English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis

MPS-Authors
/persons/resource/persons62561

Sierra,  C. A.
Quantitative Ecosystem Ecology, Dr. C. Sierra, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Cleveland, C. C., Townsend, A. R., Taylor, P., Alvarez-Clare, S., Bustamante, M. M. C., Chuyong, G., et al. (2011). Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology Letters, 14(9), 939-947. doi:10.1111/j.1461-0248.2011.01658.x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-DB83-2
Abstract
Tropical rain forests play a dominant role in global biosphere-atmosphere CO(2) exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (< 1000 m), a regression tree analysis revealed that foliar and soil-based measurements of phosphorus (P) were the only variables that explained a significant proportion of the variation in ANPP, although the relationships were weak. However, foliar P, foliar nitrogen (N), litter decomposition rate (k), soil N and soil respiration were all directly related with total surface (0-10 cm) soil P concentrations. Our analysis provides some evidence that P availability regulates NPP and other ecosystem processes in lowland tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations - especially in lowland forests - to elucidate the most important nutrient interactions and controls.