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Abstract

Characterizing ecosystem-atmosphere interactions in terms of carbon and water ex-
change on different time scales is considered a major challenge in terrestrial biogeo-
chemical cycle research. The respective time series are now partly comprising an
observation period of one decade. In this study, we explored whether the observation
period is already sufficient to detect cross relationships of the variables beyond the
annual cycle as they are expected from comparable studies in climatology.

We explored the potential of Singular System Analysis (SSA) to extract arbitrary
kinds of oscillatory patterns. The method is completely data adaptive and performs an
effective signal to noise separation.

We found that most observations (NEE, GPP, Ry, VPD, LE, H, u, P) were influ-
enced significantly by low frequency components (interannual variability). Furthermore
we extracted a set of nonlinear relationships and found clear annual hysteresis effects
except for the NEE-R,, relationship which turned out to be the sole linear relationship
in the observation space. SSA provides a new tool to investigate these phenomena
explicitly on different time scales. Furthermore, we showed that SSA has great po-
tential for eddy covariance data processing since it can be applied as novel gap filling
approach relying on the temporal time series structure only.

1 Introduction

Measurements from eddy covariance towers provide time series of CO,, H,O, and
energy fluxes permitting to characterize the temporal development of ecosystem-
atmosphere interactions (Aubinet et al., 2000; Baldocchi, 2003). The data are glob-
ally collected within a variety of international projects (e.g., CarboEuropelP, Fluxnet-
Canada, Ameriflux). Currently, many sites are close to complete the first decade of
continuous flux records, permitting ecosystem fluxes to be investigated on a variety of
time scales beyond seasonal and annual cycles (Baldocchi, 2003; Saigusa et al., 2005;
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Wilson and Baldocchi, 2000). The observed fluxes can be regarded as ecophysiolog-
ical responses to meteorological and climatological conditions but also to any other
type of external and intrinsic ecosystem modifications (Baldocchi, 2003), and thus, the
observed flux variability can be attributed at least partly to the variability of the driving
variables (Law et al., 2002).

The time scale dependencies of cross relationships between the variables are quite
well understood on the short term (from hours to seasonal patterns) in a variety of
micro-meteorological, ecophysiological and statistical aspects. Moreover it is well
known that some of the driving variables (e.g., temperature and precipitation) depict
climate induced low frequency oscillations and trends (Ghil and Vautard, 1991; Plaut
and Vautard, 1994; Palus and Novotnd, 2006). A self-evident hypothesis is whether
long term temporal structures are detectable in existing flux data, given the current
time series length. Consequently, much effort has been done since the initial eddy
covariance measurement setups to investigate ecosystem flux variability beyond the
annual cycle (e.g., Goulden et al., 1996), which is crucial for assessing ecosystems un-
der changing environmental conditions (Dunn et al., 2007). In this context, three main
questions arise: (a) can we identify and provide accurate descriptions of flux variability
on different temporal scales? (b) Is it possible to detect and describe the statistical
properties of “interannual variability”; (c) are (possibly nonlinear) trends identifiable in
the time series? All of these are tied to the problem of identifying and separating the
relevant time scales of the observed time series.

Related research fields have already provided a variety of approaches for the inves-
tigation of time series on multiple time scales including low frequency oscillations and
trends (von Storch and Zwiers, 1999). One successfully applied method for extracting
signals from time series is “Singular System Analysis” (SSA), an approach originating
in systems dynamics (Broomhead and King, 1986) and successfully applied to hydrom-
eteorology (Shun and Duffy, 1999), climatology (Plaut and Vautard, 1995; Ghil et al.,
2002; von Storch and Zwiers, 1999), and hydrology (Lange and Bernhardt, 2004). This
study aims at exploring the potential of SSA in the context of eddy covariance flux data.
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The method is highly superior to the well known Fourier analysis, since it is fully phase
and amplitude modulated (Allen and Smith, 1996). The idea is that each observed time
series is a set of (linearly) superimposed subsignals (Golyandina et al., 2001). In other
words, we investigated whether SSA could provide an option to extract components
of ecosystem fluxes corresponding to different time scales. Partitioning a time series
into subsignals is thought to separate long term signals from the annual cycle and high
frequency components. All the same, this study addresses some special properties of
the eddy covariance data. This is of concern for example for the typical occurrence of
very large gaps due to power outage, where the already tested gap filling tools do not
provide satisfactory results since they rely on the meteorological variables. For this, a
recent SSA extension could be helpful which is able to fill missing values based on the
temporal correlation structure of the time series (Kondrashov and Ghil, 2006).

Our goal in this study was to give a short methodological introduction to SSA, in-
cluding test statistics, and the derived gap filling strategy. The results and discussion
focuses on the variance allocation of different time scales in a set of fundamental ob-
servations. These are net ecosystem exchange NEE, gross primary productivity GPP,
ecosystem respiration R, temperature T, global radiation R,, precipitation P, vapor
pressure deficit VPD, latent heat LE, sensible heat H, and wind speed u. Their tem-
poral behaviour and cross relationships are explored on different time scales. Finally,
the methodological chances and limitation for future data adaptive ecosystem assess-
ments and forecasts are highlighted.

2 Method

2.1 Singular System Analysis

The goal of SSA is to identify subsignals of a given time series X(¢) and to project
them to the corresponding scales. The time series (centered to zero mean) is sub-
jected to SSA, which can be described as a two step procedure consisting of a signal
decomposition and a signal reconstruction (Golyandina et al., 2001). The decomposi-
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tion aims at finding relevant orthogonal functions which allows to reconstruct the time
series partially or, if required, entirely.

The analysis first needs the a priori definition of an embedding dimension which is
a window of length P. Sliding the window along the time series leads to a trajectory
matrix, consisting of the sequence of K=N-P+1 time lagged vectors of the original
series. The P dimensional vectors of the trajectory matrix Z are set up as described in
Eq. (1), (Golyandina et al., 2001).

Z=(X(), .. X(i+P-10) 1<i<K (1)

Based on the trajectory matrix Z a PxP covariance matrix C={c; ;} is built which
according to Vautard and Ghil (1989) can be estimated directly from the data in form of
a Toeplitz matrix; see Eq. (2).

N-|i-j|

! Z XX+ i - @)

C:

TEN-Ti=]]
The entries of the matrix depend on the lag | /—/ | only, and thus, the captured co-
variance is dependent on the embedding dimension P. Based on the lag-covariance

matrix one is able to find the orthonormal basis by solving Eq. (3).
E'CE=A 3

In this equation E is a P x P matrix containing the eigenvectors E;, also called empirical
orthogonal functions (EOF’s) of C. The matrix A contains the respective eigenvalues in
the diagonal, sorted by convention in descending order diag(A)=44, ..., Ap. It can be
shown that due to the properties of covariance matrix C, preserving symmetry, being
real valued and positive semidefinite, all eigenvectors and eigenvalues are itself real
valued, where the latter are nonnegative scalars. The eigenvalues are proportional to
the fraction of explained variance corresponding to each EOF. In analogy to the well
known Principal Component Analysis (PCA) the decomposition allows the construction
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of principal components as generated time series representing the extracted orthogo-
nal modes (Eq. 4). This is why SSA is often also called a “PCA in the time domain”.

P
AC(t) = D X(t+] = 1E()) (4)
j=1
The «th principal components of the time series can be regarded itself as a time series
of length K. A typical phenomenon is the appearance of two principal components of
almost identical structure and period length but with opposite parity (phase shift 7/2).
This can be explained by the fact that the representation of periodic modes requires at
least two linear PCs (Hsieh and Wu, 2001).

The last step in SSA is the reconstruction of the time series through the principal
components A“(t), see Eq. (5). The original signal can be fully or just partially recon-
structed. At this selective step the analyst has to decide which A(t) are combined so
that one obtains an interpretable combination of principal components. This step en-
ables signal-noise separation and the reconstruction of specifically selected frequency
components, as illustrated by Eq. (5).

RK(t) = z z At = ] + 1)E()) (5)

KEkj Ly

In this reconstruction procedure, k is an index set, M, is a normalization factor and
corrections for the series boundaries are given by L; and U, (see definitions in 2.1).

(M. Ly, Uy) = (6)
(1.1.1) for1<t<P-1,
(%,1/3) forP <t <K,
(= t-T+PP)forK+1<t<T.
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2.1.1 Signal selection and separability

The selective time series reconstruction opens the chance to depict the behavior of
the series explicitly on different temporal scales. Obviously, the finest resolution can
be found reconstructing the series individually for each mode, or for each pair of oscil-
latory modes. Whether two components set up an oscillatory pair has to be checked
manually for modes of similar dominant frequency. Golyandina et al. (2001) described
this heuristic procedure as “Caterpillar SSA” which is also beneficial for detecting un-
expected oscillations. This is facilitated by reordering the eigenvalues according to the
dominant frequency of the belonging EOF (Allen and Smith, 1996). After normaliz-
ing the eigenvalues this illustrates the variance allocation on the identified dominant
frequencies. This picture can be seen as a “discretized power spectrum” (Shun and
Duffy, 1999) which is commonly called the “eigenspectrum” of a given series.
However, the eigenspectrum does not surmount the critical point to find a heuristic
approach of signal selection for the subsequent interpretations. An useful alternative
is to test the null hypothesis that the SSA output is compatible with a red noise as-
sumption. The assumption of “red noise” seems the most appropriate null hypothesis
in geosciences since many records (e.g., air and sea surface temperature, river runoff,
climate indices) usually depict “reddened” spectral properties (Ghil et al., 2002). In fact,
this can also be shown for NEE time series from the eddy covariance measurements
by investigating their specific autocorrelation which is non trivial. This can be seen as
a statistical validation for the “red noise” null hypothesis (Richardson et al., 20071).
Several Monte Carlo SSA (MCSSA) approaches were developed for testing whether
the eigenspectrum is compatible with an equivalent spectrum corresponding to a set
of surrogate data generated through an autoregressive process of first order (AR(1);
for different test variants see, e.g., Allen and Smith, 1996; Palus and Novotna, 1998).
Here, we followed a computational much more effective straight forward approach,

1Richardson, A. D, Mahecha, M. D., Falge, E., et al.: Statistical properties of random CO,
flux measurement uncertainty inferred from model residuals, under review, 2007.
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introduced by Shun and Duffy (1999), where the analytic expression for the red noise
spectrum is fitted to the eigenspectrum:

o(f)

_ a
" b+ (2m)2]

In this equation, a and b are process parameters, whereas f represents the observed
frequencies. The model is first fitted to the overall eigenspectrum and a 95% confi-
dence interval is calculated. The fit is then repeated for the nonsignificant fraction of
the eigenspectrum only. This repetitive model fitting is stopped if no additional signif-
icant modes are identified. This approach is not very common, thus, we run several
tests for the present study where the standard MCSSA proposed by Allen and Smith
(1996) based on more than 300 iterations showed to produce similar results than the
above model given by Shun and Duffy (1999).

(7)

2.2 SSA for time series with missing values

A fundamental problem for the eddy covariance towers is the intricate measurement
setup leading to gaps of varying length, from hours to months (Katul et al., 2001).
The primary gap filling on half-hourly data is possible through a variety of methods
which do not lead to fundamental differences (for a broad comparison see Moffat et al.,
20072). However, the available gap-filling methods fail in the presence of large gaps,
where no secondary information, e.g., on meteorological conditions is available. Here,
a different strategy has to be adopted where the gaps have to be filled based on the
temporal correlation structure of the time series itself. Katul et al. (2001) showed that
such situations do not necessarily limit the investigation of eddy covariance data in the
frequency domain and can be assessed by means of wavelet analysis. They state to be
able to “remove the effect of missing values on spectral and co-spectral calculations”.
All the same, this did not provide a tool for filling the large time series gaps.

2Moffat, A., Papale, D., Reichstein, M., et al.: Gap filling methods intercomparison, under
review, 2007.
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Kondrashov and Ghil (2006) introduced an iterative SSA gap filling strategy, which
allows (in the above introduced sense) a time series reconstruction for fragmented time
series. This provides both, a chance for applying SSA to fragmented records and an
explicit tool for gap filling. The method consists of a two-loop gap filling which for the
sake of simplicity is described here in form of a “how to” recipe:

1. The first step is to remove the time series mean, where the mean is estimated
from the present data only.

2. Ainner loop iteration starts as SSA of the zero padded time series. The leading
(highest eigenvalue) reconstructed component (RC) is used to fill the values in
the gaps. This allows a new estimate on the time series mean, which is used for
a new centering where the padded values are set to their reconstructions. This
procedure is carried out, based on the computed and recomputed RC’s until a
convergence criterion is met. Since the original publications did not specify the
type and value of convergence, we used the correlation coefficient between the
subsequently filled time series, and stopped the iteration when r?>0.98.

3. After the first inner loop iteration meets the convergence criterion, the method
switches to an outer loop iteration. This is the natural extension of the above
described procedure, by simply adding a second (third etc.) new reconstructed
component to inner loop iteration.

2.3 Eddy covariance data processing

The eddy covariance data were collected based on a 20 Hz sampling frequency and
subsequently aggregated to an half hourly integration interval (Aubinet et al., 2000).
The CO, data were corrected for canopy storage and v, filtered to avoid measurements
of insufficient turbulence (Papale et al., 2006).

The obvious approach is to use SSA for gap-filling these data and carrying out the
subsequent analysis based on the half hourly data was discarded due to the compu-
tational limitation of SSA. Furthermore this study aims at inferring explicitly the low
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frequency modes in the time series. In general the SSA bottleneck constructing the
lag-covariance matrix limits the application to time series with several thousands of
observations. Hence, we followed a double gap filling strategy. We used the method
provided by Reichstein et al. (2005, Appendix A), which is a locally data adaptive look
up table to fill missing values on half hourly basis. The subsequently aggregated data
receive quality flags indicating the amount of filled data per day. An aggregated daily
value is considered as missing if the amount of original observations falls below 0.9.
Only these values were filled by the SSA gap filling strategy.

2.4 Site description

The eddy covariance data were measured at the Station “Tharandt” (50°57'49"' N,
13°34'01", 380m a.s.l.) which is ca. 25 km SW from Dresden, Germany, correspond-
ing to a suboceanic/subcontinental climate. Long term meteorological records indi-
cate a mean annual air temperature of 7.8°C, and a mean annual precipitation sum of
823mm. The dominant wind direction is SW. The area was episodically affected by
summer droughts. “Tharandt” is a spruced stand (72% Picea abies L. (Karst.)) since
1987, mixed with further coniferous evergreen (15%) and descideous species (13%).
A detailed description of the environmental conditions of the site, including descriptions
of the EC data recording and meteorological data is given by Griinwald and Bernhofer
(2007).

3 Results and discussion

3.1 Significant frequencies and variance allocation

The eigenspectra for the analysed ecosystem variables (NEE, GPP, Ry.,, VPD, P, T,
Rg, LE, H and u; Fig. 1) reveal a set of nontrivial patterns; a whole gamut of signifi-
cant frequencies modes was found in the time series. The identified components are
quantitatively summarized in Table 1, where all results are based on an embedding
dimension of §=2.5.
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Analysing the eigenspectra from the low to the high frequency domain shows that
several variables are significantly driven by interannual variability (Table 1). The derived
carbon and energy fluxes, GPP, R, LE, and H depict significant modes at the very
edge of their eigenspectra indicating the presence of even longer term structures than
effectively describable by the applied embedding procedure. These non extractable
subsignals from minimum frequency EOF’s can be either oscillations or trends, which
is not decidable at the given time series length. In the following, these patterns will
be summarized as edge cycles. It is important to note that similar components are
also contained in most of the other variables but not on a significant level so that in the
overall view we expect that the signals contain more low frequency modes.

Apart from the identified edge cycles, most time series depict oscillations with peri-
ods around 1.4, 1.7, 1.8 and 2.3 yr, except T. The question remains why T does not
depict low frequencies modes within the observation period when even R, which is
estimated from NEE, T and a reference respiratory component does so. It is a well
known phenomenon in the northern hemisphere that temperature depicts a set of os-
cillatory patterns and trends beyond the annual scale, (e.g., Ghil and Vautard, 1991).
For example quasi biennial oscillations in the climate system can be nicely seen in tem-
perature records and also traced back to the NAO index (Palus and Novotna, 2006).
The absence of similar observations could be an artifact of the very short record.

Regarding the annual cycle it is obvious that it explains most of the variance in all
fluxes, except for precipitation P which exhibits a very peculiar behavior in the over-
all eigenspectrum. The P-eigenspectrum indicates that one can assume that we are
dealing with an almost entirely noise dominated signal (97.2% of the signal is compat-
ible with the red noise model) which is consistent with previous findings in literature
(Shun and Duffy, 1999; Tessier et al., 1996) if the temporal resolution is not too small
(e.g. daily). On very small time scales, however, also rainfall exhibits a rather intriguing
multiscaling behavior (Peters et al., 2002).

Furthermore SSA extracted many high frequencies components. Noticeable a semi-
annual component was found to be common to most ecosystem variables where the
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exceptions are again T and P. In the overall view one has to take into account the
relative importance of the different subsignals, where for some variables (e.g., GPP, H,
LE, and u) the high frequency components are essential in terms of allocated variance.

The results of the eigenspectra rely on the decomposition of time series lag covari-
ance structure as described in Eq. (3). Yet, only the subsequent time series recon-
struction gives insights into the effective behaviour of the observation on the respective
time scale. Figure 2 gives an example for the reconstruction of NEE. The figure shows
also clearly that it is not decidable whether the interannual variability is a sinusoidal
oscillation or a true trend. Furthermore, the semiannual component depicts a strong
amplitude modulation indicating that its importance in the time series structure is also
time dependent. It can also seen how a substantial part of the time series variance
(38.1%) can be attributed to what was declared “red noise” by the test set up. Fi-
nally, the bottom panel is an example how the fundamental time evolution of NEE was
reconstructed, based on very few significant noise free modes.

3.2 Scale dependent NEE-T relationships

As highlighted in Table 1 and Fig. 1 it was possible to reveal that the different variables
are dominated by a variety of subsignals which can be partly attributed to comparable
frequency classes. Thus, it is possible to assess the cross relationships of the data
explicitly on the identified time scale, rather than establishing empirical relationships
from the entire observation space as it is the standard approach in most classical
regression approaches.

Figure 3 shows the relationship between NEE and T where different components
are plotted versus each other. The relationship between the pure annual components
of both variables depicts a clear hysteresis effect (Fig. 3, left panel). Furthermore one
sees that the red noise component is apparently not containing major information on
the cross relationships of the two. If the significant interannual component is added
to the annual cycles, the mentioned hysteresis effect is modified (Fig. 3, centre panel).
Although the interannual component accounts only for a small part of the data variability
(Table 1), the figure shows clearly that this is sufficient to induce a trend in the summer
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fluxes toward decreased carbon uptake. By contrast the observed loss of carbon during
the winter days found by the relationship of the annual components is neutralized by
the inter annual component. The problem is that these components are not the only
significant part of the time series and the intraannual component also plays a crucial
role in the flux data and their contribution induces a feasible and complex variability
(Fig. 3, right panel). The overall picture of the NEE-T relationship is nonlinear and
it is obvious that dealing with cross relationships of flux data is a temporal multilayer
problem.

It has been mentioned above that the interannual variability is neither contributing
much to overall time series variability, nor allocates great amounts of carbon. In spite
of that we have to state now that the contribution of the interannual variability could
be essential for assessing the ecosystem under climate change conditions, given the
observed forcing of this component, to the entire flux observations. Moreover models
have difficulties to explain interannual variability. Our findings corroborate the assump-
tion that interannual variability is a major qualitative contribution required to describe
the temporal behaviour of the net carbon balance in terrestrial ecosystems.

3.3 Nonlinear ecosystem-atmosphere interactions

There was evidence that similar nonlinear patterns as found in the NEE-T space are
influencing the relationships between NEE and GPP, VPD, u, LE, or H as well. Fig-
ure 4 shows how these variables are linked when inferred from a joint reconstruction of
their annual and interannual components. The ecosystem behaviour on this temporal
scale is highly nonlinear, and we observe several hysteretic effects. These hysteresis
loops are particularly well pronounced in terms of NEE-VPD, NEE-u, and NEE-H de-
pendencies. Less clear patters were found in the NEE-LE space and the carbon cycle
relationship NEE-GPP.

Above all, it turned out that the sole linear dependency on annual time scales can be
found when relating NEE to R,. Having seen that cross relationships of RC’s originat-
ing from different variables can exhibit a wide range of nonlinearities, this occurrence of
a linear relation is by no means trivial. Whether this phenomenon is unique for the in-
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vestigated site and related to the dominance of evergreen coniferous species (implying
low variations of the leaf area index) or a more general phenomenon requires further
investigations. However, this observation is in accordance with previous findings which
showed that A, provides a good basis for modelling terrestrial carbon fluxes.

In the overall view most cross relationships between the ecosystem variables con-
tain more or less pronounced hysteresis effects (Fig. 4). Especially for the case of T
exists a sound explanation: Owing to a R,-T hysteresis the shown nonlinear NEE-T
dependence is an imparted effect. From an ecological point of view this might appear
trivial and can be understood as the time varying ecosystem heat capacity in the curse
of the seasonal cycle. Indeed, the existence of hysteretic behaviour of ecosystem-
atmosphere interactions is well known (e.g., the T-NEE relationship on short time
scales; Nakai et al., 2003). However, here we present new evidence on the occur-
rence of a well pronounced hysteresis on annual scales which was not yet reported in
the literature. As far as the magnitude of impact is concerned, this is of fundamental
importance for further tasks of ecosystem modelling. Apart of the “obvious” T-NEE ex-
ample, the causes for the unexpected but equally well pronounced hysteresis effects,
e.g. in the NEE-u or NEE-VPD relationships, remain unclear. This could lead to fur-
ther questions, for example what does the existence of an annual cycle in wind velocity
mean for the turbulent exchange of CO,, H,0O, and energy? Furthermore, we presume
that these observations of hysteresis lead to more general problems in ecosystem the-
ory, for example whether additional investigations of hysteretic ecosystem-atmosphere
exchanges could contribute to a better understanding of ecosystem memory. This is of
relevance for the quantification of lag effects in ecosystem responses to any type of re-
occurring phenomena on a variety of time scales, including summer droughts or winter
anomalies. An example is given here by the NEE-H relationship (Fig. 4, lower central
panel), where a clear deviation of the hysteretic behaviour happens precisely during
the summer heat wave in 2003 (cf. Ciais et al., 2005; Granier et al., 2007; Reichstein
et al., 2007, for a comprehensive discussion of this climate anomaly).

Asides from the clear nonlinear relationships of the described annual-interannual
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RC’s, Fig. 4 shows also the red noise components for these variables. As it was shown
in Fig. 1, the red noise fraction comprises most of the high frequency components of
the time series. When contrasting these components with the annual-interannual com-
ponents we came across that there might be different types of relationships acting on
different time scales. This phenomenon is highlighted for example when confronting
the red noise fraction in the NEE-GPP space with their respective annual-interannual
RC’s (Fig. 4, upper left pannel). In this particular case, simple linear regression anal-
ysis would lead to systematically varying parameters depending on the time scale of
concern. Interestingly, the red noise NEE-R, relationship depicts a slightly nonlinear
relationship which is an intuitive example how the analysis of the entire signal could
obscure the inherent linearity of their cross relationship on an annual scale.

3.4 Methodological observations, limitations and outlook

The results presented here show both, the strength and pitfall of SSA. The clear advan-
tage is that the method is entirely data driven, thus the extracted patterns as provided
by the explicit reconstructions on the different time scales can be seen as “empirical
flux-variance partitioning”. Of course, fundamental patterns as the annual cycle can be
identified also by a linear combination of weighted sines and cosines as it is commonly
applied in terms of Fourier analysis. This could lead to similar results in fully homo-
geneous subsignals, which is however not expected to be the case in real world data.
For phase and amplitude varying signals, e.g., as it was shown here very clearly for
the seminannual cycle of NEE, two EOF’s are fully sufficient whereas a Fourier type
analysis would require a highly parameterized “model”.

The critical point in SSA is the choice of the embedding dimension P, which is a
compromise between two goals: The first is to maximize the information content of the
analysis requiring a large window length P. The second is to optimize the statistical
confidence of the decomposition, achieved through a high number of channels K. A
different strategy could be to optimize the embedding dimension such that the extracted
signals are well separable avoiding a signal superimposition in the RC’s (Golyandina
etal., 2001). Empirical findings in literature suggest to range the embedding dimension
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from &=11 (Ghil et al., 2002) to ¥=2.5 (Lange and Bernhardt, 2004). Owing to the ob-
jective of this study to explore explicitly long range structures in the data, we used the
lowest value reported in literature %:2.5. The quality of signal separability obtained by
a further decrease of this ratio turned out to be unfeasible since most extracted RC’s
could be seen as a new set of superimposed signals (for an accurate definition of sig-
nal separability cf. Golyandina et al., 2001). However, increasing the ratio did not lead
to a better signal separability and was not justified here. Due to the short observation
period of eight years only, we had to use a maximum window length to be able to find
long range structures. We found that the identified frequencies and their respective
variance allocations remains fairly stable over a certain range of embedding dimen-
sions. Major shifts in the variance allocations in the frequency domain occur mainly in
the low frequency modes (f<1yr"1) due to the decrease of correlation strength in the
trajectory space.

Apart from these technical aspects of the SSA performance one has to consider the
limitation of the method to linear feature extraction. Recall that SSA is called a “PCA
in the time domain” which holds true for the technical implementation of the decom-
position and also for the essential PCA outcome which is to achieve a dimensionality
reduction. The main limitation of the presented SSA variant is its linear representation
of the embedding space which is inherited from PCA. The question whether this is a
suitable approach for dealing with real world data is not trivial. E.g., it is well known
that PCA is a suboptimal solution for dimensionality reduction in nonlinear systems and
could be replaced by nonlinear dimensionality reduction (Kramer, 1991). In accordance
with this findings Hsieh and Wu (2001); Hsieh and Hamilton (2001) and Hsieh (2004)
showed that the SSA results can be nonlinearly generalized at different levels, e.g.,
on the decomposition step, or by generalizing the RC’s with artificial neural networks.
On one hand, these features are principally challenging where the main advantage is
that oscillatory modes of arbitrary shape can be represented by one single nonlinear
component (Hsieh, 2004). On the other side such generalizations are fundamentally
questionable; the critical point is that the mentioned neural network approaches rely
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exclusively on previously linearly generated features, since the direct nonlinear feature
extraction always leads to an parameter space which exceeded the number of observa-
tions. In this context new developments of data exploration (e.g. Coifman et al., 2005;
Tenenbaum et al., 2000) could provide alternative solutions for a next generation of
SSA.

3.5 Pattern extraction with missing data

In the context of eddy covariance measurements, missing data and rejected values,
e.g., due to unfavorable conditions are unavoidable (Foken and Wichura, 1996). In
terms of SSA applications this is especially problematic where more than 10% of data
points where rejectedd and the method is operating at the very edge of a reasonable
gap filling procedure (Kondrashov and Ghil, 2006).

Nevertheless, at first glance long continuous gaps could be effectively filled. Con-
trasting the SSA gap filled results with original fluxes indicates that the extracted low
frequencies are not affected by the time series reconstruction based on a gappy time
series (see Fig. 5). Indeed, the original paper on the SSA gapfilling suggests that the
the method works optimal when only the on the leading modes are taken into account,
while taking too much RC’s into account increased the root mean square error of the
procedure (Kondrashov and Ghil, 2006). This finding was confirmed by the present
study and gives a repercussive justification for combining the gap filling strategy by Re-
ichstein et al. (2005) for the high frequency data with the SSA application on the daily
values.

This study did not carry out an in depth quality analysis, comparing the SSA based
gap filling with established techniques as they are currently available (Moffat et al.,
20072); the presented application aims at giving a first impression how future gap fill-
ing strategies in the eddy covariance measurement setup could work. Specifically, it
has to be sought to incorporate the potential of the information lying on the temporal
correlation structure and the oscillatory components for improving the existing gap fill-
ing strategies which are relying on the “known” cross relationships of the variables. In
fact, Kondrashov and Ghil (2006) introduced also the option for a multivariate SSA gap
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filling. It has to be pointed out that the method is itself not in a fully maturated stage
of development (cf. the current state of the discussion: Kondrashov and Ghil, 2007;
Schneider, 2007). Despite of these details the SSA gapfilling is already a considerable
progress for dealing with cases where, e.g., due to power breaks none of the target
variables or standard meteorological observations are available. In these cases most
gap filling methods fail, since they rely on a entirely sampled variable space (Falge
et al., 2001; Papale and Valentini, 2003; Reichstein et al., 2005). The fundamental ad-
vantage in the SSA application is that the temporal correlation structure can be learned
and projected to the data gaps, rather than introducing assumptions on cross relation-
ships within the observation space.

3.6 Implications for future flux assessment and outlook

We showed that SSA provided a new way to partition the ecosystem flux variability
into different time scales. There is considerable research interest in such data adap-
tive tools for assessing ecosystem-atmosphere carbon, water and energy fluxes. The
application of advanced time series techniques could reveal further unexpected pat-
terns, previously hidden in the raw data. There are many possible fields of application
for SSA and related methods in addition to the presented “variance partitioning”: for
instance advanced flux partitioning methods which separate the contributions of GPP
and R, to the net carbon flux. Comparisons between different flux partitioning meth-
ods showed that there are essential differences between the different approaches, but
also that all known methods make comparable assumptions on underlying physiologi-
cal kinetics (Stoy et al., 2006). The question is whether these models could be refined
and validated on different time scales as we found them by SSA. What does it mean
for example that a T record does not display the low frequency modes contained in
the respective NEE data as it was found here? With this we aim at stimulating further
discussions on how future flux partitioning algorithms could work taking the different
behaviour of the variables on different time scales into account.

A main advantage is that the partly reconstructed variables can be further analysed
in analogy to existing approaches which conventionally take the whole data series into
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account. Figure 6 gives such an simple application example: Based on the annual-
interannual components of NEE, T, and LE we estimated a mean seasonal course for
each of them. This reference series was used to calculate and visualize the deviations
of the respective RC’s (Fig. 6). This enables us, e.g., to show how the summer drought
which affected the site in 2003 is ongoing with a positive deviation of NEE; it turned out
that the NEE-anomaly of the following year 2004 is equally pronounced. Moreover, the
T record shows a smooth variation over the years indicating a systematic amplitude
shift. A more complicated pattern is found in the behaviour of LE, which is apparently
not trivially related to the other two variables. Without going into a detailed discussion,
this example illustrates how powerful even simplistic approaches become when the
time series are explicitly explored on the relevant temporal scales only. Extending the
observation period in future investigations is expected to give major insights into the
effects of time lagged ecophysiological responses to climate anomalies which in turn
could improve our general understanding of ecosystem-atmosphere relationships.

4 Conclusions

Ecosystem-atmosphere interactions inferred from eddy covariance data are now com-
prising a time window which allows to investigate the flux behaviour beyond annual cy-
cles. This study showed that applying advanced time series analysis methods allows
to extract a wide range of significant modes ranging from the high frequency domain
to long term components. A major innovation of the presented approach is to provide
an integrated methodological framework comprising data analysis including signal to
noise enhancement, and gap-filling and which in a next step could be expandable to a
statistical time series forecast (Golyandina and Stepanov, 2005).

SSA proved to be able to separate the inherent temporal scales of a time series.
Here, we showed that this “variance partitioning” could serve as general basis of further
data adaptive or process oriented modelling tasks. Based on these methodological
advances we were able to demonstrate that the eddy covariance observations are
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dominated to a non negligible extent by interannual variability. Overall, the investigation
showed that the relationships of water, carbon and energy fluxes are mostly nonlinear
and vary fundamentally depending on the investigated temporal scale. For the first time
we showed that hysteretic behaviour is an inherent property of ecosystem-interactions
on an annual time scale.
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Table 1. Significant periods identified in the flux time series. The periods are given in years
(rounded values). Modes at the edge of the maximal observed frequency domain (here, 3.4
years) could be either “real” trends or edge cycles. The values of the variables at the respective
period indicate the amount of explained variance in percentages. Note that each value is the
sum of explained variance for all significant components of similar period, e.g., the annual
components are always set up by two EOF’s.

Period p (years) NEE GPP R, T R VPD P LE H u

g
>3.4 0.8 0.5 3.7 - - - - 22 14 -
24 - - 2.4 - - 0.6 - - - -
2.3 - 0.5 - - - - - 1.1 - -
1.8 - - 0.6 - - - - - - 1.4
1.7 - 0.3 - - - - - - 0.6 -
1.4 - 0.1 - - 02 05 07 26 - -
1 56,6 80.7 745 69.2 60.6 38.9 - 604 375 8.8
0.8 - 0.3 0.4 - - - - 05 09 -
0.7 - 0.1 - - - 1.1 - - - 0.7
0.6 0.2 0.9 1.5 - 0.5 - - 2.4 - -
0.5 0.7 0.4 1.6 - 0.2 1.7 - 07 0.7 -
0.4 0.6 0.2 - - - - - 0.9 - 0.9
0.3 1.4 0.6 - - 0.5 1.3 - 1.5 141 1.2
0.2 0.8 0.3 - - 0.7 1.6 - 08 05 31
0.1 1.7 1.8 - - 1.4 - 18 42 52 81
<0.1 1.1 0.5 - - 0.8 - - 15 14 -
red noise 381 129 1563 308 351 543 975 213 506 75.0
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Fig. 1. The eigenspectra of the observed time series for NEE, R..,, GPP, VPD, LE, H, u,
T, and P. The dots represent the dominant frequencies of the time series at the respective
normalized eigenvalue. The latter is equivalent to the amount of allocated variance. The red
lines show the fitted red noise model. The gray areas are the corresponding 95% significance
intervals.
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Fig. 2. The partly reconstructed NEE flux time series. From top to bottom: the interannual
variability; the annual cycle; the semiannual oscillation; the time series reconstruction from the
components which were not distinguishable from red noise; the original signal (black line) and
the reconstructed signal based on the above shown significant modes (red line).
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Fig. 3. The cross relationship of the partly reconstructed NEE and T time series. From

left to right: The first panel shows the pure annual components of both variables where the

colour code permits tracing the temporal evolution. The black crosses show the respective red

noise components. The centre panel time series reconstruction is based on the annual and

interannual components. The right panel shows a reconstruction, where also the significant

intraannual components were considered.
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Fig. 4. The cross relationships of the major variables with NEE. Black crosses show the
respective red noise components. The colour coded reconstructed components comprise the
annual and interannual components of the respective variables, where the colour code permits
tracing the temporal evolution.
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Fig. 5. The reconstruction of the NEE time series based on all significant components (red
line). The reconstruction is repeated after an artificially gap of three month was generated (blue
line).
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Fig. 6. The deviations of the estimated mean reference component of NEE, T and LE, based
on the joint reconstruction of the annual and interannual components.
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