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Abstract

Monthly averages of ecosystem respiration (ER), gross primary production (GPP) and
net ecosystem exchange (NEE) over Scandinavian forest sites were estimated using
regression models driven by air temperature (AT), absorbed photosynthetically active
radiation (APAR) and vegetation indices. The models were constructed and evaluated
using satellite data from Terra/MODIS and measured data collected at seven flux tower
sites in northern Europe. Data used for model construction was excluded from the
evaluation. Relationships between ground measured variables and the independent
variables were investigated.

It was found that the enhanced vegetation index (EVI) at 250 m resolution was highly
noisy for the coniferous sites, and hence, 1 km EVI was used for the analysis. Linear
relationships between EVI and the biophysical variables were found for both conifer-
ous and deciduous data: correlation coefficients ranged from 0.91 to 0.79, and 0.85
to 0.67, respectively. Due to saturation, there were no linear relationships between
normalized difference vegetation index (NDVI) and the ground measured parameters
found at any site. APAR correlated better with the parameters in question than the veg-
etation indices. Modeled GPP and ER were in good agreement with measured values,
with more than 90% of the variation in measured GPP and ER being explained by the
coniferous models. The site-specific respiration rate at 10°C (R,,) was needed for de-
scribing the ER variation between sites. Even though monthly NEE was modeled with
less accuracy than GPP, 61% and 75% (dec. and con., respectively) of the variation in
the measured time series was explained by the model. These results are important for
moving towards operational remote sensing of forest carbon balance across Northern
Europe.
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1 Introduction

The global carbon balance is the result of fluxes of carbon into and out of ocean and
land. In this balance, terrestrial carbon sinks result in high quantities of carbon being
drawn from the atmosphere into land. The compensating effect of the carbon sinks
in relation to the anthropogenic fossil fuel emissions — now being the main source of
atmospheric CO, (Keeling et al., 1996; Schulze et al., 2000) — makes the knowledge of
sink distribution of utmost importance for understanding the biosphere’s interaction with
climate and its impact on future carbon levels. There is scientific evidence of a missing
carbon sink in the global carbon cycle, probably located in the Northern Hemisphere
(Tans et al., 1990; Keeling et al., 1996). With boreal forests covering large parts of
the Northern Hemisphere, knowledge of the carbon sink/strength of these regions is if
great importance.

It is possible to measure the net exchange of CO, between atmosphere and bio-
sphere for long periods of time using eddy covariance methods. These measurements
have proven to be of great importance for studies concerning carbon budgets and their
seasonal patterns (e.g. Lindroth et al., 1998; Falge et al., 2002). However, measure-
ments can be made only at a limited number of locations due to the high costs of
implementing the technique, for example, less than ten eddy covariance towers are
currently operating in the forested areas of Sweden which is not enough to represent
the different forest age classes, species classes, etc., needed for making a precise
national carbon balance estimate (Lagergren et al., 2006).

Two main approaches can be identified for obtaining larger scale estimates of carbon
balance: i) employment of physiological process-based models, and ii) direct estimates
on the basis of remote sensing. The former approach simulates ecosystem processes
using detailed data sets of biophysical and meteorological conditions as input (e.g.
Running and Hunt Jr., 1993; Liu et al.,, 1997). This is required for prognostic pur-
poses, but an advanced process-based model is not necessarily more accurate than
simpler models, mainly because of the high input demands. The second approach is
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based on the light-use efficiency concept devised by Monteith (1972, 1977) and Kumar
and Monteith (1981), and modified by Prince (1991), which decomposes net primary
productivity (NPP, P,) into absorbed radiation (APAR, the product of FAPAR, f,, and
incident PAR, /,) and a light-use efficiency factor (¢):

Py = €fal,. (1)

The method has been proven attractive to implement on the basis of remote sensing
since it is possible to obtain these parameters from satellite (e.g. Sellers et al., 1994;
Nichol et al., 2000; Lobell et al., 2002).

While the gross primary productivity (GPP) gives the total amount carbon fixated by
photosynthesis, NPP — which is obtained by subtraction of the autotrophic respiration
from GPP — gives the input of carbon to the ecosystem. Depending on the definition
of the LUE factor, both of these productivity measures can be successfully modeled on
the basis of light-use efficiency and remote sensing. For example, Xiao et al. (2004a,b)
modeled the LUE factor as a function of temperature, water and leaf phenology in a
light-use efficiency-based GPP model. Running et al. (1999, 2000) used a process-
based ecosystem model for determining LUE factors for daily GPP calculations. A
number of NPP models based on the light-use efficiency concept have been published
(e.g. Ruimy et al., 1994; Lagergren et al., 2005). However, since the computation of
the LUE-factor usually requires meteorological data, an operational LUE-based model
may easily be limited by the spatial resolution and accuracy of the meteorological input
data sets (Sims et al., 2006).

The net ecosystem exchange (NEE) is obtained by subtracting ER from GPP. Since
NEE gives the net amount of carbon uptake or release, this is a more appropriate
measure than NPP and GPP of carbon sink strength (Schulze et al., 2002). However,
using the LUE approach, or remote sensing techniques in general, for NEE modeling is
problematic due to the difficulties involved in obtaining information on the heterotrophic
respiration from space (Valentini et al., 2000). The mechanisms behind decomposi-
tion of soil organic matter are not yet fully understood as decomposition depends not
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only temperature but on a range of different environmental constraints (Davidson and
Janssens, 2006). Accordingly, estimating soil decomposition is hard in general, and
especially so using only data from satellite. Given the importance of ER in controlling
the forest carbon balance, especially boreal forests at high latitudes (Valentini et al.,
2000), there are strong arguments for including information on ER when studying car-
bon balance from space, despite the difficulties involved.

Most studies aiming at estimating NEE using remote sensing employ physiological
process-based models which are parameterized for a specific location using flux data
together with meteorological data; the model output is then scaled up using satellite
data. Veroustraete et al. (1996) estimated NEE for a deciduous forest in Belgium us-
ing a physiological process model driven by the fractional absorption of PAR (FAPAR)
from satellite and meteorological data. Chiesi et al. (2005) estimated monthly NEE for
a forested site in Italy by parameterizing and calibrating FOREST-BGC (Running and
Coughlan, 1998), including FAPAR derived from Landsat normalized difference veg-
etation index (NDVI). With correlation coefficients above 0.9, NEE was obtained with
high accuracy when comparing to ground-measured NEE. Hunt et al. (2004) used a
LUE-based approach instead of a process model for obtaining NEE for two rangeland
sites in the U.S. The model was driven by meteorological data together with satellite-
derived FAPAR. The authors also investigated the relationship between APAR and NEE
for the rangeland sites and a coniferous forest site; a linear relationship was found for
the rangeland sites but not for the coniferous site.

NEE can be obtained with high accuracy for a parameterized site using a physiologi-
cal process-based model, however, if the model requires a large set of input parameters
(of, for example, meteorological data) which may be hard to obtain for large areas, the
spatial representation of the study may be limited.

The RACES (Regional Arctic CO, Exchange Simulator) equations allow for calcula-
tion of ER and GPP using only three variables: NDVI and PAR for calculation of GPP
and temperature and NDVI for calculation of respiration (Vourlitis et al., 2003). This
limited input demand make the equations attractive from a remote sensing perspective
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and, hence, allow for larger spatial representation. The model has been used for NEE
studies in arctic ecosystems (Oechel et al., 2000; Vourlitis et al., 2000, 2003).

Turner et al. (2004) used remotely sensed data on land cover, stand age and har-
vesting in combination with BIOME-BGC (Law et al., 2001), coupled with a regional
climate dataset, for monitoring of the carbon sequestration for a region in the state of
Oregon, USA.

A different approach was presented by Churkina et al. (2005) who used flux mea-
surements from 28 sites in North America, Europe and Brazil for investigating the re-
lationship between NEE and the carbon uptake period. The authors found a linear
relationship between the two parameters and with the possibility of obtaining the car-
bon uptake period from satellite vegetation indices, the approach has the potential of
extrapolating NEE over large areas without relying on heavy input datasets.

Rahman et al. (2005) investigated the relationship between MODIS enhanced veg-
etation index (EVI) and GPP; and MODIS surface temperature and respiration using
data from ten flux tower sites across the U.S. The authors identified the scientific need
for an operational per-pixel production model and suggested that NEE can be obtained
solely from satellite parameters.

Sims et al. (2006) also identified the need for a fully satellite driven productivity model
not relying on the traditional LUE approach, and investigated the use of MODIS EVI
for GPP estimations using data from nine flux tower sites across the U.S. The authors
showed that a GPP model driven solely by EVI performs as good as or even better than
the MODIS GPP product. The authors state that they are exploring the use of satellite
derived air temperature for a robust carbon balance model entirely based on satellite
data. The MODIS GPP product, which gives eight day averages of GPP globally at
1 km resolution, was in turn validated by Turner et al. (2003) who compared MODIS
GPP to ground measured GPP for a boreal and a hardwood site in the U.S. It was
found that the product overestimated growing season GPP at the hardwood site while
an underestimation was found at the boreal site.

In general, the main advantages of a LUE-model for estimation of NPP or GPP lies
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in the possibilities of operational implementation (Running et al., 2000), and that it can
output productivity with high accuracy if parameterized correct (Turner et al., 2005).
However, a LUE-model usually relies on meteorological data sets for obtaining the
LUE-factor. With some meteorological variables being only available at about 1°x1°,
a meteorological data set may be too coarse to take the heterogeneity in LUE into
account, and accordingly, may result in erroneous estimates of carbon uptake (Turner
et al., 2002; Sims et al., 2006). Alternatively, parameterization of process-based model
can give the full carbon balance (NEE) but this will require a detailed input data set that
is rarely available on a regional scale, making it hard to implement operationally.

For these reasons, the aim of this paper is to investigate the possibilities of imple-
menting a model for obtaining NEE, GPP and respiration over large areas. The aim is
to no rely on large input data sets but to drive the model using only a few parameters
that can be obtained from satellite.

2 Data and methodologies
2.1 In-situ measurements

NEE, PAR and air temperature (AT) were measured at seven sites in Northern Europe
(Table 1), and used in the analysis. Negative values of NEE and GPP indicate a release
of carbon; positive values indicate uptake, while positive values of respiration indicate
release. Table 2 gives the years for which data were acquired. The flux towers are
part of the CARBOEUROPE project (CARBOEUROPE, 2005). No error analysis of
the data was performed in this study. Daily max. NEE was calculated as the mean of
five values centered on the daily maximum. These daily values were then averaged
over the months.

Incident PAR was measured using PAR sensors mounted on the flux towers at Asa
with a LiCor 190SB at 38 m tower hight (Berggren et al., 2004), a LiCor 190SZ at
98 m tower hight in Norunda (Lundin et al., 1999), LiCor 190SB at 22 m tower hight in
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Skyttorp and Knottasen (Berggren et al., 2004). Shortwave radiation at Hyytiala was
measured with a Reemann TP-3 pyranometer (Kolari et al., 2004), a Kipp & Zonen
CM11 in Sorg (Pilegaard et al., 2001) and a Kipp & Zonen CM14 in Hainich (Knohl
et al., 2003). A PAR-to-shortwave conversion factor of 0.43 was used (Olofsson et al.,
2007).

AT iszdefined as the averaged daily temperature when the global radiation exceeds
1TWm™.

The reason for including Hainich is that data from only one deciduous site (Sorg) is
present in the material, and by including Hainich, which is rather similar to the beech
forest in Southern Scandinavia, the amount of deciduous data is doubled.

2.1.1 GPP and ER from measured NEE

GPP and ER were derived from the NEE measurements. Respiration at Norunda was
derived from a two month relationship of average night NEE and night temperature;
while respiration at Skyttorp was derived from a half month relationship between air
temperature and night NEE. At the other sites, respiration was obtained through a
short-term temperature response of night-time fluxes based on NEE. This processing
had been performed beforehand since all data were obtained through the CARBOEU-
ROPE project. A review of the different methods for separating ER and GPP from NEE
measurements is given by Reichstein et al. (2005). Correct ground measurements
are crucial when comparing against values derived from satellite measurements for
evaluation of model accuracy and robustness. Although no error analysis of the flux
measurements was performed, averaging the data over long periods (from half-hourly
to monthly) reduced the random sampling errors to relatively small values (Baldocchi,
2003).
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2.2 NDvVI

The NDVI is the normalized quotient of the near infrared and red surface reflectance
(oniR @nd pg, respectively):
PONIR PR' @)
PNIR T PR
The NDVI data set for Scandinavia is based on seasonally adjusted NDVI at 250 m
resolution from Terra/MODIS. Creation and validation of the data set is described and
discussed in Olofsson and Eklundh (2007). MODIS NDVI for Hyytiéld and Hainich were
obtained from the MODIS ASCII Subset project at 1 km resolution. The data were pro-
cessed in the same manner as the data set in Olofsson and Eklundh (2007), which
includes season adjustments by nonlinear least square fitting of local double logistic
model functions to the time-series, using the computer program TIMESAT. TIMESAT
fits the function to the upper envelope of the VI data, thus, effectively reducing neg-
atively biased noise due to remaining atmospheric influence. The least-squares pro-
cedure also, to some extent, eliminates single outliers such as the high values often
occurring during early and late parts of the season, when Solar zenith angles are very
high (J6nsson and Eklundh, 2002, 2004). This processing is done in order to filter out
the noise in the VI time series, clearly visible in Figs. 1 and 2.

Since Hyytidla and Hainich were not included in the data set created by Olofsson
and Eklundh (2007), 1 km NDVI time series at these two sites were obtained from The
Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC).

NDVI =

23 EVI

The EVI was developed to optimize the vegetation signal but maintaining sensitivity in
high biomass areas, while minimizing background and atmospheric influences (Huete
et al., 2002). The EVI is defined as
PONIR — PR
EVI=G ,
L +pnir + C1or — Cop0p

(3)
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where G is a gain factor; Cy and C, are coefficients for correction of atmospheric
influences utilizing the red and blue bands; and L is a background adjustment factor
that compensates for the higher near infrared reflectance due to the red extinction
through the canopy (Liu and Huete, 1995; Huete et al., 1997, 2002).

EVI at 250 m and 1 km were acquired from Terra/MODIS and processed in the same
manner as the NDVI data (Olofsson and Eklundh, 2007), which includes the TIMESAT
preocessing.

The EVI data cover Scandinavia and Finland (tiles H18V02, H18V03 and H19V02).
Only 250 m data was used in the analysis for Sorg since the MODIS 1 km pixel rep-
resents other land covers than deciduous forest at this site (Olofsson and Eklundh,
2007).

2.4 Vlissues

Time series of EVI, NDVI and FAPAR for a specific flux site were constructed using val-
ues from the single pixel centered on the flux site. Figure 1 shows raw and TIMESAT-
adjusted EVI at both 250 m and 1 km resolution for the Knottasen site (coniferous). It
is apparent that the 250 m EVI is unable to trace the seasonal development of the veg-
etation, mainly because of unrealistically high values in between the growing seasons.
TIMESAT eliminates the most severe outliers but is unable to extract the seasonal dy-
namics. The 1 km data on the other hand displays the expected seasonal trend clearly.
Although not plotted, there is a large difference between the 250 m and 1 km data also
at the other coniferous sites. The situation is strikingly different for the Hainich site
(deciduous) as seen in Fig. 2. The NDVI is not exhibiting the same difference between
resolutions, and as stated, there is no discrepancy in EVI for the deciduous pixels. Why
there is such a difference in EVI, but not for NDVI, between the two resolutions for the
coniferous sites is not fully clear. It is hypothesized that three different factors inter-
act to generate the erroneous values: i) failure of retrieving aerosol depth resulting in
poor atmospheric correction; ii) presence of light snow cover not detected by the snow
algorithm; iii) downsampling of the blue band from 500 to 250 m (K. Didan, personal
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communication). A study is currently being planned aiming at investigating the reasons
for the observed differences and evaluating the performance of the MODIS NDVI and
EVI at 1 km, 500 and 250 m across Scandinavia.

2.5 FAPAR

An FAPAR data set based on MODIS 250 m NDVI across Scandinavia was created by
Olofsson and Eklundh (2007). The data set was evaluated at Sorg, Asa, Norunda, and
Skyttorp, and produced an RMSE of the means at these sites between 2.5 to 6.6%
at a daily basis. The data were monthly averaged for use in this study which is likely
to have decreased the errors further. Since the data set was created for Scandinavia,
FAPAR data for Hyytiald and Hainich was lacking. To obtain these data, the NDVI-
FAPAR relationship observed in Olofsson and Eklundh (2007) was applied to the 1 km
NDVI at these sites. However, the NDVI-FAPAR relationship established is valid for the
250 m NDVI while the NDVI for these sites has a spatial resolution of 1km. The 1 km
and 250 m NDVI data, just like the EVI, do not appear to behave in the same manner,
and a comparison between the NDVI time series at Norunda and Hyytiéla reveals that
the winter values for all years are lower at the latter site. Bearing this in mind, applying
the NDVI-FAPAR relationship observed in Olofsson and Eklundh (2007) to the 1km
NDVI at Hyytiala will generate a somewhat biased FAPAR. Exactly how large this bias
is and how large the difference between 1 and 0.25km NDVI is, will be investigated in
a future study.

2.6 Models

Obtaining estimates over large areas requires NEE to be derived from parameters
obtained at high areal and temporal resolution as the involved processes’ responses
to the environment are non-linear. Since NEE (F,) is the difference between GPP (F,)
and ER (R,),

Fy=P, - R, (4)
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both terms need to be modeled.

The vegetation indices (VIs) are obtained from satellite; APAR is estimated with FA-
PAR from satellite (see below) and measured PAR. AT is measured — these parameters
are as input for predicting the biophysical parameters: NEE, GPP, and respiration. To
solve this task, linear regression models were constructed for monthly values of GPP
and ER, for the two different forest types.

For GPP, a simple linear model with EVI and APAR as independent variables gave
the best fit to measured values:

Py(t) = aq + apE(t) + agl, 4(t) + e(t), e(t) € N(0, 62), (5)
where E(t) is EVI at month ¢, /, ,(f) the amount of absorbed PAR at month ¢, and

{e(t)} is independent Gaussian white noise. APAR is calculated as the product of
measured incident PAR and the FAPAR obtained from Terra/MODIS NDVI in Olofsson
and Eklundh (2007) (see Sect. 2.5).

Since soil respiration is a highly complex biological process involving many variables
which are not possible to derive using the limited number of satellite parameters we
have at our disposal (Davidson and Janssens, 2006), an external variable is most
likely needed. It has been shown that the Lloyd-Taylor equation for calculation of soil
respiration can be successfully used with the original parameterization for obtaining
ecosystem respiration for many of the sites in this study (Anders Lindroth, unpublished
results). The expression is given by

R =R10exp(i— 2 ), (6)
e a, T-a;

where Ry, is the site-specific respiration rate at 7=10°; and a4_5 are model coefficients
(Lloyd and Taylor, 1994). The original coefficients were derived from a large data set on
soil respiration representing ecosystems all over the world, however, no boreal forests
were included and a new set of coefficients based on the data in the present study was
therefore derived using non-linear least squares methods. An R, value was derived
from the data set for each site and year.
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Different sets of model coefficients were calculated for deciduous and coniferous
stands, respectively, and in order not to use the same data for model parameterization
and evaluation, about half of the data was used for estimation and the other half for val-
idation. Three years from Hainich and three years from Sorg were used for estimating
the deciduous model and the rest of the data (also 6 years) was used for evaluating the
performance of the model. All the data from Norunda and Hyytiéla except the last year
at each site was used for estimating the model for the coniferous stands (8 years of
data) while the rest of the data was used for evaluation (6 years of data, all stands rep-
resented). Since the data used for evaluation was completely excluded from the data
used for estimating the model, the model performance gives the accuracy by which
these biophysical parameters can be obtained using this technique.

Given that the validation set differs from the calibration set, both in time and space,
the validation tests for model robustness both in location and time. The model accuracy
is reported by the root mean square error (RMSE) and the coefficient of determination
r? (the squared correlation coefficient of the predicted and measured values, y and y),
respectively) which gives the amount of response variation explained by the model.

3 Results and discussion
3.1 Operational remote sensing of APAR and AT

The models were estimated using measured values on AT and PAR, with APAR be-
ing the product of measured PAR and FAPAR estimated from satellite. In order for
the methodology to be used on an operational basis, these parameters have to be
available from satellite at the same resolution as the VIs and FAPAR. Van Laake and
Sanchez-Azofeifa (2004, 2005) presented a method which gives incident PAR by imple-
mentation of a simple radiative transfer model where the amount of PAR is a function of
the solar constant, solar zenith angle and the atmospheric transmittance, which in turn
is calculated using daily atmospheric data from the MODIS sensor onboard the NASA

3155

BGD
4, 3143-3193, 2007

Towards operational
remote sensing of
forest carbon balance

P. Olofsson et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/3143/2007/bgd-4-3143-2007-print.pdf
http://www.biogeosciences-discuss.net/4/3143/2007/bgd-4-3143-2007-discussion.html
http://www.egu.eu

10

15

20

25

platforms Terra and Aqua. Olofsson et al. (2007) implemented the method for Scan-
dinavian conditions and found that five day averages of PAR could be operationally
obtained with an r? of 83% at Norunda and 74% at Asa. It is likely that monthly aver-
ages would yield higher accuracies.

As an alternative approach, Liang et al. (2006) presented a new method for estimat-
ing incident PAR using reflectance data from MODIS. Surface and top-of-atmosphere
reflectance were used for deriving both diffuse and direct instantaneous PAR. Daily
values were obtained by regression analysis. With the use of look-up tables and by as-
suming known aerosol properties the method does not rely on atmospheric data which
has proven to be hard retrieve from satellite. The results published so far are promis-
ing, and relative errors as low as 2% for daily values have been reported (Liang et al.,
2006).

Accordingly, incident PAR can be obtained at high accuracy from e.g. the MODIS
sensor. Temperature can also be obtained from MODIS: the land surface temper-
ature product gives temperature at 1 km resolution globally every day by the use of
seven thermal infrared bands (Wan and Li, 1997). The product have been validated
against ground measured temperature and high accuracies have been reported, how-
ever, since thermal infrared signals from the earth surface are hard to register by a
satellite sensor when clouds are present, temperature is only retrieved when the sky
is clear (Wan et al., 2004). Furthermore, the MODIS sensor is carried by both the
Terra and Aqua platforms, resulting in two daily observations around noon instead of
daily means. Assuming that AT, as it is defined in this study, can be obtained from
satellite is therefore not a fully valid assumption. As an alternative to satellite obser-
vations, regional climate data sets is a solution. For example, the SWECLIM data set
gives modeled air temperature with a three hour temporal resolution across the Nordic
countries (Rummukainen et al., 2000).

3156

BGD
4, 3143-3193, 2007

Towards operational
remote sensing of
forest carbon balance

P. Olofsson et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/3143/2007/bgd-4-3143-2007-print.pdf
http://www.biogeosciences-discuss.net/4/3143/2007/bgd-4-3143-2007-discussion.html
http://www.egu.eu

10

15

20

25

3.2 Correlation between satellite and biophysical parameters

Figure 3 shows the relationships between 1 km EVI and GPP (a) and daily maximum
NEE (b) averaged over one month and for all coniferous and deciduous data, ex-
cept for Sorg where 250 m data was used since the 1km pixel is clearly influenced
by thez surrounding crop lands. The linear correlation is stronger for the deciduous
sites, r(E, P;)=0.90; r(E, F, max)=0.91, than for the coniferous sites (0.83 and 0.85,
respectively). One of the reasons for this is that the deciduous data are collected from
only two sites (12 years of data), which are quite similar in terms of species and struc-
ture, while the coniferous data are collected at five different sites, including both pure
and mixed stands of Scots pine and Norway spruce, for a total of 15 years. Another
reason is that the EVI has a larger dynamic range for the deciduous sites than for the
coniferous, with EVI values ranging between about 0.15 and 0.8 as compared to 0-0.5
for the coniferous (Fig. 4, also evident in Figs. 1 and 2), which in combination with
higher uptake levels results in a stronger correlation. It was found that the productivity
of the coniferous ecosystems is one month ahead the EVI (Fig. 5), or in other words,
the EVI reaches the corresponding GPP level one month “too late”, and the reported
relationships were established using the EVI data from the one month following of the
biophysical parameters. (This is clearly illustrated in Fig. 5 which shows EVI and GPP
for the Knottasen site.) The reason for this is not fully clarified. One issue that may help
explain the phenomenon is the use of TIMESAT; the original EVI sometimes exhibits
a peak in the beginning of summer which tends to be eliminated by the adjustment.
This is obvious in Fig. 1 — which, just as Fig. 5, shows 1 km EVI at Knottdsen — for the
EVI curves 2001 and 2002 (and also 2006), especially for 2002 where the original EVI
peaks about one month before the TIMESAT-adjusted EVI.

The GPP-NDVI and max. NEE-NDVI relationships are weaker than the EVI relation-
ships because the NDVI saturates at high uptake levels (Figs. 6a and b). Only 250 m
data has been used except in Hainich and Hyytidla, so the area representation is likely
to be higher for the NDVI than for the EVI. As stated by Huete et al. (2002), one of the
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main advantages of the EVI over the NDVI is the higher sensitivity over regions with
high biomass, making the the former less prone to saturation, a fact which is confirmed
by the results of this study. As stated, the NDVI values are higher than the EVI values
for almost all data points, with an average NDVI of 0.65 and 0.75 for the coniferous
and deciduous sites, respectively, as compared to 0.27 and 0.41 for the EVI. The same
has been found in ecosystems considerably different from the ones in this study (Huete
et al., 2002; Fensholt et al., 2006). However, NDVI correlates fairly well with the max-
imum uptake (r=0.86 and 0.73 for deciduous and coniferous data, respectively), but
due to the exponential behavior induced by the NDVI saturation, the confidence and
prediction intervals are wider compared to the EVI relationships, especially for the de-
ciduous data. The correlation coefficients are given in Table 3, which also gives the
correlation between the VIs and monthly values of NEE and respiration; again, EVI
is superior to the NDVI and correlates better with all parameters for both forest types,
and again, the saturation of the NDVI at higher levels of uptake (or release for respira-
tion) is responsible for the lack of correlation. The saturation generates a characteristic
“wall” of NDVI values around 0.9, parallel to the y axis (Figs. 6a, b and 8), which is not
present for the EVI (Figs. 3a, b and 7). There is low correlation between monthly NEE
and the Vls, considerably lower than for GPP and ER, mainly because of a slight time
discrepancy in the seasonal development between productivity and ER. This occurs
because the altter depends on both air and soil temperature, and soil temperature lags
air temperature, which causes a decrease in the net carbon uptake sometime around
late summer. With NDVI being less able to capture the vegetation peak, EVI is better
correlated with these parameters. An example of this is given in Fig. 9 which shows
NEE, GPP, ER and the Vls for Asa 2002; the EVI traces the NEE until about DOY 190
where the carbon uptake suddenly drops. APAR is the main driver of photosynthe-
sis and not surprisingly correlates better to all biophysical parameters than the Vls
(Table 3). AT correlates very well with logarithmic ER for the coniferous data, with cor-
relation coefficients of 1.0 when rounded at Asa (which is suspiciously high although
derived from only twelve points), 0.98 at Skyttorp, 0.97 at Hyytiala, 0.96 at Knottasen
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and 0.89 at Norunda (Fig. 10a). The relationship is weaker for the deciduous stands
(Fig. 10b), r[T, log(R)]=0.85 (0.91 for Hainich and 0.87 for Sorg). As seen by the slope
of the linear fit, ER also seems to be responding to temperature quite differently, with
the response being much sharper at Sorg indicating that an increase in temperature
results in sharper rise in ER at Sorg than in Hainich.

3.3 Models of ER, GPP and NEE

Different sets of models were constructed for the two forest types (Table 4). The models
were constructed using data from certain sites and evaluated in others.

The strong correlations reported here (Table 3) indicate that the biophysical param-
eters, GPP and max. NEE above all, can be obtained using a simple linear regression
model with only one independent variable. For example, when estimating F,(¢) using
E(t+1) as independent variable, the regression model explains 79% of the variation for
the coniferous data. Using /, ,(t) instead gives an r? value of 90%. The corresponding
figures using E(f) and /, ,(t) for the deciduous data are 76% and 78%, respectively.
These results support the findings of Sims et al. (2006) who stated that EVI alone can
be used successfully for estimating GPP. Using APAR instead of EVI will give even
higher accuracies, assuming that incident PAR can be obtained with high accuracy.

Coniferous max. NEE was estimated using £ (f+1) as independent variable with an
r? value of 80%. Using APAR instead gave a lower accuracy which is a bit surprising
since the full APAR time series correlated better with max. NEE than the EVI. Also de-
ciduous max. NEE was more accurately modeled using E(¢) as independent variable,
with 80% of the variation in measured max. NEE explained. Accordingly, the maximum
carbon uptake, calculated as the mean of the five observation around the highest daily
recorded value, can be modeled on a monthly basis using EVI alone with an r? value
of 80% for both forest types.

As expected, monthly coniferous NEE can not be modeled using neither APAR, EVI
nor AT alone, nor combined in a multiple regression model. These models explained
only about 50% or less of the measured variation in NEE. The deciduous NEE in this
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study was more regular and displayed a higher degree of periodicity, resulting in higher
correlations with e.g. APAR, thereby making it possible to estimate it directly from APAR
alone. Even though such a model explains about 75% of the variation, it is likely that
the inclusion of other stands would lower that figure, making it necessary to include e.g.
temperature. However, more data is needed before such conclusions can be drawn.

To obtain NEE, individual multiple regression models for GPP and ER were created.
It was found that using EVI and APAR as independent variables for GPP gave the
highest accuracy, with APAR being a more important variable explaining more of the
variation than EVI. No accuracy was gained by using E (f+1) instead of E(t), probably
because APAR is the more important variable. As suggested by the observed correla-
tions in Table 3, using EVI instead of NDVI gave a higher correlation, probably because
of the larger dynamic range of the EVI. Monthly GPP was well described by the re-
gression models, with a large proportion of the total variability in measured GPP being
explained by the model: r?=86% (dec.) and r?=95% (con.), respectively (Figs. 11 and
12; and Tables 4 and 6). The lower accuracy for the deciduous stands is to a large
extent caused by an underestimation of the productivity peaks during the summers in
Sorg. Since the coniferous GPP model is constructed using data from only two sites
and evaluated at five sites representing four years, the r? value of 95% indicates that
the model is robust both in time and space. With only two stands, the same conclusion
cannot be drawn for the deciduous model. However, a high accuracy is achieved and
even though more validation is needed, the results indicate that deciduous GPP can be
accurately modeled on an operational basis using only EVI and APAR as independent
variables. It is evident from Fig. 11 that the accuracy of the NEE modeling suffers from
failure to capture the high respiration at Sorg during the summer of 2005, and over-
estimates the spring productivity during 2005. The high productivity rates during 2004
cannot be explained by any of the satellite parameters since they do not increase from
2003 to 2004, in fact, both APAR and AT decrease from the summer of 2003 to 2004
and with summer EVI staying the same, the model will output a relatively low GPP,
causing a large error.
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ER was modeled using Eq. (4), and just as with GPP, a high accuracy was achieved,
especially for the coniferous data (r2=73% and r2=93%; Figs. 11 and 12; and Table 4
and 6). As evident in Fig. 12, modeled coniferous ER traces measured ER very well.
The accuracy of the deciduous ER model is not able to capture the much higher res-
piration rates at Sorg compared to Hainich, especially during 2005. There is also a
weaker relationship between AT and ER for the deciduous data (Table 3), with the two
stands exhibiting quite different responses in ER to changes in AT (Fig. 10b). Since AT
is strongly correlated to logarithmic ER, an attempt was made to model ER as an ex-
ponential function of AT without relying on R,,. Even though such a model will be able
to explain much of the variation in ER at a specific site, the model — which was con-
structed in the same manner as the GPP model — was unable to capture the respiration
magnitudes for the different sites, confirming the findings of Janssens et al. (2001) who
found AT to control changes in soil respiration within sites but not between sites. For
example, the model was able to simulate ER at Hyytiala 2005 and Asa which exhibits
quite similar AT response (Fig. 10a), but failed to capture the high respiration rates
during summer at Knottasen. As a consequence, an external factor which defines the
site-specific magnitude in ER has to be introduced. Equation (4) uses the year- and
site-specific ER rate at 10°, R4, which is derived from the observed logarithmic ER
and AT relationship, and hence, makes the model non-operational as there is no es-
tablished approach to obtain this parameter from space. The observed R, are given
in Table 5. An attempt was made to relate these values to the VI's but no significant
relationships were found.

NEE is the difference between productivity and respiration, and modeled NEE was
here defined as the difference between modeled GPP and ER. Much of the carbon fixed
by photosynthesis in Northern European forests is lost through respiratory processes
(Valentini et al., 2000), which — from a computational aspect — means that the remaining
NEE becomes small and therefore is more likely to generate a higher relative error in
the modeled time series, and hence, weaker correlation. This is especially true for
the boreal sites which have an annual NEE close to zero. At Norunda, for example,
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an annual carbon loss has been observed, probably due to past soil drainage which
enhance the respiratory processes at this site (Lindroth et al., 1998). Therefore, it is
not surprising that the fit of modeled NEE to measured data was weaker compared
to the GPP and ER models for both forest types, r*=61% (dec.) and r?=75% (con.)
(Figs. 11 and 12; and Tables 4 and 6). In general, it is obvious that a small discrepancy
in the modeled GPP and ER can result in a large relative error in the final NEE. For
example, the GPP model misses the growing season production peak in Hyytiala by
about 1gm'2 d™" which results in an average relative error of about 6%. Although
rather small, this error, together with a very accurate estimation of ER, results in a 45%
average relative error in final NEE for Hyytidla. As a consequence, the accuracy of the
coniferous GPP and ER models, with coefficients of determination above 90%, results
in 75% of the total variation in measured NEE is being explained by the models. These
are still good estimates, proving the potential for operational remote sensing of boreal
carbon balance. The modeled deciduous NEE is less accurate, with the carbon uptake
at Sorg 2004 being completely missed due to the inaccurate 2004 GPP estimation.

In summary, GPP was modeled with higher accuracy for the coniferous sites than
for the deciduous, in spite of the higher correlations observed between the satellite
parameters and all ground measured biophysical parameters (Table 3). This could
be attributed to the fact that only two deciduous site were used for parameterization
and evaluation, with none of the sites being very variable from year to year. For the
coniferous data, two sites were used for parameterizing, sites that have a higher inter-
annual variation, especially Norunda where, as mentioned, the higher variability may
be attributed to soil disturbance caused by past drainage. Accordingly, the availability
of measured biophysical data — GPP, ER, and in particular, NEE — is of utmost im-
portance: the more data that is available, both in time and space, the more reliable
estimates can be obtained. For this study, it would be desirable to use more data in
general, especially from other deciduous sites in Scandinavia, such as oak and birch.
The latter species is abundant in forests in Northern Scandinavia.

Finally, annual modeled NEE, obtained by the averaging of the monthly estimates
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over the years, was compared to averaged measured NEE. The result is seen in
Fig. 13. The points for the coniferous data are clearly dispersed along the one-to-
one line (r2=79%), while the deciduous points deviate from the line. One explanation
for the very low accuracy of the deciduous annual estimates compared to the monthly,
is that the interannual NEE behavior is quite similar from year to to year with small
changes even between Hainich and Sorg. Again, the lack of deciduous data makes it
hard to draw further conclusions on the annual NEE estimates. The coniferous sites
exhibit more variation which in combination with a more accurate monthly modeling
results in a high annual accuracy.

4 Conclusions

The results of this study illustrate the potential that remote sensing can be used for
assessing the carbon balance of forested areas in Northern Europe.

Linear relationships between parameters that can be made available from satellite
(VIs, APAR, and AT) and measured biophysical parameters (NEE, max. NEE, GPP and
ER) were found for both coniferous and deciduous data. APAR was highly correlated
with the biophysical parameters. There were no linear relationships between NDVI and
the biophysical parameters found at any site, mainly because of a distinct saturation in
the NDVI at higher uptake levels.

Modeling monthly and annual carbon balance (ER, GPP and NEE) using a regres-
sion model driven solely by APAR and EVI (with the former being more important),
and the Lloyd-Taylor equation with AT and annual R, as input, was proven successful,
especially for the boreal coniferous stands. The deciduous modeling was less suc-
cessful and suffered from a lack of data. In order to make the presented method fully
operational, large scale retrieval of R, must be accomplished. The presented method
relies on measured biophysical data for both model parameterization and evaluation,
and hence, the amount of measured biophysical data available is crucial.
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Table 1. Information on the sites (Pinus sylvestris is Scots pine, Picea abies Norway spruce,
Fagus Sylvatica beech and Fraxinus excelsior ash).

Site Dominant species Coordinate Reference
Asa Pinus sylvestris L. and Picea abies (L.) Karst 57.17°N, 14.80°E  Berggren et al. (2004)
Hyytiala Pinus sylvestris L. 61.85°N, 24.29°E  Kolari et al. (2004)

Knottdsen Picea abies (L.) Karst and Pinus sylvestris L. 60.13°N, 17.83°E  Berggren et al. (2004)
Norunda Pinus sylvestris L. and Picea abies (L.) Karst 60.09°N, 17.50°E Lundin et al. (1999)
Skyttorp Pinus sylvestris L. 60.13°N, 17.83°E -

Sorg Fagus sylvatica L. 55.49°N, 11.65°E  Pilegaard et al. (2001)
Hainich Fagus sylvatica L. and Fraxinus excelsior L.  51.08°N, 10.45°E  Knohl et al. (2003)
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Table 2. The sites, tree type and for which data is available.

Site Country Type 2000 2001 2002 2003 2004 2005
Asa SWE Con. - - v - - -
Hyytigla  FIN Com. V' V' M /MM
Knottdsen SWE Con. - v v - - -
Norunda  SWE con. M S N v - -
Skyttorp  SWE Con. - - v - - -
Sorg DEN Dec. /" N N v v v
Hainich  GER bec. VY M MV Vv v

M Data used for model construction and excluded from the evaluation.
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Table 3. Correlation between monthly averages of parameters obtained from satellite (X) and forest carbon balance

ground measured data (Y).
P. Olofsson et al.

Dec.r(X,Y) NEE GPP ER maxNEE minNEE

APAR 086 091 079  0.88 -0.69
AT 079 0.87 085  0.88 -0.72
EVI 083 090 079  0.91 -0.74
NDVI 073 079 070 082 -0.67
Con.r(X,Y) NEE GPP ER maxNEE minNEE
APAR 076 0.93 0.81 0.89 -0.70
AT 061 090 092° 0.90 -0.80
EVI 067" 0.83" 0.76' 0.85' -0.68'
NDVI 049" 0.70" 0.66'  0.74' -0.63"

* Logarithmic ER
t Correlation between VI at time t+1 months and parameter at time ¢.
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Table 4. Models for GPP and ER.

Deciduous

P,=0.24/, ,+10E-3.7
R,=R1,exp[105.9(34.187' ~(T-247.4)7)]
Coniferous

P,=0.19/, ,+4.3E-0.9
R,=R,,exp[126.3(38.64 ' —(T-243.0)™")]
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Table 5. Values of R,, for each site and year. Last column gives the mean and standard

deviation.

Site 2000 2001 2002 2003 2004 2005 Meanzstd
Asa - - 2.9 - - - 2.9
Hyytiala 3.1 2.8 2.8 3.0 2.7 2.8 2.8+0.13
Knottasen - 4.6 4.2 - - - 4.3+0.33
Norunda 3.1 2.6 2.2 3.7 - - 2.8+0.67
Skyttorp - - 2.2 - - - 2.2
Sorg 3.8 4.1 3.5 3.0 5.7 2.7 3.8+1.1

Hainich 3.3 3.1 3.1 2.8 3.4 3.0 3.1x0.21
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Table 6. Coefficients of determination and RMSE [g m~2 d'1] of modeled GPP, ER and NEE.

Error and r2 NEE GPP ER
Deciduous, r? 61% 86% 73%
Deciduous, RMSE 1.8 1.8 14
Coniferous, r? 75% 95% 93%

Coniferous, RMSE 0.73 0.80 0.59
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Table 7. Abbreviations, denotations and units.

Parameter Abbreviation Denotation  Unit

Net Ecosystem Exchange NEE F, gm=2d™’
Maximum NEE Max. NEE  Fp o gm2d™
Net Primary Production NPP P, g m=2d™"
Gross Primary Production GPP Py g m2d~"
Ecosystem Respiration ER R, gm=2d™’
Light-Use Efficiency factor LUE factor £ g mol ™"

Air Temperature AT T °’C
Photosynthetically Active Radiation PAR I, molm™2d™’
Absorbed PAR APAR Iy molm=2d~"
Fraction of APAR FAPAR f, -

Leaf Area Index LAI L -
Reflectance - o) -
Wavelength - A um
Vegetation Index VI 4 -
Enhanced VI EVI E -
Normalized Difference VI NDVI N -
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Fig. 1. Raw and TIMESAT-adjusted EVI at both 0.25 and 1 km resolution for a coniferous site

at 60° N (Knottasen).
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Fig. 2. Raw and TIMESAT-adjusted EVI at both 0.25 and 1 km resolution for a deciduous site

at 55° N (Sorg).
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Fig. 3a. Relationship between 1 km EVI and monthly averages of GPP.
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Fig. 4. Scatterplot of 1 km EVI and 250 m NDVI for all sites listed in this study.
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Fig. 5. Monthly values of EVI and GPP at Knottdsen 2001 and 2002.
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Fig. 6a. Relationship between 1 km NDVI and monthly averages of GPP.
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Fig. 6b. Relationship between 1 km NDVI and monthly averages of max. NEE.
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Fig. 7. Relationship between 1 km EVI and monthly averages of NEE.
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Fig. 8. Relationship between 1 km NDVI and monthly averages of NEE.
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Fig. 9. Daily GPP, ER and NEE together with 16-days composites of EVI and NDVI at Asa
2002.
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Fig. 10a. Relationship between monthly averages of logarithmic ecosystem respiration and air
temperature for the coniferous data.
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Fig. 11. Measured and modeled time series of GPP, RE and NEE for the deciduous stands

[g m~2 d'1].
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Fig. 12. Measured and modeled time series of GPP, RE and NEE for the coniferous stands
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Fig. 13. Scatterplot of annually averaged measured and modeled NEE [g m=2d™".
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