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Abstract

Estimating carbon exchange at regional scales is paramount to understanding feed-
backs between climate and the carbon cycle, but also to verifying climate change mit-
igation such as emission reductions and strategies compensating for emissions such
as carbon sequestration. This paper discusses evidence for a number of important5

shortcomings of current generation modelling frameworks designed to provide regional
scale budgets. Current top-down and bottom-up approaches targeted at deriving con-
sistent regional scale carbon exchange estimates for biospheric and anthropogenic
sources and sinks are hampered by a number of issues: We show that top-down con-
straints using point measurements made from tall towers, although sensitive to larger10

spatial scales, are however influenced by local areas much stronger than previously
thought. On the other hand, classical bottom-up approaches using process information
collected at the local scale, such as from eddy covariance data, need up-scaling and
validation on larger scales. We therefore argue for a combination of both approaches,
implicitly providing the important local scale information for the top-down constraint,15

and providing the atmospheric constraint for up-scaling of flux measurements. Com-
bining these data streams necessitates quantifying their respective representation er-
rors, which are discussed. The impact of these findings on future network design is
highlighted, and some recommendations are given.

1 Introduction20

Rising atmospheric CO2 due to fossil fuel combustion and deforestation represents the
major cause for global warming (IPCC, 2007). Only about 45% of the emitted CO2
remains in the atmosphere, while the rest is taken up by the ocean and land biosphere
(Canadell et al., 2007). This so called “airborne fraction” shows large interannual vari-
ability ranging from 0% to 80%, mostly due to the varying land sinks (Canadell et al.,25

2007). Quantifying land biosphere CO2 fluxes and understanding their behaviour in a
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changing climate has therefore high research priority.
Measurements of atmospheric CO2 from a global network of stations in combination

with global inverse transport modelling have been an important source of information
on biosphere-atmosphere exchange at coarse spatial resolution ranging from global,
hemispheric to continental scales down to regional scales of several hundreds of kilo-5

metres (Tans et al., 1990; Gurney et al., 2002). This allows partially resolving scales
at which climate anomalies (droughts and rainfall anomalies, heat waves) interact with
the biosphere. However, in order to better resolve the responses of various vegetation
types and the impact of human interventions (land use change and land management)
on land-atmosphere fluxes, inversions increasingly focus on smaller scales. The need10

to utilize non-background measurements of CO2 to retain information on fluxes on
those scales has already been discussed since more than a decade (Ramonet and
Monfray, 1996). The increased availability of new continuous concentration data with
high temporal resolution at land based stations from tall (>200 m) towers in principle
supports this trend and suggests that in the near future it may indeed be possible to15

monitor the success or failure of emission reduction or sequestration efforts in the con-
text of climate change mitigation. As a consequence of this trend, estimating regional
scale carbon budgets has become a major focus (Dolman et al., 2006; Lin et al., 2006;
Wofsy and Harriss, 2002).

Attempts to retrieve information on biosphere-atmosphere exchange at regional20

scales from continuous concentration measurements made by networks of tall towers
implemented in the US and Europe (Peylin et al., 2005; Gerbig et al., 2006; Matross
et al., 2006; Lauvaux et al., 2008) have recently started. However, atmospheric for-
ward and inverse modelling at these scales is non trivial, and mesoscale circulations
have the potential to dramatically complicate the interpretation of these measurements25

(Pérez-Landa et al., 2007; van der Molen and Dolman, 2007; Ahmadov et al., 2007;
Sarrat et al., 2007). The large heterogeneity of land-atmosphere fluxes requires also
transport models with much higher spatial resolution (meso-gamma, 2–20 km) than
those currently used. Furthermore, performing inversions at this scale requires im-
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proved knowledge of a priori fluxes that represent this variability, together with appro-
priate estimates of the associated a priori uncertainties and their spatial and temporal
correlations. Gerbig et al. (2006) showed that incorrect assumptions about the degree
to which the uncertainties in the a priori fluxes are spatially or temporally correlated will
either lead to biased flux estimates, or to an overestimation of posterior uncertainties5

resulting in a weaker constraint on fluxes.
Difficulties in accurately representing atmospheric transport are not simpler at re-

gional scales compared to global transport models. Indeed they may in fact be
more complex: modelling vertical mixing, most prominently mixing within the planetary
boundary layer (PBL), is associated with uncertainties that cause problems in estimat-10

ing fluxes from boundary layer CO2 measurements at large scales (Stephens et al.,
2007) as well as at regional scales (Gerbig et al., 2008). However, over continents,
the close proximity of measurement sites to spatially variable sources and sinks imply
that uncertainties in advection due to slight errors in assimilated winds will significantly
affect modelled mixing ratios (Lin and Gerbig, 2005). Although these issues have been15

recognized for some time now, implementation of strategies to mitigate the impact has
proven difficult.

In contrast to “top-down” inversions, “bottom-up” estimates of carbon budgets that
start with process information from leaf-level measurements and eddy covariance mea-
surements at the scale of a few square kilometres, require up-scaling to provide infor-20

mation at regional scales. We argue for an approach to combine the data streams
from flux and concentration measurements in a model-data fusion system (Matross
et al., 2006), similar to the approach recently taken with CarbonTracker (Peters et al.,
2007), but now targeted at regional scales. We strongly belief that such a data fusion
system would finally be able close the gap between eddy covariance footprints and25

concentration footprints.
In a model-data fusion system it is paramount to take into account the uncertainties

of the various data streams, as they provide a natural and objective statistical weight.
Uncertainties in this context include experimental uncertainties, but also uncertainties
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of the modelling framework itself. This view has important implications for the design of
a carbon observing network, several of which are now planned or being implemented
(Dolman et al., 2008). Thus the overall error, including the model uncertainties, needs
to be taken into account for network design. Only this will provide an objective measure
for the information content provided by a specific network element. This is one of the5

key arguments of this paper.
This paper is organized as follows. In Sect. 2.1 we investigate the effect of near field

variability on the observed concentrations of atmospheric CO2, which is of fundamental
importance for utilizing the information from the top-down constraint imposed by the
observations. In Sect. 2.2 we emphasize the need for increased attention to treatment10

of model uncertainty. In Sect. 2.3 review the implications of this on the treatment of
uncertainties in model-data fusion systems, while, in Sect. 3 we discuss the implication
for network design.

2 Addressing increasingly smaller scales: the issues

2.1 The near-field versus far field impact of atmospheric observations15

Observations made within the continental boundary layer are strongest influenced by
sources and sinks in the proximity of the measurement locations. This is related to
the nature of atmospheric mixing: tracers emitted from a small patch of surface are
dispersed rapidly by the combination of vertical motion through the combined effect
of turbulent eddies and wind-shear, causing a fast decrease in concentration with dis-20

tance. Combined with the strong spatial variability in surface fluxes of CO2 this causes
a corresponding variability in concentrations, which poses difficulties for simulations of
atmospheric CO2 based on transport models (Geels et al., 2007). Various attempts
have been made to quantify the scales of variability of atmospheric CO2 and the re-
lated representation error in coarse resolution models, starting with statistical analysis25

of spatially distributed aircraft data (Gerbig et al., 2003a; Lin et al., 2004) over sensitiv-
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ity analysis using different scales of variability of surface fluxes (Gerbig et al., 2003b)
to statistical analysis of high resolution simulations of atmospheric CO2 (Corbin et al.,
2008; van der Molen and Dolman, 2007; Tolk et al., 2008).

Increasingly tall towers are being proposed and set up to provide complementary
observations over land (Bakwin et al., 1995; Haszpra et al., 2001; Tans et al., 1996), in5

addition to the mountain top stations that predominantly sample the free tropospheric
concentration of CO2. They are generally conceived as being able to bridge the gap
between surface flux stations and tropospheric observations. This observation system
raises a number of questions, with respect to the design of a network. In a network
of tall towers, the most important one is to ask: what is it that the individual tower10

observes?
We rephrase this question as: given that a typical atmospheric observation station

such as a tall tower is surrounded by vegetation with spatially varying fluxes, what is
the relative impact of near-field (∼50 km distance) vs. far field fluxes on the measured
concentrations? If the far field is dominant they are useful for large scale application,15

if they are primarily reflecting near field effects, they effectively sample only the small
scales. To investigate this question we combine a simple biospheric flux model with
atmospheric transport at high resolution. We use the same modelling framework as in
Gerbig et al. (2006), further on referred to as G06, which links GEE (gross ecosystem
exchange fluxes) for different vegetation types from a light use efficiency (LUE) model20

and respiration fluxes scaled with near-surface temperature to the STILT (Stochastic
Time Inverted Lagrangian Transport) model driven by analysed winds from EDAS (Eta
data assimilation system). The model was run for one month during the growing sea-
son (August 2002) for the Harvard Forest tower (MA, USA). Observed synoptic and
diurnal variability was captured by this model reasonably well (G06).25

Formally, the CO2 mixing ratio at the measurement site can be formulated as a
sum of individual contributions from all surface elements of the domain using a polar
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coordinate grid with the measurement location at the center of the grid:

C(tr ) =
∑
i ,j

c(tr |ϕi , rj ) +
∑
i

C0(tr |ϕi ) (1)

Here c(tr |φi , rj ) is the contribution to the mixing ratio at time tr at the tower from past
biospheric fluxes of the grid element i and j in the polar grid, and C0(tr |φi ) is the
contribution from the lateral boundary condition of the regional model domain. The5

individual contributions from each grid element can be expressed as a product of past
surface fluxes and the surface influence (or footprint):

c(tr |ϕi , rj ) =
∑
m

f (tr |ϕi , rj , tm) ·∆A(rj ) · F (ϕi , rj , tm) (2)

The footprint f (tr |φi , rj , tm) relates the surface flux F (φi , rj , tm) (in units of

µmoles/m2/s) at location φi , rj , (averaged over the grid cell) and time tm to mixing10

ratios at time tr at the tower located in the origin of the coordinate system. The grid
cell area ∆A(rj ) depends only on the radial index. It is important to mention that in the
chosen setup the different distances correspond to areas that strongly increase with
distance from the measurement location. This is the result of using a spatially variable
grid size that increases with squared distance, and thus is adapted to the spread of sur-15

face influence caused by atmospheric mixing (for details see G06). This dependence
of ∆A(rj ) on rj is chosen so that the contributions from spatially homogeneous surface
fluxes are on average independent of the distance from the grid cell to the measure-
ment location. Note that when using a grid with constant grid size, the contributions
from distances larger than 100 km would become virtually negligible compared to the20

local influence. However, since atmospheric mixing does integrate spatially, we regard
the chosen representation as adequate. Equation (2) defines footprints as a property
of transport only, independent of the surface fluxes; in our case the footprints have
been calculated using the STILT model (Lin et al., 2003). The product of footprint and
surface flux can be regarded as the instantaneous influence from upstream surface25

fluxes.
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We analysed the contributions to CO2 originating from surface elements with a cer-
tain distance to the measurement site, obtained by summing Eq. (2) over the different
sectors φi . c(tr |rj )=

∑
i
c(tr |ϕi , rj ), and shown in Fig. 1. These contributions can be

positive in case of respired CO2, and negative in case of CO2 taken up by biospheric
activity. Overall, uptake dominated during this month due to active photosynthesis dur-5

ing the growing season. The dominant influence on the tower observations is caused
by the fluxes from the first 20 km annulus, and drops down rapidly for larger distances
(Fig. 1). Note that only contributions related to afternoon measurements (15:00 local
time) are shown, when mixing is deep and transport models are assumed to be able to
accurately represent the measurements (Geels et al., 2007). When analysing monthly10

averaged contributions to CO2 signals in the afternoon (15:00 local time), the sharp
drop for distances larger than about 20 km can be seen more quantitatively (Fig. 2).
The change from negative to positive contributions at a distance of about 50 km is re-
lated to the fact that air parcels arriving at 15:00 local time are on average influenced
by night time fluxes in the region between 50–200 km upstream of the measurement15

location. When separating the contributions from respiration and photosynthesis (solid
and dashed grey lines in Fig. 2b), this reason becomes obvious. The contribution from
photosynthesis fluxes shows a distinct minimum around 50–200 km, while contribu-
tions from respiration are more or less constant apart from the 3-fold higher near-field
contribution. This suggests an important interplay of spatial and temporal variations in20

fluxes: the measurements are highly sensitive to the spatial distribution of the different
components of the biosphere-atmosphere exchange fluxes, in particular ecosystem
respiration and gross exchange due to photosynthesis. For other trace gases without
a strong diurnal cycle in sources or sinks, such as e.g. CH4, the area that the tower
measurements are sensitive to is essentially much larger, as can be seen from the25

contributions from respiration. For CO2, the day-to-day variance drops by more than
a factor of four at distances larger than 100 km (Fig. 2a, grey lines), indicating that the
near field also dominates the variability on time scales between diurnal and monthly,
most prominently synoptic scales.
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Gloor et al. (2001) have estimated footprints using a somewhat different approach,
which combines measurements of C2Cl4 (tetrachloroethene), a tracer with known spa-
tial emission pattern, with simple trajectory transport simulations. Note that their defi-
nition of a footprint is not solely as a transport property as defined in Eqs. (1) and (2),
since in their approach the footprint also depends on the emission pattern and on the5

model-measurement agreement. They find a surprisingly large area of 106 km2 con-
tributing to short term variability of C2Cl4, an area corresponding to distances of more
than 500 km in Fig. 2. Our different conclusion for the size of the area contributing to
variability of CO2 is partially related to the finer representation of the near-field influ-
ence (a 20 km circular area compared to 1×1◦), but mainly related to the fact that CO210

is subject to fluxes with a strong diurnal cycle, unlike the tracer (C2Cl4).
The important consequence of this dominance of the near field contributions to day-

time mixing ratios of CO2 for inversion studies is that a small bias in the assumed flux
in the near field can cause a large bias in the modelled mixing ratio. Thus, a 10% flux
bias (assumed constant over the month) in the nearest 20 km is equivalent to a similar15

flux bias in all other areas combined, i.e. on regional to continental scales between
20 km and several hundred of km. In this sense, the fluxes from the nearest 20 km
have the same impact on measurements as from the rest of the domain. It is important
to note that this dominance is occurring not only on daily time scales, but on synoptic
and monthly time scales. Periods during the dormant season are substantially less20

affected by this effect due to the absence of photosynthesis which causes the diurnal
cycle. However, biases during the growing season will have an impact on annual or
decadal budgets.

A compensating effect rises when using multiple towers in a network: since a local
bias in fluxes at one tower location is a far-field small scale bias for other tower loca-25

tions, resulting errors are expected to be uncorrelated between different sites. Thus for
large spatial scales the error resulting from local biases should be less for a sufficiently
large network than described above for a single site. The exact impact of local effects
in case of a network needs to be assessed in a more sophisticated simulation.
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2.2 Accounting for uncertainties in models

Most top-down inversions studies performed so far have focused on specifying the a
priori uncertainty in fluxes, with other sources of error been mostly treated in a lumped
approach. This combines all uncertainties into a single measurement error that is of-
ten assumed constant in time and space with the exception of land-ocean differences.5

However, combining the different data streams in a model-data-fusion requires an ap-
propriate way of weighting their influence on the targeted flux estimates. In principle,
the representativeness of the data in the context of the model’s capability can provide
this weight: instrumental noise which reduces the representativeness of data should be
taken into account, but also any possible error of the model such as a too coarse tem-10

poral or spatial resolution, or processes that are not represented or only represented
in a crude way.

Some of these errors and their impact on the uncertainty of simulated CO2 in the
atmosphere are listed in Table 1. Note that the lower range of prior uncertainties listed
in Table 1 is actually smaller than some of the transport related uncertainties, which15

indicates the importance of improving the capabilities of transport models in order to
be able to actually reduce the uncertainties in fluxes.

Transport uncertainties due to advection (Lin and Gerbig, 2005) as well as vertical
mixing (Stephens et al., 2007; Gerbig et al., 2008; Denning et al., 2008) significantly
affect modelled mixing ratios. These uncertainties need to be addressed by improving20

the modelling systems. This can be achieved by improved algorithms for boundary
layer schemes. A further approach is to assimilate additional information related to
transport, such as meteorological observations made at the network elements; Ger-
big et al. (2008) for example suggested adding Lidar measurements to monitor mixing
heights at the tall tower locations, which when assimilated into the meteorological trans-25

port fields are likely to improve the representation of the measurements. However, it
is unlikely that within the next decades those transport related issues are completely
solved. Therefore an important part of treating these uncertainties is by error propaga-
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tion, so that measurements made under conditions that are more difficult to represent
are given a lower statistical weight. This approach has been successfully applied in
case of transport errors (Lin and Gerbig, 2005; Gerbig et al., 2008)

Spatial representation errors have been assessed using statistical analysis of obser-
vations (Gerbig et al., 2003a; Lin et al., 2004), but also using high resolution models5

(Gerbig et al., 2003b; van der Molen and Dolman, 2007; Tolk et al., 2008; Corbin et al.,
2008). These observations and model results could be used to derive parameteriza-
tions for representation errors, but they apply so far only to a limited set of conditions,
and maybe hard to generalize. The way forward here would be to develop nested mod-
elling systems where it is hoped that the model error would be reduced because of10

higher resolution near observation stations, and where in less dense observational ar-
eas the model resolution becomes less. The development of such systems still requires
considerable research.

2.3 Near field versus far field in data assimilation systems

Classical top-down approaches that use atmospheric observations and atmospheric15

transport models to derive continental or regional scale surface-to-atmosphere ex-
change fluxes use prior flux estimates and their associated prior uncertainties. These
priors are usually based on relatively coarse biosphere models, either of process mod-
els (Peylin et al., 2005) or of statistical flux models (Rödenbeck et al., 2003), and the
inversion targets corrections to these prior fluxes on relatively coarse scales (from grid20

cells the size of several hundreds of kilometres to regions the size of continents) within
the assumed prior uncertainties. A certain spatial and temporal aggregation of the
fluxes to be optimized in the inversions is required for regularization. This avoids that
the lack of information in the measurements leads to an under-constrained problem.
For instance, assuming inversions will use daily measurements (afternoon only) from25

a dozen of tall towers within a continent such as Europe, a maximum of 12 pieces of
information per day are available. On the other hand, the specification of fluxes at daily
resolutions requires on the order of several hundred to thousands pieces of informa-
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tion at spatial resolutions of 50–200 km every day. However, the specified spatial and
temporal aggregations are likely to cause errors as found by Kaminski et al. (2001).

In the light of the dominance of near-field fluxes on observed mixing ratios on
timescales from hourly to monthly (see Sect. 2.1), the current approach of top-down
estimation of fluxes can cause substantial aggregation errors. A simple misrepresen-5

tation of vegetation cover within the near field (first 20 km) will cause a substantial
aggregation error for the smallest pixel resolved by the model (∼ hundreds of km). On
these scales the flux patterns are dominated by variation in vegetation type (Gerbig et
al., 2003b). This type of variation is quite common in Europe (and probably not only in
Europe), with small patches of different crop changing with pasture or forested patches.10

There are two basic approaches to deal with this issue. One can a) allow for a cor-
responding uncertainty that accounts for the potential errors in representing the local
scale fluxes on the various time scales, or b) improve the way fluxes are represented at
high spatiotemporal resolution in the a priori flux estimates and thus attempt to largely
reduce the required uncertainties. In case a) the inversion will use most of the informa-15

tion to adjust the fluxes within the near field, thus leaving little information on large-scale
fluxes. In fact, in this case the inversions would mostly tell us whether the near-field flux
is consistent with our prior; discrepancies might be e.g. due to a wrongly specified local
vegetation cover in the prior. In the case b) significantly more quantitative information
on spatial flux patterns is required, which can only be provided through a combination20

with bottom-up approaches. An intermediate way would be to use a more detailed de-
scription of the covariance structure within a statistical flux model (Rödenbeck et al.,
2003), however this also involves more information from bottom-up approaches.

Classical bottom-up approaches use process information collected at the local scale,
such as from eddy covariance data (Baldocchi et al., 2001). This information is strictly25

representative only for small scales (e.g. eddy flux footprints ranging from hectares
to about 1 km2 (Schmid, 2002; Vesala et al., 2008). Even with the large number of
about 100 flux towers in Europe, by far the majority of the area covered by terrestrial
biosphere is not represented. To estimate fluxes on continental to global scales in the
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bottom-up approach, this information is scaled up using process oriented or diagnostic
models (Papale and Valentini, 2003; Heimann et al., 2008), partially supported by
remote sensing information (Running et al., 2004), gridded weather/climate driver data
as well as other GIS information (e.g. soil maps, land use/management data etc.).
This up-scaling is associated with uncertainties that are linked with the capability of5

these models to resolve the local conditions, for instance how to represent the land
use history of carbon pools, but also how representative the measurements are for
wider areas. Validation of the up-scaled product is therefore essential.

Mixing ratio measurements from a network of atmospheric monitoring stations can in
principle provide the required large scale constraint to validate the methods used for up-10

scaling of process level information. A direct comparison of top-down with bottom-up
estimates remains impractical, at least when taking the full uncertainties into account
including their temporal and spatial error covariances (Heimann et al., 2008). Compar-
isons can be made on agreed on spatial and temporal scales such as done in CarboEu-
rope (Heimann et al., 2008), but a comprehensive comparison at high spatiotemporal15

resolution would require covariance matrices that cover spatial scales ranging from
about a few km to account for the near-field constraint from the atmosphere to thou-
sands of km for the large-scale far-field constraint, and temporal scales ranging from
hours to multiple years, which would result in a prohibitive size. Taking into account the
full covariance is however required in order to quantitatively combine the two estimates20

to a consistent product. The way out of this dilemma is a merging of the data streams
into a model-data-fusion system (see Fig. 3). Such a system that will ultimately use in
a quantitative way information from atmospheric mixing ratios measured by tall towers,
satellites, and aircraft, as well as information from eddy covariance towers, inventories,
and remotely sensed vegetation properties, all providing local to regional information25

on biosphere-atmosphere fluxes. Our model-data-fusion system basically resembles a
global carbon cycle data assimilation system (CCDAS) (Kaminski et al., 2002; Rayner
et al., 2005), however it uses a much higher resolution to properly represent transport
and fluxes over the continents, with higher resolution nested grids around atmospheric
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observation sites that allow for representing the near-field. These high resolution nests
are a key element of the data-model-fusion in that they bridge the gap between data
and model.

Existing efforts in comparing top down and bottom up fluxes yield a complicated
picture (e.g. Heimann et al., 2008). This is due to the difference in scales with inversion5

estimates still being at considerable larger scale, the lack of detailed information to
validate the bottom up surface fluxes (see above), the lack of information on several
“small” carbon fluxes (Ciais et al., 2007, 2008), and adequate fossil fuel estimates
that may contaminate the concentration data on which the inversion is based. There
is also the lack of process representation in the bottom up models that are largely10

parameterized with regard to their key physiological and ecological processes.

3 Impact on network design

Network design is meant to optimize an observational network for maximum informa-
tion gain about the targeted product, in this case the surface-atmosphere exchange
of CO2 at high spatiotemporal resolution. The gain in information is equivalent to the15

reduction in uncertainty, and can in fact only be properly treated in a framework that
accounts for the uncertainty in the different parts of the modelling system designed to
convert the observations (e.g. point observations of concentrations and fluxes) into the
targeted product. Previous attempts to optimize networks have considered mostly a-
priori uncertainties, and representation errors and errors in transport were treated only20

in a very simplistic way (Gloor et al., 2000), or by using an ensemble of different trans-
port models of similar coarse resolution (Rayner, 2004). The resulting optimal networks
thus were optimal only in a very limited way, not accounting for many of the problems of
models to capture the spatiotemporal variations of CO2 (see Sect. 3). In the following
we discuss a number of implications for network design that we can already anticipate25

from the findings in Sect. 2, without having the model-data-fusion system in place.
The assessment of the relative importance of the near-field compared to the far-
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field, which appears directly related to the properties of atmospheric mixing processes,
calls for a good characterization of the surface fluxes in the immediate proximity of
tall tower observatories measuring atmospheric concentrations (Sect. 2.1). That way
the a-priori uncertainty would be largely reduced in the near-field, allowing for atmo-
spheric concentration measurements to be used as a constraint on the larger scales.5

Possible approaches for this near-field characterization are the deployment of addi-
tional eddy covariance systems, the use of additional shorter (and less costly) towers
measuring concentrations, deployment of aircraft measuring fluxes and concentrations
operationally or in campaign mode, but also enhanced use of high resolution remote
sensing information on surface-atmosphere exchange such as airborne spectral re-10

flectance measurements (Eiden et al., 2007).
A further implication is related to the imperfect representation of vertical mixing in

the transport models: taking uncertainty in vertical mixing (or simply in mixing heights)
into account has a significant impact on the relative value of column observations com-
pared to a network consisting of surface stations or tall towers. Modelled column inte-15

grated concentrations are to first order conserved when the mixing height is changed,
while modelled mixing ratios within the mixed layer (where ground-based in-situ mea-
surements are made) directly respond to changes in mixing height. This has a corre-
sponding effect on retrieved fluxes. In fact this is a main reason for designing airborne
experiments with multiple vertical profiles that allows a direct assessment of the mixing20

heights (Ahmadov et al., 2007; Dolman et al., 2006). Thus using column or profile in-
formation directly reduces the impact of vertical transport errors. This should be taken
into account when comparing the impact of different components of the observing sys-
tem, such as the e.g. future remote sensing of column CO2 from space (Crisp et al.,
2004), ground based FTIR column measurements (Washenfelder et al., 2006), or op-25

erational profile measurements from commercial airliners (Machida et al., 2008) with
the ground based observational network.

Another implication of accounting for model uncertainty is that areas that are difficult
to simulate, such as complex terrain or mountain stations (Geels et al., 2007) and
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land-sea breeze circulations (Ahmadov et al., 2008), need to be associated with a
correspondingly large uncertainty. A similar situation arises for complicated synoptic
conditions, such as during the time of frontal passages. A way out could be to avoid
complex situations entirely (i.e. by data selection), but since on the other hand most
continental stations in operation are likely to be influenced by mesoscale flows due5

to terrain effects (van der Molen and Dolman, 2007), it seems desirable to invest into
model development.

4 Conclusions

Network design is intrinsically linked with the capabilities of the tools envisioned to
utilize the information produced by the network of observations. This paper has high-10

lighted current shortcomings of these tools, with specific attention to atmospheric trans-
port modelling. A crucial conclusion is that we will always be faced with the issue of
limited spatial representativeness of any atmospheric measurement station. We show
that for a single tall tower during the growing season the fluxes in the nearest 20–60 km
contribute as much as the fluxes from all other areas combined. Given the current de-15

velopment towards high resolution information in top-down inversions, this paper calls
for a specific model-data-fusion approach that combines top-down and bottom-up ap-
proaches. In this approach it is vitally important to reduce the errors that are associated
with current low-resolution transport models used in the inversions. The suggested way
forward is to develop nested modelling systems that optimally take into account the20

need for high resolution models near observation sites. Although this paper has not
proven that this approach of high resolution model-data-fusion will solve the problems
of the near-field representativeness, it seems obvious to us that it will.

A specific recommendation for network design is made based on the, as yet, inherent
limitations of current modelling frameworks. We suggest that the near field of towers25

should receive special attention with additional information provided by flux towers,
allowing for atmospheric constraints to have more impact on the large scales inacces-
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sible to direct flux measurements. This calls for studies that specifically address the
interaction between small and large scale and the dilution of information content when
moving away from the observation site. Further, measurements of vertical profiles
and/or meteorological measurements allowing the determination of mixing heights are
highly recommended at the atmospheric monitoring sites to help reduce the uncertain-5

ties in simulated vertical mixing.
Only an adequate treatment of the associated uncertainties of the different com-

ponents of the system will allow optimal use of resources in assessing surface-
atmosphere exchange of greenhouse gases. Such treatment of all involved uncer-
tainties provides the direct incentive to improving the modelling capabilities, either by10

using models with higher resolution, or by using additional data to constrain them. We
thus envision using local meteorological observations made at the tall towers such as
winds and temperature, but also mixing height information from nearby radiosondes
or from ceilometers to improve the transport simulation where it matters most, in the
near-field of the stations measuring concentrations.15

A fundamental question that arises is whether a model-data-fusion system such as
proposed in this paper can be validated. One might argue that a model-data-fusion
approach with many data streams as input, specifically when bringing together the
bottom-up and the top-down approach, leaves no source of information for validation or
falsification of the results. However, bringing together the different data streams in one20

model-data-fusion system, allows in fact for a much better validation of the system as
compared to the classical top-down and bottom-up comparison: given that each data
stream is associated with uncertainties resulting from experimental and model errors,
one can in the simplest case use statistical tests such as chi-square tests. Thus by
comparing remaining residuals between observations and simulations, one can identify25

if certain parts or aspects of the model are biased. Alternatively, the model-data-fusion
system permits to leave out individual constraints and compare the resulting fluxes
on specific spatiotemporal scales. This would for example allow for, but is not limited
to, a classical comparison of the top-down constraint from the atmosphere with the
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constraint from bottom-up information (e.g. flux towers data).
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Table 1. Uncertainties involved in model-data-fusion using mixing ratio measurements to derive
regional fluxes of CO2, and impact on the observational strategy when attempting to minimize
their impact on flux estimates.

Source of
uncertainty

Type or error Size Impact on
observational
strategy

Reference

Transport
Model

Advection ∼5 ppm
(summertime)

avoid regions
with complex
flows

Lin and Gerbig
(2005)

PBL mixing ∼3.5 ppm
(summertime)

Vertical profiling,
column

Gerbig et al.
(2008)

Convection No estimate observations –

Mesoscale
processes

∼2–3 ppm
(summertime)

Avoid regions
with mesoscale
flows

Van der Molen
and Dolman
(2007), Tolk et
al. (2008)

Transport and
Flux Model

Grid
resolution

∼1 ppm
@ 200 km
(summertime)

Choice of
representative
stations

Gerbig et al.
(2003)

Flux Model Prior
uncertainty

2–8 ppm***
(summertime)

network
elements
distributed
according
to prior
uncertainties

P. Peylin,
personal
communication
(2008)

Aggregation Depending on
Aggregation
and Model

Gerbig et al.
(2006)

Measurement Precision,
accuracy

0.1 ppm
(targeted)

WMO WMO

*** using different biosphere models coupled to the same transport model
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Fig. 1. Contribution to the afternoon signal (15:00 local time) due to biosphere-atmosphere
exchange at different distances from the measurement location for the period of August 2002,
shown as contributions from the individual annuli. The color legend indicates the radius of the
outer boundary of each annulus.
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Figure 2. Monthly-averaged contributions to the signal at 15:00 local time due to biosphere-

atmosphere exchange at different distances from the measurement location, shown as 

contributions from the individual annuli with grey lines indicating monthly standard 

deviations (a), and together with contributions from respiration and photosynthesis fluxes 

(grey solid and dashed line respectively) (b). 
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Fig. 2. Monthly-averaged contributions to the signal at 15:00 local time due to biosphere-
atmosphere exchange at different distances from the measurement location, shown as contri-
butions from the individual annuli with grey lines indicating monthly standard deviations (a), and
together with contributions from respiration and photosynthesis fluxes (grey solid and dashed
line, respectively) (b).
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Figure 3. Simplified schematics of a Model-Data-Fusion system using multiple data streams 

to derive information on surface-atmosphere fluxes. 

 

Fig. 3. Simplified schematics of a Model-Data-Fusion system using multiple data streams to
derive information on surface-atmosphere fluxes.
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