevent
chromatin-association of a large proportion of this
protein, but only when present in the context of
the preceding H2A.Z-specific docking domain sequence.

Z.2.2 interacts with H2A.Z-specific TIP60 and SRCAP
chaperone complexes and is deposited into chromatin
outside of S-phase

Our so far obtained data strongly imply that at least a
minor amount of the cellular Z.2.2 protein is incorporated
into nucleosomes. Since previous studies have shown that
evolutionary conserved Swr1-related ATP-dependent
chromatin remodelers specifically exchange canonical
H2A–H2B with H2A.Z–H2B dimers within nucleosomes
(10,61), we wondered if such complexes are also able to
actively deposit Z.2.2 into chromatin. HK cells and HK
cells stably expressing GFP-Z.2.1 or -Z.2.2 were SILAC
labeled, soluble nuclear proteins isolated, GFP-tagged

Z.2.1 and Z.2.2-associated proteins precipitated using
GFP nanotrap beads and identified by quantitative mass
spectrometry (Figure 4 and Supplementary Table S1 for a
complete list of all identified proteins). Whereas the
majority of proteins are background binders clustering

Figure 3. The majority of Z.2.2 protein is nuclear soluble and highly
mobile in a sequence-dependent manner. (A) HK-GFP cells were sub-
jected to biochemical fractionation. Fractions sol and chr of identical
cell equivalents were probed in IB with aGFP (top), aH2A (middle)
and aGAPDH (bottom). (B) FRAP quantification curves of average
GFP signal relative to fluorescence intensity prior to bleaching are
depicted for GFP, GFP-tagged wild-type H2A variants, linker histone
H1.0 and heterochromatin protein 1a (HP1a). Mean curves of 10–29
cells are shown for each construct. Error bars are omitted for clarity.
(C) FRAP quantification curves similar to (B) are depicted for GFP,
GFP-tagged wild-type H2A, Z.2.1, Z.2.2 and mutant constructs.
(D) Quantitative evaluation of FRAP curves. Plot shows calculated
mobility fraction sizes of different wild-type and mutant H2A variant
constructs, as well as H1.0 and HP1a, based on bi-exponential fitting of
FRAP data. Error bars indicate SD (see Supplementary Figure S3 for
long-term FRAP and for numerical values).
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around 0, specific interactors can be found on the right
side having a high ratio H/L or ratio L/H for Z.2.1 and
Z.2.2, respectively. In accordance with previous studies
(62–65), we found GFP-Z.2.1 to be part of two major
complexes, the SRCAP and the p400/NuA4/TIP60
(TIP60) complexes (Figure 4A), as we were able to
detect all of their thus far identified members, with the
exception of actin, as significant outliers. Interestingly,
GFP-Z.2.2 also associated with both SRCAP and TIP60
complexes (Figure 4B), showing an almost identical
binding composition as GFP-Z.2.1 (Figure 4C). These
results strongly imply that Z.2.2 is, similar to other
H2A.Z variants, actively deposited into chromatin
through specific chaperone complexes.
Based on these results, we predicted that Z.2.1 and Z.2.2

should be incorporated into chromatin in a highly similar
spatial manner. Since both SRCAP and TIP60 chaperone
complexes are evolutionary conserved between different
species, we tested mouse C127 cells that do not express
endogenous Z.2.2 for their ability to deposit GFP-Z.2.2.
Hereby we should be able to distinguish whether SRCAP
and TIP60 complexes are sufficient for deposition, or if
other potential primate-specific factors are needed.
GFP-Z.2.1 and -Z.2.2 were transiently expressed in C127
cells, S-phase stages highlighted by EdU-incorporation
and co-localization patterns visualized by fluorescence
microscopy (Figure 5). GFP-Z.2.1 and -Z.2.2 showed an
almost identical chromatin localization and deposition
pattern, suggesting that Z.2.2 is, like Z.2.1, deposited
through SRCAP and TIP60 complexes. In accordance
with a recent study, we observed an enrichment of both
H2A.Z variants in facultative heterochromatin regions in
interphase nuclei (66). Surprisingly, although H2A.Z is
expressed in all cell cycle phases (67), and GFP-Z.2.1
and -Z.2.2 expression is driven by a constitutive active
promoter, chromatin deposition of both proteins is
underrepresented at replication foci. This result underlines
our findings that Z.2.2 interacts with all members of both
TIP60 and SRCAP complexes and is actively and not pas-
sively deposited, as would have been the case during
S-phase when nucleosomes are highly exchanged.

Structural changes in Z.2.2’s C-terminus prevent histone
octamer folding and enhance DNA breathing on
structurally destabilized nucleosomes

Our findings thus far imply that Z.2.2 is incorporated
into nucleosomes and most likely targeted by TIP60 and
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BAF53A 10,10 20,98 (0,048)
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ZNHIT1 NA 19,93 (0,050)

GFP 23,82 108,88 (0,009)

C

Figure 4. Z.2.2 associates with H2A.Z-specific SRCAP and TIP60
chaperone complexes. GFP-pull-downs for H2A.Z-specific chaperone
complexes are shown. HK cells stably expressing GFP-Z.2.1 (A) and
GFP-Z.2.2 (B) were SILAC-labeled and subjected to single-step affinity
purifications of soluble nuclear proteins in a ‘forward’ (GFP-Z.2.1)
or ‘reverse’ (GFP-Z.2.2) pull-down using GFP nanotrap beads. In

Figure 4. Continued
each panel the ratio of the identified proteins after MS is plotted.
Proteins known to interact with H2A.Z are indicated in the following
way: members of the SRCAP complex in red, members of the TIP60
complex in blue and shared subunits in purple. Potential novel
H2A.Z-interacting proteins are shown as green dots (‘other outliers’)
and are distinguished from background binders (gray dots) and con-
taminants (yellow dots). See also Supplementary Table S1 for a list of
all identified proteins. (C) List of the SRCAP and TIP60 complex
members and their normalized binding intensity to Z.2.1 or Z.2.2.
Note that for comparison reasons the obtained H/L ratios of
GFP-Z.2.2 binders (numbers in brackets) were calculated in the corres-
ponding L/H ratios. See also Supplementary Table S1 for a list of all
identified proteins and their normalized H/L ratios.
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SRCAP complexes. Then why does a large fraction of the
cellular Z.2.2 protein pool shows a high mobility and is
freely dispersed in the nucleus? One plausible possibility is
that Z.2.2 severely destabilizes nucleosomes due to its di-
vergent C-terminal docking domain and is hence rapidly
exchanged. To test this hypothesis, we used an in vitro
reconstitution system. Recombinant human H2A

variants together with H3, H2B and H4 (Supplementary
Figure S4A) were refolded by dialysis, and formed
complexes purified by size exclusion chromatography. As
expected, both H2A and Z.2.1 containing samples readily
formed histone octamers (Figure 6A, solid lines). Bbd
served as a negative control, because it has been
demonstrated to not form octamers under these condi-
tions (41), a result we also observed (Figure 6A left,
dotted line). Interestingly, in accordance with our FRAP
data, Z.2.2 behaved like Bbd in that it only formed Z.2.2–
H2B dimers, but did not complex together with (H3–H4)2
tetramers to generate octamers (Figure 6A right, dotted
line), which was further confirmed by SDS–PAGE
analyses of the separate fractions (Figure 6B). Thus, like
for Bbd the incorporation of Z.2.2 destabilizes the inter-
face between Z.2.2–H2B dimers and (H3–H4)2 tetramers
in a C-terminal sequence dependent manner (Sup-
plementary Figure S4B and C). In conclusion, the Z.2.2
docking domain is sufficient to prevent octamer
formation.

Although no Z.2.2 containing histone octamers could
be generated in vitro, our results using GFP-Z.2.2 strongly
suggest that Z.2.2 can be part of nucleosomes. To test this
in vitro and to evaluate the effect of Z.2.2 on nucleosome
stability, we reconstituted mononucleosomes by mixing
Z.2.2–H2B dimers, (H3–H4)2 tetramers and DNA con-
taining a ‘Widom 601’ DNA positioning sequence in a
2:1:1 ratio. As controls, we reconstituted H2A or Z.2.1
containing nucleosomes by mixing octamers and DNA
in a 1:1 ratio. As expected, analysis of all nucleosomes
by native PAGE showed a single band before and after
heat shift (Figure 7A), indicating a unique position on the
‘Widom 601’ DNA template. Purification of nucleosomes
from a native gel and analysis of the protein content by
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SDS–PAGE (Coomassie staining and immunoblot)
showed that Z.2.2 was indeed incorporated into nucleo-
somes (Figure 7B). All nucleosomes were further
evaluated for their resistance to MNase cleavage as an
indicator of stably organized nucleosomes and to deter-
mine nucleosomal DNA length (Figure 7C and
Supplementary Figure S5). We observed fragments corres-
ponding to protected nucleosomal DNA with the length of

146 bp for all variant nucleosomes tested. The appearance
of smaller, subnucleosomal fragments indicates that DNA
breathing occurred (68). Interestingly, DNA of Z.2.2
nucleosomes is less protected, since subnucleosomal frag-
ments were obtained at lower MNase concentrations than
with H2A or Z.2.1 nucleosomes. Additionally, at higher
MNase concentrations a stable DNA fragment of about
120 bp was most abundant for Z.2.2 nucleosomes
(Supplementary Figure S5), indicating that this might be
the preferred DNA length wrapped around this octamer.
These data suggest that increased DNA breathing occurs
in Z.2.2 nucleosomes, which as a result might be less
stable. To quantify nucleosome stability in vitro we
measured salt-dependent changes in nucleosome structure
using smFRET (69). In line with the results presented
above, Z.2.2 containing recombinant nucleosomes lost
their compact structure at lower salt concentrations than
Z.2.1 or H2A-containing ones (Figure 7D). To investigate
whether the observed Z.2.2-dependent nucleosome desta-
bilization is true in the context of chromatin, we isolated
chromatin from HK cells expressing GFP-H2A variants
and incubated it with buffer containing increasing
amounts of salt. Histones that remained stable chroma-
tin components were precipitated and detected by IB
(Figure 7E). As observed with FRET techniques,
Z.2.2-containing nucleosomes disintegrated between 200
and 400mM NaCl, and were therefore even less stable
than Bbd-containing ones. In summary, incorporation
of Z.2.2 leads to a severely reduced nucleosome stability
due to C-terminal sequence dependent changes in its
docking domain and subsequent loss of its interaction
with histone H3.
Our FRAP data suggest that the Z.2.2 C-terminal

amino acids might have a direct influence on the nucleo-
somal structure by affecting interactions with DNA and/
or adjacent histones. Based on the existing structural data
(50), we performed MD simulations of nucleosomes con-
taining Z.1 (Supplementary Figure S7) or Z.2.2.
In addition, we also included the deletion mutant
Z.2.1113, which did not show any change in short-term
FRAP (Figure 3C), but some increase in mobility in
long-term FRAP (Supplementary Figure S3B) in our
assay. These in silico models revealed that changes in the
C-terminus of H2A.Z strongly affect its protein structure
(Figure 8A). Strikingly, different statistical descriptors
over the MD-trajectory like distance and mobility
(B-factor) show in contrast to Z.1 and Z.2.1113 unique
properties for the Z.2.2 tail. Only Z.2.2 leads to a substan-
tial structural change in the C-terminus resulting in an
increased distance to histone H3, which in turn makes a
hydrogen bond interaction between peptide backbone NH
of Cys112 in Z.2.2 and the oxygen in the Gln55 side chain
in H3 impossible (Figure 8B). Additionally, an increase in
the B-factor for Z.2.2 indicates a substantially enhanced
mobility of Z.2.2’s C-terminus (Figure 8C). We also
calculated the Z.2.2–H3 interaction energy and observed
a switch from negative to positive values in the case of
Z.2.2 suggesting that this histone variant destabilizes the
nucleosome (Figure 8D). In summary, these data suggest
that the C-terminal sequence of Z.2.2 leads to a more
dynamic structure that in turn loses binding to histone
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H3 and destabilizes the nucleosomal structure, providing a
reasonable explanation for the observed in vivo and
in vitro data.

DISCUSSION

In this work, we have identified a previously unknown
histone H2A.Z variant and provide a comprehensive
characterization of its nucleosomal properties. This alter-
natively spliced variant, Z.2.2, is present to different
degrees in all human cell lines and tissues investigated,
with a significant enrichment in brain. Z.2.2 contains a
shortened and in six amino acids divergent C-terminus
compared to Z.1 and Z.2.1 that is necessary, but not
sufficient, to weaken chromatin association. Only in
the context of the unique Z.2.2 docking domain does
the C-terminal sequence negatively affect nucleosome
stability in vitro and in vivo. To our knowledge,
Z.2.2 has the strongest destabilizing effect on nucleosomal
structure compared to other histone H2A variants
reported to date.
Only one other histone variant, macroH2A, has been

shown thus far to be alternatively spliced (70). Here, like

our observation with H2A.Z, two independent genes
mH2A1 and mH2A2 exist in mammals, with only
mH2A1 being alternatively spliced resulting in functional
different proteins (71). In our study, we demonstrate that
the human H2A.Z.2 (H2AFV) primary transcript is alter-
natively spliced generating Z.2.1 and Z.2.2 mRNAs and
proteins. These observations suggest that Z.2.2 is tightly
regulated in a tissue-specific manner through alternative
splicing and/or RNA stability. Our findings now raise the
intriguing possibility that alternative splicing of histone
variants might not be rare but more common than previ-
ously thought. If true, it will be of interest to reevaluate
other intron-containing histone variant genes with regard
to their possible alternative transcripts and protein
products.

Bioinformatic genome analyses revealed the existence of
Z.2.2-specific sequences only in humans, old and new
world primates and to some extend in other mammals,
with the exclusion of mouse, rat and even lower eukary-
otes. It remains to be seen, whether Z.2.2’s evolution is
indeed limited to primates only. Primate-specific gene
products have been often identified in human brain
and reproductive tissues (72), supporting the notion that
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their RNAs and proteins might be essential to adaptive
changes leading to human development and further specu-
lates that primate-specific genes might be important in re-
productive function and disease. Since we have found
Z.2.2 transcripts to be strongly enriched in brain samples
of higher brain function in comparison to other tissues and
cell types, it will be of great interest to determine in future
studies, if this novel variant might play an important
functional role in this particular organ. These observations
also raise the interesting question of how alternative
splicing and/or differential stability of H2AFV transcripts
are tissue specifically regulated.

Another intriguing feature of Z.2.2 is its influence on
nucleosome stability. Although Z.2.2 localizes exclusively
to the nucleus, only a minor proportion is stably
incorporated into chromatin. The only other exception
in humans known thus far is Bbd, which has previously
been demonstrated to destabilize the nucleosome structure
(41,53,73). Bbd, similar to Z.2.2, is a shorter H2A variant
with an unusual C-terminus and a considerable different
primary histone fold sequence that might explain its
ability to destabilize nucleosomes. In agreement, a recent
study demonstrated that the incomplete C-terminal
docking domain of Bbd results in structural alterations
in nucleosomes and that those are in turn associated
with an inability of the chromatin remodeler RSC to
both remodel and mobilize nucleosomes (8). Z.2.2, on
the other hand, is identical to Z.2.1, except that its
C-terminus is 14 amino acids shorter and in six amino
acids altered. How can this small change in Z.2.2’s
primary sequence lead to such drastic effects on chromatin
association?

We show that Z.2.2 can be part of a bona fide nucleo-
some and that it interacts with the H2A.Z-specific TIP60
and SRCAP chaperone complexes. These complexes have
been shown to catalyze the exchange of H2A–H2B dimers
with H2A.Z–H2B dimers in nucleosomes and our finding
therefore suggests that both complexes are also involved in
an active chromatin incorporation of Z.2.2. Supporting
this idea is the observation that both Z.2.1 and Z.2.2 are
incorporated into chromatin in a replication-independent
manner, even in mouse cells that do not express endogen-
ous Z.2.2. Both H2A.Z variants are not primarily de-
posited at replication foci, not even in middle S-phase
when facultative heterochromatin is replicated, where the
majority of the H2A.Z protein pool is found in interphase
cells (66). Our findings are in agreement with a model
proposed by Hardy and Robert, in which H2A.Z
variants are randomly deposited into chromatin by
specific chaperone complexes in a replication-independent
manner coupled to a subsequent targeted H2A.Z deple-
tion (74). As a consequence, an enrichment of H2A.Z at
non-transcribed genes and heterochromatin regions over
several cell generations can be observed (74). It might be
possible that INO80 facilitates this eviction function, as it
has been shown to exchange nucleosomal H2A.Z–H2B
dimers with free H2A–H2B dimers (75). It will be of
interest in future studies to determine whether Z.2.2
exchange is subjected to a similar mechanism. Taken
together, our findings strongly imply that Z.2.2 is
actively deposited into chromatin through the interaction

with evolutionary conserved chaperone complexes.
Nevertheless, a large fraction of Z.2.2 protein is not chro-
matin bound and we have mapped the region crucial for
high FRAP mobility to its docking domain. In addition to
Z.2.2’s unique C-terminal amino acids this region spans
the highly conserved acidic patch responsible for depos-
ition (76), the M6 region that is functionally essential in
fly H2A.Z (60) and required for the interaction with
the SWR1 complex in yeast (77). Strikingly, in silico simu-
lation of Z.2.2 predicted dynamic structural changes
that in turn weaken interaction with histone H3 and
destabilize the nucleosome structure. Such a gross struc-
tural alteration explains why Z.2.2 is not able to form
stable octamers in vitro and leads to enhanced DNA
breathing in a nucleosomal context. Hence, Z.2.2 incorp-
oration into chromatin disrupts nucleosomes more easily
and supports a model in which Z.2.2 is more rapidly
exchanged than Z.2.1.
What functional outcome might Z.2.2 cause when

incorporated into chromatin? And how is the variant
composition of Z.2.2 containing nucleosomes? It has
been shown that a special class of nucleosomes contain-
ing both H2A.Z and H3.3 variants exists in humans (78).
These nucleosomes are enriched at promoters, enhancers
and insulator region and promote the accessibility of
transcription factors to these DNA regions (78), most
likely due to their extreme sensitivity to disruption (79).
Since these studies nicely demonstrate that differential
nucleosome stabilities due to the incorporation of
different histone variants influence transcriptional regula-
tion, it is tempting to speculate that Z.2.2 might also
affect chromatin-related processes. Future experiments
will shed light on Z.2.2 function(s), especially with
regard to its increased expression in human brain areas,
and explain why and where nucleosomal destabilization is
needed. This is of particular interest, since Bbd that also
leads to nucleosomal destabilization is almost exclusively
present in testis (80–82) in contrast to the apparently ubi-
quitously expressed Z.2.2, possibly pointing toward
distinct roles of both destabilizing H2A variants in dif-
ferent tissues. Our data suggest that additional interest-
ing, yet unidentified, histone variants may exist and await
their discovery.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table S1, Supplementary Figures S1–S7
and Supplementary Materials and Methods.
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2 Results

2.4 Quantitative proteomics for epigenetics

2.4.1 Overview

Mass spectrometry-based proteomics has matured into a powerful method to answer
questions in several biological areas. In the chromatin field proteomics, has made
important contributions by mapping post-translational modifications on histones and
defining protein complexes. The broad interest of the chromatin community in quan-
titative proteomics prompted us to write a proteomics review dedicated to chromatin
biology. We introduce the technical knowledge which is necessary to design and judge
proteomic experiments. The review then focuses on quantitative approaches and high-
lights the importance to perform a proper quantification to generate high quality data.
Selected examples are discussed to illustrate the power of proteomics.

2.4.2 Contribution

I drafted the whole review except for the interaction proteomics section, which was
drafted by Michiel Vermeulen. The draft was edited by all authors.

2.4.3 Publication

This review article was published in 2011:

Quantitative proteomics for epigenetics

H. Christian Eberl, Matthias Mann and Michiel Vermeulen

Chembiochem 2011, 12, 224-234
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Introduction

Epigenetics, a term first coined by Waddington in the 1950s, is
defined as the study of inheritable changes in phenotype and
gene expression not resulting from changes in the underlying
DNA sequence.[1] Epigenetic regulation of gene expression
plays a key role during cellular differentiation or de-differentia-
tion, lineage commitment, and development.[2] Moreover,
many enzymes that are involved in establishing the epigenetic
landscapes are deregulated in cancer or are mutated in inherit-
able neurological diseases.[3] An example of the latter case can
be found in PHF8, the PHD finger of which specifically recog-
nizes the histone-3 lysine-4 trimethylation (H3K4me3) mark.
When mutated, this gene is associated with cleft lip/palate and
X-linked mental retardation.[4] Because of the importance of
epigenetics in maintaining cell identity and initiating cell fate
changes, great efforts to dissect the underlying principles and
mechanisms have been made over recent years. The major de-
terminants for epigenetic control of gene expression are meth-
ylation of cytosines in CpG dinucleotides[5] and post-transla-
tional modifications of core histones.[6] Chromatin, previously
thought to be a static entity, is now appreciated to be a highly
dynamic structure. It is regulated by protein complexes that
act as “writers”, which add histone modifications, and “erasers”,
which remove them. Additionally, chromatin “readers” specifi-
cally recognize certain modifications and exert their function
at the site of recruitment.[7] Moreover, ATP-dependent chroma-
tin remodeling enzymes use ATP hydrolysis to change the posi-
tions of nucleosomes on DNA and thereby influence gene
expression.[8] Given patterns of histone modifications on genes
or larger chromosomal domains are thought to establish the
accessibility states and to modulate the transcriptional activity
of genes. The specific combination of diverse post-translational
modifications (PTMs) of the core histones has been termed the
“histone code”,[9] but the extent to which this code dictates
gene expression remains controversial.[10]

Mass spectrometry has greatly contributed to epigenetic re-
search through the mapping of PTMs on core histones[11] and
the identification of subunits of purified chromatin-associated
protein complexes. Technological advances in MS-based pro-
teomics now provide the tools for the identification of thou-
sands of proteins in complex mixtures.[12] Until recently, howev-
er, most proteomic data were obtained from low-resolution in-
struments and were purely qualitative in nature. This approach
results in the identification of many proteins, but in the ab-
sence of quantitative information it is not easy to differentiate

between background or contaminating proteins and proteins
genuinely associated with the process under investigation. For-
tunately, modern high-resolution instruments, combined with
sophisticated data analysis, have greatly improved the reliabili-
ty of data. In addition, methods that allow researchers to quan-
tify the relative abundances of proteins in two or more sam-
ples have been developed. These developments hold great
promise for answering epigenetic questions.

Here we argue that modern proteomics experiments de-
mand high-accuracy data and quantitative read-out to sepa-
rate functional candidates from background. Although only a
few groups so far use truly quantitative approaches, we be-
lieve that these technologies can now be broadly applied. We
review the use of MS-based quantitative proteomics for the
epigenetics and chromatin fields and describe its application
in the study of protein modifications, interactions, and expres-
sion dynamics.

State-of-the-Art Quantitative Proteomics

Instrumentation and workflow

MS-based proteomics is a relatively young but rapidly advanc-
ing field that, thanks to constant technological improvements,
is becoming a powerful complement to genomic approach-
es.[13]

The primary function of the mass spectrometer in proteo-
mics is the identification of peptides and proteins. Although it
is possible to analyze intact proteins by MS, which is referred
to as top-down mass spectrometry, this approach has severe
technical limitations. In epigenetic research it is only used for
special purposes, such as the analysis of intact histones.[14] In
“bottom-up” proteomics, proteins are digested into peptides
and these are analyzed by the mass spectrometer much more
efficiently (Figure 1). Depending on the complexity of the

[a] H. C. Eberl, Prof. M. Mann
Department of Proteomics and Signal Transduction
Max Planck Institute for Biochemistry
Am Klopferspitz 18, 82152 Martinsried (Germany)
Fax: (+ 49) 89-8578-2219
E-mail : mmann@biochem.mpg.de

[b] Dr. M. Vermeulen
Department of Physiological Chemistry and Cancer Genomics Centre
University Medical Center Utrecht
Universiteitsweg 100, 3584 CG Utrecht (The Netherlands)
Fax: (+ 31) 88-75-68101
E-mail : m.vermeulen-3@umcutrecht.nl

Mass spectrometry has made many contributions to the chro-
matin field through the mapping of histone modifications and
the identification of protein complexes involved in gene regu-
lation. MS-based proteomics has now evolved from the iden-
tification of single protein spots in gels to the identification
and quantification of thousands of proteins in complex mix-
tures. Quantitative approaches also allow comparative and
time-resolved analysis of post-translational modifications. An

important emerging field is the unbiased interaction analysis
of proteins with other proteins, defined protein modifications,
specific DNA and RNA sequences, and small molecules. Quanti-
tative proteomics can also accurately monitor whole proteome
changes in response to perturbation of the gene expression
machinery. We provide an up-to-date review of modern quanti-
tative proteomic technology and its applications in the field of
epigenetics.
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sample to be analyzed, a subfractionation on the peptide or
protein level can be added to the workflow. After this optional
fractionation, peptides are usually separated by on-line re-
versed-phase nanoscale high-performance liquid chromatogra-
phy (nano-HPLC). At the end of the packed column the efflu-
ent is directly electrosprayed by means of an applied voltage.
Solvent droplets containing the peptides rapidly evaporate,
and protonated peptides are injected into the mass spectrom-
eter. To identify a peptide, the mass of the intact peptide (pre-
cursor mass) is determined from the MS spectrum, followed by
isolation and fragmentation of the peptide. Peptide fragmenta-

tion is achieved by energy transfer to the ionized peptides in
the gas phase and a fragmentation spectrum of the peptide
(MS/MS or tandem mass spectrum) is recorded. The standard
fragmentation method is collision-induced dissociation (CID),
in which the peptide collides with an inert gas at low pressure.
Alternatively, electron capture dissociation (ECD)[15] or electron
transfer dissociation (ETD)[16] activate peptides by very fast pro-
cesses that minimize energy randomization and can thereby
preserve labile PTMs.

CID causes peptide fragmentation at amide bonds, resulting
in a series of fragments that differ in their masses by single
amino acids (for an introduction see ref. [17]). In an ideal frag-
mentation spectrum one would therefore be able to “read” the
sequence of a peptide in the spectrum (de novo sequencing).
Most fragmentation spectra only contain partial sequence in-
formation, however, and so statistical algorithms are used to
find best matches in an amino acid database (Figure 2 A). The
more accurately the parent mass is measured, the smaller the
applied search window, thus reducing the number of possible
matches. In addition, the more complete the fragmentation
spectrum, the more confident the identification.

The complex peptide mixtures that are typical in “shotgun
proteomics” experiments contain many thousands of peptides.
Modern mass spectrometers therefore provide high-quality
data in combination with high MS/MS sequencing speed.
Other key parameters are the mass spectrometric resolution (a
dimensionless number calculated by dividing the width of a
peak by its mass) and the “dynamic range” (the ratio of the
strongest signal to the weakest signal that can still be detected
in a spectrum). Today most mass spectrometers are so-called
hybrid instruments, usually either as a combination of a quad-
ruple mass filter and a time-of-flight analyzer or as a combina-
tion of a linear ion trap and an Orbitrap analyzer. Both types of
hybrid instruments offer sequencing speeds of several MS/MS
spectra per second. Orbitrap analyzers are based on frequency
detection and offer routine resolution of more than 50 000
with matching mass accuracy. The dynamic ranges in single
spectra are in the range of 1000 to 10 000 for both types of
instrument. A new linear ion trap Orbitrap instrument (LTQ-
Orbitrap Velos) allows cycles of one MS followed by 20 MS/MS
events in only 2.5 s. It is also routinely capable of recording
MS/MS spectra at high resolution either by CID or by “higher-
energy collisional dissociation” (HCD) methods.[18]

Quantification

The second function of the mass spectrometer is to provide
quantitative information relating to relative or absolute pep-
tide abundance. This is not straightforward, though, because
MS in itself is not quantitative, mainly due to the different ioni-
zation efficiencies of different peptides. During the last decade,
several methods that add a quantitative dimension to mass
spectrometric measurements have been developed.[19] These
methods can be divided into two groups: label-free and stable
isotope labeling approaches.

The most straightforward label-free quantification ap-
proaches are spectral counting[20] and exponentially modified
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protein abundance index (emPAI).[21] They rely on the fact that
abundant proteins in a sample will usually generate more MS/
MS fragmentation spectra than low-abundance proteins. An
advantage of these methods is their applicability to any quali-
tative dataset, including low-resolution data. Spectral counting
and emPAI can estimate the absolute amounts of proteins in a
sample, as well as the relative amounts under two or more
different sets of conditions. However, a significant drawback is
that the correlation between the number of times that pep-
tides are sequenced and protein amount is only approximate.
In particular, proteins with low peptide counts show high
quantification variability.

In high-resolution data, pep-
tide peaks are clearly separated
from each other and from chem-
ical background. The peptide
peak areas can then be integrat-
ed and compared over different
LC MS/MS runs. Because the ion-
ization efficiencies of the same
peptides remain the same, label-
free approaches are potentially
quite accurate. A general disad-
vantage, however, is that sam-
ples have to be processed and
measured separately and that
the accuracy is therefore com-
promised by experimental varia-
bility between these runs. So-
phisticated label-free algorithms
attempt to correct for these
errors; examples include Super-
hirn[22] and MaxQuant.[23]

Stable isotope labeling approaches make peptides
from two experimental states distinguishable by gen-
erating either “light” (normal) or “heavy” versions. A
peptide common to two experiments is therefore
present as a light and heavy pair in the same mass
spectrum and the ratio of their signals is the ratio of
the relative protein abundances under the two sets
of experimental conditions. This quantification is
therefore much more accurate than label-free quan-
tification methods. Stable isotope labels can be intro-
duced by different means: either by chemical deriva-
tization (chemical labeling) or through cellular me-
tabolism (metabolic labeling).

In chemical labeling, the reactive groups present in
peptides (usually thiol or amine groups) are used to
couple with an isotope-containing tag.[19b] Currently,
the TMT[24] and iTRAQ methods are popular forms of
chemical labeling. These create labeled peptides with
identical masses, and the relative quantification is
performed in the MS/MS spectra, in which each tag
generates specific fragment ions. TMT and iTRAQ
allow multiplexing, and up to eight sets of conditions
can in principle be compared in the same experi-
ment. Other examples of chemical labeling include

stable-isotope dimethyl labeling[25] and propionic anhydride
derivatization.[26] Chemical labeling is applicable to all sample
types. A disadvantage of the method is the inevitable presence
of chemical side products, which can interfere with the analysis
of rare PTMs.

Metabolic labeling strategies introduce heavy isotopes
through the growth medium or food. The entire proteome is
labeled, meaning that samples can be mixed early during the
experiment, minimizing experimental errors. This can be done
in a global manner by replacing all nitrogen atoms in the
medium by 15N,[27] although this technique is generally restrict-
ed to specialized applications, such as bacterial and plant spe-

Figure 1. Shotgun proteomics workflow. Proteins are digested to peptides, separated by nanoHPLC, and electro-
sprayed on-line into the mass spectrometer (a linear ion trap—Orbitrap is depicted). Precursor masses recorded in
full scans (MS scans) and selected and isolated peptides are fragmented and recorded again (MS/MS spectrum).
Peptides are identified by database search and assigned to proteins.

Figure 2. Mass spectrometry read-out. A) Standard CID fragmentation: upon energy
transfer peptides break statistically at their amide bonds and give rise to characteristic
fragmentation patterns. B) SILAC principle: on mixing of samples from two SILAC states,
SILAC pairs can be observed for every peptide. These can be equal or can show up- or
down-regulation.
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cies, because it leads to broad
isotope distributions in the
heavy forms. More targeted in-
corporation is achieved by re-
placing essential amino acids
with their heavy counterparts,
an approach known as SILAC
(stable isotope labeling by
amino acids in cell culture).[28] Ar-
ginine and lysine labeling are
most commonly used. The pro-
tease trypsin cleaves at the C ter-
minal of arginine and lysine resi-
dues, ensuring that every tryptic peptide contains at least one
labeled amino acid (except the C-terminal peptide of the pro-
tein). For every peptide, two isotope clusters can be ob-
served—one from each sample, a so-called SILAC pair (Fig-
ure 2 B). The mass difference between the SILAC pairs is exactly
the mass difference between the light and heavy amino acids.
Generally Arg10 and Lys8 are used, generating shifts of
10.0083 Da and 8.0142 Da, respectively. A ratio can be directly
assigned for every identified peptide, and this ratio indicates
whether a protein is up- or down-regulated, or unchanged,
over two experiments. A large variety of different established
cell lines, including mouse and human ES cells, have already
been labeled.[29]

As well as cell lines, whole organisms can also be metabol-
ically labeled.[30] Thus far, S. cerevisiae (lysine auxotroph strains
growing in minimal medium with heavy lysine),[31] Drosophila
melanogaster (feeding on heavy yeast),[32] and mice (by means
of a special lysine-free diet supplemented with heavy lysine)[33]

have been labeled and used for functional in vivo proteomics
experiments.

The methods described above allow relative quantification
between two or more samples. To obtain absolute concentra-
tions, a defined amount of a heavy-isotope-labeled reference
standard needs to be spiked into the sample. Labeled synthet-
ic peptides can be used for this purpose (sometimes called
AQUA for absolute quantification).[34] Spiking in partial or full-
length proteins also controls for variability introduced by the
digestion step.[35] This technique can also be applied for the
absolute quantification of modification sites.[36]

Mapping and Relative Quantification of Post-
translational Modifications

PTMs play an important role in chromatin research: histones,
the basic building blocks of chromatin, are subjected to a
large variety of PTMs and so are many other chromatin-associ-
ated proteins. The most reliable and unbiased method to iden-
tify and quantify PTMs is MS.

Technical considerations

Three different fragmentation techniques are generally used
for analyzing PTMs: 1) collision-induced dissociation (CID) in a
linear ion trap, 2) CID in quadrupole-TOFs or LTQ-Orbitraps

(where it is called HCD), or 3) electron transfer dissociation
(ETD), which has been coupled to diverse instrument types.
Their different properties are summarized in Table 1. Fragments
have most commonly been measured in ion traps, allowing
fast sequencing with high sensitivity, albeit with low mass ac-
curacy. Recent technological advances now also allow fast and
sensitive measurement of fragments in the Orbitrap analyzer.
This “high–high” strategy (high mass accuracy and resolution
on precursor and product ion mass) allows deisotoping of
product ions and results in higher-confidence assignment, es-
pecially of modified and of large peptides.

PTMs of interest are usually added “in silico” to candidate
peptide sequences in the amino acid sequence database
during the search. Only PTMs that are included as options in
the search can be identified. Furthermore, to keep the “search
space” manageable, the number of modifications that can be
considered needs to be limited. A more unbiased way to
detect PTMs is the “blind database search”[37] or “modifi-
comb”[38] approach. Firstly a basic database search without
consideration of modifications is carried out. The idea is then
to match the unidentified peptides to already identified pep-
tides by placing the mass difference between them on each
amino acid. If a match is then obtained, the mass of the modi-
fication and its localization has been determined. This method
holds great promise, in particular for the identification of novel
PTMs that are not commonly considered.

One potential caveat in MS-based PTM identifications is the
fact that many modifications can be in vitro artifacts rather
than caused by in vivo enzymatic activity. A relevant example
is the characteristic di-glycine tag on lysine used for mapping
of ubiquitination sites. Iodoacetamide, which is commonly
used for reduction of cysteines during MS workflows, gener-
ates an artifact with exactly the same elemental composition
as the di-glycine tag.[39]

Quantification of PTMs

Two strategies for quantification of PTMs are available: either
labeling of the peptides themselves by a stable isotope
method as described above, or introduction of the label into
the modification. The first approach can be used for any modi-
fication and is mainly applied to achieve differential quantifica-
tion of a modification of interest in two different samples. The
latter approach has so far only been described for methylation.

Table 1. Overview of fragmentation techniques.

Fragmentation Ion Mass Labile modi- Fragmentation Fragmentation
technique series cut-

off
fications efficiency of long peptides

CID y and b 1/3[b] neutral loss good moderate
HCD/triple quad mostly y[a] no mostly good moderate
fragmentation preserved
ETD c and z no preserved lower[c] good

[a] Low mass b ions are also routinely detected. [b] Because of the operating principle of ion trap instruments,
fragment masses below m/z of 1/3 of the precursor mass cannot be stabilized in the ion trap and are lost;[c]

often a substantial fraction of the precursor ion population remains after ETD.
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In “heavy methyl SILAC”,[40] methionine containing a deuterat-
ed methyl group is added to the culture medium and incorpo-
rated into S-adenosyl methionine. This compound is the sole
methyl group donor in cells, meaning that all cellular methyl
groups can be labeled. This allows monitoring of methylation
dynamics and stability in pulse experiments. In this way, Zee
et al. demonstrated that methylations associated with active
genes turn over more rapidly than those associated with re-
pressed genes.[41]

PTM analysis after protein enrichment

The identification of PTMs on proteins in principle requires ob-
servation of all the peptides that together cover the sequence
of the entire protein. Furthermore, PTMs are usually of low
abundance and therefore not commonly sequenced in com-
plex peptide mixtures. PTM analysis therefore usually requires
an enrichment step of the protein or proteins of interest to
reduce the dynamic range and to facilitate the sequencing of
all proteolytic peptides, including those carrying PTMs. Most
modification analysis in the epigenetics field has been carried
out with core histones, because these basic and highly abun-
dant proteins can easily be purified to near homogeneity.[42]

Methylation pattern changes upon G9a knock-down have
been studied by a chemical-labeling strategy, which revealed
not only a decrease in H3K9 methylation but also a concomi-
tant increase in K14 acetylation.[43] A methyl/acetyl switch was
found in a SILAC study that used a knock-down of the Prc2
component Suz12 in mouse ES cells. This knock-down led to
reduction of K27 di- and trimethylation but also to an increase
in K27 acetylation.[44] A SILAC approach was likewise applied to
compare PTMs on histones H3 and H4 between breast cancer
cell lines and normal epithelial breast cells, which produced
evidence for cancer-specific methylation patterns.[45] The ETD
fragmentation technique has been applied to large histone
fragments, enabling quantification of 74 unique H4 modifica-
tion combinations in differentiating human ES cells by a label-
free approach.[46]

Most studies directed towards single proteins have so far
focused on histones. However, recent reports suggest that his-
tone-associated proteins can also be heavily modified.[47] HP1
seems to carry histone-code-like patterns,[48] and very inten-
sively studied complexes such as TFIID and SAGA bear a vast
range of PTMs.[49] Although no quantitative experiments have
yet been done on nonhistone chromatin-associated proteins, it
is likely that the role of post-transcriptional regulation by dy-
namic PTMs will be very important in this case as well.

PTM analysis after modification-directed enrichment

When focusing on a single type of PTM, an enrichment strat-
egy for this modification is applied to the entire sample. These
large-scale studies provide a wealth of data for more targeted
follow-up research. Lysine-acetylated peptides, for example,
can be enriched by appropriate antibodies.[50] Choudhary et al.
applied this strategy to identify 3600 lysine acetylation sites in
human cells—most of them novel—as well as quantified acety-

lation changes upon treatment with the deacetylase inhibitors
suberoylanilide hydroxamic acid and MS-275.[51] These studies
revealed a hitherto unimagined diversity of cellular processes
that are regulated by this modification.

Another PTM that has frequently been the target of large-
scale proteomics studies is phosphorylation. Major techniques
available for enrichment for phosphorylated peptides are:[52]

1) enrichment of peptides containing phosphorylated tyrosines
by antibodies specific for this modification, 2) immobilized
metal affinity chromatography (IMAC) utilizing coordination of
phosphopeptides by metal ions, 3) titanium-dioxide-based
enrichment, typically with a specificity enhancing reagent, and
4) enrichment in the flow through and early fractions in strong
cation exchange chromatography (SCX), because of the pres-
ence of additional charge on phosphate at acidic pH, which
leads to reduced retention times of phosphorylated peptides.
ATM/ATR-signaling-mediated phosphorylation dynamics during
the DNA damage response have been studied by an antibody
enrichment strategy.[53] Our group recently applied a titanium
dioxide enrichment strategy to identify and quantify more
than 10 000 phosphorylation sites throughout the HeLa cell
cycle and developed an algorithm to determine the occupan-
cies or stoichiometries for thousands of these sites.[54] We sug-
gest that mining of the data from large-scale, high-accuracy
screens could provide useful leads for studies in the chromatin
field.

Interaction Proteomics

For more than a decade, MS has been successfully employed
to determine protein–protein interactions. Most commonly, the
“bait” protein of interest and its associated binding partners
have been purified to near homogeneity either by convention-
al column chromatography or by tandem affinity tagging ap-
proaches.[55] Purified proteins are separated by one-dimension-
al SDS PAGE, bands are excised and “in gel” digested, and
proteins are identified by MS. Although this methodology has
been very successful even in a high-throughput mode,[56] the
rapidly increasing sensitivities of modern mass spectrometers
render this approach prone to false positive determinations of
interaction partners. Purification to homogeneity, even when
using tandem affinity purifications, can be difficult to achieve
and is usually the preserve of specialized protein biochemistry
laboratories.

Quantitative proteomics technology can be used to solve
these problems. When affinity purification is performed with a
quantitative abundance readout—by SILAC , for example—en-
riched proteins can easily be distinguished from background
proteins by their quantitative ratios (Figure 3). This approach
elegantly sidesteps the problem of background proteins and
allows purifications to be performed in a single affinity purifica-
tion step at low stringency. This in turn potentially retains low-
affinity but functionally relevant interactions that would other-
wise be lost.[57]

There are different approaches to the identification of inter-
action partners of full-length proteins: endogenous protein en-
richment with antibodies and tag-based purification of trans-
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genes. For enrichment of proteins of interest with specific anti-
bodies, isotype antibodies are mostly used as controls. Because
of cross-reactivity there is a high risk of co-purifying false posi-
tives, however. This can be circumvented by performing the
same immunoprecipitation in two SILAC-labeled cell popula-
tions but knocking down the protein of interest in one of
them, an approach termed quantitative immunoprecipitation
combined with knock-down, or QUICK[58] (Figure 4 A). An alter-
native is to apply protein tagging and purification with a tag-
specific antibody, such as Flag or Myc; see for example ref. [59]
(Figure 4 B). Another option is to apply BAC transgeneOmics
technology to tag proteins of interest with GFP, which is also
an excellent purification tag. A particular attraction of this
“QUBIC” approach is that the bait is expressed at near endoge-
nous expression levels.[60]

In the context of epigenetics, interaction mapping followed
by MS “read-out” has successfully been used with peptide
baits that only differ by a single functional group, such as a
particular histone PTM, to identify “readers” of that mark.[61]

Without a quantitative filter, however, these peptide pull-
downs are very challenging and it is difficult to pinpoint specif-
ic interactors in the presence of a large excess of nonspecific
binders. The quantitative proteomic approaches discussed
above can again be used to overcome these problems (Fig-
ure 4 C). As an example, we have performed pull-downs with
methylated histone peptides, which revealed an interaction be-

tween the basal transcription factor TFIID and
H3K4me3.[62] This work was extended to all major tri-
methylation marks and combined with ChIP-Seq and
BAC-GFP pull-downs to define the lysine trimethyl-in-
teractome,[63] indicating that this approach holds
great promise for the deciphering of the histone PTM
interactome. Another interesting application of quan-
titative proteomics is the estimation of dissociation
constants between proteins of interest and their in-
teraction partners in lysates.[64]

Protein interactions with methylated DNA or spe-
cific interactors of single-nucleotide polymorphisms
can be studied by use of immobilized oligonucleo-
tides (Figure 4 D).[65] Two recent studies found a pro-
tein binding to a single nucleotide polymorphism at
the IGF2 locus, thereby identifying the long-sought
repressor responsible for a “muscle” versus “fat” phe-
notype in domestic pigs.[66] Given the increasing im-
portance of RNA in the field of epigenetics,[67] the ap-
plication of quantitative RNA pull-downs[68] will likely
be of great value for investigation of protein inter-
actions that are mediated by noncoding RNAs in the
mammalian nucleus.

Analyses of interactions between small molecules
and proteins have received much attention in signal
transduction and drug discovery, but not yet in the
chromatin field. Small molecules are immobilized
through flexible linkers on affinity matrices and used
for binding partner enrichment.[69] This approach was
applied to the characterization of kinase inhibitor

Figure 3. Workflow for interaction determination by SILAC. A) The experiment is done
in “forward” and “reverse” modes; the pull-down for forward experiments is performed
with heavy lysate and the control bait is incubated with light lysate and vice versa in
the reverse experiment. Eluates are mixed after the enrichment step and processed, and
measured. SILAC ratios from the two experiments are plotted against each other. Back-
ground and unspecific binders are clustered around 1:1 (0 on a logarithmic scale) and
outliers (true binders) can be found in the top right quadrant. B) Pull-down with the pep-
tide containing H3K4me3 and the unmethylated control peptide results in significant
and reciprocal SILAC ratios for peptides from the TFIID complex member TAF1.

Figure 4. Quantitative interaction experiments. A) Quantitative immunopre-
cipitation combined with a knock-down (QUICK) uses an antibody against
the endogenous protein, together with a pull-down from a knock-down of
the target protein as the control (note: antibody cross-reactivity will not
lead to false positives because only proteins associating with the knocked-
down protein can produce SILAC ratios). B) Tagged proteins are often used
for pull-down experiments, but note that the tag can interfere with some in-
teractions, in which case the tag should be placed at the other terminus of
the bait protein. C) Peptide pull-downs allow screening for PTM-dependent
interactions. D) DNA pull-downs immobilize short DNA stretches on beads
to screen for sequence-specific interactions (note: the same principle applies
to RNA–protein interactions).
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specificity.[70] Promiscuous inhibitors have also been employed
as effective tools for enrichment of low-abundance kinases.[71]

Although a tremendous amount of work has been performed
to characterize histone deacetylase (HDAC) inhibitors, their
specificity is still not fully known. Recent reports suggest that
HDAC inhibitors are far more promiscuous than expected.[51] In
a pioneering study, Taunton et al. applied an immobilization
strategy based on immobilized trapoxin and trichostatin to
enrich for HDACs and thereby identified histone deacety-
lase 1.[72] Clearly, chemical proteomics approaches hold great
promise for deeper characterization of HDAC inhibitor specifici-
ty.

Analyzing Proteome and Modification Changes
and Dynamics

Differential gene expression between two different cellular
states is commonly determined by mRNA profiling, with the
aid of microarrays and recently also by massive parallel se-
quencing technology. Although these methods achieve im-
pressive coverage of global mRNA expression, they are based
on the fundamental assumption that mRNA levels are an accu-
rate proxy for protein abundance. This assumption is not
always true, however: post-transcriptional regulation of protein
expression such as by miRNAs or by targeted protein degrada-
tion, for example, escapes detection in mRNA profiling experi-
ments. In principle, MS-based proteomics technology covers all
these effects, and so one of the primary goals of the field is to
sequence proteomes as comprehensively as possibly. Current
technology allows the quantitative analysis of the complete
yeast proteome[73] and the identification of more than 7000
proteins in HeLa cells.[74] We predict that quantitative proteo-
mics will soon be able to analyze the majority of cellular pro-
teins.

In an alternative approach, a selected number of proteins
can be analyzed by so-called “selected ion monitoring” (MRM).
The MRM method requires triple quadrupole mass spectrome-
ters and monitors predetermined transitions between precur-
sor and fragments for each peptide of interest.[75] For every
protein of interest, a peptide is chosen. Its precursor mass, to-
gether with specific fragment masses, provides a unique iden-
tifier in the mass spectrometric data. The first part of the triple
quadrupole instrument is used for isolation of the precursor
mass, the second part serves as a collision chamber, and the
third is set to transmit only a predefined fragment ion. In con-
trast with the “discovery approach” discussed above, this “tar-
geted approach” monitors only peptides defined beforehand.
Quantification in MRM is achieved either through the MRM sig-
nals alone (a label-free approach) or, more accurately, by com-
paring the MRM signal with that of a spiked-in and labeled
synthetic peptide.

The discrepancy between mRNA and protein abundance
was clearly apparent in a recent study that monitored pro-
teome changes upon ISWI knock-down in Drosophila.[76] The
most striking example was Acf-1, a direct interaction partner of
ISWI. This protein was depleted in the proteome data—pre-
sumably as a result of destabilization caused by the absence of

its interaction partner—but not affected at the mRNA level.
Another study determined differences in nuclear proteomes
between undifferentiated ES cells and fully differentiated
cells.[77] Interestingly, the BAF chromatin remodeling complex
was found to be significantly more highly expressed in ES cells.
Four-factor reprogramming was significantly improved by co-
transfecting the BAF complex members Brg1 and BAF155.

Whereas static differences between two cell populations can
be analyzed by classical quantitative proteomics, induced dif-
ferences can be analyzed by pulsed SILAC strategies.[78] A stim-
ulus that causes proteome alterations is administered together
with a switch in the SILAC amino acids. From this moment on,
new protein synthesis can be monitored by the appearance of
new SILAC pairs. This strategy is especially useful for studying
transcriptional regulation—by miRNAs, for example—or pro-
tein turnover rates. Selbach et al. used this approach to study
the effects of over-expression of five different miRNAs in HeLa
cells.[79] Every miRNA mildly affected the expression of hun-
dreds of genes and the data refined our knowledge of miRNA
target characteristics. A concurrent study using a classical
SILAC approach came to similar conclusions.[80] Furthermore,
pulsed SILAC experiments have been applied to distinguish
between “old” and newly synthesized histones. This enabled
investigation of the progressive methylation of H4K20 and ace-
tylation of H4K16[81] and the time-dependent establishment of
histone modifications after histone incorporation into chroma-
tin.[82] Another study used the pulsed SILAC strategy in combi-
nation with pull-down experiments for histones H3.1 and H3.3
in an elegant determination of the degree of H3–H4 tetramer
splitting.[83] By timing the expression of tagged H3.1 or H3.3
with cell cycle arrest and SILAC label switch this study demon-
strated that significant amounts of H3.3–H4 tetramers do
indeed split, whereas H3.1–H4 tetramers stay intact. Here, the
label pulse was applied to distinguish between interaction
partners that were already present before the pulse and those
that only interacted after the pulse.

Outlook

Although MS-based proteomics has made a major impact in
the field of chromatin research and epigenetics, this contribu-
tion has thus far mainly been restricted to the identification of
protein spots in gels and to the mapping of histone modifica-
tions. We anticipate that the recent dramatic developments in
quantitative proteomics technology that we have outlined in
this review will be of great value in deciphering the mecha-
nisms underlying epigenetic regulation of gene expression.
Two areas will be of particular importance: in vivo quantitative
proteomics and locus-specific interaction proteomics.

Whereas current studies mainly use cell culture systems, la-
beling of model organisms will become more common prac-
tice in the future. The advantage of analyzing biological pro-
cesses in vivo comes at the cost of more demanding experi-
ments. This implies more elaborate sample preparation
schemes and also requires whole-animal labeling. As described
above, several of the commonly used model organisms have
already successfully been labeled, and efforts to extend this list
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are being made. An interesting recent trend is to use SILAC
simply as an internal standard for cell culture and especially for
in vivo work. This approach decouples SILAC labeling from the
biological experiments, which has many practical advantages.
These strategies can also be applied to study tissue samples
and cell-type-specific processes that can only be investigated
in vivo.[84]

Studying histone modifications or protein interactions in
bulk chromatin yields valuable insights. These studies, howev-
er, only provide a global picture, whereas histone modifica-
tions are not distributed equally over the genome. They are
found in very specific locations: H3K4me3, for instance, is
found almost exclusively on transcription start sites.[85] Also, for
many complexes, subunits and modifications may vary de-
pending on their localization. Determination of chromatin in-
teractions and modifications in a locus-specific manner would
therefore be a very attractive goal. Chromatin immunoprecipi-
tation (ChIP) determines the localization of a protein or histone
modification of interest in the genome. The proteomic equiva-
lent of performing these experiments would be a ChIP-like en-
richment followed by the unbiased detection and analysis of
the protein complement and the modification status. One ele-
gant approach in which chromatin is isolated and sheared and
an enrichment step is applied is called mChIP.[86, 87] mChIP was
successfully applied to study of H2A and its variant Htz1p in-
teractions as well as several nonhistone chromatin proteins.[86]

The even more elaborate PICH approach[88] in principle allows
DNA-sequence-specific enrichment: cross-linked chromatin is
sheared and the desired locus is isolated by use of comple-
mentary DNA probes. An unrelated sequence is used as con-
trol and associated proteins are identified by MS. This tech-
nique successfully identified telomere-associated proteins in
HeLa cells. Telomeres are present 92 times in a normal diploid
human cell. It would be desirable to apply PICH-like techniques
in combination with quantitative proteomics to single loci. Be-
cause of sensitivity and dynamic range limits, however, this has
not yet been accomplished. The major hurdles are not only
the required sensitivity, but also relate to the challenge of dis-
tinguishing background binders from true interactors. Even
more challenging, but also very rewarding, will be time course
or stimulation experiments, in which only a few proteins dis-
play stimulus- or time-dependent changes.

In summary, the power of proteomics lies in the unbiased
detection of proteins and their modifications. In combination
with precise and reliable quantification this provides a power-
ful toolbox for functional approaches and systematic analyses
of proteomes, sub-proteomes, and protein complexes. MS-
based quantitative proteomics is now at a stage where it can
be used not only for descriptive experiments but also to pro-
vide read-outs in directed functional experiments. Ongoing
technological advances and new protocols should enable epi-
genetics researchers to answer many relevant questions in the
chromatin field by MS—and also to generate numerous new
questions.
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3 Discussion

3.1 Summary of projects

In this thesis, quantitative proteomic approaches were applied to study protein-protein
interactions related to chromatin. The two main projects focused on chromatin readers,
which specifically bind to modified histone tails.
In a SILAC approach based on an already established workflow [252], we screened for
binders of the major lysine trimethylation sites on histones H3 and H4. Our approach
was highly sensitive and specific, as we retrieved many of the known interactors for the
investigated chromatin marks. In addition, several proteins could be linked to histone
modifications for the first time. We could demonstrate that the SAGA complex binds
to H3K4me3 via the double tudor domain of SGF29. The PWWP domain was very
frequently observed among H3K36me3-associated proteins and we suggested that it
is a H3K36me3 binding module. We showed that the interaction of the H3K36me3
reader NPAC with the histone tail is dependent on its PWWP domain. Recognition
of this chromatin mark by the PWWP domain was independently shown for BRPF1
[254] and DNMT3A [48]. Moreover, we performed genome-wide profiling of histone
trimethylation sites and selected readers. ChIP-Seq profiles of H3K4me3 and its read-
ers showed a significant overlap, thus providing in vivo evidence for the interaction
observed by the in vitro pull-downs. The profiles of five H3K4me3-associated proteins
(BAP18, GATAD1, PHF8, TRRAP and SGF29) were analyzed in detail. Whereas some
promoters were occupied by all investigated chromatin readers, some promoters only
recruited a subset of readers. PHF8 and GATAD1 were found on almost all promoters,
suggesting that they play a general role in transcription. In contrast, SGF29 and TRRAP
bound promoters were enriched, for instance, for genes involved in DNA damage re-
pair and DNA replication, linking them to the transcription of genes related to specific
biological pathways. Considering the large amount of proteins which specifically bind
to H3K4me3, it is obvious that further determinants – DNA sequences, transcription
factors or additional histone modifications – define the binding pattern on the genome.
In summary, this project provided the first large-scale and systematic interaction study
of chromatin marks and reported a wealth of new interactors for further investigation.
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3 Discussion

A label-free interaction pipeline to screen for chromatin readers from mouse tissue ex-
tracts was established to overcome the limitations of cell lines, because many proteins
were not retrieved in the SILAC-based screen from HeLa cells [125], although they are
biochemically known to directly bind. We decided to investigate binders to the well-
studied activating H3K4me3 and the repressive H3K9me3 marks from different mouse
tissue extracts. In comparison to the previous project we significantly increased the
number of identified proteins associated with the respective chromatin marks. This is
partly due to improvements in the sensitivity and sequencing speed of the mass spec-
trometers, but also to an improved pull-down protocol. The data encompasses almost
all known chromatin readers. Although we screened from very different tissues (brain,
liver and kidney) the vast majority of chromatin-associated proteins was the same. One
example for an organ-specific chromatin reader is the brain specific NuRD complex
subunit CHD5, which directly interacts with the histone tail via its two PHD fingers.
Another example is the zinc finger protein ZNF462, which is recruited to H3K9me3
via binding to HP1 α and was enriched from kidney and brain but not from liver nu-
clear extracts. Additional experiments performed with mouse testis extracts provided
a surprisingly large number of chromatin associated proteins which were not found in
the other tissues. Whereas brain, liver and kidney are already differentiated and chro-
matin associated processes are maintaining the status quo, large chromatin rearrange-
ments are occurring in testis, due to processes such as meiosis, chromatin compaction,
parental imprinting and substitution of canonical histones. This screen shows the fea-
sibility to switch to more complicated systems and describes chromatin readers which
could not be observed from standard cancer cell lines.
In addition to marking chromatin by histone modifications, it is also very effectivly in-
dexed by the incorporation of histone variants [77]. Whereas histone modifications are
established by so-called chromatin writers, the analogous function for histone variants
– the selective incorporation of a histone variant – is performed by histone chaper-
ones. Pulling-down histones from the soluble nuclear fraction in combination with
quantitative mass spectrometry is the method of choice to identify histone chaperones.
We found that the novel H2A.Z splice variant H2A.Z.2.2 associates with the SRCAP
and TIP60 chaperoning complexes, apparently utilizing the same principle chaperon-
ing machineries as H2A.Z.2.1.
One of the long term goals of our research efforts was to introduce quantitative pro-
teomics to the epigenetics and chromatin community. The attention that our SILAC-
based chromatin reader screen received [125] already made many biologists aware of
the possibilities that contemporary proteomics offers to study protein-protein interac-
tions. To provide further incentives, we wrote a review which explains the various
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quantitative approaches and highlights selected proteomic studies.

3.2 Proteomic approaches to investigate chromatin readers

Several biochemical approaches to screen for proteins specifically binding to histone
modifications are currently used. The most straightforward method is to combine pep-
tide pull-downs with quantitative proteomics [212] which was used in both projects
described in this thesis, as well as subsequently by other groups [33, 166]. The ex-
perimental workflow is very robust and can be performed quickly without compli-
cated bait preparations. Peptide based approaches are restricted to modifications on
unfolded protein stretches, as for example the histone tails. Combinatorial effects of
two modifications can only be studied if these modifications are in close vicinity, as
e.g. phosphorylation of serine 10 and trimethylation of lysine 9 on the H3 N-terminal
tail [61, 250].
Often, one histone modification can attract many possible readers and only the combi-
nation of several signals, including DNA methylation or other histone modifications,
produces the necessary specificity. A good example for this is BPTF, which binds to one
histone tail which is trimethylated at lysine 4 with its PHD finger and to another his-
tone tail which is acetylated at lysine 16 via its bromodomain [205]. These multivalent
interactions cannot be observed in simple peptide pull-downs. Nucleosomes with a
specific modification pattern can be generated in vitro by ligating a modified peptide to
purified tailless nucleosomes by expressed protein ligation [159]. This allows the gen-
eration of more elaborate baits like mononucleosomes [12] or nuclesosome arrays [166]
which can contain a combination of histone modifications. Moreover, the DNA used to
assemble these nucleosomes can also play a role for protein binding, and methylated
or unmethylated DNA can be used. Although approaches assembling nucleosomes are
very powerful, more chromatin readers could be retrieved in a direct comparison from
peptide pull-downs [166]. Especially when studying modifications on the histone tails,
far away from the nuclesosome core, interactions between the chromatin reader and
the nuclesosome are of secondary importance. Almost none of the chromatin readers,
for which solid evidence exists in the literature, were only found in nucleosome pull-
downs.
In the approaches discussed above, it is not possible to distinguish the proteins that
directly interact with the bait from co-purifying members of protein complexes. In our
projects, we adessed this question by carefully examining the domain structure of en-
riched proteins. As already many histone modification binding domains are described
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[145, 237], ‘educated guesses’ can generate a reduced list of putative direct binders
which can be tested. In addition, by either using published protein-protein interactions
or performing protein pull-down experiments, proteins can be grouped in complexes.
At least one protein mediating the interaction to the modified histone tail has to be
present in each complex. Although this approach is very effective in finding chromatin
readers with already known binding domains, it is very difficult to identify new do-
mains which were not described yet. A direct method crosslinks the direct binders to
the bait peptide [131]. A photo-reactive cross-linker is placed in close proximity to the
modified residue on the bait peptide. After incubation with extracts, the cross-linker
was activated by a laser pulse and the chromatin reader was covalently attached to the
peptide. Indirect binders could be removed by applying very stringent washing con-
ditions. This approach was combined with a SILAC read-out and only direct binders
were enriched, among them the novel H3K4me3 reader MORC3.
In summary, peptide pull-downs are the easiest and most straight-forward approach
to study chromatin readers. They yield the best coverage of chromatin readers, how-
ever, extensive follow-up experiments to determine direct readers and to investigate
the influence of additional chromatin readers are necessary.

3.3 Performance of label-free quantification for peptide
pull-downs

One major part of this thesis was the establishment of a label-free interaction work-
flow for peptide pull-downs. The results were compared to SILAC, which is the gold
standard for quantification in interaction proteomics [251]. The label-free approach
performed equally well in peptide pull-downs. The same has been observed before
when studying full length protein interactions [88].
As label-free approaches do not require SILAC labeling, the question arises whether
label-free approaches will replace SILAC for interaction proteomics. However, the
SILAC workflow has many intrinsic advantages. SILAC-based quantification is the
most robust quantification and does not depend on the long-term stability of the mass
spectrometric setup, as quantification is performed in the same measurement and not
over consecutive ones. Moreover, the analysis is more straightforward and intuitive
and needs less complicated statistics. Finally, due to its high precision, only two repli-
cates are necessary (forward and reverse experiment), and automation of the pull-
downs is not strictly necessary. Taken together, SILAC is the quantification method
of choice for any medium sized interaction project. In addition, studies expecting only
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small ratio changes need the highest quantification accuracy possible and thus also
benefit from the SILAC approach.
Label-free approaches are a powerful addition to the proteomic interaction tool box.
Any project, independent of bait or size of the screen, in which the proteins cannot be
labeled has to use label-free approaches. In projects in which both label-free and SILAC
approaches can be used, label-free approaches can be beneficial under certain circum-
stances. A major advantage of label-free approaches is that an unlimited number of
baits can be compared, whereas SILAC is generally restricted to a maximum of three.
Moreover, the more samples are compared, the better the statistics become. Hence, for
large scale studies with many different baits, label-free statistics will perform better.
Another advantage is that cells do not need to be labeled and experiments can be per-
formed faster.
In conclusion, label-free approaches complement SILAC-based approaches. The choice
which one to use depends on the biological system and the size of the study.

3.4 Chromatin readers of H3K4me3

Trimethylation of H3K4 is probably the most extensively studied chromatin mark. De-
spite tremendious research efforts, only a limited number of readers has been described
before. Using a SILAC-based quantitative proteomics approach, we increased the num-
ber of H3K4me3 readers. We demonstrated that the activating SAGA complex binds
to H3K4me3 via the double tudor domain of SGF29. Moreover, we describe a novel
complex consisting of GATAD1, JARID1A, EMSY, PHF12, SIN3B and HDACs, which
is also recruited to H3K4me3. Interestingly, in contrast to the SAGA complex or TFIID
[252], this novel complex is likely to have a repressive effect on gene expression. SIN3B
is a transcriptional co-repressor [6], as well as EMSY [90]. JARID1A binds directly to
H3K4me3 [256] but is also capable of removing this methyl mark [37, 93, 109].
As several known readers were missing in the chromatin reader screen [125], we per-
formed a label-free interaction screen from mouse tissue extracts to cover as many
chromatin readers as possible. In total we linked 100 proteins to the H3K4me3 mark, of
which 17 were already shown to be direct binders and we reached near comprehensive-
ness with this screen. One well-known H3K4me3 reader we did not observe is RAG2,
which is expressed in B cells and necessary for V(D)J recombination [135, 149, 193]. As
this protein is expressed in only very specific cell types, one would not expect to de-
tect it from whole tissue extracts. The majority of chromatin readers did not show any
tissue preference in our experiments, which argues for generic, cell type independent
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functions of H3K4me3 and its readers. However, as the distribution of the H3K4me3
mark varies between different cell types, the actual establishment of this mark very
likely follows a cell type-specific pattern. Furthermore, it is noteworthy that there are
many complexes, which can bind directly to H3K4me3. Their sheer number and diver-
sity emphasizes the complexity of protein interactions at H3K4me3 marked promoters.
Whereas many of the readers perform functions that can be related to active gene ex-
pression like chromatin remodeling, lysine acetylation or removal of repressive histone
marks, others perform repressive functions. As it is unlikely that all H3K4me3 binders
compete at the same time for binding, a model in which binding to the H3K4me3 mark
is orchestrated by further mechanism seems more appropriate. A cyclic binding behav-
ior on active genes has already be shown for histone acetyltransferases and deacety-
lases [258] and this principle could also be generally applicable to the H3K4me3 mark.
As was already observed before, some readers only bind a subset of possible H3K4me3
marks, as for example the SAGA complex [250] or Spindlin 1 [257]. Genome-wide pro-
filing of all H3K4me3 binders will be necessary to separate them into general and gene
subset-specific H3K4me3 chromatin readers.

3.5 Chromatin readers of H3K9me3

Although the repressive H3K9me3 mark is more widespread on the genome than the
activating H3K4me3 mark, fewer chromatin readers were found for this mark. The ma-
jor interaction hubs on this modification are the HP1 proteins (CBX1, CBX3 and CBX5),
which interact directly with H3K9me3 via their chromo domain [94, 122, 165]. HP1
proteins are engaged in many protein-protein interactions [169]. For example, the HP1
chromoshadow domain can bind to proteins containing a PxVxL motif [239]. Among
the known interactors of HP1 proteins is a large number of zinc finger domain contain-
ing proteins. As zinc finger domains very often recognize DNA sequence motifs, these
HP1 interactors could provide a link from the genomic information of the underlying
DNA sequence to the epigenetic information of the methylation state.
In addition to HP1, our screen for H3K9me3 binders yielded several other proteins
which are described to directly bind to H3K9me3. CDYL and CDYL2 also both contain
a chromo domain which binds directly to trimethylated H3K9 [60]. MPHOSPH8 [112],
ATRX [49], and UHRF2 [101] are also known H3K9me3 readers. In contrast to HP1,
these proteins have not been described to possess such large interaction networks.
The majority of readers of the H3K9me3 mark can be found equally in brain, liver and
kidney suggesting general functions for gene repression. Two auxiliary proteins, both
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binding to HP1, are found in a tissue-specific manner. ZFP462, which plays a role in
pluripotency and development [147, 148] was enriched with the H3K9me3 peptide in
brain and kidney; however it could not be detected in liver. We further showed that
ZFP462 is recruited to H3K9me3 via binding to HP1 α. Another example for a tissue-
specific HP1 interactor is TRIM66, which is only expressed in testis. TRIM66 interacts
with HP1 via its PxVxL motif and forms discrete foci at the centromeric chromocenter
[104].

3.6 Follow-up based on newly developed technologies

This thesis focused on chromatin readers for lysine trimethylations. Our data signifi-
cantly contributes to the knowledge of chromatin readers, especially for trimethylation
of lysines 4 and 9 on the H3 tail. However, with these findings and technologies in
hand, certain follow-up experiments might be worth performing.
The projects focused on lysine trimethylation, as this modification was already well
studied and known to serve as an interaction hub. Using the high-throughput interac-
tion platform described here, broader screens including other modifications and also
more combinations of these modifications could easily be analyzed. Especially readers
for lysine monomethylation or the recently described lysine crotonylation could yield
interesting new insights into chromatin biology. By analyzing peptides bearing differ-
ent combinations of well studied and additional modifications, it should be possible to
assign complexes. All members of a stable complex should follow the same trend and
cluster together.
Peptide pull-downs in combination with quantitative mass spectrometry offer a pow-
erful method to discover interactions of unstructured protein parts with specific read-
ers. The concept of binding to an unstructured protein sequence (either modified or
unmodified) has been widely studied in the field of chromatin biology. In signal trans-
duction, the SH2 (Src homology 2) domain, which binds to sequences containing a
phosphorylated tyrosine [179, 207], has been studied in detail [79]. Another example
for binding to an unstructured peptide is the TPR (tetratricopeptide repeat) domain
of HOP1, which recognizes the C-terminal ‘EEVD’ peptide sequence on HSP90 and
HSP70 [210]. Using sophisticated prediction tools [132], disordered regions, which of-
ten contain linear motifs, can be discovered and used for peptide interaction screens.
Many chromatin-associated proteins contain partially unstructured regions [53], which
could be modified in a similar manner to histone tails. Moreover, many reader do-
mains are present on chromatin associated proteins, which do not appear to target
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histone modifications. It is thus not unlikely that those domains target modified lin-
ear motifs on other chromatin associated complexes. The high throughput interaction
pipeline described here could offer the possibility to screen many unstructured protein
sequences for interacting proteins in an unbiased manner.
Apart from further technical possibilities offered by the developments described above,
the biological insights gained from our peptide pull-downs raise several interesting
questions: The major question is why are there so many readers for the chromatin
marks and what other determinants guide their binding behavior? We already used
ChIP-Seq to dissect on which active promoters SGF29, PHF8, GATAD1, BAP18 and
TRRAP are binding. Performing a similar analysis for the increased list of readers
from tissue extracts could foster the understanding about reading chromatin marks.
In addition, subunits on many chromatin associated complexes can be exchanged,
leading to a diverse array of subcomplexes. One example is the neuronal-specific
NuRD complex in which CHD3 or CHD4 is replaced by CHD5. The NuRD complex
has even more diversity, as also other positions can be occupied by different proteins,
e.g. the deacetylase position can be occupied by HDAC1 or HDAC2. By performing
pull-down experiments with all subunits, interaction networks could be obtained to
describe the subcomplexes. Using this information in conjunction with genome-wide
profiling should shed light on the composition of these subcomplexes and their func-
tion.
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