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Abstract

Classifying the land surface according to different climate zones is often a prerequisite for global diagnostic or

predictive modelling studies. Classical classifications such as the prominent Köppen–Geiger (KG) approach rely on

heuristic decision rules. Although these heuristics may transport some process understanding, such a discretization

may appear “arbitrary” from a data oriented perspective. In this contribution we compare the precision of a KG

classification to an unsupervised classification (k-means clustering). Generally speaking, we revisit the problem of

“climate classification” by investigating the inherent patterns in multiple data streams in a purely data driven way. One

question is whether we can reproduce the KG boundaries by exploring different combinations of climate and remotely

sensed vegetation variables. In this context we also investigate whether climate and vegetation variables build similar

clusters. In terms of statistical performances, k-means clearly outperforms classical climate classifications. However,

a subsequent stability analysis only reveals a meaningful number of clusters if both climate and vegetation data are

considered in the analysis. This is a setback for the hope to explain vegetation by means of climate alone. Clearly,

classification schemes like Köppen-Geiger will play an important role in the future. However, future developments in

this area need to be assessed based on data driven approaches.
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1. Introduction

Discretization techniques are important to get an intuitive understanding of complex geo-spatial data sets. A

typical example are global climate classifications like the Köppen-Geiger approach [1, 2, 3] and its recent updates

[4]. Classifications of this kind provide an intuitive way to discretize the Earth land surface properties, at the cost of a

loss of information. While the Köppen-Geiger (KG) classification certainly reflects several decades of environmental

and geographic research, today we can ask the question how well KG performs when being compared to modern

clustering techniques. These techniques aim to identify points in the data cloud which could be used as ”predictors”

for other samples in a class. Another critical issue is that the original objective of Köppen and Geiger was to classify

vegetation zones based on temperature and precipitation patterns only. Later on, Thornthwaite criticized the lack

of rational justifications for most of the boundaries separating KG classes [5]. He claimed that the boundaries in a

climate classification should relate to truly active climatic factors.1. Along these lines one may ask if it is effectively

∗Corresponding author, jzsch@bgc-jena.mpg.de
1As a side remark it is worth noting that he questioned the uncritical reception of the KG classification and pointed out that people tend to

evaluate climatic classification according to the ease with which they can be applied [5].
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possible to delineate vegetation zones based on temperature and precipitation only. This ecophysiological question

becomes important nowadays, where additional variables such as radiation patterns are becoming available and could

be used in novel classification approaches.

Clearly, the critique sensu [5] focuses on the lack of process understanding in the available classifications. How-

ever, adopting a data oriented perspective the question is rather if the heuristics in KG could be directly retrieved from

the observations. Along these lines, Cannon [6] recently showed that modern data driven approaches may equally

allow to derive relevant discretization rules. The author provides another climate classification based on a multi-

variate regression tree and argues that he can yield a higher performance as measured by a quantity called expected
variance (EV).

The main problem of climate classifications, however, remains unaddressed by [6]: climate classifications seek

to classify vegetation exclusively based on climate conditions. It is implicitly assumed that vegetation is a function

of climate only; the idea is to identify “climate thresholds” that divide the vegetation space into discrete classes. But

how can we find these jumps in an unsupervised fashion directly in the data? Ecological arguments against this idea

can be found in the fact that vegetation is also influenced by history preventing e.g. seeds establishment or leading

to extraordinary rates of mortality. Similarly, rapid changes in climate conditions may not allow vegetation to adapt.

Anthropogenic influence additionally causes shifts in vegetation classes. Finally, there may exist certain climate

conditions which favor two or more different vegetation types - a phenomenon known as bistable system [7, 8, 9].

In this paper we investigate a multivariate data cube, consisting of different combinations of climate variables and

remote sensing vegetation indices to examine whether climate and vegetation classes coincide. We apply unsupervised

clustering techniques and look into the differences between clustering of climate variables versus vegetation variables.

In order to compare different clustering results we use a distance measure introduced in [10]. We also discuss the

problem of finding the right number of clusters. Our aim here is to discover discrete climate classes in an unsupervised,

purely data driven way and to compare the performance skills to the KG approach.

2. Data

We use three climate variables, namely the updated CRU2 and GPCC3 data sets which were used for the updated

KG classification in [4]. We additionally use short wave radiation from ERA-Interim [11]. Furthermore, we use two

vegetation variables. Firstly, we include the Enhanced Vegetation Index (EVI) which is known to be responsive to

structural variations in the canopy, including leaf area index, canopy type, plant physiognomy, and canopy architec-

ture [12, 13] (EVI data is taken from MODIS4). Finally we use the Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR) which is directly related to primary productivity (the used data is described in [14]).

All data sets are used only over land on a spatial resolution of 0.5 degrees with averaged monthly values. We work

with an average year of the biggest intersection of years where all data sets are available, 2001-2007. The techniques

presented in this work can easily be applied on larger data sets with both varying spatial and temporal resolution.

Both EVI and FAPAR have difficulties with snow. Taking the minimum intersection of full data coverage we end

up with 54580 pixels, excluding some parts of northern Siberia and Greenland. We introduce the following shortcuts:

• 1 Air Temperature T,

• 2 Precipitation P,

• 3 Downward Shortwave Radiation SW,

• 4 Enhanced Vegetation Index EVI,

• 5 Fraction of Absorbed Photosynthetically Active Radiation FAPAR

We denote the data cube by X. With Xv, v = 1, . . . , 5, we denote the different variables. Xv
p,. denotes a time series

on pixel p (p = 1, . . . , 54580) and Xv
.,t a time step at month t (t = 1, . . . , 12) of variable v.

3. Tools

The data sets will be analyzed by several tools, which are listed in Table 1. In the following subsection we briefly

introduce all tools used in this paper.

2available at http://www.cru.uea.ac.uk/cru/data/hrg/
3available at ftp://ftp-anon.dwd.de/pub/data/gpcc/html/fulldata_download.html
4available at http://modis.gsfc.nasa.gov/
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tool task result interpretation

k-means how does the data cluster? assignments

EV is a clustering good? [0, 1] 1 is perfect

VI are two clusterings different? [0, log(k)] 0 implies identical

Instab is a clustering for fixed k stable? [0, log(k)] 0 is stable

Table 1: Tools to cluster and analyze clustering for this paper.

3.1. Preprocessing

We will apply k-means to several subsets of the variables. This will involve calculating distances between vectors,

where each coordinate has a different unit (e.g. for temperature and precipitation). To alleviate the effects of different

scales, we normalize each variable by its standard deviation, more precisely, we divide every Xv by the standard

deviation of Xv taken over all pixels and months,

Xv =
Xv

std(Xv)
. (1)

Since the distance calculations involve only differences between variables of the same type, we do not have to remove

the mean.

To investigate the differences between climate and vegetation variables we will perform k-means clustering both

on the whole data set (including all variables) and on subsets (including only some variables). Thus we combine

variables in the following way: e.g. considering temperature and precipitation, we use [X1, X2] and perform k-means

on the resulting data set of size 12s × 54580 where s is the number of variables included (s = 2 in the example).

3.2. k-means

Given a set of n data points x1, . . . , xn ∈ Rd and a fixed number k of clusters to construct, k-means minimizes the

clustering objective function:

Q(c1, . . . , ck) =
1

n

n∑
i=1

min
k=1,...,k

‖xi − ck‖2 (2)

where c1, . . . , ck denote the centers of the k clusters. In our case, n = 54580 and d = 12s. We use the implementation

of Gehler (2007) [15] based on [16]. A similar fast implementation of k-means which exploits the triangle inequality

was introduced in [17, 18] and used in [19]. Note that k-means does not determine the “best” number of clusters k
automatically. Instead we compute k-means for the range k = 3, . . . , 40 and study Q dependent on k. Additionally, we

analyze the stability by considering different subsets of X for varying k (see Section 3.5).

3.3. Explained predictand variance (EV) — a quality measure for clusterings

[6] introduced the explained predictand variance EV which can be interpreted as a measure of performance for

clusterings and classifications. Let WCSSk be the within-cluster sum of squares of a clustering with k clusters,

WCSSk =

k∑
i=1

∑
x j∈S i

‖x j − μi‖2 , (3)

where the S i are disjoint sets containing the data points assigned to the i-th cluster with mean μi. Then we can measure

the quality of a clustering by EV which is defined by

EVk = 1 − WCSSk

WCSS1

. (4)

If EVk is equal to one, it means that WCSSk = 0. This can only be achieved for a data set with exactly k data points.

So on larger data sets we expect EV to be between zero and one.
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3.4. Variation of information (VI) — a distance measure for clusterings
[10] introduced the variation of information (VI), which is an information theoretic index that defines a metric on

the space of clusterings. Even for clusterings with different a number of clusters VI can provide a distance.

A clustering C is a partition of a set of points, or data set D into mutually disjoint subsets C1,C2, . . .CK . Formally

C = {C1,C2, . . . ,CK} such that Ck ∩Cl = ∅ and

K⋃
k=1

Ck = D . (5)

Let n and nk be the number of data points in D and in Ck, respectively. Then

n =
K∑

k=1

nk . (6)

We assume nk > 0, i.e. empty clusters are ignored.

Consider a second clustering C′ = {C′1,C′2, . . . ,C′K′ } with cluster sizes n′k. How does VI measure the distance

between C and C′? Criteria for comparing clusterings are usually based on the so-called confusion matrix (also called

association matrix or contingency table) of C and C′. The confusion matrix is a K × K′ matrix, whose (k, k′)-th
element is the number of points in the intersection of clusters Ck of C and C′k′ of C′,

nkk′ = |Ck ∩C′k′ | . (7)

VI is now defined via random variables that are determined by the different clusterings. We start with some well-

known information theoretic quantities which we translate into the setting of clusterings. If one picks a point of D at

random and each point has an equal probability of being picked, the probability that the chosen point is in cluster Ck

is

P(k) =
nk

n
. (8)

This defines a discrete random variable taking K values associated to the clustering C. The uncertainty in the picking

process is given by the entropy of the random variable,

H(C) = −
K∑

k=1

P(k) log P(k) . (9)

Furthermore, we can define the joint probability P(k, k′) which values how likely it is that a point belongs to Ck in

clustering C and to C′k′ in clustering C′

P(k, k′) =
|Ck ∩C′k′ |

n
=

nkk′

n
. (10)

The mutual information I(C,C′) between two clusterings is defined to be the mutual information between the associ-

ated random variables

I(C,C′) =
K∑

k=1

K′∑
k′=1

P(k, k′) log
P(k, k′)

P(k)P(k′)
. (11)

Then we can define VI to be the

VI(C,C′) = H(C) + H(C′) − 2I(C,C′) (12)

= H(C,C′) − I(C,C′). (13)

which is the difference between the joint entropy and the mutual information. [10] has shown that VI is a metric on the

space of clusterings. Furthermore, VI is n-invariant (independent of the number of samples) and bounded by 2 log K
if both C and C′ have at most K clusters with K ≤ √n. More properties and their proofs can be found in [10]. The

most important property of VI is that it can measure distances between clusterings with different number of clusters.
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3.5. Instability of a clustering (Instab)
Another quality measure for clustering is stability. Given two samples from the same distribution we expect k-

means to cluster the data similarly, if k was chosen appropriately. For wrong k we could get different clusterings for

different samples, see [20]. We define instability of a clustering by the expected difference between two clusterings

Ck(S n), Ck(S ′n) on different data sets S n, S ′n of the same size n, i.e.

Instab(k, n) = E
[
d(Ck(S n),Ck(S ′n))

]
, (14)

where d(·, ·) is some distance measures between clusterings. The expectation is taken with respect to the drawing of

the two samples. There exist various methods to compute stability scores. We will use the procedure described in

Algorithm 1 following [20]:

Algorithm 1 Compute instability scores

1: Given: a set of data points X, a clustering algorithm A that takes the number of clusters k as input

2: for k = 2, . . . , kmax do
3: Generate subsamples Xb of the original data set

4: for b = 1, . . . , bmax do
5: cluster the set Xb with algorithm A into k clusters to obtain clustering Cb

6: end for
7: for b, b′ = 1, . . . , bmax do
8: compute pairwise distance d(Cb,C′b) between these clusterings

9: end for
10: compute instability scores as the mean distance between clusterings Cb

Înstab(k) =
1

b2
max

bmax∑
b,b′=1

d(Cb,Cb′ ) (15)

11: end for

As distance measure we use variation of information (VI) which we described in Section 3.4. We need, however,

a protocol to compare clusterings on different data sets Xb. We overcome this by comparing the clusterings on the

extended data sets Xb ∪ X′b, i.e. we estimate two clusterings one for Xb and one for X′b and then evaluate them on the

union. For a given clustering characterized by k means, we assign new data points to the cluster with the closest mean

[20]. The instability score is bounded from above by the maximal distance between clusterings. An instability score

of 0 describes a stable clustering which is desired.

3.6. Principal Component Analysis (PCA)
PCA is widely used in multivariate statistics. We want to use it as a method for dimensionality reduction and as a

measure for the complexity or nonlinearity of the various data streams. We briefly explain PCA here. Let X be a data

matrix with m rows representing different features (e.g. months in our case) and n columns representing the samples.

The singular value decomposition (SVD) of X is given by X = WΣVT , with an orthogonal m×m-matrix W containing

the eigenvectors of XXT and a rectangular diagonal matrix Σ containing the singular values of X sorted by decreasing

magnitude. V contains the eigenvectors of XT X. The principal components are given by

Y = WT X = WT WΣVT = ΣVT (16)

where now the first row contains the data projected into the direction of maximum variance, etc. We can obtain a

reduced-dimensionality representation by projecting X onto the first l singular vectors, Wl.

Yl = WT
l X = ΣlVT (17)

Which corresponds to ignoring the lower rows of Y and only keeping the first l rows. To measure the complexity of

the data we analyze the spectrum of the covariance matrix of the data, i.e. its eigenvalues. A scaled version of their

eigenvalues are contained in ΣΣT . We rescale and sort them such that λ1 ≥, . . . ,≥ λm,
∑m

i=1 λi = 1. To project the data

onto the first two components we first have to reorder the columns of V according to the order of the eigenvalues.
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4. Results

4.1. Comparing the performance of k-means clustering via EV

First, we compare EV (see Section 3.3) of clusterings of k-means with the values of EV reported in [6]. Note

that we do not adjust for the seasons between northern and southern hemisphere which is usually done in KG, cf.
also [6]. In our case, northern hemispheric summers coincides with southern hemispheric winters and vice versa.

Consequently, regions with similar behavior may end up in different clusters depending on their hemispheric location.

An adjustment of this issue, however, would lead to discontinuous clusters along the equator which we want to avoid

here.

We choose the same number of clusters used in [6], namely 5,13, and 30 to report values of EV for different

subsets of variables. The analysis is then performed based on different subsets, i.e. {P}, {T}, {P, T}, {EVI, FAPAR}
and {P, T, SW, EVI, FAPAR} and summarized in Figure 1 where Z denotes the results of our analysis. In terms of

statistical prediction, k-means yields better results than both Köppen-Geiger and Cannon’s multivariate regression

tree classification. This results is not very surprising given that k-means is precisely optimizing this quantity. On

the contrary, it is noteworthy that both other classifications perform relatively well too. Nonetheless, if one is purely

interested in the statistical performance, the k-means approach is to be preferred.

Figure 1: Expected variance (EV) for different scenarios. KG=Köppen-Geiger, C=Cannon, Z=our analysis.

4.2. Climate versus vegetation
Second, we investigate whether the clusterings obtained using only the climate variables are very different from the

clustering results obtained using only vegetation variables. Both approaches are compared to the clustering containing

all variables (Figure 2).

Figure 2: Pairwise comparison of distances (VI) between climate, vegetation and all variables.
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In this experiment the distance between the clusterings of the climate and vegetation variables is quite large for

all k. We conclude that a good partitioning of climate and vegetation space, representing both climate and vegetation

properties, cannot be achieved using climate variables alone.

4.3. Finding the right k
A well-known problem of the k-means algorithm is identifying the “right” number of clusters without any addi-

tional information. Our first approach is to evaluate Q(k) (see Eq. (2)) for k = 1, . . . , kmax and search for the first

kink in the monotonically decreasing curve. Figure 3(left) shows Q(k) for different subsets of the data with kmax = 40

illustrating that it is not easy to find a clear kink in these curves. Inspecting the difference between two consecutive

values of Q may reveal more insights as shown in Figure 3(right). One can recognize a first strong decrease of the

difference Q(k) − Q(k − 1) in the curve of all variables at k = 13 pointing on k = 12 as the right number of clusters

for that set of variables. Such a clear decrease is not there for the other variables. We will investigate further whether

we’re on the right way.

Figure 3: Left: Q for different number of clusters k and different variable subsets. Right: difference between Q(k) and

Q(k − 1).

A more robust method of detecting the right number of clusters is calculating the cluster stability. As described in

Section 3.5, we first need to compute clusterings on subsets of the data. Instability scores are then calculated following

Algorithm 1 where we use VI (see Section 3.4) as distance measure. We built 20 subsets of 10000 pixels each and

compute pairwise distances. Instability scores are shown in Figure 4(left) for different sets of variables (for the sake

of clarity we don’t show the results for the set T, P, SW; they don’t differ much from T, P).

Although it is not possible to determine whether a chosen number k of clusters is too small, it seems feasible to

identify cases where k is too large [20]. Surprisingly, however, using either exclusively climate (P and T) or vegetation

variables (EVI and FAPAR) does not allow to identify a region of too many clusters. Only if we combine all variables

in the analysis we find a big jump between k =12 and k =13, suggesting again that the “right” number of clusters for

this configuration is 125.

This finding is supported by an analysis over the standard deviation of distances between the different subset

clusterings,

std(k) =

√
var
(
d(Ck

b,C
k
b′ )b,b′=1,...,bmax

)
.

Standard deviations for the same subsets of variables as in Figure 4(left) are shown in Figure 4(right). For k = 12 and

using all variables, the standard deviation is very small compared to larger values of k, making the above result even

more robust. The resulting map of the k-means clustering with k = 12 for all variables is shown in Figure 5.

5Note that small stability scores are desirable and that one has to look from the right to find the first significant jump towards zero [20]. It cannot

be decided whether the jump between 10 and 11 renders 10 to be stable not (cf. Conjecture 3.8 in [20]).
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Figure 4: Left: Instability scores for different number of clusters k and different variable subsets. Right: Standard

deviation of pairwise cluster distances over subsets of X for different number of clusters k and different variable

subsets.
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Figure 5: Map of k-means clustering with k = 12 for the variables P, T, SW, EVI, FAPAR.

4.4. Comparing k-means clusterings with the Köppen-Geiger classification

We investigate whether a k-means clustering with k = 12 sticks out against other values of k in terms of cluster

distance to the KG classification. To this end we first classified the used temperature and precipitation data according

to KG (we use the decision rules of [4]). We compared the obtained classification with several of our clusterings with

k ranging from 3 to 40. As distance measure we again used VI (Sec. 3.4). Figure 6 shows VI as a function of k for

different subsets of the investigated variables. Although clusterings of data containing the climate variables are a bit

closer to the KG classification in general, a clear change of behaviour at k = 12 is not determinable.

4.5. How well does Köppen-Geiger match the the properties of the data?

If we reduce the dimensionality, e.g. by projecting the data onto the first two principal components, k-means

quite nicely partitions the data (not shown here). This suggests that the data streams, although 12-dimensional, have

low intrinsic dimensionality. Rapidly decreasing eigenvalue spectra of the covariance matrices support that (also not

shown here).
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Figure 6: Values of VI between the Köppen-Geiger classification of the years 2001-2007 and several clusterings

obtained with k-means.

To visualize KG on a low-dimensional projection of the data, we colour every sample with the label obtained

from the Köppen-Geiger classification. To show the plots clearly, we only use the main climates A to E (see [4])

for the colouring. Interestingly, it seems that Köppen-Geiger classifies the northern hemisphere quite well even if we

apply PCA on all variables (see Figure 7 left). The southern hemisphere, on the other hand, is matched rather poorly

(Figure 7 right). We conclude that in the northern hemisphere the boundaries for the five main climates coincide

well for both climate and vegetation. The difference between north and south maybe explained by the fact that the

developers of the classification had much more experience with the climate and vegetation zones in the northern

hemisphere, especially in Europe.

Figure 7: Projection of the data from the northern (left) and southern (right) hemisphere onto the first two principal

components. Each point constitutes one pixel and is coloured according to the five main climates of the Köppen-

Geiger classification

Figure 7 and other produced plots of this kind also suggests that the data rather represents a continuous manifold

than discrete classes.

5. Discussion

With the currently observed constantly increasing amount of data unsupervised learning methods are gaining more

and more importance. Hypotheses accepted for a long time can be approved or questioned by data driven analysis and

possibly need to be adjusted.
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Climate classifications like KG aim for predicting vegetation zones using only climate variables. We have shown

that KG may not be optimal regarding this task and we tried to tackle it with an approach using unsupervised cluster-

ing. However, the clustering of climate and vegetation variables separately leads to different results in cluster space.

Furthermore, we were not able to determine a stable (and thus naturally emerging) number of classes in both cases.

Interestingly, using both climate and vegetation variables together, we could identify a stable number of clusters,

namely 12. The close entanglement between climate and vegetation which cannot be described by a one-directional

function may explain this different behaviour.

With our analysis, we challenge the assumption whether a prediction from climate variables to vegetation zones

is possible at all. Consequently, the obtained clustering including climate and vegetation has rather diagnostic than

predictive character. With the proposed tools a number of questions could be addressed. Future research should, e.g.,

analyse the interannual variability of the obtained clustering and whether the found 12 classes remain stable over time.

With longer time series an important objective might be to find regions of changing classes over time. This would

give information about changing climate-vegetation interaction.
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regression tree, Hydrology and Earth System Sciences Discussions 8 (2) (2011) 2345–2372.

[7] B. Walker, D. Ludwig, C. Holling, R. Peterman, Stability of semi-arid savanna grazing systems, The Journal of Ecology 69 (2) (1981)

473–498.

[8] M. Scheffer, S. Carpenter, J. Foley, C. Folke, B. Walker, Others, Catastrophic shifts in ecosystems, Nature 413 (6856) (2001) 591–596.

[9] P. D’Odorico, F. Laio, L. Ridolfi, Noise-induced stability in dryland plant ecosystems, Proceedings of the National Academy of Sciences of

the United States of America (PNAS) 102 (31) (2005) 10819–10822.
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