
A flexible statistics web processing service - Added value for
information systems for experiment data ∗

Dennis Heimann 1, Jens Nieschulze 1, Birgitta K öni g-Ries 2

1Max-Planck-Institute for Biogeochemistry, Hans-Knoell-Straße 10, D-07745 Jena, Germany
{dheimann, jniesch}@bgc-jena.mpg.de

2Heinz-Nixdorf Endowed Chair of Practical Computer Science, Friedrich Schiller University,
Ernst-Abbe-Platz 1-4, D-07743 Jena, Germany

birgitta.koenig-ries@uni-jena.de

Summary

Data management in the life sciences has evolved from simple storage of data to complex
information systems providing additional functionalities like analysis and visualization ca-
pabilities, demanding the integration of statistical tools.
In many cases the used statistical tools are hard-coded within the system. That leads to
an expensive integration, substitution, or extension of tools because all changes have to be
done in program code.
Other systems are using generic solutions for tool integration but adapting them to another
system is mostly rather extensive work.
This paper shows a way to provide statistical functionality over a statistics web service,
which can be easily integrated in any information system and set up using XML config-
uration files. The statistical functionality is extendable by simply adding the description
of a new application to a configuration file. The service architecture as well as the data
exchange process between client and service and the adding of analysis applications to the
underlying service provider are described. Furthermore a practical example demonstrates
the functionality of the service.

1 Introduction

Data management in the life sciences has been a very active area of research for a number of
years ([2], [3], [4], [5]). Over time, it has become obvious, that it does not suffice fortools to
offer ”just” integrated (centralized or virtual) data storage capabilities. Rather, users demand
direct access to a diverse set of tools to access and analyze data. Of particular importance to
many users are statistical analysis tools. What needed are therefore platforms that combine
integrated data storage with seamless access to data analysis tools.

The Biodiversity Exploratories1, a large-scale and long-term biodiversity research project in
Germany, are an adequate example in need of such a system. The project aims to examine the
relationship between land-use intensity, biodiversity change, and ecosystem functioning for se-
lected taxa. Within this umbrella project, a large number (currently 32, more will be added over
time) of individual, independent projects from a diverse set of communities investigate different

∗This article is an extended version of [1]
1http://www.biodiversity-exploratories.de

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 1



aspects of the overall problem, comprising research on botany, vertebrates, invertebrates, soil
sciences, and biogeochemical processes. One of the expectations towards the umbrella project
is to make data available beyond individual projects to allow for analysis of data across disci-
plines and over time, e.g., to be able to explore changes in biodiversity over a decade and relate
this to changes in the soil brought on by the use of certain fertilizers.

As a technical basis for this task, we are developing the web-based Biodiversity Exploratories
Information System2(BExIS) which offers central storage and management of all project data.
To overcome existing semantic heterogeneity among different subprojects’ data, a knowledge-
based framework for the data management is currently being developed. Along with the upload
and download of project data, BExIS will then be able to provide facilities to merge data sets
from different subprojects. Relating data sets then allows analyses of data across different
subprojects to find relationships between the diverse research areas.

One of the main non-technical challenges faced by BExIS is to get the individual researchers
involved actually to use the system. While data uploading can be enforced to a certain degree
by central policies, the uploaded data will only be complete and described in sufficient detail,
if the researcher sees a direct benefit from using BExIS3. We believe that seamless access to
analysis tools and the ability to plug in new tools as needed is one way to provide such a direct
benefit. In the long run, the seamless integration of statistical methods will also enable to do
common analyses across projects directly within the system. The statistical methods needed
range from simple calculations and summaries of data sets to complex analyses models. Sta-
tistical methods can also be used for visualization purposes embedded in applications without
any statistical background. An example for the latter is the visualization of the segmentation of
an experimental plot with all its subplots.

In the remainder of the paper, we are going to discuss our approach of seamless integration
of such tools into data management platform. We will use the integration of the R statistics
package into BExIS as our running example.

The remainder of this paper is organized as follows: Section2 discusses related approaches
and their drawbacks. After that, Section3 introduces the design of the statistical web service
we have developed and its architecture. Section4 explains the data exchange process between
client and service, Section5 illustrates the query process starting at the client request and end-
ing at the web service response. Section6 demonstrates the functionality of the introduced
web service with the exemplary integration of the statistics package R. Section7 shows some
performance issues of the web service in comparison to direct method calls within R, before
section8 summarizes this web service approach for tool integration.

2 Related work

Over the last few years, a number of attempts to solve at least similar requirements have been
proposed. These use different approaches to integrate their tools. One approach is to declare
the input and output directory of a tool, thus enabling the host application to access the raw

2http://www.exploratories.bgc-jena.mpg.de
3The ability to run cross-project analysis is no such immediate benefit, in particular not for the current set of

researchers who are the first to use BExIS. We believe that it will be such a benefit for the next generation of users
who will then be able to access data provided by their predecessors.

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 2



files. An example for such a system is B-Fabric, a system integrating biological analysis tools.
B-Fabric’s main focus is on the integrated management of all data generated from different
analysis tools. Direct tool access is beyond the current scope of B-Fabric. Accordingly, it
provides no such facilities [5].

Another approach is to hard-code the access to a tool within the host application code. An
example project relying on this approach is the MIGenAS integrated bioinformatics toolkit
that allows the analysis of biological sequences over the internet [6]. Here, the access to all
supported bioinformatics tools is hard-coded within Java [7]. This leads to an expensive inte-
gration, substitution, or extension of tools, because all changes have to be done in the program
code of the host application.

Other solutions use a more generic approach to integrate external tools, for example SWAMI4.
SWAMI tries to provide an integrated environment where biological tools, user data, and public
data resources can be easily accessed [4]. The used architecture is highly scalable in terms of
adding databases and new tools because of using configuration files for providing definitions
for tools and data types, and physical descriptions of resource locations.

While this approach is very promising, the adaption of such a complex generic workflow system
to the specific needs of a concrete application is very challenging and involves a lot of effort.

That is why we tried to use advantages of generic integration but in a less complex way for
our own system. We have developed a web service for accessing diverse statistical analysis
methods. A similar solution was explored inside the Bioconductor project5 where an R package,
namely RWebServices, was developed. The RWebServices approach is to convert R functions
to Java objects and methods for exposure as Java-based web services [8]. Obviously, every
implemented R function needs its own web service.

Our approach is to combine all statistical methods within one web service. It provides only
three operations to list all available statistical methods, to describe a method more specifically,
and to invoke a method. By abstraction from the underlying applications, the web service will
be easy to integrate in basically any information system.

3 Web service design

3.1 Requirements

In order to achieve seamless integration of external tools, in our running example statistical
analysis tools, into BExIS the whole system needs to meet a number of requirements, most
importantly abstraction and scalability.

The latter one can be realized by making addition and substitution of methods possible with
as little effort as possible. Abstracting from integrated methods is really important to allow a
transparent view to all tools by the users. Today, the most common approach – and the one
chosen by us, too – to fulfill these requirements is via the use of a service-oriented architecture
(SOA). SOA allows for the seamless, platform independent integration of different tools. It

4http://www.ngbw.org/
5http://www.bioconductor.org

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 3



makes it possible to dynamically change the set of offered tools and enables integration of tools
without the need of their modification. All that is needed is the realization and description of
an appropriate interface. Such an interface can be added to a tool without the need to alter
anything in the tool itself - even without the ”knowledge” of the tool.

If one takes a closer look at tools like R, it becomes obvious that they offer a large number
of different functions that a user may want to use. The naive approach would be to offer
each of these functions as a separate web service (cf. [8]) or at least as a separate operation
within a common web service. It should be obvious, that such an approach would result in a
lot of description and implementation effort. Thus, a more lightweight is needed to make the
development of a flexible solution feasible. In our search for such a lightweight approach we
chose the Open GIS Web Processing Service (WPS). This service, which is described in more
detail in the next subsection, offers the kind of solution we need - albeit for a different domain.
We thus used it as inspiration for our solution and adapted it as needed as described in the
remainder of this section.

3.2 Architecture

The design of the statistics web service follows the WPS specification by the Open Geospatial
Consortium (OGC)[9]. WPS is designed to make arbitrary GIS functionality available over
the internet. Examples of such functionalities are access to simple or complex calculations on
spatial data or to computational models. To enable such flexibility, OGC specifies the inter-
face of a general purpose web service that can be used to encode the offering of any desired
functionality. Any calculation including its input and output are described as a web service.
The specific calculations offered by a WPS implementation are defined by the owner of that
implementation. WPS defines three operations each implementation needs to support:

• GetCapabilitiesreturns service-level metadata, in particular a description of the capabil-
ities of the offered service

• DescribeProcessreturns a detailed description of a specific process offered by an imple-
mentation including its inputs and outputs,

• Executetriggers the execution of a process and returns the outputs of this process.

Quite obviously, the general concept behind WPS is applicable not only for geographic infor-
mation systems, but in other domains, too. We have, therefore, adapted the WPS approach to
our system. However, in order to keep our statistics web service as simple as possible, we did
not want a full-fledged implementation of a WPS but adopted only those parts of its concept
that we needed. This has led to the design shown in Figure1.

There is aStatisticsServerproviding theStatisticsService. Apache Axis2/Java6 is used as web
service engine and Apache Tomcat7 serves as servlet container. TheStatisticsServicecontains a
centralControllerhandling all service requests and routing them over anApplicationConnector
to the corresponding underlying applications. The routing is based on two configuration files,
methods.xmlandserverConfig.xml. All available methods provided by the web service as well

6http://ws.apache.org/axis2/index.html
7http://tomcat.apache.org/

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 4



Figure 1: Statistical Web Service Architecture

as their access information are described within themethods.xmlfile. For description, the Web
Service Description Language (WSDL) is used. The underlying applications are not necessarily
web services, but WSDL affords all needed constructs to describe the provided methods [10],
including their interface and data type descriptions.

As an example, Listing1 shows an excerpt of a Java application computing the summary ofa
given data set.

Listing 1: Java application computing the summary of a data set.

package Methods;
public class Statistics {

public String Summary(
String inData, String maxsum, String digits)

{...}
}

A mapping subset of theSummarymethod from Listing1 to a WSDL description is demon-
strated in Listing2

Listing 2: Mapping of the Summary method from Listing 1 to a WSDL description.

<wsdl2:description ...
xmlns:bgcs="Methods.Statistics"
targetNamespace="Methods.Statistics">

<wsdl2:types> ...
<xs:element name="Summary">

<xs:complexType>
<xs:sequence>

<xs:element name="inFile" type="xs:string"/>
<xs:element name="maxsum" type="xs:string"/>
<xs:element name="digits" type="xs:string"/>

</xs:sequence>

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 5



</xs:complexType>
</xs:element>
<xs:element name="SummaryResponse">

<xs:complexType>
<xs:sequence>

<xs:element name="return" type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>
...
</wsdl2:types>
<wsdl2:interface name="ServiceInterface">

<wsdl2:operation name="Summary"... >
<wsdl2:input

element="bgcs:Summary".../>
<wsdl2:output

element="bgcs:SummaryResponse".../>
</wsdl2:operation>

</wsdl2:interface>
...

The package information important for method access by the controller is described by the
bgcsnamespace. Within theServiceInterfacedefinition theSummaryoperation together with
its input and output is declared. The element types of all input and output parameters are
specified within the types definition block.

In addition tomethods.xmltheserverConfig.xmlfile contains some general information about
the server, for example the input and output paths of the server applications.

3.3 Class model

Figure 2 shows the class model of the statistics web service corresponding to its described
architecture. TheStatisticsControllerclass is the central access point to the service. It uses

MethodRegistry QueryTranslator

StatisticController ApplicationConnector

methods.xml

serverConfig.xml

Figure 2: Class model of statistics web service

the QueryTranslatorclass to extract the query information from all incoming requests. The

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 6



MethodRegistryclass contains functions for reading themethods.xmlfile. Server applications
providing the statistical functionality are accessed over theApplicationConnectorclass.

To abstract from the underlying applications the web service provides only the three operations
analogous to the WPS:

• getMethodsreturns a list of all statistical methods provided by the service.

• getMethodreturns a description of a specific method including its inputs and outputs

• runMethodruns a method and returns its outputs.

The transformation to the specific method calls is made by theStatisticsControllerand the
ApplicationConnectorusing Java introspection together with the configuration files. Currently
the applications are limited to Java but others can be easily integrated by wrapping them in a
Java application. By abstracting from the underlying applications the statistics web service is
easy to extend, for Java applications only the configuration files have to be changed.

4 Data exchange

An important issue concerns the data exchange between the statistics web service client and the
statistics server. Typically data located at the client system have to be transferred to the server.
The statistics web service provides different ways for this purpose. Data can be send within the
query, as a URI, or as a JDBC database connection string. The type of data exchange is defined
within the query.
The query is implemented as a simple message schema based on xml. It provides the three
mentioned kinds of service operations.

1. getMethodsto get a list of all provided methods:

<query>
<type>getMethods<type>

</query>

2. getMethodto get a description of a specific method:

<query>
<type>getMethod<type>
<method>{Methods.Statistics}Summary<method>

</query>

Here the fully-qualified method name has to be specified.

3. runMethodto execute a method

<query>
<type>runMethod<type>
<method>{Methods.Statistics}Summary</method>

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 7



<parameters>
<parameter>

<name>inData</name>
<type>xsd:string</type>
<position>0<position>
<value>test.txt</value>

<parameter>
...

Within a runMethodquery the method name as well as all parameters have to be specified, and
at the end of a query message the access to the data has to be declared (Listing3).

Listing 3: Data access description within query.

<dataAccess>
<format>inQuery</format>
<parameterPosition>0</parameterPosition>
<columnDelimiter>;</columnDelimiter>
<decimalSign>.</decimalSign>
<data>a;b;c
1;0.5;7.3
4.1;2.1;4
</data>

...

It includes the format,inQuery, Uri , or JDBC, the position of the data parameter, delimiter and
decimal signs as well as the data iftypeis inQuery.
After sending the query to the server theQueryTranslatorclass extracts the data if transferred
within the query, gets them from the location specified by a URI or loads them via a specified
database connection. A unique temporary file will then be created in the input folder of the
target application declared by theserverConfig.xmlfile. Hence, the temporary file stores all
data and the file name is returned to theStatisticsController.

5 Query process

The query process is illustrated in Figure3. A client sends a request to the web service using the
SOAP message protocol [11]. Within the SOAP message body the query is defined as described
in section4. On the server-side theStatisticsControllerclass receives the query and checks its
type using theQueryTranslatorclass.
Depending on the query type either theMethodRegistryclass or theApplicationConnectorclass
are used to answer the request or rather to invoke an application. The result of a query is send
back to the client by theStatisticsControllerclass also via a SOAP message.

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 8



Figure 3: Query process of statistics web service

6 Example

As explained in Section1 BExIS wants to provide statistical tools to the user. As an example,
in this section, the integration of methods based upon the statistics package GNU R8 is demon-
strated. We have chosen R because it is widely used by our user community. Its integration
thus offers a considerable benefit to our users.

6.1 Method integration

A Java application was developed which uses Rserve9 and its Java client to implement the
different methods. Rserve is a TCP/IP server which allows other programs to use facilities of
R from various languages without the need to initialize R [12]. Within Java a connection to R
can simple be made by

Rconnection c = new Rconnection();

if there is a running Rserve on the local machine. An R command can then be evaluated as a
String expression; for example by

REXP x = c.eval("R.version.string");
System.out.println(x.asString());

The result is stored within an object of class REXP. The REXP class encapsulates any objects
received from Rserve and provides accessor methods to obtain the Java object corresponding
to the R value. Here the corresponding Java object is a String which is printed out.

The application that is integrated in the statistical web service is based on a simple design.
Currently, there is only one class which implements all methods and connects to Rserve, but
there is no restriction to modularize or extend it. As a simple example the implementation of
the computation of a scatter plot is illustrated in Listing4, but also calculations of complex
models are possible.

Listing 4: Implementation of the ScatterPlot method in Java.

package Methods;

8http://www.r-project.org/
9http://www.rforge.net/Rserve/

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 9



import org.rosuda.REngine.*;
public class Statistics{

RConnection rCon = new RConnection;
public byte[] ScatterPlot(String inData,

String variable1, String variable2)
{ String rScript =

"bw<-read.table(" + inData + ",header=T)"
"data<-bw[-1,]" +
"f<-tempfile()" +
"png(file=f)" +
"plot(" +

"data[,"+ variable1+ "]," +
"data[,"+ variable2 + "])" +

"dev.off()" +
"con=file(f,open=rb)" +
"g<-readBin(con,raw(),n=50000)" +
"g";

REXP rexp = rCon.eval(rScript);
return rexp.asBytes();
}

}

The code shows that the ScatterPlot function takes three parameters, the file containing the
data and two variables specifying the columns to correlate. Within the function a batch of R
commands are concatenated to a String and subsequently evaluated. First, data are read and
stored in an object. Then, a temporary file is created to store the graph. After this, the graph is
plotted using the data described by the two variables. Finally, the binary graph data is read in
again from the temporary file and returned to the REXP object.

Let us now take a detailed look at how this method can be integrated into the statistics web
service. As it turns out, only two steps are required to achieve this goal. Firstly, a WSDL
description of the ScatterPlot function has to be created and put into themethods.xmlfile.
Secondly, the corresponding class files have to be put into the statistical web service classes
folder. After restarting the Axis engine, the ScatterPlot method will be accessible.

6.2 Statistics web service used by BExIS

Now, we will describe how the statistics web service and its provided methods can be used. We
will use an example from BExIS to illustrate this. The web service is accessible through BExIS
by a separate statistics application.

To analyze a data set using a method from the statistics web service the procedure is as follows:

Firstly, the user has to select a data set stored in the system. An example of this step is shown
in Table1. It shows an observation of trees including the measurement of their diameter at
breast height (dbh) and their age in years.

Secondly,the user has to choose a statistical method he/she wants to apply to the data set. The
list of methods is obtained by the use of thegetMethodsoperation of the statistics web service.

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 10



Table 1: Example data set: Measurement of dbh.

observationId species dbh treeage
384301 beech 31.31 75
384302 beech 33.88 140
384303 beech 28.93 110
384304 beech 20.38 84
384305 beech 40.41 103
384306 beech 41.31 85
384307 beech 37.88 121
384308 beech 23.93 90
384309 beech 22.38 84
384310 beech 39.41 131

For the sample data set it could be interesting to find out, if there is a correlation between a tree’s
age and its dbh. To visualize such a possible correlation, theScatterPlotmethod is applicable.
After the user has chosen the method, he uses thegetMethodoperation from the web service
to obtain detailed information about this function, in particular about the required inputs and
expected outputs. The description of the ScatterPlot example is shown in Table2.

Table 2: Description of the ScatterPlot method.

Name Type Description Direction
inData xs:string ... IN
variable1 xs:string ... IN
variable2 xs:string ... IN
return xs:base64Binary ... OUT

Thirdly, the user has to assign a value to each IN parameter in the description over a web form.
Depending on the parameter description, the value can be a text or a number, or a name of a
column of the selected data set. For the sample data an assignment could look like illustrated in
Table3. TheinDataparameter is assigned an arbitrary text. This text specifies the name of the

Table 3: Example of a parameter assignment for a data set.

Name Type Assignment
inData xs:string data.txt
variable1 xs:string column(treeage)
variable2 xs:string column(dbh)

data file to be stored on the server by theQueryTranslatorclass. The assignments forvariable1
andvariable2are column names of the sample data set, namelytreeageanddbh. They specify
the values of the columns of the data set to be used by the ScatterPlot method.

The data access specification has to be determined by the statistics web service client, that is
BExIS. BExIS has to specify the format (inQuery, URI or JDBC), the position of the Parameter
containing the value for the data description, the column delimiter, and the decimal sign. Addi-
tionally BExIS has to prepare the data depending on the transfer format. For the sample a data
access specification could look like the one shown in Listing5.

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 11



Listing 5: Query data access specification example.

<dataAccess>
<format>inQuery</format>
<parameterPosition>0</parameterPosition>
<columnDelimiter>;</columnDelimiter>
<decimalSign>.</decimalSign>
<data>observationId;species;dbh;treeage
384301;beech;31.31;75
384302;beech;33.88;121
384303;beech;28.93;110
384304;beech;20.38;84
384305;beech;40.41;143
384306;beech;41.31;85
384307;beech;37.88;121
384308;beech;23.93;90
384309;beech;22.38;84
384310;beech;39.41;131
</data>

</dataAccess>

Fourthly, the runMethod operation can be invoked and the result will be displayed on the page.
Depending on the return type of a statistical method the displayed result can vary from text
to image data. The ScatterPlot example returns an image as a byte array, so BExIS has to
transform the byte array to an image and displays it on the page.

90 100 110 120 130 140

20
25

30
35

40

data[, "treeage"]

da
ta

[, 
"d

bh
"]

Figure 4: Result of ScatterPlot method.

Figure4 shows the result for our example; evidently, the dbh of one treecorrelates with its age;
bar the outlier.

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 12



7 Performance

To check the performance of the StatisticsService, we createdsome test queries and measured
the response time when calling the ScatterPlot method. Therefore two test data sets each with
three columns (id of integer, x and y of real) were generated, one containing 10.000 rows and
the other containing 50.000 rows. Then the two data sets were passed to the StatisticsService
per inQuery, Url , andJDBC respectively. Additionally we measured the response time for
accessing the ScatterPlot method directly within R over a script. Here data passed as a text file
and subsequently as a JDBC connection.
The results can be seen in figure4.
The JDBC access within R takes longer than the JDBC access over the Service. The reason is

Table 4: Measurement of response time of test queries.

transfer type response in sec
(10.000 rows)

response in sec
(50.000 rows)

inQuery 0.51 1.78
JDBC 0.62 1.85
Url 0.53 1.91
direct pass to R
(txt file)

0.2 0.95

direct pass to R
(JDBC)

3.6 33.01

that when passing a JDBC connection over the service the data is retrieved from the database
and then it is written to a text file on the server. So R accesses all data from text files independent
of the transfer type of the service (cf. section4).
Looking at the other results it can be seen that the StatisticsService takes little longer to respond
when using theinQueryor theUrl transfer type than accessing the ScatterPlot method directly
within R where data are passed as text file. In most instances the response times should be well
within acceptable ranges except the transfer of a larger amount of data comprising well more
than 50000 rows as well as in the case of more complex calculations.

8 Conclusion

In this paper, we described a web service-based approach for integrating statistical analysis
methods in an information system for experiment data.

We started with the introduction of the Biodiversity Exploratories Information System (BExIS)
to demonstrate the emerging demands on data management platforms within the life sciences.
In particular, there is a growing need for the seamless integration of external tools, e.g., statis-
tical analysis tools, into such systems, for at least two reasons: first, such seamless integration
makes the usage of the information systems more attractive to researchers thus helping to con-
vince them to add their data to these centralized repositories. Second, integrated tools allow for
easy and convenient data analysis across different projects, thereby supporting the discovery of
new and possibly important pattern in data which may lead to new insights into the underlying
application domains.

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 13



With respect to the need for the integration of external tools, we explained the design of our
statistics web service. This service allows the usage of any methods provided by the R statistics
tool set from within our information system. We have described the architecture as well as
the encapsulation of statistical methods by configuration files. The use of configuration files
enables the simple and low effort extension or substitution of methods without the need to
touch the underlying statistics program or to code anything within our information system. To
abstract from the underlying applications providing the statistical methods we have followed
the example of OGC’s WPS and introduced a simple query message providing three operations
to access information about offered methods, details about the individual methods’ interfaces
and the possibility to execute any of these methods.

For data exchange between client and web service we implemented three opportunities, namely
to transfer data within the query, to pass a URI describing the data location, or to pass a JDBC
connection string. Performance tests showed that in the majority of cases the response times are
well within acceptable ranges. However, transferring a large amount of data as well as complex
calculations can be very time-consuming and could result in a connection time-out. To avoid
this problem we implemented a mechanism to initiate a statistical analysis and get informed via
email when the process is terminated and where the result data can be retrieved. By now, that is
done on server-side by an additional proxy service, but we plan to integrate it into the statistics
service.

The proposed web service has been implemented and successfully tested within our project.

Currently, we are working on making its usage even simpler: For the integration of R methods
we are working on using configuration files providing the R code instead of implementing each
method in Java.

We are aware of code injection security risks, because the executable R script is generated
within a Java wrapper class by the concatenation of R code with the committed parameters.
Since we are currently using the web service behind our firewall and allowing the access
through BExIS only, we are able to control all committed parameters. However, for public
release this problem has to overcome by security mechanisms. Besides the restriction of user
rights and the R working directory, one solution envisages is an input parameter validation, e.g.
during the query translation process.

Another extension we are currently investigating is the integration of other tool sets. Up to now,
service implementation is in development and we plan to deploy it within the operative BExIS
system for use by the different subprojects of the Biodiversity Exploratories in the near future.

References

[1] Dennis Heimann, Jens Nieschulze, and Birgitta König-Ries. A web service based ap-
proach for integrating statistics tools into an information system for experiment data. In
Proceedings of Informatik 2009 - The 39th annual conference of the Gesellschaft für Infor-
matik e.V., volume P-154 ofLecture Notes in Informatics, page 36, L̈ubeck, 09/10 2009.
Stefan Fischer and Erik Maehle and Rüdiger Reischuk.

[2] HV Jagadish and F. Olken. Database management for life sciences research.ACM SIG-
MOD Record, 33(2):15–20, 2004.

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 14



[3] Ulf Leser and Felix Naumann. (almost) hands-off information integration for the life
sciences. InSecond Biennial Conf. on Innovative Database Research (CIDR), pages 131–
143, Asilomar, CA, January 2005.

[4] R. Rifaieh, R. Unwin, J. Carver, and M.A. Miller. Swami: Integrating biological databases
and analysis tools within user friendly environment.LECTURE NOTES IN COMPUTER
SCIENCE, 4544:48–58, 2007.

[5] C. Türker, E. Stolte, D. Joho, and R. Schlapbach. B-Fabric: A Data and Application In-
tegration Framework for Life Sciences Research. InData Integration in the Life Sciences
4th International Workshop (DILS), pages 37–47, Philadelphia, PA, USA, June 2007.
Springer.

[6] M. Rampp, T. Soddemann, and H. Lederer. The MIGenAS integrated bioinformat-
ics toolkit for web-based sequence analysis.Nucleic Acids Research, 34(Web Server
issue):W15–W19, 2006.

[7] M. Rampp and T. Soddemann. A work flow engine for microbial genome research.
Forschung und wissenschaftliches Rechnen, 68:30–53, 2004.

[8] Nianhua Li, Martin T. Morgan, Seth Falcon, Robert Gentleman, and Duncan Temple
Lang. From r to java: the typeinfo and rwebservices paradigm. Technical report, Bio-
Conductor, 2006.

[9] P. Schut. OpenGIS Web Processing Services. OGC Publicly Available Standard OGC
05-007r7, Open Geospatial Consortium, Inc., June 2008. Version 1.0. 0.

[10] W3C. Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language.
W3C Working Draft, 26, 2004.

[11] W3C. SOAP Version 1.2 Part 0: Primer.W3C Recommendation, 24, 2003.

[12] S. Urbanek. Rserve–a fast way to provide r functionality to applications. InWorkshop on
Distributed Statistical Computing (DSC), pages 20–22, Vienna, Austria, March 2003.

Journal of Integrative Bioinformatics, 7(1), 140, 2010 http://journal.imbio.de

doi:10.2390/biecoll-jib-2010-140 15




