English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Plant diversity effects on soil microorganisms support the singular hypothesis

MPS-Authors
/persons/resource/persons62384

Gleixner,  G.
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62392

Habekost,  M.
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62569

Steinbeiss,  S.
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Eisenhauer, N., Bessler, H., Engels, C., Gleixner, G., Habekost, M., Milcu, A., et al. (2010). Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology, 91(2), 485-496.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-D99F-5
Abstract
The global decline in biodiversity has generated concern over the consequences for ecosystem functioning and services. Although ecosystem functions driven by soil microorganisms such as plant productivity, decomposition, and nutrient cycling are of particular importance, interrelationships between plant diversity and soil microorganisms are poorly understood. We analyzed the response of soil microorganisms to variations in plant species richness (1-60) and plant functional group richness (1-4) in an experimental grassland system over a period of six years. Major abiotic and biotic factors were considered for exploring the mechanisms responsible for diversity effects. Further, microbial growth characteristics were assessed following the addition of macronutrients. Effects of plant diversity oil Soil microorganisms were most pronounced in the most diverse plant communities though differences only became established after it time lag Of four years. Differences in microbial growth characteristics indicate Successional changes from a disturbed (zymogeneous) to an established (autochthonous) microbial community four years after establishment of the experiment. Supporting the singular hypothesis for plant diversity, the results Suggest that plant species are unique, each contributing to the functioning of the belowground system. The results reinforce the need for long-term biodiversity experiments to fully appreciate consequences of current biodiversity loss for ecosystem functioning.