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Zusammenfassung

Die vorliegende Arbeit untersucht drei Anwendungen zum Zwecke des Studiums oder der
Nutzung verschiedener Aspekte von Verschränkung. Im ersten Projekt wurde die Ver-
schränkung zwischen zwei Atomen in einem Viel-Moden Resonator unter Berücksichtigung
von Retardierungseffekten betrachtet. Unter Retardierung versteht man in diesem Zusam-
menhang die endlichen Zeit, die von einem Photon zur Propagation zwischen den Atomen
und dem Hohlraumrand benötigt wird. Es stellt sich heraus, dass die Retardierungsef-
fekte sowohl die atomaren Besetzungen, als auch die Dynamik der Verschränkung in
hohem Maße beeinflussen. Das zweite Projekt ist eine Studie von verschränkten photonis-
chen Zuständen mit dem Ziel, das (beugungslimitierte) Auflösungsvermögen zu erhöhen.
Dazu simulierten wir optische Zentroid-Messungen mit verschiedenen Arten von nicht-
klassischen Zuständen, welche zu einer Verbesserung der räumlichen Auflösung führten.
Durch diese numerischen Simulationen des Messsystems konnten wir die Nachweispa-
rameter für eine mögliche experimentelle Umsetzung optimieren und untersuchten zu-
dem Multi-Photonen-Absorption, die für Quanten-Lithographie benötigt wird. In un-
serem dritten Projekt nutzten wir das Streulicht von einem resonant-getriebenen, korre-
lierten System, um Informationen über das System selbst zu erhalten. Die vorgeschlage-
nen Techniken können dazu verwendet werden, um in bestimmten Richtungen n-Atom-
Korrelationen in einem Experiment direkt durch Licht-Streuung mit signifikanter Zählrate
zu messen. Darüber hinaus ist eine solche Erfassung von Korrelationen nicht auf eine
bestimmte räumliche Anordnung der Atome beschränkt, sondern kann für allgemeine Ge-
ometrien verwendent werden.

Abstract

In this work, three applications aimed at studying or exploiting various aspects of en-
tanglement are considered. In the first project, the entanglement between two atoms
inside a multi mode resonator is investigated in the presence of retardation. Retardation
is associated with the finite time required by a photon to propagate between atoms and
cavity boundaries. It is found that retardation affects the atomic populations as well as
the entanglement dynamics to a large degree. The second project is a study of entangled
states of light to obtain an enhanced resolution. We have simulated optical centroid mea-
surements for spatial resolution enhancement with various types of non-classical input
states. By numerically simulating the measurement scheme, we optimize the detection
parameters for an experimental implementation and also study the multi photon absorp-
tion required for quantum lithography. The third project uses the scattered light from a
resonantly driven correlated system to obtain information about the system. Techniques
have been proposed using which in certain detection directions, n-atom correlations can
be directly accessed in an experiment via light scattering with a significant count rate.
Moreover, such detection of correlations is not limited to a particular spatial geometry of
atoms but can be utilized for generalized geometries, too.
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Introduction

Entanglement is a purely quantum mechanical phenomenon. Two or more quantum sys-
tems are said to be entangled if their dynamics can be described only with reference to
each other even if they are physically spatially separated. A change in the state of one
of the entangled systems is instantly reflected in all others. Mathematically, a quan-
tum system is said to be entangled if it cannot be factorized (is inseparable) into product
states of its subsystems. Entanglement is associated with non-classical correlations among
quantum systems and possesses no classical counterpart. The striking non-classical na-
ture of entanglement reveals fundamental properties of quantum mechanics. The first
criticism to quantum theory was discussed in the famous EPR paper by Albert Einstein,
Boris Podolsky and Nathan Rosen in the context of an interpretation of the quantum
theory [1], where by a paradox the authors argued that the description of a physical re-
ality by a quantum mechanical wave function is incomplete. In essence, they recognized
the strange predictions allowed by quantum mechanics, such as, instantaneous action
at a distance. The approach was discussed, extended, and coined as ‘entanglement’ by
Erwin Schrödinger using the famous Schrödinger’s cat thought experiments in 1935 and
1936 [2,3]. He wrote, “the best possible knowledge of a whole does not necessarily include
the best possible knowledge of all its parts, even though they may be entirely separate
and therefore virtually capable of being ‘best possibly known,’ . . . ”. He supposed that
with a separation of the entangled particles, entanglement vanished spontaneously.

Because of the paradoxical nature of the idea, the concept of entanglement was paid no
heed to for a long period of next thirty years. In 1964, John S. Bell re-investigated the EPR
puzzle using simpler systems. In [4], (now known as Bell’s inequality) he accepted the idea
of local realism adopted by EPR. Then, he gave a straight forward but groundbreaking
mathematical proof showing that no theory of local hidden variables can account for all
of the predictions of quantum mechanics. Bell’s inequalities are shown to be violated in
quantum physical systems experimentally for the first time in 1972 by [5] and later by
[6–10], thus proving that some idea at the heart of local hidden variables theories has
to be false. The property which usually falsifies is locality - the idea that no physical
effects move faster than the speed of light. This debate continued and finally led Alain
Aspect [11, 12] and many others to experimentally show that entanglement can survive
over longer distances. Thus, Schrödinger’s supposition was proven false.

It was only in the 1980s that the non-local correlations among the entangled quantum
systems started to be made use of by the theorists and experimentalists in the fields of
physics, computer science, mathematics and cryptography as a new type of a physical
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Introduction

resource. Despite being one of the most counter intuitive features of the quantum the-
ory, entanglement has been studied enormously due to its inevitability in a wide range of
applications of quantum mechanics, for example, quantum teleportation, quantum infor-
mation, quantum cryptography and many more. Quantum teleportation is a method of
secure transfer of an unknown quantum state accomplished using quantum entanglement
and classical communication from one particle to another distant particle, without sending
the particle itself [13,14]. Quantum information is a study of storing (and retrieving) in-
formation using a quantum mechanical system. A qubit (quantum bit, the primary unit of
information) can have not only states 0 and 1, like a classical bit but also a superposition
of the two values [15]. Unlike traditional cryptography, quantum cryptography exploits
entanglement and is theoretically unbeatable essentially because of the impossibility to
measure the quantum state of a system without disturbing the system [16,17].

It goes without saying that in order to benefit from all the interesting applications, quan-
tum entanglement first needs to be created. There are numerous ways to create entangle-
ment. Particles can become entangled due to direct interactions among them and it is also
possible to produce quantum entanglement among identical particles that never directly
interacted. Both methods have been studied intensively during the past few decades.

The indirect interaction that results in the creation of entanglement between particles is
mediated via fields. Every particle interacts with the common field that surrounds all the
particles. In particular small ensembles of few particles that can be described by a few
energy states – the ground state and a few excited states are considered. The few-level
approximation is valid as long as it is assumed that the field interacts resonantly or near-
resonantly with these levels such that all other energy states are strongly detuned and
therefore, do not participate in the interaction.

In terms of quantum mechanics, the field couples the different states of matter. Vacuum
is defined as the ground state of the field, that is, when no excitation quanta are present in
the field. According to the uncertainty principle, the vacuum is not “empty”and contains
zero-point energy [18]. Two quantum systems can exchange energy by interaction with
the vacuum and thus, can become entangled. An initially excited atom can become de-
excited by emitting spontaneously a virtual photon. This virtual photon can be absorbed
by an identical near-by atom and consequently, this neighboring atom becomes excited.
In free space, the pre-requisite for such a vacuum induced interaction to take place is that
the inter atomic separation is on the order of the atomic transition wavelength [19, 20].
Therefore, the photon exchange due to the so-called dipole dipole interaction is short-
ranged. A similar interaction can be visualized inside a closed environment provided by
a cavity when a system of atoms is placed inside it. Now, the atoms can experience a
coupling due to the vacuum induced interaction within the resonator environment, even
if they are positioned significantly far apart from each other [21]. This way, a long-ranged
entanglement can be engineered through an exchange of energy between the atoms and the
cavity field. Some theoretical studies of the method include [22–24], while an experiment
is reported in [25].

Cavity quantum electrodynamics (QED) [26], the quantum mechanical interaction be-
tween a field confined within a cavity and atoms is a topic of active current research and
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has been studied extensively. The mathematical model that describes the simplest case
of the interaction of a bosonic degree of freedom, a single mode of electromagnetic radi-
ation and an effective two-level atom is known as the Jaynes-Cummings model [27]. The
calculations of interaction with a quantized single mode field in both semi-classical and
quantum pictures can be found in many quantum optics text books [28,29]. The general
case of several many-level atoms and many modes requires more effort.

Despite the rapid advancements on theoretical grounds, experimental verifications of the
model, nevertheless, began quite late not only due of the lack of the techniques to manu-
facture high-finesse cavities but also mainly because trapping single atoms in the cavities
for long enough times was extremely challenging since only beams of atoms were available.
The first experiment for the laboratory observation of the collapse and revivals predicted
in the atomic population inversion by the idealized example [27] was reported in 1987 [30].
This experiment at the Max Planck Institute for Quantum Optics involved thermal field
cavity. Later, in 1996, Serge Haroche’s group at Ecole Normale Supérieure, performed
a much improved experiment with quantized coherent fields [31]. Due to his pioneering
efforts in the field to measure and manipulate single atoms, S. Haroche won this year’s
Nobel prize in physics [32]. Nowadays, cavity QED is possible even with single atoms in
optical transitions [33, 34]. This progress, on one hand, opens up new horizons for the
construction of a quantum network, which aims at performing quantum computation. On
the other hand, elementary verifications of quantum mechanics can be carried out.

The Jaynes-Cummings model, however, does not take into account the coupling of the
atom-cavity system and the environment. Since no losses due to spontaneous emission of
the atom into external cavity modes, characterized by the natural decay rate Γ and the
cavity decay rate κ, which is the leakage of the radiation to the environment outside the
cavity are considered for the calculation, a time dependent Schrödinger’s equation is used
to obtain the equations of motion for the probability amplitudes. The decay channels
can be included if the master equation approach to describe the equations of motion of
the density matrix is used [35]. It allows the formation of mixed quantum states which
is not possible in the plain Schrödinger’s theory. The coupling between the atoms and
the cavity, described by the coupling constant g can be strong or weak depending on the
values of Γ and κ. If {Γ, κ} � g, no coherent evolution of the system is to be expected.
This is called the weak coupling regime. On the other hand, the strong coupling condition,
{Γ, κ} � g allows the system to evolve coherently for relatively much longer time until
ultimately dephasing occurs.

Generation of quantum entanglement by direct interaction between the particles has also
been studied in great detail [14, 17, 36–39]. A typical method which provides a reliable
source of strong entanglement is spontaneous parametric down-conversion (SPDC). It
was experimentally demonstrated for the first time in 1970 [40]. Light from a coherent

source, termed as the pump beam with frequency ωp and momentum ~kp enters a non-linear
medium, for example, a photonic crystal. The crystal splits the incoming light into two
beams of frequency different from ωp. The low energy correlated twins from the output
beams are usually referred to as the signal and the idler beams having frequencies ωs
and ωi, and momenta ~ks and ~ki, where |~ks| = |~ki|, ωs = ωi = ωp/2, respectively. Since
under phase-matched conditions, the process of SPDC does not exchange energy with the

13



Introduction

non-linear crystal, according to the conservation of energy and momentum ωp = ωs + ωi
and ~kp = ~ks + ~ki, respectively. A simple interaction picture Hamiltonian of the process

can be written as H = χ(2) a†s a
†
i ap + h.c., where χ(2) represents the second order non-

linearity, a†s(i) denotes the creation operator corresponding to the signal (idler) photon,
ap is the destruction operator for the pump photon, respectively and h.c. stands for
hermitian conjugate. The signal and idler beams can be of the same or perpendicular
polarization with respect to each other. These set ups are called type I and type II SPDC,
respectively. For the former, entanglement does not occur naturally, however, still there
are experimental techniques by which it can be produced [41]. If the polarization of the two
is perpendicular to each other, an entanglement between the polarizations of the output
photons is created naturally. High intensity SPDC sources configured for generation of
polarization-entangled photon pairs have been reported, for example, in [7, 42].

The polarization of the photons is not the only observable that allows for entanglement.
Several recent experimental set ups show that SPDC sources can also be configured to
create entanglement with respect to position and momentum (spatial entanglement) [43]
or energy and time (time entanglement) [44] or path and number (momentum entangle-
ment) [45].

The simplest and most famous example of a maximally momentum-entangled source of
light is a two photon NOON state [45–47] created by the Hong-Ou-Mandel effect [48],
which works as follows. Consider a 50:50 beam splitter. If identical single photons enter
from each port of the beam splitter, both photons can exit only from the same output
port. Because of the destructive interference of the amplitudes of two of the output prob-
abilities where a single photon exits from each output port, there is no possibility of a
coincidence detection. Such non-classical sources of light play an extremely vital role
in studying macroscopic quantum interference [49, 50]. These states are helpful for per-
forming high precision phase measurements which are integral parts of modern quantum
metrology [51,52] and have also been proposed for the use in quantum optical lithography
and interferometry [45, 53]. By entangling N photons in the incident beam, an effective
N times reduced wavelength and hence, a resolution enhancement by factor of N can be
achieved [54]. The mechanism of resolution enhancement by using non-classical features
of the probing light is going to be studied in a great detail in this thesis.

Having listed a few out of many ways to generate and use quantum entanglement, we
turn towards the detection and measurement of the entanglement. Being a phenomenon
of great practical importance, a lot of research has been carried out on this topic. Many
methods have been proposed and are being widely used to verify the presence of entangle-
ment. The procedures, however, are limited to two or three qubit systems. Specifically,
for entangled systems consisting of more than two particles, the methods to characterize
the entanglement, at present, are very limited.

The physical approach to detect entanglement treats the quantum states of the particles as
states belonging to a physical system. These physical states are experimentally produced
either in the laboratory or they exist in nature [55–57], for example, Bell inequalities,
entanglement witnesses, concurrence and so on. Schemes are developed which help access
the correlations between the particles directly in an experiment. Here, one tries to identify
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the properties of a correlated system that can be relevant for the correlation detection. If
entanglement is detected in the laboratory, it can help realize experiments, for example,
based on quantum information processing.

In one part of the thesis, we have used concurrence [56,57] as a measure of entanglement.
Experiments to detect entanglement via concurrence include [58, 59]. In another part of
the thesis, the count rates for coincidence detection have been estimated using a novel
technique for directly detecting the correlations via fluorescent light.

This doctoral thesis is aimed at a deep investigation, thorough understanding and a de-
tailed discussion of quantum entanglement, its applications and detection. While the
underlying mechanism for the entire content is quantum entanglement and collective ef-
fects in interacting systems, the thesis has not been conceived to be read in a continuous
manner. (Except Chapter 4, which is an extension of Chapter 3,) Every chapter in itself
can be read and understood as a distinct unit since the necessary background, mathe-
matical formalism, model system, results, conclusions and outlook have been presented
separately.

In Chapter (1), a system of a one-dimensional ring cavity assumed initially to be in a
vacuum state, containing two identical two-level atoms at fixed positions in the strong
coupling regime has been modeled [60]. The dynamics of entanglement between the two
atoms caused by the interaction with the common electromagnetic field present in the
vicinity has been studied in the presence of retardation. The effect of retardation is
related to the finite time that is required by a photon to travel between the atoms and
the boundaries of the cavity. The non-Markovian set up considered paves the path for
an interference between the spontaneously emitted light and the radiation that has been
reflected off by the cavity mirror. Here, we have used concurrence for the quantification of
quantum entanglement between the atoms. In the very strong coupling regime, we have
observed clear signatures of retardation in the time evolution of concurrence. Our studies
include the analysis for various initial conditions of the atoms as well as the cavity. By
varying the number of effective cavity field modes to which the atoms couple, we could
switch between the domains of strong and negligible retardation. Through changes of
inter atomic separations, we discovered that retardation effects are important not only
at large inter atomic distances but also at sub-wavelength separations. We considered
both short time dynamics of concurrence as well as long-time temporal evolution on both
large as well as vanishing inter atomic separation scales. At short time scales designated
by a few round trips of the photon inside the cavity, vivid and sudden changes in the
concurrence due to retardation are attributed to a transfer of the population from the
atoms to the symmetric Dicke state. The long time evolution shows periodic oscillations
which have an overall beat-like envelop that can be described using the collapses and
revivals in Jaynes-Cummings model. Furthermore, we studied the sudden birth, sudden
death and resurrection of quantum entanglement in the presence of retardation.

Conventional schemes of optical lithography are limited in resolution by the Rayleigh
diffraction limit given by λ/2, where λ is the wavelength of the impinging light. In
Chapter (2), a resolution enhancement scheme based on the optical centroid method [54]
has been studied. This scheme makes use of light sources having non-classical correlations.
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An ensemble of N entangled photons having an effective wavelength of λ/N , provides
with a resolution λ/(2N). This much shorter wavelength can be used to beat the usual
diffraction limit by a factor of N and hence enhance the resolution N times in optical
imaging schemes. Nevertheless, the detection of such highly energetic multi photon states
is a stringent experimental limitation due to either the unavailability or the high cost of
good multi photon resists. On the other hand, the optical centroid method for resolution
enhancement requires a detection system consisting of arrays of single photo detectors.
The measurement proposal that does not demand a multi photon absorption is shown to
be fundamentally more efficient than any quantum lithography scheme. The first proof-
of-principle experiment with two photon NOON states has been reported in [61]. The
experimentalists performed both quantum lithography and optical centroid measurements
with two photon NOON states and showed that although the same resolution enhancement
was achieved with the two measurement procedures, as predicted, the optical centroid
method was to be preferred due to its higher efficiency. We have inspected the mentioned
scheme numerically by extracting events randomly from the incident wave function and
later post processing them. This way, we could optimize the detection parameters for an
experimental implementation. We have examined the scheme with the non-classical states
of light mentioned in [54], that is, NOON states and jointly Gaussian states [62] and also
explored other new kind of input states, that is, correlated Schrödinger’s cat states [34,63,
64], that can also be exploited for resolution enhancement with the current method. For all
of the incident non-classical states, we could recover the centroid probability distribution
with different number of photons to verify the resolution enhancement with an increase
in the number of photons. We have also performed multi photon absorption analysis with
different states in different ways.

Chapter (3) is founded on the direct detection of atomic correlations through light
scattered off a few-particle ensemble. A small ensemble of atoms is correlated via the
dipole dipole interaction or Rydberg-Rydberg interaction(RRI) [65]. A Rydberg atom is a
large-sized (large principle quantum number n), long-lived atom with huge electric dipole
moment. A non-negligible dipole dipole interaction takes place between atoms excited
to Rydberg states if their product Rydberg states are nearly degenerate. The RRI can
be Förster Resonance (scales like ∼ r−3) or classical van-der-Waals interaction (scales
like ∼ r−6) for inter atomic distance r, depending upon the strength of the interaction
and the energy difference between the pair states. RRI has in fact the longest range
(scales as n11) that has been observed among neutral atoms. Therefore, in a gas of
cold Rydberg atoms, an atom is bound not only to interact with its nearest neighbors
but many-body interactions [66] take place and interesting effects like dipole blockade
occur [67,68]. In [69], a correlated atomic ensemble which is in the form of a linear chain
is considered. The sample is driven weakly by resonant lasers incident perpendicularly and
the fluorescent signal is recorded as a function of detection angles. A coincidence detection
apparatus is used to record the second order correlation function. A decomposition of the
second order correlation function allows to distinguish the correlations among different
numbers of atoms out of the ensemble. These correlations among the different atoms
can be experimentally accessed through coincidence detection in certain directions of the
detectors. We have extended the work of [69] to determine the efficiency of the scheme.
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We discovered that despite the weak interactions among the atoms, a coincidence signal
of significant size can be attained. Thus low count rate is not going to cause a problem
for the experimental realization of the scheme. Moreover, we analyzed the situation
for different number of atoms in the chain and discovered that not only the interesting
detection directions still pointed out to correlations among different atoms but also in
many cases, the signal size increased with the number of scatterers.

As an extension of this work, in Chapter (4), we consider ensembles of Rydberg atoms in
more generalized geometries. Here, we do not confine the atoms to be at equidistant posi-
tions in a line but allow them to be in various position configurations in a line or a plane
which is perpendicular to the incoming laser field. Interesting results have been obtained
as a result of more general orientations and distances. In particular, we discovered and
explained the counter-intuitive fact that in certain geometries as the inter atomic distance
is increased, 3-particle correlations vanish even before the elimination of 4-particle corre-
lations. Separating the atoms further eventually makes 4-atom correlations disappear too
such that only 2-atom correlations survive. Ultimately, at large distances, all the atoms
become uncorrelated. We have explained this result using two independent approaches.
There is still room for promising ideas that can be pursued with RRI atoms in arbitrary
geometries with respect to the incident resonant laser fields.

Finally, the main results presented in the thesis are summarized in the last section.
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Chapter 1

Effect of retardation on the dynamics
of entanglement between atoms

The main results of this chapter have been published in the paper [60]:
Q. Gulfam, Z. Ficek, and J. Evers

Effect of retardation on the dynamics of entanglement between atoms
Phys. Rev. A 86, 022325 (2012).

The role of retardation in the entanglement dynamics of two distant atoms in-
teracting with a multi-mode field of a ring cavity is discussed. The retardation
is associated with a finite time required for light to travel between the atoms
located at a finite distance and between the atoms and the cavity boundaries.
We explore features in the concurrence indicative of retardation and show how
these features evolve depending on the initial state of the system, distance be-
tween the atoms and the number of modes to which the atoms are coupled.
In particular, we consider the short-time and the long time dynamics for both
the multi- and sub-wavelength distances between the atoms. It is found that
the retardation effects can qualitatively modify the entanglement dynamics of
the atoms not only at multi- but also at sub-wavelength distances. We follow
the temporal evolution of the concurrence and find that at short times of the
evolution the retardation induces periodic sudden changes of entanglement. To
analyze where the entanglement lies in the space spanned by the state vectors
of the system, we introduce the collective Dicke states of the atomic system
that explicitly account for the sudden changes as a periodic excitation of the
atomic system to the maximally entangled symmetric state. At long times, the
retardation gives rise to periodic beats in the concurrence that resemble the
phenomenon of collapses and revivals in the Jaynes-Cummings model. In ad-
dition, we identify parameter values and initial conditions at which the atoms
remain separable or are entangled without retardation during the entire evo-
lution time, but exhibit the phenomena of sudden birth and sudden death of
entanglement when the retardation is included.
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1.1 Introduction

Entanglement is one of the most familiar phenomena resulting from the presence of non
classical correlations between quantum systems [70, 71]. A large number of studies have
demonstrated that entanglement can be created in variety of systems ranging from simple
systems such as single photons or atoms to more complex systems such as spin chains
or biological samples. The presence of an entanglement between systems has been tested
experimentally in various optical experiments. For example, slowly moving atoms can be
entangled while passing through a cavity [72,73], and the entanglement between the atoms
can be detected by probing the atomic state of the atoms after leaving the cavity [34,74].
Another common setup is the entanglement of photons obtained from a down-conversion
process. In [75], an experimental study of polarization entanglement is performed. The
entanglement is found to be dependent on not only the bandwidth of the spectral fil-
ters but also on the length of the down-conversion crystal. [76] also is an experimental
verification of the theory of spontaneous parametric down conversion (SPDC). Here, in
spatially separated bulk crystals, the interference effects are discovered to be generated
from SPDC. An experimental evidence of the creation of short wavelength, ultraviolet
entangled photon pairs has been provided in [77]. The method is based on third order
non-linear process in a semiconductor for producing a pair of entangled photons. [78]
uses micro-ring resonator structures for the enhancement of a SPDC process. SPDC at
telecommunication wavelength is performed in a simple but deterministic manner in [79].
By fabricating a special crystal, highly entangled photons at two different wavelengths
are created. In all these cases, the entanglement between the photons can be verified, for
example, by detecting correlations between their polarizations [80, 81].

Apart from the issue of creating entanglement, also a detailed analysis of the dynamics
of an entangled system is of importance. One motivation for this is the possibility for
transferring entanglement between distant quantum systems [82]. Such transfers have be-
come especially interesting since a number of experiments have succeeded in the creation
of quantum gates necessary for the implementation of quantum networks [83]. However,
if one examines the dynamics of an entangled system coupled to a network of quantum
systems, it becomes apparent that the unavoidable coupling of the systems to the external
environment can lead to the irreversible loss of the transferred entanglement. In this con-
nection, one would expect that the coupling of the systems to local environments, with a
Markovian assumption of the process, could lead to an exponential decay of the entangle-
ment from its initial value. However, there are some entangled states, particularly those
involving at least two excitations, that may decay in an essentially non-exponential man-
ner resulting in the disappearance of the entanglement in a finite time. This effect, known
as sudden death of entanglement (SDE), has been studied in a numerous number of pa-
pers [71,84–88], and has recently been observed in experiments involving photons [89,90]
and atoms [91]. Furthermore, theoretical treatment of the coupling of sub-systems to a
common (non-local) environment has predicted that the already destroyed entanglement
could suddenly revive or initially separable systems could become entangled after a finite
time, the phenomenon known as sudden birth of entanglement (SBE). [92] is a study
of entanglement that is induced by spontaneous emission in two non-overlapping atoms.
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The cases of identical as well as non-identical atoms are considered. In [93], again SBE
dependent on collective damping is investigated. Here, two initially entangled qubits are
coupled collectively to a multimode vacuum. [94] is a description of time-delayed SBE
caused by spontaneous emission. The threshold time for SBE is also determined. En-
tanglement of two cavities coupled to two independent reservoirs has been accounted for
in [95]. The disappearance of cavity entanglement results necessarily in reservoir entan-
glement. Finally, entanglement of qubits in a common structured Lorentzian reservoir
has been discussed in [96]. The revivals of entanglement occur due to the back-action of
the non-Markovian reservoir.

From experimental point of view, in particular the study of the generation of entanglement
in systems confined within optical or microwave cavities [26,34,74,97,98] is of importance.
Cavities provide a well-defined mode spectrum and a relatively loss-free environment such
that the atom-field interactions can have anomalously large coupling strengths, leading
to reversible, non-Markovian type dynamics of the system. As a consequence, the already
dead entanglement can revive even if in the equivalent free-space situation no revival is
predicted [84,85,96,99–105]. However, calculations based on deriving the master equation
for the reduced density operator of two atoms, both placed inside a cavity, frequently
assume a large distance between the atoms such that there is no direct interaction between
them. At the same moment the treatments assume that each atom influences the other
instantaneously. For this, there is no time delay or equivalently no phase difference
between the oscillating atomic dipole moments resulting in an effective coupling between
the atoms independent of their distance. It turns out that these non-retarded models
to physical systems are suitable if the atoms interact with a single cavity mode. A
more interesting parameter regime arises if the atom couples to a large number of cavity
modes. In this case, retardation effects become important [21, 106–108]. These effects
are associated with a finite time required for light to travel, e.g., from the atom to the
boundary of the cavity and back to the atom after being reflected from the cavity mirror.
This leads to the interference between instantaneously emitted photon and the retarded
waves that are reflected from the cavity walls.

In an early study Milonni and Knight [106,107] discussed the effect of the retardation on
the collective behavior of two atoms. They demonstrated that that retardation effects in
the interaction between two atoms in free space become important for distances larger
than the half-wavelength of the field. Recent studies of the interaction of atoms with
multi-mode cavities have predicted strong non-Markovian and retardation effects in the
population dynamics [21, 108]. The multi-mode cavity field can be treated as a small
environment to the atoms [109]. This leads to a spatial modulation of the field amplitude
which significantly alters the nature of the interaction between the atoms and the field.

While most of the studies on SDE and SBE assumed the Markovian approximation such
that a backaction of the environment on the atoms is effectively excluded, recently, how-
ever, also the non-Markovian case has received considerable attention [84,85,96,99–105].
In particular those explicitly taking into account the distance between the particles are
of relevance [110–112]. In these works it was shown that for certain initial states, the
distance between the qubits can qualitatively change the entanglement dynamics. For ex-
ample, depending on the distance, SDE and SBE can occur or not. However, these works
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made use of a continuum of environmental modes by integrating over all wave vectors ~k.
This raises the question about the entanglement dynamics of atoms in multi-mode cavities
with a set of discrete field modes, which are known to exhibit strong non-Markovian and
retardation effects in the population dynamics [21].

In this chapter, we investigate the effect of retardation on the generation and dynamics
of entanglement between two two-level atoms located inside a ring cavity while constraint
the number of excitations in the system first to one and then to two. The model studied
requires that we develop a multi-mode theory of the interaction of the atoms with the
cavity field so the effects of propagation are fully incorporated in our analysis of the time
evolution of the entanglement measure, concurrence [56, 57]. The goal then is to trace
the time evolution of the concurrence in the case of single or double excitations present
in the system. We show that the quantum nature of the cavity field crucially affects the
generation of entanglement in the system. There is no SDE/SBE when we do not allow
for a double excitation in our system. The absence of SDE for single-excitation inside a
lossy cavity has been shown by [113]. In the course of the calculation we observe that the
retardation effects do play a significant role in the creation of entanglement between the
atoms in the double excitation case. Certain transient effects such as abrupt kinks in the
time evolution of the populations and the concurrence occur. The kinks reflect the effects
of multiple photon exchange between the atoms and appear at intervals corresponding to
the multiplets of time required for the photon to travel between the atoms or to take the
round trip in the cavity. The effect of the retardation on the phenomena of sudden death,
revival and sudden birth of entanglement is also discussed.

In particular, we identify parameters and initial conditions, in which the atoms remain
separable without retardation throughout the entire evolution time, but exhibit sudden
birth and death of entanglement with retardation, and vice versa. Both, the short-time
and the long time dynamics are analyzed, and we also study time-averaged concurrences.
Lastly, we show that the exact placement of the atom within a wavelength is very impor-
tant. We also study the distance dependence on two scales: First, in integer multiples of
the wavelength, corresponding to different positions in a periodic potential, and second
on a sub-wavelength scale.

We begin in Sec. 1.2 by introducing the model comprising of the atoms and the ring cavity
and derive the equations of motion for the probability amplitudes in two cases of single and
double excitations present in the system. These equations are obtained by considering a
multi-mode rather than a single-mode interaction of the atoms with the electromagnetic
cavity field assumed initially to be in the vacuum state. Then, in Sec. 1.3.3 we apply
the solutions for the probability amplitudes to the problem of the time evolution of the
populations and the concurrence. Throughout, we assume that the atoms interact with
a finite number of the cavity modes. The numerical results for various special cases of
the time evolution of the populations and the concurrence are illustrated in Sec. 1.4. We
also present there the qualitative discussion of the short and long time behaviors as well
as the average behavior of the concurrence. Finally, in Sec. 1.6 we briefly summarize our
results. A succint outlook follows in Sec. 1.7.
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Figure 1.1: (Color online) Schematic diagram of the system considered. Two identical
two-level atoms are at fixed positions, distant x from each other, located inside a one-
dimensional ring cavity of the round trip path L. The internal structure of each atom is
shown in the right inset. The atoms are modeled as two-level systems with the excited
|ei〉 and ground |gi〉 states separated by the transition frequency ωa.

1.2 The model

We consider two identical atoms, located inside a ring cavity at fixed positions ~x1 and ~x2,
with distance |~x2 − ~x1| = x. The atoms are modeled as two-level systems with excited
state |ei〉 and ground state |gi〉 (i ∈ {1, 2}) separated by energy ~ωa, as shown in Fig. 1.1.

The cavity is considered as a multi-mode cavity with frequency difference between adjacent
modes (free spectral range) such that multiple modes are supported within the atomic
resonance line width. The consideration of several rather than a single mode in the
interaction of the atoms with the cavity field will be found crucial for the occurrence of
retardation in the radiative coupling between the atoms.

1.2.1 Hamiltonian of the system

The Hamiltonian of the atoms interacting with the common electromagnetic field of the
ring cavity can be written as [21]

H = Ha +Hf +Haf , (1.1)

where

Ha =
2∑
j=1

~ωaS+
j S
−
j (1.2)

is the free Hamiltonian of the atoms,

Hf = ~
∑
µ

ωna
†
µaµ (1.3)

is the free Hamiltonian of the cavity field, and

Haf = − ~D1 · ~E(~x1)− ~D2 · ~E(~x2) (1.4)
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is the interaction between the atoms and the cavity field, written in the electric dipole
approximation.

In the Hamiltonian Eq. (1.1), the atoms are represented by the transition dipole moment
operators

~Dj = ~djS
+
j + ~d∗jS

−
j , (1.5)

where S+
j = |ej〉〈gj| and S−j = |gj〉〈ej| are respectively the dipole raising and lowering

operators of the atom j, and ~dj = 〈gj| ~Dj|ej〉 is the dipole matrix element of the atomic
transition.

The cavity field is represented by the creation a†µ and annihilation aµ operators in which

the subscript µ indicates the particular set of the cavity plane-wave modes µ = {~kn, l}
of the wave number kn = ωn/c, frequency ωn and polarization l, to which the atoms are
coupled.

The cavity field at position ~x can be given in the plane-wave mode expansion as

~E(~x) = i
∑
µ

Eµ
(
aµei

~kn·~xêl − H.c.
)
, (1.6)

where

Eµ =

√
~ωn
2ε0L

, (1.7)

is the electric field amplitude of the nth mode, ωn = 2πnc/L is in the frequency of
the modes set by the periodic boundary conditions of the ring cavity, and êl is the unit
polarization vector of the mode µ.

After substituting Eqs. (1.5) and (1.6) into Eq. (1.4), and retaining only the terms which
play a dominant role in the rotating wave approximation, the interaction Hamiltonian
takes the form

Haf = i~
2∑
j=1

∑
µ

[
gµ(~xj)aµS

+
j − H.c.

]
, (1.8)

where

gµ(~xj) =
Eµ
~

(
~dj · êl

)
ei
~kn·~xj (1.9)

is the position-dependent Rabi frequency which determines the strength of the coupling
of the jth atom with the mode µ of the cavity field.

Our objective is to find effects of the retardation in the interaction of the atoms with the
multi-mode cavity field on the evolution of the system. We are in particular interested
in the effect of the retardation on the creation of entanglement between the atoms. Two
cases will be studied, with the system initially (1) in a single excitation state, and (2) in
a double excitation state. Before going into detailed calculations, we first briefly explain
how retardation effects are incorporated in our calculations.
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Chapter 1: Effect of retardation on the dynamics of entanglement between atoms

1.2.2 Origin of the retardation

The atom-cavity system exhibits retardation effects if its dynamics is affected by the finite
propagation time of the light. In our model, two effects need to be distinguished [21].
First, an atom embedded in a larger cavity initially evolves as in free space, but after a
finite time of order L/c (and integer multiples thereof) reacts to the presence of the cavity
with a sudden kink in the time evolution. Speaking pictorially, this time is required for a
photon emitted by the atom to cycle through the cavity and be reabsorbed by the same
atom. This gives rise to retardation effects which occur already for a single atom in the
cavity. The second effect is due to the interaction of two atoms in the cavity. Here, the
retardation occurs because of the finite time required for a photon to travel between the
two atoms.

In the following, we provide an intuitive picture how the distance information required
for the two different retardation effects enters our model. This discussion will be made
more precise in Sec. 1.3.1, where we identify the origin of the two types of retardation in
the equations of motion governing the atom-cavity system.

A typical representation of the interaction of an atom with a cavity field is illustrated in
Fig. 1.2. Evaluating the electric field operator (1.6) in the Heisenberg picture to include
the time evolution, we find

~E(~x) = i
∑
µ

Eµ
(
aµeiϕn(~x,t)êl − H.c.

)
. (1.10)

The time and space dependence enters via the phases ϕn(~x, t) = ~kn~x− ωnt = ωn(x/c− t)
of the different modes. In the last step and throughout this section, we assume a one-
dimensional problem, and thus ~kn~x = knx for simplicity.

Let us first discuss a simplified model, the interaction of the atom with a single mode
only, say the central cavity mode µ = 0, as shown in Fig. 1.2(a). Suppose now that atom
1 represented by a red blob is located at position x1, whereas atom 2, represented by a
blue blob can be located at three different positions x2, x2′ and x2′′ . It is easily verified
that if x is displaced by δx such that k0 · δx = 2πn, where n is an integer, then the phase
of the single mode remains unchanged, ϕ0(x, t) = ϕ0(x + δx, t). This implies that the
electric field operator has the same value at positions differing by an integer multiple of
the cavity wavelength. Hence, the interaction Hamiltonian Haf remains the same if the
distance between the two atoms is changed by an integer multiple of the wavelength. In
this sense, the system dynamics is independent of the distance, and thus the system itself
cannot exhibit effects of retardation if only a single mode is considered.

It should be noted that the interaction Hamiltonian still depends on the relative distance
between the atoms. For atomic separations |x2 − x1| and |x2′ − x1| that are equal to
multiple integer of the wavelength, g0(x1) = g0(x2) = g0(x2′), since at these separations
the Rabi frequencies have the same value. In other words, the atoms are coupled equally to
the field mode. But for separations between the atoms that do not satisfy the periodicity
condition, such as |x2′′ − x1|, the atoms experience different amplitudes and phases of
the field. As a consequence, the interaction Haf is modified due to a change of the Rabi
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Figure 1.2: (Color online) Atoms represented by colored blobs inside the cavity field. x1

denotes the position of atom 1 which is placed at the first anti node. (a) Single mode
of the cavity field with three different positions for atom 2. (b) Two additional modes
shown in blue and green are taken into account.

frequency. However, this variation of the interaction Hamiltonian with the inter atomic
distance in the single mode field has nothing to do with retardation.

Let us now assume that apart from the central mode, there are additional cavity modes
taking part in the interaction with the atoms, as illustrated in Fig. 1.2(b). Suppose that at
point x1, all modes have the same phase (ϕn(x1, t) = ϕ0 for all n), which we for simplicity
assume to be zero. Then, the position x entering the field operator can be interpreted as
the distance δx = x2−x1 between the two atoms. Due to their different wave numbers kn,
at point x2, the modes typically have different phases, i.e., ϕn(x2, t) 6= ϕm(x2, t) for n 6= m.
In other words, the modes are shifted or “retarded” with respect to each other. This means
that the atom at position x2 experiences the field emitted by atom 1 into the different
cavity modes with different relative phases, such that the response of atom 2 in the limit
of large mode number averages out. However, at specific times, all modes can evolve in
phase again. From the definition of ϕn(x, t), it is clear that this happens at times x/c,
i.e., exactly the times corresponding to the flight time of light between the two atoms.
At this instance in time, the cavity modes act in phase onto atom 2, such that a sudden
response is observed. This is the origin for the retardation effects of the second type.

In contrast, the retardation effects of the first type are embedded in the quantization of
the cavity mode’s frequency spectrum. The frequency spacings are such that the phases
at times separated by integer multiples of L/c are different by an integer multiple of 2π,
as ωnL/c = 2πn. While at most times the different modes are out of phase because of the
different free evolution frequencies, at times equal to integer multiples of L/c all modes
are in phase again, and a sudden response of the atom appears. From this interpretation,
it is apparent that this first type of retardation already occurs for a single atom.

A straightforward combination of both arguments also explains the retardation of the
second type at times (L − x)/c. Furthermore, in the subsequent evolution of the atoms
also combinations of the different retardation time intervals can occur, as we will see in
the numerical analysis.
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Thus, retardation effects are expected to play an important role in the interaction of atoms
as soon as multiple modes with different wave numbers interact with the atoms. This can
also be related to the Fourier relation of position and momentum space. The small
frequency distribution of a single mode gives rise to a large distribution or uncertainty in
the position. In contrast, a broad frequency distribution or many modes allow to precisely
determine the position.

1.3 Excitation probabilities and concurrence

We are interested in determining the effect of retardation on the time evolution of the
system initially prepared in separable states of single and double excitations. In particular,
we shall discuss the subsequent time-dependent behavior of the excitation probabilities
and the concurrence.

The time evolution of the system is governed by the Schrödinger equation, which in the
interaction picture is given by

i~
∂|ψ(t)〉
∂t

= Haf |ψ(t)〉. (1.11)

Note that this description in terms of the Schrödinger equation does not take into account
incoherent processes such as cavity loss or spontaneous emission of the atoms outside of the
resonator mode. Therefore, we can only analyze the dynamics over times which are short
compared to the lifetime of photons in the cavity mode, and to the lifetime of the excited
atomic states. In the following, we will focus on evolution times up to 2000L/c, which
would require a resonator finesse larger than 2000. Resonators with suitable finesses have
been achieved with different quantum systems and cavity types [114, 115]. Also typical
lifetimes of the respective excited atomic states are much longer than the considered
propagation time, such that it is justified to consider the coherent dynamics only.

We will consider two particular classes of initial conditions. In the first, we assume that
at t = 0 the system was in a single-excitation state. In the second class, we assume that
initially two excitations were present in the system. In both cases, the (single or double)
excitation is initially either present in the atoms or in the cavity, or in a superposition of
atoms and cavity.

1.3.1 The case of single excitation

If we take for the initial state of the system a single-excitation state, then the time-
dependent state vector of two atoms coupled to a multi-mode field can be written as

|ψ(t)〉 = b1(t)|e1g2{0}µ〉+ b2(t)|g1e2{0}µ〉+
∑
µ

bµ(t)|g1g2{1}µ〉, (1.12)

The different kets in the above equation specify the electronic state of the first atom, the
electronic state of the second atom and the field state in the Fock state representation,
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respectively, that is, |i1j2{k}µ〉 = |i1〉⊗ |j2〉⊗ |{k}µ〉. {1}µ denotes the state of the cavity
modes with a single excitation present in the mode µ and zero occupation numbers for
all the remaining modes.

The time evolution of the state vector is determined by the Schrödinger equation (1.11)
which transforms it into three coupled equations of motion for the probability amplitudes

ḃj(t) =
∑
µ

gµjbµ(t), j ∈ {1, 2}, (1.13a)

ḃµ(t) =− i∆µbµ(t)−
2∑
j=1

g∗µjbj(t), (1.13b)

where ∆µ = ωµ − ωa is the detuning of the cavity mode frequency ωµ from the atomic
transition frequency ωa coinciding with the central cavity mode frequency, and we have
simplified the notation gµi ≡ gµ(~xi).

The formal integration of Eq. (1.13b) gives

bµ(t) = bµ(0)e−i∆µt −
2∑
j=1

g∗µj

∫ t

0

dt′bj(t
′)e−i∆µ(t−t′), (1.14)

and when this relation is substituted into Eq. (1.13a), we find

ḃj(t) =
∑
µ

gµjbµ(0)e−i∆µt −
2∑

j′=1

∫ t

0

dt′
∑
µ

gµjg
∗
µj′bj′(t− t′)e−i∆µt′ . (1.15)

At this point, the two types of retardation effects are fully visible also from the analytical
expressions. The first type leading to retardation effects at times equal to integer multiples
of the cavity round trip time L/c can be understood in terms of the detunings ∆µ. Since
the detunings ∆µ differ by integer multiples of 2πc/L, the phases ∆µt will be multiples
of 2π for all modes µ simultaneously at times t equal to integer multiples of L/c. Then,
the system response will exhibit sharp peaks due to the constructive interference of all
modes. At other times, the different phase factors of the various modes do not add up
constructively. This discrete response is independent of the coupling between the atoms,
and could be observed even if only a single atom is present inside the cavity.

The second type of retardation is due to the interaction between the atoms, i.e., the second
part of Eq. (1.15). The coupling constants gµjg

∗
µj′ together with the detuning phase lead

to phase contributions i[kµ(x1 − x2)− ωµt] = iωµ[(xj − x′j)/c− t] for the different modes.
Again, constructive interference is obtained, but in this case at a time corresponding to
the flight time x/c between the two atoms. A similar argument also explains constructive
interference at time (L− x)/c.

Subsequent iterations of the two types of retardation lead to kinks in the system evolution
also at times arising from combinations of the two effects. Obviously, constructive inter-
ference can only lead to sharp change in the system response if many different frequency
components contribute, i.e., if the system couples to many cavity modes. In the extreme

27



Chapter 1: Effect of retardation on the dynamics of entanglement between atoms

case of free space, L → ∞, and the first type of retardation cannot occur at a finite
time. But the retardation in the coupling between the two atoms is still present in the
free-space limit, and must be considered, e.g., in calculating the dipole-dipole coupling
between atoms in free space.

1.3.2 The case of double excitation

If initially the system was in a double excitation state, then the state vector can be written
as

|ψ̃(t)〉 = b12(t)|e1e2{0}µ〉+
∑
α

bα1(t)|e1g2{1}α〉+
∑
α

bα2(t)|g1e2{1}α〉

+
∑
α

bαα(t)|g1g2{2}α〉+
∑
α>β

bαβ(t)|g1g2{1}α{1}β〉, (1.16)

where {2}α denotes the state of the cavity modes with double excitation of the mode α
and zero occupation numbers for all the remaining modes.

The Schrödinger equation transforms the state vector (1.16) into the following set of
coupled equations of motion for the probability amplitudes

ḃ12(t) =
2∑

j 6=j′=1

∑
α

gαjbαj′(t),

ḃαj(t) =− i∆αbαj(t)− g∗αj′b12(t) +
√

2gαjbαα(t) +
∑
β>α

gβjbβα(t)+
∑
β<α

gβjbαβ(t),

(j 6= j′ ∈ {1, 2}),

ḃαβ(t) =− i(∆α+∆β)bαβ(t)−
2∑
j=1

[
g∗αjbβj(t)+g∗βjbαj(t)

]
,

ḃαα(t) =− 2i∆αbαα(t)−
√

2
2∑
j=1

g∗αjbαj(t). (1.17)

The case of double excitation is described by a complicated set of equations of motion.
It involves probability amplitudes of the states with the excitation redistributed over two
cavity modes, bαβ(t), as well as states with the excitation occupying the same mode bαα(t).

1.3.3 Concurrence

We are mainly interested in studying the retardation effects on the entanglement dynam-
ics between the two atoms that are coupled to the multi mode vacuum field inside the
cavity. The dynamics of the atoms are determined by the reduced density matrix ρ that
is obtained by tracing the density matrix of the total system over the field degrees of
freedom. We then exploit concurrence introduced by Wootters [56,57], which is a widely
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accepted measure of entanglement between two qubits, and is defined by

C = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}, (1.18)

where λi are the eigenvalues (in descending order) of the Hermitian matrix R = ρρ̃ in
which ρ̃ is given by

ρ̃ = σy ⊗ σyρ∗σy ⊗ σy. (1.19)

and σy is a Pauli matrix. The concurrence ranges between 0 and 1. If the two atoms are
maximally entangled, the concurrence evaluates to unity whereas, if they are completely
disentangled, C = 0.

The usual way is to express the concurrence in the basis of the product states of the
two-atom system, i.e., |1〉 = |e1e2〉, |2〉 = |e1g2〉, |3〉 = |g1e2〉, |4〉 = |g1g2〉. In this basis,
the concurrence takes the form [99]

C(t) = 2 max
{

0, |ρ23(t)| −
√
ρ44(t)ρ11(t), |ρ14(t)| −

√
ρ22(t)ρ33(t)

}
. (1.20)

There are two terms contributing to the concurrence, one resulting from the presence of
the one-photon coherence |ρ23(t)| and the other from the two-photon coherence |ρ14(t)|. It
is interesting that these two contributions complement each other. In the single excitation
case, ρ11 = 0, ρ14 = 0, and then the expression for the concurrence (denoted in this case
by C) reduces to

C(t) = 2 max{0, |ρ23(t)|} = 2 max{0, |b∗1(t) b2(t)|}. (1.21)

It shows that in the single excitation case it is sufficient for |ρ23(t)| to be different from
zero to create entanglement between the atoms. In this sense, entanglement is equivalent
to atomic coherence in this case.

The situation is quite different when two excitations are present in the system. But
surprisingly, tracing the density matrix of the system over the field degrees of freedom
results in an expression for the concurrence that does not involve the two-photon coherence
ρ14(t). To see this more explicitly, we calculate the density matrix ρT associated with the
two-excitation state Eq. (1.16), and find

ρT = |b12(t)|2|e1e2{0}µ〉〈e1e2{0}µ|+
∑
α

|bα1(t)|2|e1g2{1}α〉〈e1g2{1}α|

+
∑
α

bα1(t)b∗α2(t)|e1g2{1}α〉〈g1e2{1}α|+
∑
α

bα2(t)b∗α1(t)|g1e2{1}α〉〈e1g2{1}α|

+
∑
α

|bα2(t)|2|g1e2{1}α〉〈g1e2{1}α|+
∑
α>β

|bαβ(t)|2|g1g2{1}α{1}β〉〈g1g2{1}α{1}β|

+
∑
α

|bαα(t)|2|g1g2{2}α〉〈g1g2{2}α|+ND, (1.22)

where ND stands for the sum of all off-diagonal terms in the field modes which vanish in
tracing over the cavity modes. Then, by taking trace of the density matrix ρT over the
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Chapter 1: Effect of retardation on the dynamics of entanglement between atoms

cavity modes, we arrive at the following reduced density matrix of the two atoms

ρ = |b(t)|2|1〉〈1|+
∑
α

|bα1(t)|2 |2〉〈2|+
∑
α

|bα2(t)|2 |3〉〈3|+
∑
α

bα1(t)b∗α2(t) |2〉〈3|

+
∑
α

bα2(t)b∗α1(t) |3〉〈2|+
(∑
α>β

|bα,β(t)|2 +
∑
α

|bα,α(t)|2
)
|4〉〈4|. (1.23)

It is clear that tracing out the field modes results in the density matrix with ρ14 = 0. In
this case, the concurrence denoted by C takes the form

C(t) = 2 max
{

0, |ρ23(t)| −
√
ρ44(t)ρ11(t)

}
, (1.24)

which in terms of the probability amplitudes can be written as

C(t) = max{0, C1(t)}, (1.25)

where

C1(t) = 2
∑
α

|b∗α2(t)bα1(t)| − |b(t)|
√∑

α>β

|bα,β(t)|2 +
∑
α

|bα,α(t)|2. (1.26)

Similar to the single excitation case, the concurrence depends on the coherence ρ23(t).
However, in the presence of two excitations in the system, the condition for a nonzero
concurrence of |ρ23(t)| 6= 0 is a necessary one, it is not in general sufficient one, since there
is a subtle condition of the coherence to be larger than a threshold value of

√
ρ44(t)ρ11(t).

Thus, the presence of the two excitations in the system introduces a threshold for the
coherence above which the entanglement between the atoms could occur. Needless to
say, the first term in Eq. (1.26), |b∗α2(t)bα1(t)|, must be different from zero and exceed the
second term numerically for the concurrence to be positive.

We should point out here that the involvement of only the one-photon coherence in the
concurrence of the double excitation case is a direct consequence of the quantum nature
of the field. The definite total excitation number entangles the excitation number of
the atoms uniquely to the excitation number of the cavity. If the cavity is projected
into particular excitation number channels with classical probabilities not allowing for
quantum superpositions in tracing over the cavity modes, due to this entanglement, also
the atoms are projected into the corresponding excitation number subspaces. This rules
out coherence or even entanglement between atomic states of different excitation number.
This situation was treated by Yönaç et al. [116,117], who showed that in the case of a two
mode cavity, α ∈ {1, 2}, no coherence and equivalently no entanglement can be found in
a system determined by the double excitation state (1.16).

The coherence could be present if one includes an auxiliary state |g1g2{0}α{0}β〉, the
ground state with no excitation, to the state (1.16). Then, the total excitation number
would not be fixed, and there would be no definite entanglement between the atom and
cavity excitation numbers. Alternatively, if the photon number states in Eq. (1.22) were
replaced by a classical field amplitude, for example, by a coherent state |α〉, one could then
arrive at the concurrence involving the two-photon coherence ρ14. Thus, the condition for

30



1.4. Results and discussion

entanglement based on ρ14 would become relevant. It is easy to see, replacing in Eq. (1.22)
the photon number states |{n}µ〉 by the coherent state |α〉, we obtain a state vector

|ψ̂(t)〉 = b12(t)|e1e2α〉+
∑
α

bα1(t)|e1g2α〉+
∑
α

bα2(t)|g1e2α〉+
∑
α

bαα(t)|g1g2α〉. (1.27)

Using ψ̂(t) from Eq. (1.27), one can calculate the density matrix ρcl. Now

ρcl14 =〈1|ρcl|4〉
=b∗12(t)bαα(t)〈e1e2α|ψ̂(t)〉〈ψ̂(t)|g1g2α〉
=|b∗12(t)|2|bαα(t)|2. (1.28)

It is seen that the resulting density matrix element containing contributions from the
two-photon coherences no more vanishes. This is consistent with our interpretation, as a
coherent state has a distribution of photon numbers rather than a well-defined occupation
as a Fock state.

1.4 Results and discussion

Having discussed the general features of the concurrence, we now turn to analyze the
transient behavior of the populations and concurrence for initial conditions in which
the atoms are prepared in separable single or double excitation states and for an initial
condition in which the atoms are initially in a partially or a maximally entangled state.
We shall allow for an arbitrary inter atomic spacing and length of the cavity, but we limit
the discussion to situations in which the central cavity mode is in resonance with the
transition frequency of the atoms, i.e., ω0 = ωa. Also, since the coupling of the atoms to
the cavity modes decreases with increasing detuning, we take into account in the numerical
calculation a finite number of cavity modes distributed about ω0 with a frequency range
on the order of several atomic line widths. The required number of modes depends on
the cavity length L, as the distance between the adjacent cavity modes decreases with
increasing L. Thus, the number of the cavity modes to which the atoms can be coupled
increases with an increasing L.

Equations (1.21) and (1.24) for the concurrence are functions of several parameters: the
inter atomic spacing x, the detuning of the cavity modes from the atomic transition
frequency ∆µ, the number of the cavity modes N to which the atoms are coupled, the
coupling strength of the atoms to the cavity modes gµi, the cavity length L, and the time
t. For fixed N and L, one can obtain time evolution of the concurrence by monitoring
the populations of the atomic states and coherence between the atoms as a function of
t. Alternatively, one can monitor the time evolution of the populations of the collective
states of the two-atom system. In the following, we give illustrative figures of both on a
short time and a long time behavior of the concurrence.
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Figure 1.3: (Color online) The time variation of the probabilities |b1(t)|2 (solid green line)
and |b2(t)|2 (dashed blue line) for L = 3.48× 103λa, N = 99, ωa = 1.11× 104Ω0, where Ω0

is the vacuum Rabi frequency of the central resonant mode, and inter atomic spacings:
(a) x = 0 and (b) x = 999λa. The sudden jumps of the probabilities due to retardation
are marked by red circles. The first atom is located at x1 = 1λa. Note that in the case
(b), the atom “2” starts to become excited after a finite time, t = x/c, that is due to the
retardation.

1.4.1 Effects of retardation on the population dynamics

Before discussing the effects of retardation on the transient properties of the concurrence,
it is important to understand the transient behavior of the populations of the single-
excitation case. Transient excitation probabilities are first studied for arbitrary initial
conditions for the atomic and the collective states of the system. The effects of retardation
on the population dynamics were studied by Goldstein and Meystre [21]. However, these
calculations were not specifically oriented towards studying the transient properties of
the collective states of the system which, as we shall see below, are very useful for the
interpretation of the entanglement dynamics of the atoms.

To calculate the population dynamics, we solve numerically the set of coupled equations for
the probability amplitudes, Eqs. (1.13a)-(1.13b), assuming that the atoms were prepared
at time t = 0 in a product state

|ψ(0)〉 = |e1〉 ⊗ |g2〉 ⊗ |{0}µ〉 ≡ |e1g2{0}µ〉, (1.29)

where |{0}µ〉 denotes the product state vector of the cavity modes with zero occupation
numbers for all the modes µ. The initial condition (1.29) corresponds to b1(0) = 1 and
b2(0) = bµ(0) = 0. We then compute the time evolution of the excitation probabili-
ties |b1(t)|2 and |b2(t)|2 of the atoms.

Figure 1.3 shows the time evolution of |b1(t)|2 and |b2(t)|2 for two different inter atomic
spacings. The frame (a) illustrates the case when the atoms are very close to each other,
with spacing x ≈ 0. We see that the initially excited atom decays almost exponentially
in time, corresponding to the free space regime defined in [21]. A part of the excitation is
transferred directly to the second atom. There is no delay in the excitation of the second
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Figure 1.4: (Color online) Time variation of the probabilities |b1(t)|2 (solid green line) and
|b2(t)|2 (dashed blue line) for the same parameters as in Fig. 1.3 except that x = L/2.

atom, as the inter atomic spacing is negligibly small. A notable feature of the temporal
evolution is that at the particular times that correspond to nL/c, where n is an integer,
a sudden change (jump) in the probabilities occurs. These are just the times when the
radiation field emitted into the cavity modes returns to the atoms. It is interesting that
the returning radiation does not simultaneously excite both atoms, as one could expect.
It rather stimulates a sudden transfer of the population from atom 1 to atom 2.

The sudden jumps continue in time. However, the periodic maxima of the populations are
reduced in magnitude as t increases. This result is consistent with energy-time uncertainty
arguments and is readily understood if it is recalled that the excitation wave packet spreads
during the evolution, that is, the excitation becomes less localized as time progresses. An
alternative explanation is that there are more and more possible evolution pathways for
the excitation to open up as time progresses that are possibly delayed with respect to each
other, e.g., due to temporary re-absorptions by the atoms, and then interfere resulting in
increased distortions of |b1(t)|2 and |b2(t)|2.

Frame (b) of Fig. 1.3 illustrates the time evolution of the probabilities for a large inter
atomic spacing, x = 999λa. There are now two pathways for the excitation to be trans-
ferred between the atoms, x and L−x. At very early times, t� L/c, the initially excited
atom 1 decays with the rate equal to the free space decay rate. The atom 2 remains in
its ground state indicating that initially the excitation is exclusively transferred to the
cavity, which essentially appears as open space. The atom 2 remains in its ground state
until the time t = x/c, at which the population of the atom 2 abruptly starts to build
up. This is the time required for the excitation emitted by the atom 1 to reach the atom
2 through the shorter pathway x. The population of the atom 2 changes abruptly again
at time t = (L − x)/c. Note that the abrupt buildup of the excitation of the atom 2 is
not accompanied by an abrupt de-excitation of the atom 1. There are no sudden changes
of the population of the atom 1 until the time t = L/c. This is the time the excitation
returns for the first time to the atom 1. In fact, neither of the sudden changes of the
population of one of the atoms are accompanied by sudden changes of the other. This
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Chapter 1: Effect of retardation on the dynamics of entanglement between atoms

feature is linked to the fact that the atoms are at different positions and we have taken
x < L/2.

Of particular interest is the situation when the two atoms are separated by a distance
equal to half of the cavity length, Fig. 1.4. While the sudden kinks in the time evolution
of the probability |b1(t)|2 are still observed at integer multiples of time L/c, the number
of kinks in evolution of |b2(t)|2 reduce to one half as the two paths available for radiation
to travel from atom 1 to atom 2 are now of equal length. Therefore, in the time behavior
of |b2(t)|2, kinks are witnessed only at odd integer multiples of L/(2c). Another interesting
observation is that there are no sudden jumps of the populations at times 2nx/c and
2n(L − x)/c, where n is an integer, indicating that the excitation wave packets do not
appear to reverse their propagation directions during the interaction with the other atom.

A physical understanding of these behaviors can be obtained if we consider the atomic
dynamics in terms of the collective Dicke states of the two-atom system

|g〉 = |g1〉 ⊗ |g2〉,
|s〉 =

1√
2

(|e1〉 ⊗ |g2〉+ |g1〉 ⊗ |e2〉) ,

|a〉 =
1√
2

(|e1〉 ⊗ |g2〉 − |g1〉 ⊗ |e2〉) . (1.30)

The advantage of expressing the system in terms of the Dicke state basis is that we can
immediately see in which collective state the excitation evolves in time.

Using Eqs. (1.12) and (1.30), we find that the excitation probabilities of the collective
symmetric |s〉 and the antisymmetric |a〉 states are

|bs(t)|2 =
1

2

(
|b1(t)|2 + |b2(t)|2 + 2Re [b1(t)b∗2(t)]

)
,

|ba(t)|2 =
1

2

(
|b1(t)|2 + |b2(t)|2 − 2Re [b1(t)b∗2(t)]

)
. (1.31)

Figure 1.5 shows how the probabilities |bs(t)|2 and |ba(t)|2 evolve in time. At t = 0, the
collective states |s〉 and |a〉 are populated with the same probabilities, |bs(t)|2 = |ba(t)|2 =
1/2. The population of the symmetric state decays exponentially in time whereas the
population of the antisymmetric state remains constant in time. In this figure, the two
atoms couple to the cavity modes symmetrically as x = 0. Therefore, the anti-symmetric
excitation state effectively decouples from the cavity, reminiscent of electromagnetically
induced transparency or decoherence free sub-spaces. A similar effect can be achieved
if the two atoms couple anti-symmetrically to the cavity, in which case the symmetric
excitation state remains constant in time. In contrast, the symmetric state in Fig. 1.5
becomes re-excited periodically at the time instants given by nL/c, where n is an integer.
At these times, the emitted radiation field returns to the atoms chronologically.

We see that the simultaneous sudden changes of both probabilities at the particular
discrete times can be explained as an excitation of the collective atomic system from the
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Figure 1.5: (Color online) Variation of the excitation probabilities |bs(t)|2 (solid green
line) and |ba(t)|2 (dashed blue line) with time for the same parameters as in Fig. 1.3(a).
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Figure 1.6: (Color online) Variation of the probabilities |bs(t)|2 (solid green line) and
|ba(t)|2 (dashed blue line) with time for the same situation as in Fig. 1.3(b).

ground state to the symmetric state. In other words, the jumps represent a collective
excitation of the atomic system by the returning radiation field.

It is interesting to note that shortly before the sudden re-excitation times, the state of
the atomic system is

|ψ(t = nL/c)〉 =
1√
2

(|g〉+ |a〉) ,

=
1√
2
|gg〉+

1

2
(|eg〉 − |ge〉), (1.32)

which shows that the system is in an equal superposition of the ground |g〉 and the anti-
symmetric |a〉 states of the two-atom system and explains why in Fig. 1.3(a) |b1(nL/c)|2 =
|b2(nL/c)|2 = 1/4.
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Figure 1.7: (Color online) Transient buildup of entanglement from the initial separable
state |e1g2{0}µ〉 for inter atomic spacings: (a) x = 0 and (b) x = 999λa. The other
parameters are the same as in Fig. 1.3. The red circles mark the positions of the kinks
due to retardation.

Figure 1.6 shows the time evolution of the populations of the symmetric and antisymmetric
states for the same situation as in Fig. 1.3(b). The initial populations decay exponentially
with the same rates until t = x/c, at which the sudden jump of the populations occurs.
A notable difference between the time evolution of |bs(t)|2 and |ba(t)|2, and that of the
individual atoms |b1(t)|2 and |b2(t)|2, shown in Fig. 1.3(b), is the occurrence of the sudden
jumps at the same discrete times. Notice that the most dramatic change in the populations
occurs at the time t = L/c, i.e. when the excitation returns to the initially excited atom 1.

1.4.2 Effects of retardation on entanglement - single excitation
case

We now turn to the discussion of the effects of retardation on the entanglement between
the atoms. We first focus on short time behavior of the concurrence with two sets of initial
conditions in which atoms are prepared in the separable state (1.29) and the maximally
entangled state

|ψ(0)〉 =
1√
2

(|e1〉 ⊗ |g2〉+ |g1〉 ⊗ |e2〉)⊗ |{0}µ〉. (1.33)

The concurrence in the single excitation case can be determined from Eq. (1.21) in which
the probability amplitudes are found solving the set of two coupled equations (1.15).

We graph the effect of the retardation on the transient buildup of entanglement between
the atoms from the initial separable state Eq. (1.29) for inter atomic spacings x = 0 and
x = 999λa, respectively, in Figs. 1.7(a) and 1.7(b). We can see how the entanglement
between the atoms is affected by the retardation and how it could be related to the
population of the collective states. A comparison of Fig. 1.7(a) with Fig. 1.5 shows that
for x = 0 the manner in which the concurrence evolves in time resembles the evolution
of the population of the symmetric state. This is readily understood if one writes the
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Figure 1.8: Concurrence as a function of time for the same parameters as in Fig. 1.3
except that the atoms were initially prepared in the maximally entangled state |s〉. The
inter atomic spacing is in (a) x = 0, and in (b) x = 999λa.

concurrence Eq. (1.21) in the basis of the collective Dicke states to find

C(t) = max

{
0,

√
[ρss(t)− ρaa(t)]2 + (2Im [ρas(t)])

2

}
. (1.34)

Since ρss(0) = ρaa(0) = 1/2, and at short times Im[ρas(t)] ≈ 0, the time evolution of the
concurrence depends essentially on the evolution of the population ρss(t). It is seen that
C(t) > 0 for all times except t = 0. It is only at t = 0 that the atoms are unentangled.
The most positive value of C(t) is achieved when ρss(t) = 0, in which case C(t) = 1/2,
so that we may speak of 50% entanglement. The effect of retardation shows up clearly as
the sharp decrease of the concurrence from its maximal value of 1/2. This is due to the
transfer of the population from the ground state |g〉 to the symmetric state |s〉.
Figure 1.7(b) shows the time evolution of the concurrence for a large inter atomic spacing,
x = 999λa. The effect of going to a nonzero inter atomic spacing is clearly to decrease the
amount of entanglement and to restrict the time during which it occurs. We see that the
initially unentangled atoms remain separable until the time t = x/c. The physical reason
for the delay in the creation of entanglement is in the retardation effect. No entanglement
is created between the atoms until the photon emitted by atom 1 reaches atom 2. The
atoms remain entangled until the time t = L/c at which the excitation returns to atom
1. At this time the concurrence suddenly drops to zero. The behavior of the concurrence
is entirely consistent with the behavior of the populations of the symmetric and the
antisymmetric states, shown in Fig. 1.6.

Equation (1.34) predicts that for maximal entanglement between the atoms we would
need to put all of the population in one of the collective states, either |s〉 or |a〉. Following
this observation, we plot in Fig. 1.8(a) the time evolution of the concurrence for the same
parameters as in Fig. 1.7(a), but with the new initial condition ρss(0) = 1, i.e., the atoms
are initially prepared in the maximally entangled state |s〉. Since ρaa(t) = 0 for t ≥ 0,
the dynamics of the system reduces to that between two states only, the symmetric |s〉
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and the ground |g〉 states. In this case the concurrence is simply equal to the population
of the symmetric state, C(t) = ρss(t). For t = 0 the atoms are maximally entangled due
to our choice of the initial state of the system. Immediately afterwards, the concurrence
begins to decrease because of the spontaneous emission to the cavity modes. As soon as
the emitted light returns to the atoms, that happens periodically at the times equal to
nL/c, where n is an integer, the atoms thereafter become entangled because the system
returns to the symmetric state. In the time t < L/c, the concurrence approaches zero.
This effect, however, is not sudden death of entanglement because C(t) does not become
exactly zero. We already found previously that the concurrence for the case of having
only one quantum of energy in the system cannot suffer the phenomenon of sudden death
because in accordance with Eq. (1.21), C(t) can either be zero or positive and hence it
cannot disappear. In order to have sudden death of entanglement, the second part in the
max function of Eq. (1.21) would have to be negative.

The revival of concurrence at later times can significantly be enhanced by adjusting the
inter atomic spacing. An example is shown in Fig. 1.8(b), which is for the same parameters
as in frame (a) except for the distance between the atoms. It can be seen that at later
times, the time evolution of the concurrence does not split up into multiple peaks as in
frame (a). Instead, single peaks with higher amplitudes are obtained. In frame (b), the
inter atomic spacing is chosen such that some retardation revivals coincide with the main
concurrence revivals found in frame (a). In particular, the spacing x is adjusted such that
the first revival occurs approximately at t = (L+ x)/c.

1.4.2.1 Long-time dynamics

In Figs. 1.7 and 1.8 the concurrence is plotted for short times of the evolution, up to
only t = 5L/c. The results showed that entanglement occurs or is reduced in a periodic
fashion, like the pulse periodic excitation, with the magnitude of the subsequent oscilla-
tions damped due to the spread of the excitation wave packet. One could expect that the
oscillations should collapse after a sufficiently long time and never revive. As we shall see
below, this is not the case. Continuing the calculation to much longer times we find that
there is an interesting recurrence of the oscillations.

Figure 1.9(a) shows the evolution of the concurrence for the same situation as in Fig. 1.7(a),
but extended to much longer times. It can be seen that the damping of concurrence ob-
served in the initial time evolution does not continue. Rather, on a longer time scale,
nearly periodic collapse and revival of the concurrence is observed. Throughout the re-
vivals, the concurrence becomes as large as C(t) = 0.8.

The presence of the pronounced long time oscillations is linked not only to the difference
between the populations in the symmetric and anti-symmetric atomic states. Rather, it
is also due to an additional contribution to the concurrence which comes from Im[ρas(t)],
see Eq. (1.34). In other words, the coupling of the atoms to the multi mode cavity
field leads to a nonzero long-time coherence between the collective states. This is shown
in Fig. 1.9(b), where we plot Im[ρas(t)] for the same parameters as in frame (a). The
coherence is initially zero but beyond t ∼ 10L/c starts to build rapidly with the fast

38



1.4. Results and discussion

0 500 1000 1500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

t Hun its of L� cL

C
H
t
L

H a L

0 500 1000 1500
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

t Hun its of L� cL

-
I
m
@b

1

*

H
t
Lb

2
H
t
LD H b L

Figure 1.9: The long-time behavior of the concurrence for the same situation as in
Fig. 1.7(a). Frame (a) shows the concurrence C(t), while frame (b) shows the contri-
bution of Im[ρas(t)] to the concurrence, as predicted by Eq. (1.34).

oscillations accompanied by a slow modulation.

The origin of the modulation is in the discrete set of Rabi frequencies gµj coupling the
atoms to the different modes. The Rabi oscillations are not perfectly periodic due to
unequal couplings of the atoms to the discrete modes that causes the imperfection of
the modulation. The modulated oscillations bear an interesting relation to the Jaynes-
Cummings model with a coherent initial state [27]. The graininess of the electromagnetic
field results in a discrete set of the Rabi frequencies of the coupled atom-field system that
are not perfectly periodic but collapse and revive.

To further analyze the origin of this oscillation, we have calculated the power spectrum
of the time signal, which is shown in Fig. 1.10. It can be seen that in particular for lower
frequencies, the power spectrum decomposes in a set of near-discrete modes. At larger
frequencies, the discrete modes decompose into bands of multiple modes, but the discrete
spacing is still visible. This suggest an interpretation of the slow beat-like structure of
the long-time dynamics in terms of collapses and revivals, as it is known from the Jaynes-
Cummings-model.

The frequencies appearing in the power spectrum can be traced back to the effective
Rabi frequencies occurring in the system of two atoms coupled to many cavity modes.
To verify this interpretation, we calculated the time evolution of the atoms analytically
in certain limiting cases. The simplest example is the Jaynes-Cummings model [27], in
which a single atom interacts with a single mode field. Then, the population oscillates
at the Rabi frequency Ω0 of the resonant mode which results in a single peak at this
frequency in the power spectrum. Similarly, we analyzed the case of two atoms coupling
to a single mode, and to two modes. When two atoms couple to a single mode, the
oscillation frequency of the population inversion is Ωn0/

√
2, as assured by the analytical

calculation. If both atoms couple to two modes, |b1(t)|2 = cos4(Ωn0t) while |b2(t)|2 =
sin4(Ωn0t). Thus peak in the Fourier transform of the atomic populations occurs at Ωn0

whereas the cavity population oscillates twice as fast as the atomic population because
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Chapter 1: Effect of retardation on the dynamics of entanglement between atoms

Figure 1.10: The Fourier transform of C(t) shown in Fig. 1.9(a).

|bµ(t)|2 = (1/4) sin2(2Ωn0t). However, in the general case of two atoms coupling to many
modes, the analytical calculations become cumbersome and the identification of all the
peaks is a complicated task.

We have found out by the inverse Fourier transformation technique that only first few
peaks of the frequency domain signal are enough to produce approximately the time
varying signal. This is to be expected since the low-frequency peaks have much higher
amplitudes than the others, see Fig. 1.10.

1.4.2.2 Time-averaged concurrence

We have seen that the retardation effects show up clearly as the sharp kinks in the
concurrence. As seen in Fig. 1.9(a), revivals of concurrence appear periodically at long
times, with large maximum values of concurrence. But because of the presence of fast
oscillations, it is not clear whether the enhancement of the entanglement could be observed
in practice. Detectors typically respond over a finite time that could be longer than the
oscillation periods of the concurrence. Therefore, we consider the mean concurrence 〈C(t)〉
averaged over a detection time. As we shall see, the mean concurrence is instructive
because it shows how the detected entanglement could be sensitive to the separation
between the atoms. We consider both long-range and sub-wavelength separations.

The mean concurrence 〈C(t)〉, averaged over a time interval 0 ≤ t ≤ 800L/c, is shown
in Fig. 1.11. Frame (a) illustrates 〈C(t)〉 at large inter atomic spacings, x � λa, with
x chosen as integer multiples of λa. Complementarily, frame (b) shows the variation
of 〈C(t)〉 at sub-wavelength spacings with x varying within a half of the wavelength,
x ≤ λa/2. We observe in both cases that the magnitude of 〈C(t)〉 is smaller than 1/2 with
the maximum 〈C(t)〉 = 1/2 for x at (0, L) for large separations, and at (0, λa/2) for the
sub-wavelength separations. Note that the mean concurrence is symmetric with respect
to the mid point between the maxima. For the case shown in frame (a) it corresponds
to x = L/2, whereas for the case (b) it corresponds to x = λa/4. The behavior of the
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Figure 1.11: The concurrence averaged over time with respect to the inter atomic separa-
tion is shown for the same parameters as in Fig. 1.3. In frame (a) x varies in large steps,
while in frame (b) x varies within a half of the wavelength.

mean concurrence has a simple explanation. For the separations corresponding to the
maxima of the concurrence, the different cavity modes couple to the atoms with the same
phases resulting in the same values for the concurrence. For other separations, the atoms
experience different phases of the cavity modes relative to the resonant mode, such that
the concurrence on average decreases. For the case shown in frame (a), near one-third
of the cavity length, the phase difference among different modes starts decreasing. As a
consequence, the curve goes up till the half of the length of the cavity is reached where
a symmetry point exists in the sense that the phases of all the even modes match and so
do the phases of the odd modes but are completely out of phase from each other.

We may conclude, that the retardation effects make the concurrence sensitive to the inter
atomic spacing not only at large but also at sub-wavelength spacings.

1.4.3 Effects of retardation on entanglement - double excitation
case

We now turn to the discussion of the effects of retardation on the entanglement dynamics
when two excitations are present in the system. We show how the well known phenomena
resulting from the threshold effects in the concurrence Eq. (1.25), such as sudden death,
sudden birth and revival of entanglement, can be related to retardation. We will demon-
strate that retardation can induce, suppress, or strongly modify these sudden phenomena.
To clearly establish the effect of retardation on the sudden phenomena, we concentrate
on properties of the quantity C1(t), defined in Eq. (1.26), rather than on C(t). Simply
speaking, the quantity C1(t) can be positive as well as negative which will allow us to
distinguish between the sudden phenomena and sudden changes in the evolution due to
the retardation that could occur in time periods where the atoms are separable. The
concurrence C(t) = C1(t) for C1(t) ≥ 0.

We illustrate the role of retardation by examining the time evolution of the system for
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Figure 1.12: (Color online) Time evolution of C1(t) for the initial state |ψ̃(0)〉1 =
|e1e2{0}µ〉, L = 3.48 × 103λa and ωa = 1.11 × 104Ω0. In frame (a) N = 1 and in
(b) N = 45. The dotted red, solid green and dashed blue curves are atomic separations
x = 0, x = L/4 and x = L/2, respectively.

two sets of initial states for which the sudden phenomena are known to not occur in the
absence of retardation. Later, we consider an initial state where even in the absence of
retardation, sudden phenomena are present.

Consider first an initial state

|ψ̃(0)〉 = |e1〉 ⊗ |e2〉 ⊗ |{0}µ〉 ≡ |e1e2{0}µ〉, (1.35)

in which both atoms are excited and the cavity is empty. Figure 1.12(a) shows the time
evolution of C1(t) when the atoms are coupled to only a single mode (N = 1) of the cavity
field. In this case no retardation is present. We see that independent of the distance
between the atoms, C1(t) oscillates sinusoidally in time and is always negative. This
indicates that no entanglement is present at any time. This is also confirmed by the
analytical calculation,

C1(t) =
2

9

(
3− 4

√
2 + (3− 2

√
2) cos(2

√
3Ωn0t)

)
sin2(
√

3Ωn0t)

=− 0.222

(
2.656− 0.171 cos(2

√
3Ωn0t)

)
sin2(
√

3Ωn0t). (1.36)

From the above equation, it is clear that C1(t) ≤ 0 if the atoms interact with the central
resonant cavity mode only.

Figure 1.12(b) shows the corresponding behavior of C1(t) for a large number of the cavity
modes (N = 45) to which the atoms are coupled. In this case the retardation effects
occur. It is apparent that the evolution of C1(t) is profoundly affected by the presence
of retardation. The most interesting aspect of the retardation is the occurrence of the
sudden phenomena that lead to an entanglement at some discrete periods of time. The
degree of the created entanglement depends on the distance between the atoms.
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Figure 1.13: (Color online) Time evolution of C1(t) for initial condition Eq. (1.40) and
the same parameters as in Fig. 1.12. In frame (a) N = 1 and in (b) N = 45. The dotted
red, solid green and dashed blue curves correspond to x = 0, x = L/4 and x = L/2,
respectively.

We have observed also for a number of other initial states the similar behavior, that is,
there is no entanglement if the atoms couple to a single resonant mode of the cavity
electromagnetic field but entanglement is suddenly born, it suddenly dies and revives in
the presence of retardation. Examples include |ψ̃(0)〉 = |{1}0r{1}0l〉 ⊗ |g1g2〉, that is,
none of the atoms is in the excited state and the two photons are in the same (resonant)
mode but propagate in opposite directions. We assure that C(t) = 0 by performing the
analytical calculation for a single mode case.

C1(t) =
1

9

(
− 4ν sin2(

√
3Ωn0t) + 3 sin2(2

√
3Ωn0t)

)
, (1.37)

where

ν =

√
6 + 2 cos(2

√
3Ωn0t) + cos(4

√
3Ωn0t) > 0. (1.38)

After some algebraic manipulation, Eq. (1.37) can be written as

C1(t) =
1

9

(
1− cos(2

√
3Ωn0t)

)(
− 2ν + 3(1 + cos(2

√
3Ωn0t))

)
. (1.39)

It is not difficult to see that C1(t) ≤ 0 and thus C(t) = 0.

Another example of such initial states is |ψ̃(0)〉 = (1/
√

2) (|{0}0r{2}0l〉+ |{2}0r{0}0l〉) ⊗
|g1g2〉, i.e., the atoms are in the ground state, and two photons propagate in the same
direction either to the left or to the right in the central cavity mode with equal probability.
The analytical expressions for concurrence are easy to derive in the single mode case.
Therefore, we do not mention them in every case.

Consider now an initial state

|ψ̃(0)〉 =
1√
2

(|{0}0r{1}0l〉+ |{1}0r{0}0l〉)⊗ |e1g2〉, (1.40)
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in which atom 1 is in excited state, atom 2 is in ground state and the cavity central counter-
propagating modes ω0r, ω0l are excited into a coherent superposition of the single-quantum
states.

In Fig. 1.13(a) we show the time evolution of C1(t) for the initial state Eq. (1.40) when
the atoms are coupled to the central counter-propagating modes. It is seen that C1(t)
oscillates sinusoidally in time and is non-negative at all times. Once again we notice
that no sudden phenomena occur when the atoms are coupled to the central counter-
propagating modes. However, contrary to the initial state Eq. (1.35), the atoms are
entangled even when they were initially in a separable state. A naive interpretation for
the occurrence of entanglement is that the atoms periodically exchange the excitation
through the cavity modes.

The situation becomes different when the atoms couple to a large number of cavity modes.
In this case, shown in Fig. 1.13(b), the retardation effects occur and the behavior of C1(t) is
seen to be qualitatively different from the previous case. These curves are non-sinusoidal,
change sharply in non-periodic way such that C1(t) can become negative at some discrete
periods of time. Thus, C1(t) clearly exhibits the phenomena of sudden death, sudden
birth and revival. Again, the degree of concurrence as well as the qualitative dynamics is
affected strongly by the inter atomic separation. For example, depending on the distance,
atomic entanglement immediately builds up (dC1(0)/dt > 0), or only at a later time via
SBE (dC1(0)/dt < 0). Interestingly, we find in Fig. 1.13(b) that for negligible separation
between the atoms, the concurrence exhibits no death in the presence of retardation, and
even persists without intermediate points of zero entanglement in contrast to the non-
retarded case. Furthermore, at the separation x = L/2, the degree of entanglement is
more than one order of magnitude larger than that found in the non-retarded case.

It is interesting to note that the degree of entanglement increases with an increasing
separation between the atoms. Again, qualitatively similar behavior is also found for
other initial states, such as (|e1g2{1}0l〉 + |g1e2{1}0r〉)/

√
2, in which both the atom and

the cavity are entangled.

Lastly, we analyze initial states which lead to periodic death and revival of entanglement
even without retardation. For this, we consider the separable initial state

|ψ̃(0)〉 = |g1〉 ⊗ |g2〉 ⊗ |{2}0r〉 ≡ |g1g2{2}0r〉, (1.41)

in which both atoms are in the ground state, and two photons propagate in the same
direction in the central cavity mode. The entanglement dynamics without retardation is
shown in Fig. 1.14(a). It can be seen that starting from zero concurrence, entanglement
builds up, but then vanishes again. This rebirth and death then repeats periodically. The
analytical expression for C1(t) in this case is given by

C1(t) =
1

36

(
12− 9 cos(4Λ)− 3 cos(4

√
3Λ))− 4×√

42 + 18 cos(4Λ) + 8 cos(2
√

3Λ) + 4 cos(4
√

3Λ) sin2(
√

3Λ)

)
, (1.42)

where Λ = Ωn0t. The zeros in the above equation mark the times of sudden death of
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Figure 1.14: (Color online) Time evolution of C1(t) for the initial state Eq. (1.41) and the
same parameters as in Fig. 1.12. In frame (a) N = 1 and in (b) N = 45. The dotted
red, solid green and dashed blue curves correspond to x = 0, x = L/4 and x = L/2,
respectively.

entanglement. However, since there is no retardation, the inter atomic spacing does not
affect the dynamics.

The corresponding results with retardation are shown in Fig. 1.14(b). In this case, while
the exact temporal dynamics and the magnitude of concurrence is again affected by the
inter-particle separation, the qualitative dynamics manifesting itself in the periodic death
and birth of entanglement is independent of the retardation effects. In this particular
example, as the distance between the atoms increases, so does the maximum entanglement
between them as has been observed for t ≤ 4L/c.

Qualitatively similar results again are also observed for other initial states, such as
|ψ̃(0)〉 =

√
p|e1e2{0}µ〉+

√
1− p|e1g2{1}0l〉, which we analyzed for p ∈ {1/10, 2/10, 3/10, 4/10}.

Also the initial state |ψ̃(0)〉 = (|e1g2〉 + |g1e2〉)|{1}0l〉/
√

2 with maximum entanglement
between the atoms behaves qualitatively similar.

We can gain a qualitative understanding of the behavior of C1(t) in the presence of retarda-
tion by making use of Eq. (1.30) for the collective states of the system and expressing C1(t)
in terms of the probability amplitudes bαs(t) and bαa(t) as

C1(t) =
∑
α

∣∣|bαs(t)|2 − |bαa(t)|2 − 2Im [b∗αs(t)bαa(t)]
∣∣−|b(t)|√∑

α>β

|bα,β(t)|2 +
∑
α

|bα,α(t)|2,

(1.43)
where

bαs(t) =
1√
2

[bα1(t) + bα2(t)] ,

bαa(t) =
1√
2

[bα1(t)− bα2(t)] , (1.44)

are the probability amplitudes of the states |s〉 ⊗ |{1}α〉 and |a〉 ⊗ |{1}α〉, respectively.
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The first part of the right-hand-side of Eq. (1.43) is associated with the one-photon coher-
ence determined by both, unequal populations of the collective states and the coherence
between them, whereas the second part is attributable to the two-photon populations of
either the atomic system, determined by b(t), or the cavity modes, determined by bα,β(t)
and bα,α(t). Thus, the mechanism for entanglement with two excitations initially present
in the atomic system is similar to that of the single excitation case. Entanglement be-
tween the atoms, C1(t) > 0, can be traced back to the single-excitation sub-space, and in
particular imbalances between the symmetric and the anti-symmetric singly-excited atom
states. However, in contrast to the single excitation case, this asymmetry must exceed
the threshold set by the contribution from the systems with both excitations either in the
atoms or in the cavity.

The entanglement seen in Figs. 1.12(b), 1.13(b) and 1.14(b) indicates that the retardation
effects lead to a non-zero population difference between the symmetric and antisymmetric
states that at some periods of time overcomes the threshold factor in the expression for
C1(t). What this means is that the time evolution of the atoms is not linked to the total
cavity population. In particular, if one excitation is in the cavity, the other excitation can
be in different atomic states with varying population imbalance between symmetric and
anti-symmetric states.

1.4.3.1 Long-time and time-averaged dynamics

The above investigations have shown that the presence of the retardation effects leads to
a non-sinusoidal evolution of the concurrence which results in the phenomena of sudden
death and sudden birth of entanglement. One can notice from Figs. 1.12(b), 1.13(b)
and 1.14(b) that there are finite periods of time at which C1(t) is negative. These are
dead zones of entanglement or equivalently at these times the atoms are separable. The
following question then arises: In which states, entangled or separable, do the atoms
spend most of the time? To answer this question, we first extend the calculations of C1(t)
to long times and then average C1(t) over a long evolution time. We concentrate on the
case illustrated in Fig. 1.13(b).

The corresponding long-time dynamics of C1(t) is shown in Fig. 1.15(a). It is seen that the
time evolution of C1(t) is very spiking with the amplitude of the fast oscillations slowly
modulated in time. It can also be noticed that the amplitude of C1(t) oscillates around
C1(t) = 0 which suggests that over a long period C1(t) might average to zero or negative
values. Therefore, we calculate the mean value of C1(t) by averaging over the evolution
time 0 ≤ t ≤ 2000L/c for different inter atomic distances around a distance of half the
cavity length, in an interval of half a wavelength λa. As expected, we find that depending
on the inter-atomic separation the mean value of C1(t) can be positive or negative. Next,
we average the more important concurrence C(t) itself in the same way. The result is
shown in Fig. 1.15(b). The first atom is located at x1 = λa, and the second atom is
located close to 1740λa such that they are separated roughly by half of the cavity length.
It is seen that the precise positioning of the atoms within a wavelength at such large
distances plays a vital role in the entanglement between the atoms. The effect of going
away from the x = L/2 position is clearly to decrease the amount of entanglement. But
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Figure 1.15: (a) The long time behavior of C1(t) is shown for L = 3.48 × 103λa, ωa =
1.11×104Ω0, N = 45, x = L/2 and the initial state |ψ̃(0)〉 = (|e1g2{1}0l〉+|e1g2{1}0r〉)/

√
2.

(b) The concurrence averaged over a long evolution time is shown as a function of the
inter atomic spacing x. The distance x varies around half of the cavity length, over an
interval of one half of the cavity wavelength.

as expected, the concurrence is positive for all distances even in an average sense, due to
the non-negative nature of C(t).

1.5 Ring cavity as a Gyroscope

We have also investigated if the current setup that we have can be used to observe the
Sagnac effect [118]. By rotating our ring cavity from the centre of gravity, the distances
covered by clockwise and counterclockwise modes for one round trip will be different.
This difference in the path lengths can be used to measure shifts in the frequency as in a
gyroscope. We did some preliminary calculations for that purpose. Suppose, the rotation
is given in the clockwise direction, then the time taken by the mode going to left or the
counterclockwise mode for a complete trip is given by

tl =
L− rωrottl

c
, (1.45)

where r is the perpendicular distance from the center of gravity of the resonator to its
wall. For arbitrary cavity geometry, this distance can be calculated by r = 2A/p, where
A is the enclosed area by the path of the light and p is the perimeter of the light path.
For an equialteral triangle having sides equal to L/3 as we have, A = L2/(12

√
3) and

p = L, which gives r = L/(6
√

3).

Eq. (1.45) implies that

tl =
L

c+ rωrot
. (1.46)

The co-propagating mode, on the other hand travels a distance larger than the length of
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the cavity for one round trip. Thus

tr =
L+ rωrottl

c
=

L

c− rωrot
. (1.47)

The time difference between the oppositely traveling modes is given by

∆t = tr − tl =
2Lrωrot

c2 − r2ω2
rot

. (1.48)

Note that

r2ω2
rot << c2. (1.49)

Therefore

∆t ≈ 2Lrωrot
c2

. (1.50)

The round trip optical path length difference can be written as

∆L = c∆t =
2Lrωrot

c
. (1.51)

From the above equation, we see that the optical path difference is directly proportional
to the rotation rate of the cavity. Now resonance condition insists that for an integer m,

mλl = Ll, mλr = Lr, (1.52)

so the mode frequencies for the right and left propagating modes can be written as

ωµi =
2πµc

Li
, i ∈ {l, r}. (1.53)

Now the frequency shift ∆ω is given by

∆ω = ωl − ωr = 2πµc
Lr − Ll
Lrll

=
ω∆L

L
, (1.54)

since LrLl ≈ L2. This implies that

∆ω

ω
≈ ∆L

L
. (1.55)

The length of the cavity that we have assumed in our calculations is 3480λa. In optical
regimes, which we are interested in, this corresponds to large frequency shifts. The effi-
ciency of a gyroscope, however, lies in detecting very small frequency shifts. Nevertheless,
one can find suitable parameters under which the present set up can be used to detect
small shifts in the frequency.

48



1.6. Summary

1.6 Summary

We have studied the effects of retardation on the entanglement properties of two atoms
located inside a multi-mode ring cavity. Retardation effects become pronounced if the
mode spacing of the cavity is small enough such that the atoms can simultaneously couple
to many modes of the cavity field. The Schrödinger equation for the wave function of the
system was solved for different atomic separations and initial conditions with single and
double excitations present in the system. It was shown that the retardation effects are
manifest not only in the dynamics of the atomic population but also in the dynamics of
entanglement between the atoms. Characterizing entanglement between the atoms by the
concurrence, we have found that the retardation leads to abrupt kinks in the concurrence
at intervals corresponding to the flight time of a photon between the atoms or to the time
corresponding to a round trip in the cavity.

Furthermore, we demonstrated that the retardation effects crucially depend on the atom
separation both, on the multi- and sub-wavelength distance scale. We have also distin-
guished significantly different short-time and long-time retardation effects in the evolution
of the concurrence. In particular, at short times the concurrence exhibits periodic sud-
den changes from separable to highly entangled states. At long times, the retardation
gives rise to periodic beats in the concurrence that resemble the phenomenon of collapses
and revivals in the Jaynes-Cummings model. We finally identified parameter values and
initial conditions at which retardation qualitatively changes the entanglement dynamics.
In particular, the atoms can remain either separable or entangled throughout the whole
time evolution without retardation, whereas they exhibit the phenomena of sudden birth
and sudden death of entanglement when the retardation is included.

Lastly, we found that our model system could be used as a gyroscope but due to the size
of the ring cavity, it can only be used to measure very large frequency shifts since optical
wavelengths are assumed.

1.7 Outlook

• We discover that all the effects we have observed strongly depend on the accurate
placement of the atoms inside the cavity. Controlling the motion of the atom may
not be easily achieved in an experiment. An interesting investigation can be done if
the positions of the atoms are not fixed to one point but they are allowed to move
within some small spatial domain, for example, inside a harmonic trap.

• Throughout our analysis, we assumed the cavity field to be in a number state. It
will be interesting to describe the cavity field by a coherent state because then
the two photon coherence ρ14 will survive. Both criteria given in Eq. (1.20) for
the calculation of concurrence will compete. We expect interesting effects by the
replacement of a quantum state by a classical counterpart.

• Introducing a slight detuning between the cavity central mode and the Bohr atomic
transition frequency can also be studied.
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Chapter 1: Effect of retardation on the dynamics of entanglement between atoms

• The asymmetry in the long-time behavior of concurrence for single and double
excitation case, Figs. (1.9a) and (1.15a), repectively can be investigated. Like in
the single excitation case, Fourier transformation to identify the frequencies of the
different interacting modes may be used to achieve the purpose.

• The parameters can be optimized in order to use the current set up as a ring
gyroscope.
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Chapter 2

Numerical optical centroid
measurements

The main results of this chapter have been recently accepted for publication.
Q. Gulfam, and J. Evers

Numerical calculation of optical centroid measurements using non-classical fields
(arXiv:1301.0774 [quant-ph])

Phys. Rev. A: in print (2013)

Optical imaging methods are typically restricted to a resolution of order of the
probing light wavelength λp by the Rayleigh diffraction limit. This limit can be
circumvented by making use of correlated N-photon states, having an effective
wavelength λp/N . But the required N-photon detection usually renders these
schemes unfeasible. In [54], an imaging scheme, referred to as optical centroid
measurements (OCM) is proposed that replaces the multi-photon detectors by
an array of single-photon detectors. It has been predicted in [54] that using
a post-processing of the measured data, the resolution scaling of λp/N can be
achieved for certain states of light. We extend the approach to a broader class
of input states, find optimum detection strategies, and quantitatively study
the approach. For this, complementary to the existing approximate analytical
results, we explore the approach using “experimental” data obtained from nu-
merical experiments by sampling detection events from the initial state wave
function. We analyze the resolution in dependence on the detector size to find
optimum parameters for an experimental implementation. We also find indi-
cations that the scheme might work for a broader class of states than predicted
based on the analytical estimates.
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2.1 Introduction

Conventional optical lithography schemes are always impeded by the Rayleigh diffraction
limit [119, 120] owing to the wave nature of light. Due to the continuous and ever-
increasing demand of faster devices in microelectronics, ever-smaller structures in semi-
conductors need to be written. Several mechanisms have been established to beat this
classical limit. Various techniques employ classical fields. The correlation of wave vector
and frequency in a narrow band has been utilized in [121, 122] while in [123, 124] the N
photon absorption medium is simulated by Nth harmonic generation. On the other hand,
non-classical effects to surpass the diffraction limit are also greatly explored. In [125], an
exposure arrangement based on the use of multiplicity of two photon excitation frequen-
cies is introduced to obtain two fold resolution enhancement. [126] made use of four mode
reciprocal binomial states. Later, [45] presented the first proposal of quantum lithogra-
phy (QL), an optical interferometric scheme using entangled photon number states. Soon
after the theoretical proposal, [127] performed the first proof-of-principle QL experiment
involving two photons and demonstrated the improvement in the classical diffraction limit
by a factor of 2.

Since the diffraction limit [119, 120] is on the order of the wavelength of the incident
light, ever-shorter wavelengths are desirable. The drawback of using extremely energetic
photons in lithographic schemes is not only that they may damage the material that
absorbs them but also that these techniques demand costly optical imaging systems.
Entangled states of light overcome the multi photon absorption hindrances because of
the reduced effective wavelength. N entangled photons offer an N times improvement
in the resolution. Thus non-classical states of light have paved their way to quantum
lithography [45,126] by offering extremely small wavelengths.

For regular sources of light such as lasers operating at coherent light fields, N photon ab-
sorption provides with the standard quantum limit in resolution, which goes as λp/(2

√
N).

This limit improves the Rayleigh diffraction limit [119] by a factor of
√
N . This stan-

dard quantum limit, however, is not ultimate and can be surpassed by using quantum
light which possesses special non-classical characteristics of entanglement. The ultimate
quantum limit also known as the Heisenberg limit scales as λp/(2N) for N entangled
photons [128–131].

Still the availability of efficient multi photon resists that are in addition required to be
able to resolve the photon number is a technical limitation [62,132]. Moreover, the count
rate associated with multi photon absorption is also low [62].

The detection of entangled photons is done in a far efficient manner using the technique
proposed in [54] based on optical centroid method (OCM) as no multi photon detection
is needed. Both methods, that is, QL and OCM succeed in enhancing the resolution
N folds, however, the efficiency of OCM is shown to be fundamentally higher than that
of the former [54]. Novel schemes that do not require multi photon absorption also in-
clude [133,134]. [133] is a lithography proposal relying on a system prepared in a position-
dependent dark state, however, multi beams and multi lambda systems are needed. [134]
utilizes multiple Rabi oscillations between two atomic levels so no entanglement is nec-
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essary. Nevertheless, it requires non-linear atom-field interaction. On the other hand,
the scheme [54] needs only to measure the intensity of non-classical light and later a
numerical post processing of the image. An array of single photo detectors detects the
incoming photons. Afterwards, centroid of these detected photon positions is calculated.
The measurement procedures are to be repeated several times since a distribution of the
centroid is involved. Recently, the first proof-of-principle experiment of OCM for two
photon entangled state has been carried out by [61,135]. The experiment used two kinds
of detectors: One is a pair of single photon detectors for OCM while the other is two-
photon absorption detector for QL. The experiment verified that OCM achieved the same
quantum superresolution as QL but much more efficiently.

We apply the scheme numerically to several non-classical states of light. Our numerical
study encompasses input states mentioned already in [54] and also considers new kind of
states that are helpful in resolution enhancement by OCM. We generate random numbers
as positions of photons from the position space non-classical wave function. Afterwards,
we calculate the centroid of the discrete data as a result of employing a model detection
system. Utilizing the numerical centroid coordinates, we try to recover the probability
distributions along the centroid axis corresponding to all these states.

We characterize the error in the recovery of the theoretical centroid distribution by root
mean square deviation. We find straight-forward interpretation for the results of rms
deviation as a function of the size of the detector for the case of fixed detector positions
from the incident wave function. Later, we give reasons why a fixed detector array cannot
recover the complete probability distribution along the centroid axis. Another more so-
phisticated detection method is employed which either utilizes detector arrays composed
of very small sized detectors or the detector positions require to be shifted many times,
as done in [61, 135]. The results show that only small sized detectors can serve as good
detectors, as expected. Via our quantitative investigations, we could discover the effect of
statistically unstable outcome at very small detector sizes. The resolution enhancement
with an increase in the number of photons in the impinging wave function was verified.
An in-depth inspection of multi photon absorption is performed not only as a function of
the detector size but also as a function of the number of photons in the initial states for
different parameter regimes.

The chapter is organized as follows. In Sec. (2.2), we review in brief the basic equations in
the configuration space presented in [54], introduce the various non-classical input states
and discuss in detail the important technical issues which come up as the centroid scheme
is implemented numerically to non-classical states, the discretization of the numerical
data by a model detection system and an estimation of the error between the numerical
result and the theoretical distribution. In Sec. (2.3), we explain the results for different
types of non-classical input states as well as the various analysis procedures thoroughly.
The article is summarized in Sec. (2.4) and a brief outlook is given in Sec. (2.5).
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2.2 Theoretical considerations

2.2.1 Centroid method

We briefly review the formalism of resolution enhancement developed in [54, 62] using
quantum lithography and optical centroid measurements. We consider photons of wave-
length λp incident on a detection plane under an angle such that the wavelength associated
to the wave vector component in the detection plane is given by λ = λp/ sin θ. In the
following, we restrict the analysis to one spatial dimension in the detection plane. Let
â(k)(â†(k)) denote the photon annihilation (creation) operator in this transverse momen-
tum space.

These operators follow the commutation relation

[â(k), â†(k′)] = δ(k − k′) . (2.1)

An N -photon momentum eigenvector can be defined using â†(ki) as

|k1, k2, . . . , kN〉 =
1√
N !
â†(k1)â†(k2) . . . â†(kN)|0〉 , (2.2)

where |0〉 indicates the state without photons. The momentum space wave function
representation of a pure N -photon Fock state |N〉 is given by

φ(k1, k2, . . . , kN) = 〈k1, k2, . . . , kN |N〉. (2.3)

The transverse momenta of the photons are restricted by the Rayleigh diffraction limit [119]
such that

φ(k1, k2, . . . , kN) = 0 (2.4)

for any |kn| > 2π/λ. The spatial annihilation operator is defined as

Â(x) ≡ 1√
2π

∫
dkâ(k) exp(ikx). (2.5)

A corresponding N -photon state can be constructed as

|x1, x2, . . . , xN〉 ≡
1√
N !
Â†(x1) . . . Â†(xN)|0〉 . (2.6)

The position space wave function is obtained by taking the N -dimensional Fourier trans-
form of φ(k1, k2, . . . , kN) and is given by

ψ(x1, x2, . . . , xN) = 〈x1, x2, . . . , xN |N〉. (2.7)

Of fundamental importance in the centroid scheme is the transformation of the photon
position coordinates xi to the centroid coordinate X and the relative position coordinates
ξn which are defined as

X ≡ 1

N

N∑
n=1

xn, ξn ≡ xn −X. (2.8)
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Note that when x1 = x2 = · · · = xN = x, X = x, that is, if all photons are constrained to
arrive at the same point x, the relative positions ξn become zero and the centroid variable
also lies at the same point x according to Eq. (2.8).

Conventional quantum lithography proposals rely on N -photon detection at a single de-
tector at position x. The input state is a N -photon state ρ̂N = |N〉〈N |. The probability
density for multi photon absorption is therefore given by

pMP (x) = 〈: ÎN(x) :〉 = 〈[Â†(x)]N [Â(x)]N〉
= N |ψ(x, x, . . . , x)|2. (2.9)

The centroid method, in contrast, relies on an array of detectors, such that each of the
incident N photons is detected by an individual detector. Out of the individual photon
detection positions, the centroid position X is calculated. The probability density of the
centroid distribution is obtained from

〈: ΠN
n=1Î(xn) :〉 (2.10)

as a marginal probability density by tracing out all relative positions ξn using xn = X+ξn,

pOCM(X) =

∫
dξ1, . . . , dξN−1〈: ΠN

n=1Î(X + ξn) :〉

=

∫
dξ1, . . . , dξN−1N |ψ(X + ξ1, X + ξ2, . . . , X + ξN)|2. (2.11)

The key result of Tsang’s analysis is that the two distributions Eq. (2.11) and Eq. (2.9)
have the same spatial dependence and thus resolution. Therefore, the technically challeng-
ing N -photon detection in a single detector can be replaced by N single-photon detections.
A further advantage of the centroid method is that it is potentially much more efficient
than multi-photon detection, i.e., for experimentally relevant parameters, pOCM(X) can
exceed pMP (X) significantly [54,61,62].

2.2.2 Trial states

Throughout our analysis, we apply the optical centroid method using numerical experi-
ments to various non-classical photon states, which we introduce in the following.

2.2.2.1 NOON states

Following [62], we consider momentum-correlated N -photon NOON states

|NOON〉 =
1√
2

(|N〉A|0〉B + |0〉A|N〉B) (2.12)

in which the two modes A and B correspond to two wave vector directions for the photons
incident on the detection plane, with mean transverse component of the wave vector k0
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Figure 2.1: (Color online) Momentum (a) and the corresponding position (b) space prob-
ability distributions of a two-photon NOON state

and −k0, respectively. The momentum spread of the transverse wave vector is denoted
by ∆k with k0 � ∆k. Denoting the (normalized and even) transverse wave vector profile
as f(q), the momentum space wave function is

φNOON(k1, k2, . . . , kN) =
1√

2∆kN

[
N∏
n=1

f

(
kn − k0

∆k

)
+

N∏
n=1

f

(
−kn − k0

∆k

)]
. (2.13)

By Fourier transform, assuming f(q) = π−1/4e−q
2/(2∆k2), we obtain the position space

wave function

ψNOON(x1, x2, . . . , xN) =

√
2 ∆kN

πN/4
e−

1
2

∆k2
∑N
i=1 x

2
i × cos

(
k0

N∑
i=1

xi

)
. (2.14)

The probability distribution thus follows as

|ψNOON(x1, x2, . . . , xN)|2 = 2

(
∆k√
π

)N
e−∆k2

∑N
i=1 x

2
i cos2

(
k0

N∑
i=1

xi

)
. (2.15)

Note that this expression is only normalized in the limit ∆k � k0, in which the field
operators for the two modes A and B satisfy the usual bosonic commutation rules.

For numerical simulations we employ dimensionless position variables x̄ = x/λ such that
the position coordinates are measured in the units of λ. In terms of the dimensionless
variables, Eq. (2.15) becomes

2

(
∆k√
π

)N
e−

4π2

σ2

∑N
i=1 x̄

2
i cos2

(
2π

N∑
i=1

x̄i

)
. (2.16)

56



2.2. Theoretical considerations

Using λ = 2π/k0, we have defined the dimensionless width σ = k0/∆k. Throughout the
numerical analysis, we have chosen σ = 4

√
2π such that ∆k � k0 as required.

An example for the position space probability distribution of a two-photon NOON state
using dimensionless variables is shown in Fig. (2.1).

2-photon NOON states can be created using spontaneous parametric down conversion
combined with the Hong-Ou-Mandel effect [45, 48]. Such NOON states have been em-
ployed in proof-of-principle experiments on resolution enhancement [61,127,136]. Higher
order NOON states with larger N have also been created experimentally [137–142].

2.2.2.2 Jointly Gaussian states

The momentum space representation of a jointly Gaussian state can be written as [62]

φJG(k1, k2, . . . , kN) =

√
C

N
e−

1
4

∑
n,m knBnmkm , (2.17)

with components of the matrix B given by

Bnn =
1

N2B2
+

(
1− 1

N

)
1

β2
,

Bnm =
1

N2B2
− 1

Nβ2
, n 6= m. (2.18)

C is a normalization constant. B can be interpreted as the width of the average mo-
mentum of the photons, whereas β characterizes the width in momenta relative to the
average [62]. These two parameters determine the variance of kn given by

〈k2
n〉 = B2 + (1− 1

N
)β2. (2.19)

The position wave function for the jointly Gaussian state then follows as

|ψJG(x1, x2, . . . , xN)〉 ∝ exp(−
∑
n,m

xnB
−1
nmxm) . (2.20)

The multi photon absorption pattern 〈: ÎN(x) :〉 is a Gaussian with a root mean square
width 1/(2NB). If B = β/

√
N , the distribution becomes classical and the photons are

independent. This distribution is a symmetric Gaussian with equal widths along the
diagonal axes in the configuration space. The classical multi photon absorption width is
given by the standard quantum limit WC = 1/(2

√
N〈k2

n〉). Increasing B from the classical

value makes the distribution quantum mechanical. The maximum value of B, B =
√
〈k2
n〉

renders the ultimate quantum limit for the width of the multi photon absorption pattern
Wmin = 1/(2N

√
〈k2
n〉).

The quantum mechanical elongated jointly Gaussian has a shorter width along the cen-
troid direction and is stretched along all the other diagonals in the position space.
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Figure 2.2: (Color online) Momentum (a) and the corresponding position (b) space prob-
ability distributions of a joint Gaussian state with N = 2 and B = β = λ−1

The position space probability distribution is

|ψJG(x1, x2, . . . , xN)〉|2 ∝ exp(−2
∑
n,m

xnB
−1
nmxm) . (2.21)

Fig. (2.2) shows the position space probability distribution for a quantum mechanical
jointly Gaussian state in terms of dimensionless position variables defined in Sec. (2.2.2.1).

2.2.2.3 Cat states

The third class of states we investigate are correlated coherent cat states. We in particular
analyze two mode states of the form [63]

|ψccc〉 = N (|α〉1|α〉2 + | − α〉1| − α〉2) , (2.22)

in which |α〉i is a coherent state in mode i with complex parameter α, defined by ai|α〉i =
α|α〉i, where ai is the photon annihilation operator of mode i. Note that other two
mode cat states have also been considered in the literature in different contexts [64, 143,
144]. These states can be seen as an extension of the famous single particle Schrödinger
coherent cat states [145] given by |α+〉 ≡ |α〉 + | − α〉 [146–148]. A proposal for the
generation of Schrödinger’s cat state has been discussed in [149]. Experiments performed
on the optical cat states include [150–152]. N is a normalization factor which is given by
1/
√

2(1 + exp(−4|α|2).

While Eq. (2.22) resembles a two-photon NOON state, there is an important difference
between the states. The bi photon NOON state consists of exactly two photons. Individual
realizations of the same cat state, however, can contain different numbers of photons. The
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probability p(n1, n2) to detect ni photons in mode i evaluates to

p(n1, n2) = 〈n1, n2|ψccc〉〈ψccc|n1, n2〉

= 2N 2 e
−2|α|2

n1! n2!
|α|2(n1+n2) [1 + (−1)n1+n2 ]. (2.23)

It follows that the state can only contain even numbers of photons. For a certain range
of |α|, states with less or equal to two photons are populated with high probability. This
motivates the analysis of detection events, in which one photon is detected in each of the
two modes. In the following, we will focus on this case.

The position representation of a single mode coherent state is [153]

〈x|α〉 =
1√
x0

√
π
e−

1
2

(α2−|α|2)e−
1
2

(x/x0−
√

2α)2 (2.24)

with x0 =
√

~/(mω0). The position space representation of Eq. (2.22) then follows as

ψccc(x1, x2) =〈x1|α〉1〈x2|α〉2 + 〈x1| − α〉1〈x2| − α〉2

=
2N√
πx0

e
− 1

2x20
(x21+x22)

e−2|α|α cos(φ) cosh

(√
2α

x0

(x1 + x2)

)
, (2.25)

where α = |α| exp(iφ).

For the further discussion, we now specialize to the case of α = i|α| (i.e., φ = π/2) to
obtain a probability density

|ψccc(x1, x2, α = i|α|)|2 =
4N 2

πx2
0

e
− 1

x20
(x21+x22)

cos2

(√
2|α|
x0

(x1 + x2)

)
. (2.26)

The structure of this expression resembles the probability density for the two photon
NOON states. Other choices for φ allow to rotate the fringe pattern in the position space
with respect to the centroid axis. This way, the condition for the centroid method that
the probability density should separate into a function of the centroid coordinate times a
function of all other coordinates can be continuously violated by modifying φ from π/2.

As before, for the numerical calculations we define dimensionless position variables x̄. For
x = 2π x0 x̄, Eq. (2.26) becomes

|ψccc(x1, x2, α = i|α|)|2 =
4N 2

πx2
0

e−4π2(x̄21+x̄22) cos2
(

2π
√

2|α|(x̄1 + x̄2)
)
. (2.27)

Comparing Eq. (2.27) with Eq. (2.15), we find that the exponential parts of the two
expressions agree for σ = 1, whereas the cosine-parts differ in the sense that the cat state
allows to continuously tune the structure size of the fringe pattern by varying |α|. This
way, the sub-wavelength resolution capabilities of the centroid method can be probed
independent of the number of detected photons.
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Figure 2.3: (Color online) Momentum (a) and the corresponding position (b) space prob-
ability distributions of a correlated cat state with α = i

Note that alternatively, one could choose dimensionless variables x =
√

2π/|α|x0x̄, such
that the cosine-parts of the NOON-state and the cat-state probability densities become
the same. However, in this scaling, neither the overall scaling nor the width σ of the cat
state are independent of the choice of |α|.
The probabilty distribution for φ = π/2 in configuration space is shown in Fig. (2.3).
Increasing φ from π/2 (Fig. (2.3b) results in an increase of the width of each fringe along
the centroid direction such that the fringes merge into each other. Further increase causes
the middle fringe to become smaller and smaller until eventually at φ ≈ π, the two modes
of the coherent states no more interfere and can be seen as separate circles.

2.2.3 Numerical experiments

In order to simulate the centroid method numerically, we first generate a large number
of random photon events distributed and correlated according to the respective position
space wave function. Next, we apply a discretization scheme to model the experimentally
accessible signal for different detector characteristics. Finally, we perform the centroid
analysis on this data to recover a wave function. We then compare this wave function to
the original position space wave function and calculate the root-mean-square deviation
to access the predictive power of the centroid method for the given conditions. In the
following, we describe all steps in more detail.

2.2.3.1 Random number generation

The first step is to generate random photon events according to the respective position
space wave function. As can be seen from Eqs. (2.15), (2.21) and (2.27), the position
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variables are correlated. To facilitate the random event generation, we apply unitary
transformations to a set of uncorrelated variables. For example, the probability distribu-
tion

2

(
∆k√
π

)2

e−∆k2 (x21+x22) cos2 [k0(x1 + x2)] . (2.28)

of Eq. (2.15) specialized to the case of two photons (N = 2) does not allow to draw
random positions x1, x2 independently. Applying the transformation

~Y2 = M2
~X2, (2.29)

with ~X2 = (x1, x2)T , ~Y2 = (y1, y2)T , and

M2 =
1√
2

[
1 −1
1 1

]
,

the probability distribution Eq. (2.28) becomes

2

(
∆k√
π

)2 (
e−∆k2 y21

)(
e−∆k2 y22 cos2

[√
2k0y2

])
. (2.30)

In this form, random values can be drawn for y1 and y2 independently. In a similar way,
also 3- and 4-photon events can be handled, with coordinate transforms

M3 =
1√
3

 1 1 1

0
√

3/2 −
√

3/2√
2 −1/

√
2 −1/

√
2


and

M4 =
1√
4


1 1 1 1

0 0
√

2 −
√

2

0 2
√

2/3
√

2/3 −
√

2/3√
6 −1/

√
3 −1/

√
3 −1/

√
3

 ,

respectively.

One can easily verify that all the transformed basis vectors are normalized as well as
mutually orthogonal. As an example, we write down explicitly the new basis vectors that
span the space for 3 photon case in the following.

(
x1 + x2 + x3√

3
,
x2 − x3√

2
,

√
2

3
x1 −

x2 + x3√
6

)T , (2.31)

where ~X3 = (x1, x2, x3)T comprise the original basis in 3 dimensions.

After application of the variable transform, for the NOON and correlated coherent cat
states, N − 1 of the new variables follow univariate normal distributions. The only ex-
ception is one variable which coincides with the centroid coordinate except for an overall
scaling factor of

√
N . For the random number generation in this variable, we apply the
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cumulative distribution function. This function for a continuous random variable V is
obtained from the probability density function I via

FV (v) =

∫ v

−∞
I(t)dt, (2.32)

If xi are random numbers drawn from the cumulative distribution, F−1(xi) is a random
sample from I.

The situation is simpler in the case of a jointly Gaussian distribution. In this case, all
transformed variables follow univariate Gaussian distributions, even though one of the
new variables is proportional to the centroid variable.

A back-transformation from the variables yi to the original coordinates xi via the inverse
M−1

i (or equivalentlyMT
i , since the matrices are unitary) then yields the desired correlated

photon events. In all cases, we verified that the position distribution of the obtained
random numbers agree to the original respective position space distribution functions.

2.2.4 Modeling of the detection system

The positions of the correlated N -photon states obtained in the previous section are con-
tinuously distributed. Any measurement, however, employs detectors of finite size, which
yield a discretized position information. To model this discretization, we assume an array
of identical detectors, as shown in Fig. 2.4(a). Each detector has size d0. We assume that
the detectors do not overlap, and that there is no space between two adjacent detectors.
Thus, each photon position of the continuous position distribution obtained from the
random number generation can uniquely be assigned to a single detector. The numerical
discretization procedure thus amounts to replacing the position of each individual photon
with the central position of the detector which registers the respective photon.

In a suitable coordinate system, the possible measurement outcomes are i d0, with i ∈ Z.
The possible outcomes for the centroid coordinate in a N -photon detection with photons
hitting the inth detector (1 ≤ n ≤ N) then follow from Eq. (2.8) as

X =
d0

N

N∑
n=1

in . (2.33)

If the detector size is changed, also the set of possible detection outcomes is changed.
For example, in Fig. 2.4(b), detectors of double the size compared to those in (a) lead
to a set of possible measurement outcomes which contain only every second possibility
compared to that of (a). In addition, the detection array can be shifted, with an example
for shift d0 shown in Fig. 2.4(c). The measurements of (b) and (c) together allow for a
set of potential measurement outcomes which coincides with that of (a). Note, however,
that the detectors in (b) and (c) overlap spatially, such that the combined measurements
of (b) and (c) are not equivalent to measurement (a).

Throughout the later analysis, we will compare the performance with different detector
sizes. In order to obtain comparable predictions for the wave function, we proceed as
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Figure 2.4: (Color online) Model for the detection setup. (a) shows an array of detectors
of size d0. The red arrows indicate the central positions of the individual detectors. (b)
shows the corresponding array with double detector size d0. Compared to (a), only half
of the possible detection positions occur. (c) shows the array of (b) suitably shifted that
now the possible detection events cover those of (a) which are missing in (b).

follows. For the smallest detector size d0, we apply the centroid method for a single
detection array position, which we denote as shift 0. Next, we double the detector size
to 2d0, and obtain centroid data at the two shift positions 0 and d0. Analogously, for
detectors of size md0, we calculate centroid data for m suitable shifts. This way, the wave
function is estimated at the same set of positions for all detector sizes.

For this analysis, we employ two different methods for the calculations for different
shifts. First, we generate N0 realizations of the correlated N -photon state as described
in Sec. 2.2.3.1. In method I, we then use the total number of N0 events for each of the
m required shifts. In method II, we divide the total number of events N0 by the number
of shifts m, and evaluate each shift with N0/m events only. In terms of an experimental
realization, in method I, the number of measurements required increases with detector
size, whereas in method II, the number of measurements is independent of the detector
size.

Due to the statistical nature of the measurement, in principle, also a limited number of
individual non-adjacent detectors can be used, if their positions are shifted such that the
combinations of all measurements cover the entire beam correlation area. This method
has been adopted in [61, 135]. While the measurement time increases, the complicated
fabrication process for an array of detectors can be avoided in proof-of-principle measure-
ments.

2.2.5 Error estimation

To evaluate the performance of the centroid method for given detection parameters, we
first fit the centroid data to the original distribution in order to obtain the optimum overall
scaling factor for the centroid data, and multiply the centroid data with this factor. This
is necessary, as we evaluate the centroid data only over a limited position range, such that
the overall normalization of the measured centroid data a priori is unknown. We then
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employ the weighted root mean square deviation given by

1√
b

√√√√ b∑
i=1

||ψ(Xi)|2 − zi|2, (2.34)

where b is the number of centroid data points, and |ψ(Xi)|2 and zi are the reference value
from the original probability distribution and the estimate obtained from the centroid
method, respectively, at positions Xi.

Note that the rms deviation in part depends on the spatial extent over which the centroid
data is compared to the original wave function. If a larger range is considered, positions
are included into the analysis for which both the original probability distribution and the
centroid prediction are very low, such that they in essence do not increase the sum in the
rms deviation, but only b. This is particularly important if rms values for different wave
functions are compared.

2.3 Results

In the following, we present our results for three different trial states. We start with
NOON states.

2.3.1 NOON States

2.3.1.1 Resolution enhancement

Fig. 2.5 depicts the the centroid probability distributions for two, three and four photon
NOON states, obtained with a detector size small enough to resolve all features of the
wave function. It can be seen that there are 2N fringes per wavelength for N photons,
confirming the expected scaling of the obtained resolution with 1/N . We thus find that
our simulation technique is able to recover the predicted resolution enhancement.

2.3.1.2 Dependence on the detector size

We thus turn to a detailed analysis of the centroid technique. As our first step, Fig. 2.6
shows the dependence of the rms deviation of the recovered two-photon centroid distri-
bution from the original position space distribution as a function of the detector size. As
expected, the deviation is low for small detectors, and initially increases with growing
detector size. Starting from detector sizes of about λ/2, the rms deviation saturates.
Next to this general structure, an increase of the deviation at detector size λ/4 and 3λ/4,
as well as sudden drops in the rms for λ/2 and λ can be observed. Finally, towards very
low detector sizes, the rms deviation starts to increase again. In the following, we will
explain and interpret all of these features.
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Figure 2.5: (Color online) Result of the centroid method for NOON states with different
N , shown against the centroid position in units of the single-photon transverse wavelength
λ. Continuous blue, dashed red, and dotted green curves correspond respectively to
N = 2, 3 and 4. The increase in the number of fringes clearly shows the resolution
enhancement with 1/N .

First, we analyze the structures at λ/4, λ/2 and λ. For this, we choose a detector size,
and then calculate the rms deviation as a function of a shift of the whole detector array
along the centroid axis without modifying the detector size. The results are shown in
Fig. 2.7. It can be seen that for detector sizes other than λ/4, λ/2 and λ, the rms
deviation is approximately constant over the whole range of shifts. For these detector
sizes, we conclude that the naive expectation that a smaller detector leads to a better
recovery of the wave function is correct.

In contrast, at detector size λ/2, the rms deviation strongly depends on the shift. Even
more surprisingly, while there is a slight dependence on the detector shift for detector sizes
λ and λ/2, the rms deviation remains very low for all shifts despite the large detector
size. We will show now that these result are artifacts of the calculation procedure, which
arise due to the particular structure of the wave function to be recovered.

Fig. 2.8 explains the situation for detector size λ/4. In (a), the original position distribu-
tion along the centroid direction for a two-photon NOON state is shown together with the
centroid data obtained for detector size λ/4 and zero shift. For this shift value, one of the
centroid data points coincides with the position distribution maximum at X = 0. It can
be seen that half of the centroid data points coincide perfectly with the original distribu-
tion - but the other half strongly deviates. The reason is that the position distribution is
zero only at single points, whereas the large detectors cover a range around these zeros
with non-zero photo detection probability. As a result, the centroid data is non-zero, in
contrast to the probability distribution. This deviation for half of the points explains the
large rms value at zero shift in Fig. 2.7. We next consider the same setting, but with
shift s = −13λ/200, corresponding to a minimum in the rms value for detector size λ/4
in Fig. 2.7. Fig. 2.8(b) shows the corresponding centroid result obtained with the same
scaling of the centroid data as in (a) as blue dots. It can be seen that the deviation to the
probability distribution is strong. But if we fit the overall scaling factor of the centroid
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Figure 2.6: (Color online) Root-mean-square deviation of the recovered two-photon cen-
troid distribution from the original wave function position space distribution as a function
of the detector size. Note the logarithmic scale.
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Figure 2.7: (Color online) Root-mean-square deviation of the recovered two-photon cen-
troid distribution from the original wave function position space distribution as a function
of the detector shift. The different curves show results for the detector sizes (i) triangles
faced right λ, (ii) triangles faced left λ/2, (iii) blue blobs 0.3λ, (iv) green squares λ/4,
and (v) magenta rhombuses λ/10. Note the logarithmic scale.

data to the original distribution, then good agreement is obtained. This is the reason for
the minimum in Fig. 2.7, in which the centroid data is fitted to the original distribution
for each shift position individually. The analogous analysis for detector size λ is shown
in Fig. 2.9. In this case, due to the λ-periodicity of the wave function, a perfect fit of the
centroid data is possible for any detector shift.

However, in an actual measurement, results from all shifts would have to be accounted
for with the same overall prefactor, as an individual fitting to the unknown distribution
to be determined is impossible. For this reason, detectors of size λ or λ/2 cannot recover
the wave function. To show this, we have taken a set of N0 = 106 detection events, calcu-
lated the centroid distributions for a large number of shifts, and joined the corresponding
distributions for the respective shifts without further processing them beforehand. Only
the total set obtained from all shifts was then fitted in amplitude to the original posi-
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tion distribution. The result was a structure-less Gaussian which did not contain the
sub-wavelength fringe features of the original distribution. Therefore, in conclusion, it is
not possible to recover the wave function with detectors of specific larger sizes, despite
the small rms deviation for specific detector shifts, which has to be interpreted as an
artifact of the analysis. Note, however, that such measurements with larger detectors
could potentially be sufficient to analyze the periodicity or the symmetry of a given wave
function.

Next, we analyze why the rms deviation increases again at very small detector sizes.
We found that this is a statistical effect. If the detector size is decreased while the
detection area is kept constant, the number of detectors increases. Then, the mean number
of events per detector decreases with the detector size. At some point, the statistical
fluctuations due to the decreasing number of events become large enough to dominate the
rms deviation. In order to verify this interpretation, we evaluated the rms deviation (i)
once for 106 events, (ii) twice for two subsets with 5× 105 events, (iii) 5 times for subsets
of 2 × 105 events, and (iv) 10 times for subsets of 105 events. In all cases, the same 106

events were analyzed, and the respective subsets were chosen disjunct. After this, we
averaged the results over the respective subsets, such that in every case, the same events
were analyzed. The result is shown in Fig. 2.10. It can be seen that the rms deviation of
all cases approximately agrees towards larger detector sizes. But towards smaller detector
sizes, the smaller the corresponding subsets are, the more the deviation increases. Note
that also the difference in rms deviation between different subsets of equal size is much
smaller than the difference in deviation between subsets of different size.

2.3.1.3 Comparison of the two methods

In this section, we compare the two analysis methods I and II introduced in Sec. 2.2.4.
Fig. 2.11 shows results for a 2-photon NOON state using the two methods. The two curves
for method I (blue squares) and II (red dots) agree for larger detectors, but deviate for
small detectors. In particular, the unexpected increase in the rms deviation towards low
detector sizes observed in Fig. 2.10 and interpreted as statistical fluctuations due to a low
number of events per detection bin is absent for method II.

The reason for this qualitative difference is as follows. For the lowest detector size d0, no
shift is required, and the two methods are equivalent. Thus, the same rms deviation is
obtained. As can be seen from the increase in the rms value for method I, the prediction
at this detector size is already limited by the low number of events per detection bin.
For the next higher detector size 2d0, in method I, the number of events per detection
bin is increased, as the same number of N0 events are distributed over a lower number
of bins. In contrast, for method II, the number of events per bin is not increased, as
with increasing detector size, the number of events considered for each detector shift is
reduced. As a consequence, the rms deviation for method II monotonously increases with
detector size, whereas that for method I can decrease with increasing detector size. In
the latter case, the reduction of the rms due more events per bin on average outweighs
the increase in rms due to the increase of the detector size.
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Figure 2.8: (Color online) Centroid analysis for detector size λ/4. The continuous red
curve shows the probability distribution for a 2-photon NOON state. The blue dots
indicate the results of a centroid measurement with particular detector settings. In (a),
the detection array is not shifted with respect to the origin of the probability distribution,
such that one of the centroid data points coincides with the center position X = 0. (b)
The detection array is shifted to s = −13λ/200, which corresponds to a minimum in the
rms deviation in Fig. 2.7. The blue dots show the centroid data with the same scaling as
in (a). The green asterisks show this data fitted to the original distribution.

This interpretation is further supported by the two other data sets in Fig. 2.11. These
show method II, but with half the number of events (green diamonds) or one third of the
events (black triangles). It can be seen that the rms results for the smallest detector size
d0 roughly agree with those for method II with half the data points at detector size 2 d0.
Further, the rms for method II with one third of the data points agrees to this value at
detector size 3 d0. This shows that for such small detectors, the rms is dominated by the
low number of counts per bin.

We obtained qualitatively similar results also for N ∈ {3, 4}.

2.3.1.4 Multiphoton NOON states

We now turn to NOON states with higher photon number. Fig. 2.12 shows the rms
deviation as a function of the detector size for N = 2, 3 and 4 photons. Note that Fig. 2.12
has been generated including all detector shifts required for the respective detector sizes,
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Figure 2.9: (Color online) Centroid analysis for detector size λ. The figure is analogous
to Fig. 2.8, except for the detector size.

such that the spurious maxima or minima in the rms deviation at specific detectors sizes
found in Fig. 2.6 due to the dependence on the shift position shown in Fig. 2.7 do not
appear. All data points are generated using the same N0 = 106 events with method I
introduced in Sec. 2.3.1.3. As the spatial extent over which the probability distribution
is significantly larger than zero decreases with increasing photon number N , we adjust
the position range over which the wave function is matched to the centroid measurement
accordingly. Thus, the 3- and 4-photon cases are evaluated over 2/3 and 2/4 = 1/2 the
range of that of the N = 2 case, respectively.

It can be seen that at small detector sizes, the rms deviation is low and approximately
independent of N . In this limit, the detectors are chosen small enough to recover all
features even of the N = 4 wave function. With increasing detector size, the rms deviation
starts differing from the small-detector limit value first for the N = 4, then for the N = 3,
and finally for the N = 2 case. Increasing the detector size further, the rms deviation
has an approximately linear dependence of the detector size, until it eventually saturates
for the large-detector limit. Note also that the spatial extent of the near-linear region
reduces with an increase in N . From Fig. (2.5) shows that the range of regions of large
slope decreases as the value of N is incremented.

In the near-linear region, we estimate slopes α = ∆(rms deviation)/∆(detector size) for
N = 2, 3 and 4 as 0.57, 0.72 and 0.87, as indicated in Fig. 2.12, respectively. These values
are consistent with a scaling with

√
N . One possible interpretation of this scaling could
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Figure 2.10: (Color online) Effect of statistical fluctuations on the centroid methods for
small detector sizes. The rms deviation was evaluated (i) black blobs, once for 106 events,
(ii) red squares, twice for two subsets with 5 × 105 events, (iii) blue rhombuses, 5 times
for subsets of 2× 105 events, and (iv) green triangles, 10 times for subsets of 105 events.
In all cases, the same 106 events were analyzed, and the respective subsets were chosen
disjunct. The figure shows the results averaged over the respective subsets. Note the
logarithmic scale.

be as follows. If the detection positions of each of the N photons acquires an uncertainty
of order d0 due to the finite detector size, then an estimate of the uncertainty of the
centroid coordinate X = 1

N

∑N
i=1 xi is given by δX = d0/

√
N . This estimate is motivated

by the fact that the sum of N normally distributed independent variables with widths
δx is again a normal distribution, with width

√
Nδx. Approximately, it also holds for

other distributions. Together with the prefactor 1/N in the centroid variable, a scaling of
1/
√
N in the centroid coordinate uncertainty is obtained. Next, we use that an increase

of the detector size from the low-size limit leads to most significant contributions to the
rms deviation in the regions of highest slope of the centroid probability distribution. We
denote such a centroid coordinate with highest slope as xmax, and note that the value of
the cos2() part in the probability distribution evaluates to 1/2 at this point. We thus can
estimate the scaling of the rms deviation via

1√
δX

√∫ xmax+δX/2

xmax−δX/2

∣∣∣∣cos2(2πNx)− 1

2

∣∣∣∣2 dx (2.35)

To leading order in the detector size, this expression scales as
√
N d0, i.e., linearly with

the detector size, and with slope proportional to
√
N , as observed in the numerical data.

2.3.1.5 Single- and multi-photon detection

One motivation for the centroid measurement method is the technical difficulty to achieve
multi-photon or photon-number resolving detection, as required, e.g., for sub-wavelength
correlated multiphoton measurement schemes. If the size of the individual detectors in the
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Figure 2.11: (Color online) (a) Root-mean-square deviation as a function of detector size.
Results are shown for a two-photon NOON state. The blue squares are obtained using
method I discussed in the text, whereas the red dots are obtained using method II. The
green diamonds and the black triangles are obtained using method II with one half and one
third of the total number of events used in (a), respectively. Inset shows a magnification
at small detector sizes.

centroid method is small enough, the number of events in which two or more photons hit
the same detector is negligibly small, such that no photon number resolution is required.

Motivated by this, we have analyzed the percentage of two-photon events in our numerical
calculations, as a function of detector size. We denote the position range over which the
photon probability distribution is evaluated by ρ. In the numerical calculations, ρ is chosen
such that it encompasses all parts of the probability distribution which are significantly
larger than zero. For detector size d0, we then estimate the number of detection bins p as
integer closest to ρ/d0.

We then count those events in which all photons arrive in the same bin as a multi-photon
detection event. There are p different possibilities to realize a N -photon detection event.
Overall, in our numerical calculation, there are pN different possible events, as we do not
make use of the symmetrization of the photon states and therefore distinguish between
events, e.g., in which two photons are detected at positions x1, x2 and x2, x1. Thus, we
expect a ratio of multi-photon events given by approximately p/pN . In terms of the
detector size, we find that p/pN ∼ dN−1

0 . We then numerically generate random detection
events, discretize them to model the detection procedure, and count all events in which
all photons arrive in the same detection bin as multi-photon detection events. Finally,
we calculate the percentage of the such obtained multi-photon events out of all detection
events. Our numerical analysis indeed confirms the analytical estimate.

Note that for the NOON state, the ratio of two-photon events reaches about 14% proba-
bility for detectors of size λ. This maximum value may appear high, but it arises from the
fact that in our calculations the parameters are such that the non-negligible support of
the probability distribution only covers few single-photon wavelengths. Then, a detector
that is wavelength sized already covers a significant part of the total relevant centroid
coordinate range. It is important to note that our calculations remain valid despite the
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Figure 2.12: (Color online) Root-mean-square deviation versus detector size for NOON
states using method I. Results are compared for number of photons N = 2 (lower blue
curve), N = 3 (middle red curve), and N = 4 (upper green curve). The lines indicate
linear fits to the curves over the indicated detector size range.
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Figure 2.13: (Color online) Root-mean-square deviation versus detector size for a jointly
Gaussian state using method I. The parameters are same as Fig. (2.2).

two-photon events, since our numerical approach naturally is capable of photon-number
resolving “measurements” such multiphoton events do not have to be discarded.

For the numerical simulations, we have used ρ = 7λ for N = 2. For N > 2, we used
accordingly ρ = 7λ ∗ 2/N .

2.3.2 Jointly Gaussian States

We now turn to the analysis of jointly Gaussian states, as suggested in [54]. The analysis
is performed in a similar way as for the NOON states. First results for the dependence
of the rms deviation on the detector size incorporating all the shifts at larger detector
sizes using method I are shown in Fig. (2.13). As for the NOON state, the rms deviation
increases with detector size, as naively expected. The increase of rms deviation towards
the smallest considered detector sizes is again due to statistical effects, as explained in
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Sec. 2.3.1.2. Compared to the NOON states, the absolute values of the rms derivation
are smaller, which is due to the much simpler structure of the Gaussian states.

As for the NOON states, we also analyzed the rms deviation versus different detector sizes
without taking into account shifts of the detector array. Contrary to the case of NOON
states, there is no qualitative difference between the results with and those without shift.
The reason is that for the Gaussian states, there is no fringe pattern in centroid direction
which could match the periodicity of the detection array.

For jointly Gaussian states, the ratio of two photon events and the total number of events
again increases uniformly with an increase in the detector size, as expected. But the ratio
of two-photon events is much higher than for NOON states. For example, for a large
detector size of one equal to a full wavelength, already about 50% of the total events
become two photon events, i.e., both photons fall on the same detector. The reason for
this is that the spatial extent of the wave function in centroid direction is on the order of
λ, see Fig. (2.2).

2.3.2.1 Resolution Enhancement versus Multi photon Absorption

Next to the accuracy of the wave function recovery, also the efficiency is of relevance
in any practical implementation. In essence, the measurement time is limited. This
raises the question, how a limited number of measurements can be used in the most
efficient way. In particular, in [62], the efficiency of centroid detection was compared to
that of a multiphoton detection scheme. To analyze this in our numerical calculation, a
practical way to distinguish single- from multi-photon detection events is required. We
thus introduce a distance dMP = λ/400, and denote N photons which would hit a detector
with unlimited position resolution at distance smaller than or equal to dMP a N -photon
event. Photons separated by more than dMP are registered as individual single-photon
events.

We start by analyzing the multi-photon absorption rate as a function of the spot size
reduction factor r, which has been defined in [62] as the ratio of the classical width WC to
the width W of the probability distribution of the joint Gaussian defined by Eq. (2.20) for
different choices of the parameters B and β such that 〈k2

n〉 has a fixed value. Explicitly,
r =

√
NB/

√
〈k2
n〉. r = 1 defines the standard quantum limit, whereas the ultimate

Heisenberg limit is given by r =
√
N .

Our numerical scheme works as follows. We first fix 〈k2
n〉 to a positive integer multiple

of λ−1. Then, we vary B and calculate β from Eq. (2.19). Note that if 〈k2
n〉 is fixed to a

large positive value in units of λ−1, then many values of r in the quantum regime given
by 1 < r ≤

√
N cannot be accessed because increasing B results in a β which makes B

less than its classical value β/
√
N . Afterwards, we generate random detection events as

explained in Sec. 2.2.3.1. Note that we do not apply discretization to mimic detection by
finite size detectors. We then determine those events which contain photons with distance
smaller than or equal to dMP and call these close events. The width of the histogram
of these close events provides us with the width W , which is calculated by fitting the
histogram data to a Gaussian distribution of the form ce−dx

2
. The width W is then
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Figure 2.14: (Color online) 〈k2
n〉 = λ−1. (a-c) Total multi photon absorption rate and

(d-f) peak multi photon absorption rate versus the spot size reduction factor for jointly
Gaussian state. (Top, middle and bottom row) correspond to N ∈ {2, 3, 4}, respectively.
The data points obtained via numerical calculation are blue while red is the theoretical
prediction. We multiplied the Rtot values with 17.8, 156, 4100 for N ∈ {2, 3, 4}, respec-
tively to normalize the data such that at r = 1 the corresponding value on the y-axis
becomes unity too.

given by 2/(
√

2d). Afterwards, we divide the number of close events by the total number
of N -photon events to calculate the normalized total multiphoton absorption rate Rtot.
Fig. (2.14a) shows our results for the normalized total multiphoton absorption rate as a
function of the spot size reduction factor for N ∈ {2, 3, 4}. It can be seen that the results
quantitatively agree with the theoretical prediction Rtot = ((N − r2)/(N − 1))(N−1)/2

found in [62]. Note that the statistical fluctuation of our numerical data increases with
r towards the limiting value

√
N . The reason for this is that once the variance of kn is

fixed, an increase in B is balanced by a decrease in β. At r = Rtot = 1, the standard
quantum limit is obtained which corresponds to a unit multi-photon absorption and a
classical distribution. As B is increased, the probability distribution becomes more narrow
along the centroid direction, but expands along the orthogonal directions of the relative
coordinates. This implies that the distance between any two random coordinates can be
larger now. This is why with an increase in B, the number of close events decreases. For
this calculation, we extracted 1 million pairs of random events. At B = 0.01λ−1, out of
the 1 million events, some 79, 201 are close events while at B = 0.999λ−1, this number

74



2.3. Results

0.0 0.1 0.2 0.3 0.4 0.5
0.000

0.005

0.010

0.015

detector size H units of Λ L

rm
s
d
e
v
ia
ti
o
n

Figure 2.15: (Color online) Root-mean-square deviation plotted versus the detector size
for a fixed physical size of the quantum mechanical jointly Gaussian centroid probability
distribution for various N using method I. The blue, red and green curves correspond
respectively to N = 2, 3 and 4. The parameters are explained in the text.
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Figure 2.16: (Color online) Root-mean-square deviation against detector size for a corre-
lated coherent cat state with α = ı. Results have been obtained using method I.

reduces to 3316.

Using our r, we can calculate normalized peak multi photon absorption rate defined in [62]
as r((N−r2)/(N−1))(N−1)/2. Fig. (2.14d) shows the corresponding result. The blue data
points show the numerical results while red curve plots r

√
2− r2. Again, the two results

agree at most of the range of spot size reduction factor r but r =
√
N is not approached

by the numerical data.

Note that we obtained qualitatively similar results also for N = 3 and N = 4 photon
states, shown by Fig. (2.14b), (e) and (c), (f), respectively.
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Figure 2.17: (Color online) Root-mean-square deviation versus detector size for a corre-
lated coherent cat state with α = ı. In contrast to Fig. 2.16, results for a single fixed
detector position are shown.

2.3.2.2 Resolution Enhancement versus Multi photon Absorption for a Fixed
Feature Size

So far, the analysis has been limited to cases in which the feature size decreases with in-
creasing number of detected photons N . Now, we compare the rms deviation as a function
of detector size for different N , but with physical feature size kept constant. For this, we
notice that the probability distribution in centroid direction scales as exp(−2N2B2X2),
with X the centroid coordinate. For each N , we choose B in such a way that the resulting
spatial extent of the distribution becomes exp(−8(X/λ)2), which leads to B = 2/(Nλ).
We further choose β = 1/λ for N = 2, 3. For N = 4, we instead choose β = 4/5 /λ, such
that in all cases the parameters fulfill B > β/

√
N and thus the probability distribution

is non-classical.

The results presented in Fig. (2.15) show that as N is increased, the value of rms deviation
for a fixed detector size is decreased for most of the range of detector sizes. This is to be
expected because if the physical size of the distribution is fixed, absorbing more photons
should improve the result of the measurement. As explained before, the results at very
small detector sizes are prone to numerical fluctuations if a fixed number of events is
distributed over more and more detector bins.

Qualitatively similar results have also been obtained using method II. Again we found
that method II leads to slightly higher rms deviations in particular at lower detector sizes,
because of the lower number of events included in the calculation.

2.3.3 Correlated Coherent Cat States

Finally, we turn to coherent cat states. As for the other states, we start by discussing the
rms deviation against the detector size. Results are shown in Fig. 2.16. Note that this
figure was obtained including all different shift positions for the larger detectors, using
method I such that the positions at which centroid data is obtained are the same for all
detector sizes. The results is as expected, with a certain range of small detector sizes over
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which the recovery of the wave function is good, followed by a continuous increase of the
rms with the detector size, until the rms saturates towards large detector sizes.

In contrast, the rms deviation for single fixed detection arrays of different sizes show a
rather different behavior compared to the other considered states, as shown in Fig. 2.17.
Here, an initial increase in rms deviation with the detector area is seen, as expected, but
for detector sizes of about 0.17λ, the rms deviation acquires a maximum and afterwards
oscillates with the detector size. These features again can be explained via the shape of
the probability distribution of the original wave function. Results for other shifts of the
detection array give similar results for detector sizes up to about λ/10, but afterwards
deviate significantly. As can be seen from Eq. (2.27), cat states have the advantage that
the fringe pattern in centroid direction superimposed onto the overall Gaussian wave
function envelope has a periodicity which can be controlled by the magnitude of α. Since
|α|2 is the mean number of photons in the corresponding cat state, this change in the
fringe pattern goes along with a change in the number of photons in the light field.
But nevertheless, some of the realizations of the cat state will consist of two photons
independent of |α|, such that we can continue to evaluate only those detection events.
In this way, the feature size can be controlled without changing the number of detected
photons. An example for a correlated coherent cat state with higher mean photon number
(α = ı

√
2) is shown in Fig. (2.18). As compared to Fig. 2.3(b) with lower mean photon

number, the number of fringes in the position space probability distribution increased as
expected. Note that a similar shrinking was observed in Fig. 2.5 for NOON states with
higher number of detected photons. Here, in contrast, the number of detected photons is
kept constant at 2.

Using the numerical simulations, we have verified that OCM works also if α =
√
i =

±
√

2(1 + i)/2.

Finally, Fig. (2.19) shows the rms deviation as a function of |α|. With increasing |α|, the
feature size of the wave function to be recovered becomes smaller, such that for a fixed
detector size, increasing rms deviation with increasing |α| is expected. One can notice the
approximate quadratic scaling with |α|.

2.4 Summary

We have applied the centroid method for spatial resolution enhancement numerically to
the non-classical states mentioned in [54], that is, NOON states and jointly Gaussian
states and found another kind of states, correlated cat states which can be utilized for
resolution enhancement with OCM. By generating a large number of random numbers
as position coordinates for photons from the initial non-classical wave function and then
calculating the centroid of the discrete detected data, we could recover the probability
distributions along the centroid axis corresponding to all these states for various detection
parameters.

The error between the numerical result and the predicted value has been estimated by the
root mean square deviation. Interestingly, the results of rms deviation as a function of the
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Figure 2.18: (Color online) (a) Probability distribution for a correlated coherent cat state
with α = ı

√
2 in position space. (b) Root-mean-square deviation against detector size

using method I.
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Figure 2.19: (Color online) Root-mean-square deviation for correlated cat states as a
function of |α|. In all cases, two-photon detection events are considered. N0 = 105 events
were considered with detector size λ/100.

size of the detector for the case of fixed detector positions can always be simply explained
from impinging wave function. However, we found out evidences that a fixed detector
array was not sufficient to recover the probability distribution completely. In order to
obtain all the features of the probability distribution, we discovered that either detector
arrays composed of very small sized detectors are needed or the detector positions require
to be shifted many times. Two methods are introduced for the detection procedure.
Analysis of the results showed that only small sized detectors can be characterized as
good detectors, as expected. Nevertheless, the strong statistical fluctuations were also
most prominent at these detector ranges.

The resolution enhancement with an increase in the number of photons in the impinging
wave function was verified.
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Specially, jointly Gaussian states allow not only to study an increased resolution with N ,
but also, one can select parameters such that even if N is increased, the same feature
size is obtained. We studied the multi photon absorption in dependence of the detector
size for both cases. In the first case, the maximum multi photon absorption rate could be
obtained with a classical state, as shown analytically in [62]. The latter showed a better
recovery of the wave function as more photons were absorbed. A similar multi photon
analysis with mean number of photons in a coherent states was also carried out for the
cat states.

We also confirmed that the probability of multi photon absorption increased linearly with
the size of the detector.

2.5 Outlook

• Mathematical formalism which enable the detection of more than two photons from
the incident wave function of a correlated cat state needs to be developed. This
way, one can study the performance of the scheme with respect to the number of
photons absorbed by the detector array.

• The conditions for the optical centroid method to work can be violated by adjusting
the phase of the coherent states. One can study the efficiency of the method as a
function of rotation of the centroid axis.
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Chapter 3

Direct detection of n-particle atomic
correlations via light scattering

The main results of this chapter are about to be submitted for a publication:
L. Jin, Q. Gulfam, M. Macovei, and J. Evers

Direct detection of n-particle atomic correlations via light scattering
which is an extension of [69].

In [69], the creation and direct detection of n-particle atomic correlations in
ensembles of atoms is investigated. An ensemble of laser-driven atoms in
which either a dipole-dipole or a Rydberg-Rydberg interaction leads to the for-
mation of correlations between the internal degrees of freedom of the atoms is
studied. Light scattering is used to imprint information about these correla-
tions onto light, and this information is extracted from the statistical properties
of the scattered light. Observation in certain detection directions makes it pos-
sible to directly and individually measure n-particle atomic correlations. Here,
we discuss in detail how to estimate the count rate of the scattered photons in
these specific directions. We also discuss results for different number of atoms
in the atomic ensemble.

3.1 Introduction

The creation and detection of higher-order atomic correlations in an ensemble of atoms
is studied in [69]. The authors aim at detecting correlations between the internal degrees
of freedom of the atoms generated either by dipole dipole interaction (DDI) or Rydberg
Rydberg interaction (RRI). For this, they analyze a linear chain of atoms which is driven
by perpendicular laser beams, see Fig. 3.1. The focus is on the direct detection of atomic
correlations by detecting the intensity-intensity correlation function G(2) of the light scat-
tered by the atoms, with light scattering as the simplest transfer of atomic properties onto
the light properties. They show that G(2) contains contributions which can be traced back
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3.2. Theoretical considerations

Figure 3.1: (Color online) A chain of N atoms driven by a resonant laser field. Detec-
tors D1 and D2 measure the second order correlation function of the scattered photons.
The interaction among atoms leads to the formation of n-particle atomic correlations.
Key objective is the direct measurement of these few-particle atomic correlations via the
scattered light. (Figure taken from [69])

to 2-, 3- and 4-particle atomic correlations. A closer analysis reveals that observation in
particular detection directions allows to detect the different n-particle atomic correlations
individually. The method they propose is independent of the coupling generating the
correlations, and results are given both for the case of DDI and RRI.

In order to carry out an experiment based on the mentioned scheme, the coincidence count
rate of the scattered photons becomes an extremely important issue. Starting from their
work, here, we develop a mathematical formalism which enables us to estimate the signal
size from the n-particle atomic correlation directions. In the course of calculations, we
find that it is very essential to take into account the correct prefactors in the correlation
functions, which were not included in [69]. Moreover, directions can still be identified,
and therefore an estimate of the coincidence count rate can also be obtained even if the
number of atoms in the atomic chain varies.

3.2 Theoretical considerations

3.2.1 Model

A linear chain of N atoms, as shown in Fig. 3.1 is investigated. The identical particles are
modeled as three-level atoms with ground state |g〉, excited state |e〉, and Rydberg state
|r〉 [154–156], and are located at positions ~ri (i ∈ {1, 2, · · · , N}), with rij = |~ri−~rj|. The
lower [upper] transitions are driven by resonant laser fields with Rabi frequency Ωp [Ωc].
Details of the theory can be found in [69].
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Chapter 3: Direct detection of n-particle atomic correlations via light scattering

As in [69], the master equation of the system is [157,158]

∂ρ

∂t
=

1

i~
[V, ρ]−

N∑
i=1

γc
2

([A(i)
re , A

(i)
er ρ] + H.c.)−

N∑
i,j=1

γ
(ij)
p

2
([A(i)

eg , A
(j)
ge ρ] + H.c.) , (3.1)

where V = VL + Vdd + VRR. A
(i)
αβ = |α〉i〈β| is an operator of ith atom, and γp ≡ γ

(ii)
p [γc]

is the spontaneous decay rate on the lower [upper] transition. The atom-laser interaction
is given by

VL = ~
∑
i

(ΩpA
(i)
eg + ΩcA

(i)
re + H.c.) . (3.2)

For the DDI case, we set Ωc = VRR = 0. The coherent part of the DDI is given by

Vdd = −~
∑
i 6=j

Ω(ij)A(i)
egA

(j)
ge . (3.3)

For RRI atoms, large inter atomic separations are assumed such that the DDI on lower
transition vanishes.

VRR = ~
∑
i 6=j

VijA
(i)
rrA

(j)
rr , (3.4)

where the coupling constant is given by Vij = C6/|rij|6.

3.2.2 Observables

From the steady state solution of Eq. (3.1), in [69] the first and second order correlation
function are calculated without taking into account the prefactors as [28, 159]

G(1) ∝
∑
i,j

〈A(i)
egA

(j)
ge 〉ei

~k1·~rij , (3.5a)

G(2) ∝
∑
i,j,k,l

〈A(i)
egA

(j)
eg A

(k)
ge A

(l)
ge 〉ei·

~k1~ril+i~k2·~rjk , (3.5b)

The correlation functions U (1) and U (2) excluding the correlations between different atoms
are defined in [69] as

U (1) ∝
∑
i,j

〈A(i)
egA

(j)
ge 〉Uei

~k1·~rij , (3.6a)

U (2) ∝
∑
i,j,k,l

〈A(i)
egA

(j)
eg A

(k)
ge A

(l)
ge 〉Uei·

~k1~ril+i~k2·~rjk , (3.6b)

For example, for any operators Ai and Bi operating on atom i and any operator Cj
operating on a different atom j 6= i,

〈AiBiCj〉U = 〈AiBi〉〈Cj〉 . (3.7)

The outgoing wave vectors ~k1 and ~k2 are related to the detector positions as

~kn · ~rij = (2π/λ) |~rij| cosαn , (n ∈ {1, 2}) (3.8)

The angles αn correspond to the detection positions ~Rn in the far field.
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3.3 Results

3.3.1 Without interaction

Without interaction

G(1)(~R) = U (1)(~R) = I N + C
∑
i 6=j

ei
~k1·~rij , (3.9)

where I = 〈A(i)
ee 〉 as a measure for the incoherent part of the scattered light intensity and

C = |〈A(i)
eg 〉|2 as a measure for the coherent intensity are the same for all atoms i. The

second-order correlation function can be decomposed as

G(2) = U (2) = G2 +G3 +G4 , (3.10)

in which Gn contains contributions involving n atoms, i.e., those in which the indices
i, j, k, l in Eq. (3.5) take on n different values. This decomposition allows for an interpre-
tation of the different contributions.

3.3.2 With interaction

Correlations among the atoms appear as soon as they interact. Then, G(1) 6= U (1) and
G(2) 6= U (2). Still G(2) = G2 + G3 + G4 and analogously U (2) = U2 + U3 + U4. The
full second-order correlation function G(2) with the contribution due to n-particle atomic
correlations subtracted is given by

Cn = G(2) −Gn + Un , (3.11)

At the detector positions for which Cn = 0, or alternatively, G(2) = Gn−Un, the measured
value for G(2) can directly be identified as the contribution arising from the n-atom corre-
lations, such that the contribution of n-atom correlations can be detected and quantified
individually. On the other hand, if Cn � G(2), then n-atom correlations decrease the full
G(2). This criterion again indicates atomic correlations but is in general, not guaranteed.

3.3.2.1 Dipole-dipole interaction

We begin with the DDI atoms case. Fig. 3.2 shows results on the direct and individual
detection of n-particle correlations. The contours plotted using Eq. (3.11) indicate that
there are detection ranges in which G(2) is non-zero only due to 2-particle or 4-particle
atomic correlations. At these positions, without the respective n-particle atomic corre-
lation, the value of G(2) would be zero, and any detection signal directly can be traced
back to the atomic correlations. Note that such regions do not occur for 3-particle atomic
correlations. On the other hand, there are detection directions in which C3/G

(2) ≥ 10 or
C4/G

(2) ≥ 10. Along these contour lines, the 3- or 4-particle atomic correlations dominate
the value of G(2).
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Figure 3.2: (Color online) Detection positions in which n-atom correlations can directly
be measured for dipole-dipole interacting atoms. The dotted green contour indicates
C2 = 0, and the dashed magenta contour C4 = 0. In these directions, G(2) is solely
due to 2-atom or 4-atom correlations, respectively. The solid light blue contour shows
C3/G

(2) = 10, and the dot-dashed yellow contour C4/G
(2) = 10. In these areas 3-atom or

4-atom correlations strongly reduce G(2), respectively. The background shows G(2). The
results are plotted scaled by 106 and against the positions of the two detectors α1 and α2

for N = 4, Ωp = 0.01γp and ri,i+1 = λp. (Figure taken from [69])

3.3.2.2 Rydberg-Rydberg interaction

Next, we focus on RRI atoms. The results are qualitatively comparable to DDI, and
the interpretations are the same. However, Fig. 3.3 shows that G(2) has a very different
structure as for the DDI case. From Fig. 3.3, detection regions can be identified in which
Ci = 0 for i ∈ {2, 4}, such that 2- and 4-particle correlations can be measured directly and
individually. Also, regions of large C3/G

(2) � 5 exist, providing access to the 3-particle
correlations.

3.4 Estimation of coincidence rates

We have evaluated the coincidence count rates of the fluorescence signal given by the linear
chain of equidistant atoms for n-atom correlations. Basically, the fraction of relevant solid
angle should provide with the count rate of photons falling upon a detector. However, this
is true only if the intensity is distributed uniformly over the entire detection plane. This is,
however, not the case since there is orders of magnitude difference between the minimum
and the maximum values of the intensity over the whole detection range. This spatial
variation of intensity is much more prominent in the dipole-dipole interaction (DDI)
case compared to the Rydberg-Rydberg interaction (RRI) case. Therefore, in order to
compute the intensity of light from the interesting contours one has to look exactly along
the contour lines for the n-atom correlations.
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Figure 3.3: (Color online) Detection positions in which n-atom correlations can directly
be measured for Rydberg-Rydberg interacting atoms. The dotted green contour indicates
C2 = 0, and the dashed magenta contour C4 = 0. In these directions, G(2) is solely due to 2-
atom or 4-atom correlations, respectively. The solid light blue contour shows C3/G

(2) = 5,
such that 3-atom correlations dominate. The background shows G(2). Parameters are
Ωp = 0.01γp, Ωc = γp, γc = 0.05γp, C6 = 2π × 50GHz µm6, and ri,i+1 = 5λp. (Figure
taken from [69])

Before doing that, we need to define the detection plane. Eq. (3.8) fixes our atoms to the

z axis if the detection vector ~ki is written as

~ki = ki{sin(αi) cos(βi), sin(αi) sin(βi), cos(αi)}, (3.12)

where βi is the azimuthal angle perpendicular to the plane containing the atoms for the
ith detector. Let us assume the propagation vector of the laser to be directed along the
x direction, perpendicular to the line of atoms. The detection is carried out in the x-z
plane, that is, αi ∈ {0, π}, i ∈ {1, 2}.
Now we outline the contours for the n-atom correlations by identifying the angular regions
around them. We divide the complete detection plane into a fine grid. Each element of
the two-dimensional square grid has a width of π/1000. In total we have 103 × 103 grid
elements. We apply several checks in order to make sure that the size of our grid element is
small enough to recover the interesting contours completely. For example, we approximate
the total intensity in the plane using the grid.

For an anisotropic source, as is the case of mutually interacting atoms, the total intensity
in the plane at one of the detectors positioned at an angle α is given by∫ π

0

I(α)dα. (3.13)

For two detectors, we have the total intensity

2∏
i=1

∫ π

0

I(αi)dαi =
∑
i,j

I(αi)∆ij, (3.14)
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where ∆ij is the area of a grid element. We make sure that the percentage error in the
results obtained from each side of Eq. (3.14) is negligible.

As one can see from Figs. (3.2) and (3.3), in both DDI and RRI cases, apart from C2 = 0,
at many points lines of contour of n-atom correlation cross the contour lines corresponding
to of m-atom correlation, where n 6= m, n > 2, m > 2. These points correspond to the
detection directions that are special in the sense that they provide more information than
the ones where no overlap is present. If at a point the contour lines of Cn = 0 as well as
Cm = 0, n 6= m are present, this means that at this very point G(2) = Gn−Un = Gm−Um,
which enables the direct detection of n as well as m-atom correlations. If contour lines
of Cn = 0 are overlapped by Cm >> G(2), one still detects only scattered light containing
n-atom correlations, however, in addition, there is an information that at that point
−Gm + Um >> 0.

As mentioned earlier, two types of criteria for the identification of atomic correlations can
be deduced from Eq. (3.11). The stronger one is given by Cn = 0. For the numerical
computation, we have approximated it by |Cn/G(2)| < ε, where ε is a small number which
is chosen very carefully such that essentially only the entire contour can be mapped. In
many cases, if ε is slightly increased, some undesired points appear that are not present
on the actual contour.

The other criterion, which is an indication of the presence of atomic correlations and is
somewhat lighter demands that Cn/G(2) >> 1. In [69], Cn/G(2) = P , where P ∈ {5, 10}
for the RRI and the DDI cases, respectively has been used in order to make a clear
presentation. We approached it numerically by utilizing the condition Cn/G(2) ≥ P . This
numerical approach results in the filling of the relevant contours in such a way that the
overlap with other contours increases. This way we are able to distinguish the interesting
grid elements where the atomic correlation exists from the uninteresting ones and cover
the relevant contour completely. Now, in principle, one can integrate the intensities at
the two detectors over every such small grid element and sum up the result to get the
total intensity coming from the interesting contours. We checked again via the numerical
integration using Boole command in Mathematica and found that the two results were
consistent. This again confirms that the grid element size is well-chosen.

The next step is to deduce the count rate from the total intensity. For that, we proceed
from the two dimensional case. A point source (scattering atom) is positioned along the
z-axis and the detection is restricted to be carried out only along the polar angle which
ranges from 0 to π. The total planar angle is given by

∫ π
0
dα = π. Suppose R1,tot denotes

the total number of photons per second emitted by the atom in the plane. If the source
emits photons isotropically, then in a single detector collecting photons from an angular
range dα, the number of photons (count rate) that will be received in a second is given
by R1,tot ∗ dα/π.

R1,tot can be written in terms of total intensity, I1,tot due to a single scattering atom in
the complete planar angle as

R1,tot = ξI1,tot, (3.15)

where ξ is a proportionality constant. Now the number of photons per second striking a
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detector of size dα placed in the direction α is given by

R1(α)dα = ξI1(α)dα, (3.16)

where R1(α) is a fractional photon count rate of R1,tot that impinges on the detector.
Dividing Eq. (3.16) by Eq. (3.15), one obtains

R1(α)dα = R1,tot
I1(α)

I1,tot

dα. (3.17)

If instead of a single atom there are N atoms having parallel dipoles, interference effects
arise. The scattered intensity is an interference pattern having maxima and minima. The
total intensity and the total scattering rate from all N atoms are denoted by IN,tot and
RN,tot, respectively. We have

IN,tot =

∫ π

0

G(1)(α)dα, (3.18)

here G(1)(α) is given by Eq. (3.5a). Again, we can write

RN(α)dα = RN,tot
G(1)(α)

IN,tot
dα, (3.19)

whereRN(α) is the count rate produced by N scatterers corresponding to a photo detector
placed at an angle α, respectively.

Finally, if instead of a single detector, one has two detectors situated at polar angles α1

and α2 having sizes dα1 and dα2, respectively, the differential form of the product of count
rates is given by

{prod(α1, α2)dα1dα2 = RN(α1)RN(α2)dα1dα2, (3.20)

The corresponding total product of count rates registered at the two detectors is thus
given by integrating the above equation over the total spread of the two detectors. To be
explicit,

Cprod =
R2
N,totσ

2

I2
N,tot

∫
det1

∫
det2

G(1)(α1)G(1)(α2)dα1dα2, (3.21)

where Cprod =
∫

det1

∫
det2

{prod(α1, α2)dα1dα2 is the product of the count rates at the two
photon sensors. σ is the efficiency of the detectors which is less than unity. deti is an
abbreviation for ith detector.

In order to compute not the product of two independent count rates at the two detectors
but the coincidence signal, the product intensities G(1)(α1)G(1)(α2) in Eq. (3.21) must be
replaced by G(2)(α1, α2)τcoh, where τcoh is the coherence time of light and is given by the
inverse of the spontaneous decay rate of the atoms. The reason is that the product of the
intensities can be non-zero even if one of the detectors has made a click but the other one
has not been hit by a photon within a small interval of time given by τcoh. On the other
hand, G(2)(α1, α2) takes into account the correlations among the scattered light and is
non-zero only for nearly simultaneously detected photons.
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Chapter 3: Direct detection of n-particle atomic correlations via light scattering

Thus Eq. (3.21) can be utilized to yield the coincidence count rate C in the following way.

C =
R2
N,totσ

2

I2
N,tot

∫
det1

∫
det2

G(2)(α1, α2)dα1dα2τcoh. (3.22)

So far, all the focus had been on the plane containing the atoms. However, the photo
detection is performed with a two-dimensional chip of a photo detector. So now, we have
to take into account also the angle perpendicular to the plane containing the atoms, which
is the angle βi. Again, for an isotropic source, the count rate registered at a detector of
size dΩ is given by total emission rate of the source times dΩ/(4π). However, we know
that the sources that we consider, i.e., interacting atomic dipoles which are assumed to be
orthogonal to the inter atomic axis do not radiate identically in all directions even if they
are placed symmetrically along the z axis around the origin. Therefore, it is important to
check how the results that we have presented so far will change if the detection is carried
out in space. The first place where the effect of the angle βi comes is Eqs. (3.5). For this
purpose, one should start with the total electric field operator evaluated at the position of
the detector(s) and derive the first and second order correlation functions taking care of
all the multiplicative prefactors and without confining the detection process to any plane.
This calculation has already been done in [20] so here we write down the end result for
the first and the second order correlation functions.

G(1)(~R1) =v(~R1)
∑
i,j

√
γ(ii)γ(jj)〈A(i)

egA
(j)
ge 〉ei

~k1.~rij , (3.23a)

G(2)(~R1, ~R2) =v(~R1)v(~R2)
∑
i,j,k,l

√
γ(ii)γ(jj)γ(kk)γ(ll)〈A(i)

egA
(j)
eg A

(k)
ge A

(l)
ge 〉ei

~k1.~ril+i ~k2.~rjk , (3.23b)

where v(~Ri) is the radiation pattern of a linear dipole moment given by

v(~Ri) =
3~ω0

16πε0cR2
i

sin2 ψi, (3.24)

if one assumes all the dipole moments to be parallel such that all of them make the same
angle ψi with the observation vector ~Ri. Ri is the distance of the ith detector from the
atomic array.

γ(ii) =
ω3
i |~di|2

3πε0~c3
. (3.25)

Using the typical values of optical frequencies, that is, ωi ≈ 3 ∗ 1015/s, usual dipole

moment |~di| = 3.3∗ 10−30Cm, ε0 = 8.85∗ 10−12C2/(Nm2), ~ = 6.63∗ 10−34Nms/(2π) and
c = 3 ∗ 108m/s, Eq. (3.25) yields γ(ii) ∼MHz.

Since the dipole moments are assumed to be orthogonal to the inter atomic distance
vector, we assume that they are aligned along the y direction. Fig. (3.4) explains the
coordinate system pictorially.

Now we have to relate the angle ψi to the spherical polar angles αi and βi. By definition
~d.~kn = |~d||~kn| cos(ψn). Using Eq. (3.12), one finds ~d.~kn = |~d||~kn| sin(αn) sin(βn). This
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3.4. Estimation of coincidence rates

Figure 3.4: (Color online) coordinate system specifying z, y, x axes as the alignment
directions of atomic array (green blobs), dipole moments (parallel black arrows) and the
incident resonant laser field (thick red arrow), respectively. Angles ψ1, α1, β1 are the
angles between the orientation of the dipole moments and the detector D1, the inter
atomic distance vector and the detector D1, the x-axis and the projection of detector D1,
respectively.

means that the angle ψi = cos−1(sin(αi) sin(βi)). It is evident now that apart from
the constant factors, the variation in the correlation functions comes from the prefactor
sin2(cos−1(sin(αi) sin(βi))).

Let us make a few checks in order to understand the relationship among ψi, αi and βi.

• For ψi = 0, the dipole radiation pattern vanishes. This is to be expected since in
this case the detection apparatus is placed parallel to the dipoles and the dipoles
do not radiate along their optical axes. In this case αi = βi = π/2.

• For ψi = π, the detector is placed anti parallel to the dipoles. Again this is a
detection position where no radiation enters the detector. This direction is given by
αi = π/2 and βi = 3π/2.

• ψi = π/4 gives sin(αi) sin(βi) = 1/
√

2. This choice of ψi renders either the xy plane
for which αi = π/2, βi = π/4 or the yz plane for which αi = π/4, βi = π/2.
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Chapter 3: Direct detection of n-particle atomic correlations via light scattering

• ψi = π/2 implies sin(αi) sin(βi) = 0 and gives xz plane. This is the value of ψi that
has been considered initially such that sin2(ψi) evaluated to unity, which means that
at the xz plane, the radiation from the dipoles is maximum.

The exponential factors in Eqs. (3.23) are still given by Eq. (3.8).

Having settled that the only change in our results will be given by a constant prefactor
multiplied by sin2(ψi), we can proceed toward calculating the coincidence rate employing
realistic detection in the 3 dimensions.

The total intensity in the whole solid angle of 4π due to all atoms is given by

I ′N,tot =

∫ 2π

0

∫ π

0

G(1)(~R1) sin(α1)dα1dβ1

=2πv(~R1)
∑
i,j

√
γiγj〈A(i)

egA
(j)
ge 〉
∫ π

0

ei(2π/λ)|~rij | cos(α1) sin(α1)dα1dβ1

=4πv(~R1)
∑
i,j

√
γiγj〈A(i)

egA
(j)
ge 〉

sin((2π/λ)|~rij|)
(2π/λ)|~rij|

, (3.26)

where G(1)(~R1) is given by Eq. (3.23a). The total count rate emitted by a source in the
solid angle 4π is

R′N,tot = χI ′N,tot, (3.27)

where again χ is a constant of proportionality.

Now the differential count rate in a detector of dimensions dΩ located at the polar angle
α and the azimuthal angle β can be written as

R′N(α, β)dΩ =χ G(1)(~R)dΩ

=χ G(1)(~R) sin(α)dα dβ

=
R′N,tot
I ′N,tot

G(1)(~R) sin(α)dα dβ. (3.28)

As before, the product of the two independent count rates for two detectors positioned at
{α1, β1} and {α2, β2} is given by

C′prod =
R′2N,tot σ2

I
′2
N,tot

∫
det1

∫
det2

G(1)(~R1)G(1)(~R2) sin(α1) sin(α2)dα1dα2dβ1dβ2. (3.29)

In order to ensure a coincidence detection, the product G(1)(~R1)G(1)(~R2) in Eq. (3.29)

will be replaced by G(2)(~R1, ~R2)τcoh.

where

G(2)(~R1, ~R2) = G(2)(α1, α2, β1, β2)

≡ G(2)(α1, α2) sin2(ψ1) sin2(ψ2)

= G(2)(α1, α2) (1− sin2(α1) sin2(β1)) (1− sin2(α2) sin2(β2)). (3.30)

90



3.4. Estimation of coincidence rates

Figure 3.5: (Color online) set up for experimental coincidence photo detection in the near
field to measure spatial correlations. There are two possible interfering pathways shown
by solid and dotted lines for a joint detection of the scattered light coming from any pair
of atoms.

An experimental scheme to measure same-time second order spatial correlation functions
in the near field is shown in Fig. (3.5). We, however, utilize detection in the far-field,
which is also based on the same principle.

Finally, Eq. (3.29) takes the following form

C′ =
R′2N,tot σ2 τcoh

I
′2
N,tot

∫
dα1

∫
dα2 G

(2)(α1, α2) sin(α1) sin(α2)×∫
dβ1(1− sin2(α1) sin2(β1))

∫
dβ2(1− sin2(α2) sin2(β2)). (3.31)

We propose to collect the scattered signal from the atoms with the help of two Electron
Multiplying Charged-Coupled Device (EMCCD) cameras. We use the specifications of
EMCCD iXon 3 888 for our numerical computations. These single photon detectors
have a square sensor chip of side length 13.3mm and 1024× 1024 active pixels. One can
calculate that the side length of a pixel is 13.3mm/1024 = 13µm, see Fig (3.6). The angle
φ provides with the numerical aperture whereas the resolution (or the magnification) is
determined by the angle θ.

θ = tan−1

(
13µm/2

R1

)
. (3.32)

We want the light from every grid element to be encoded on a single cell or unit magnifi-

91



Chapter 3: Direct detection of n-particle atomic correlations via light scattering

Figure 3.6: (Color online) set up for photo detection. The red box represents the vacuum
chamber containing the scattering atoms and the blue square represents the 2-dimensional
front of a camera. One yellow pixel at the center is shown. The red dashed lines, green
dotted lines and the black solid lines show the angle 2φ covered by the detector sensor, the
angle α1 that the detector makes with the atomic chain and the small angle 2θ covered
by one pixel at the sensor surface.

cation. Therefore, we must set

2θ = width of a grid element

⇒ 2 tan−1

(
13µm/2

R1

)
=

π

1000
(3.33)

From the above equation, R1 comes out to be 4.14mm. Using this value of R1, one can
determine the image area covered by the detector as

φ = tan−1

(
13.3mm/2

R1

)
= 0.323π. (3.34)

Since the chip of the detector collects light from the angle 2φ, the range of the polar angle
in the equator covered by the detector chip is 0.646π. Since the sensor chip is a square,
the same range of planar angle is covered along the azimuthal angle.

The interesting contours are most narrowly spaced around αi = π/2, therefore, we place
the detector at this point and thus cover a range of αi from π/2 − 0.646π/2 to π/2 +
0.646π/2. For βi, the radiation pattern is maximum at βi = 0, so the detector is placed
to cover a range of βi from 0.646π/2 to 0.646π/2.
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3.4. Estimation of coincidence rates

DDI case
N = 3 N = 4 N = 5 N = 6

I
′
N,tot 8.7 ∗ 10−3 9.2 ∗ 10−3 9.6 ∗ 10−3 1 ∗ 10−2

criterion coincidence count rate C′

|C2/G
(2)| < 1/10 1158 1462.64 1823.2 2078.6

|C3/G
(2)| < 1/10 151.86 198.2

|C4/G
(2)| < 15/100 192.142 1704.4 2005.84

C3/G
(2) ≥ 10 1809 3043.82 4254.66 8467.81

C4/G
(2) ≥ 10 969.94 734.617 831.21

Table 3.1: Total intensity, criteria for the distinguishing the contour lines and coincidence
count rate for 3, 4, 5 and 6 DDI atoms

The total solid angle covered by the detector is calculated as∫ 0.646π/2

−0.646π/2

dβ

∫ π/2+0.646π/2

π/2−0.646π/2

sin(α)dα = 1.097π (3.35)

This means that about 27% of the fluorescent light coming from the solid angle of 4π can
be collected by the EMCCD if it is placed about 4mm away from the atomic chain.

We integrate Eq. (3.31) over every grid element in the α range using the same β range
and sum up the result.

We have checked via numerical calculations using the same detection apparatus that the
interesting structures related to the n-atom correlations survive for N ∈ {3, 5, 6} (for
DDI case) and N = 3 (in the RRI case). It is expected that one will still find them if
N is changed to other values. The computation of steady sate density matrix for larger
number of atoms becomes difficult due to the memory shortage.

We have used the ideal count rate of a million photons per second as R′N,tot, 1µs as τcoh,
σ as 60%.

The values for the coincidence count rate for DDI case are tabulated in table (3.1). Ex-
pectedly, the total intensity I ′N,tot given by Eq. (3.26) increases by increasing the number
of scatterers in the chain. For N = 3 the contour lines do not overlap or cross each
other. For 5 and 6 DDI atoms. However, contrary to the case of 4 atoms discussed so
far, the contours corresponding to C3 = 0 are also obtained, which means that for 5 and 6
DDI atoms, there exist detection directions where 3-atom correlation can also be directly
accessed. Moreover, these contour lines overlap at many directions with C2 = 0 contour
lines. This is another contradiction compared to the 4 atom situation where the contour
lines corresponding to C2 = 0 are never interrupted by any other contour lines. Fig. (3.7)
plots the DDI atoms data on a logarithmic scale. One can see that the total intensity as
well as the signal size for various n-atom correlations go on increasing almost linearly as
the number of atoms increases. For contours related to C4, however, the behavior is not
decisive.

The data for RRI case has been shown in table (3.2). The values for coincidence count
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Figure 3.7: (Color online) Logarithmic plot of total intensity (multiplied by a factor of
104) and coincidence count rate for DDI plotted versus the number of atoms. The red
blobs show the total intensity at the two detectors. The blue squares, magenta circles,
cyan triangles facing upwards represent Cn = 0, n ∈ {2, 3, 4}, respectively. The green
rhombuses and brown triangles pointing downwards manifest the signal corresponding to
Cn/G(2) >> 1, n ∈ {3, 4}, respectively.

rates at the right column in tables (3.1-3.2) in case of RRI are much better than in the
DDI case because the interesting contour lines are very dense in the RRI case compared
to the case of DDI. Opposed to the DDI case, here, signal size decreases from contours
corresponding to C2 with an increment in the value of N , whereas, it increases, as for DDI
atoms for contours related to C3.

It is interesting that if the system is reduced to two atoms, neither in case of DDI nor
for RRI atoms, one finds contour lines corresponding to C2 = 0. It is clear that the
coincidence count rate can be increased by using more efficient detectors. A decrease
in the distances of the detectors from the atoms will increase the solid angle for the
collection of the photons and resultantly increase the count rate of joint photo detection.
Relaxing the criteria for outlining the interesting contours for n-atom correlations is going
to increase the signal very significantly.

3.5 Summary

We have presented the mathematical foundations to estimate the coincidence count rate
using the scheme proposed in [69]. We found that the coincidence count rate cannot simply
be assessed from the solid angles because the scattered radiation is highly anisotropic.
In [69], the results have been presented for detection in an equatorial plane. However,
practical detectors work in three dimensional geometries, therefore, it is important to take
into account the complete radiation pattren of the dipole moments in the first and second
order spatial correlation functions. The numerical results show that any experiment to
implement the scheme can be performed as the relevant directions for n-atom correlations
provide with a sufficient count rate for the coincidence detection. Furthermore, we showed
the results for different number of atoms in the chain configuration.
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RRI case
N = 3 N = 4

I
′
N,tot 1.87 ∗ 10−4 2.5 ∗ 10−4

criterion coincidence count rate C′

|C2/G
(2)| < 1/10 167749 74394

|C4/G
(2)| < 15/100 58659

C3/G
(2) ≥ 5 332126 454856

Table 3.2: Total intensity, criteria for the distinguishing the contour lines and coincidence
count rate for 3 and 4 RRI atoms

3.6 Outlook

• A direct extension of this work will be to exploit high values of N , the number
of atoms in the linear chain. This will not only provide with a higher scattered
intensity but can also lead to the determination of scaling of the results with N in
a decisive way. One may then use higher order correlation functions too to observe
the properties of the system.

Since the numerical calculations become difficult because of the large dimensions
of the system, in particular, for the RRI atoms, one can make use of the blockade
effect. By computing the blockade radius, one can truncate the Hilbert space such
that only one excitation can be contained within a blockade sphere.

• Instead of a regular arrangement of atoms, for several experimental set ups, arbi-
trary geometries for the atomic positions as well as for detector arrangements are
required. One can optimize the detection directions or the position configurations
of the atoms which make the experimental procedures simpler. Since completely
arbitrary positions for the atoms and the detectors are difficult to simulate, one can
try to fix N − 1 of the atoms, allowing one atom to have arbitrary spatial degrees
of freedom and then fix this atom to the position which provides, for example, with
the maximum coincidence count rate.

• Whether the proposed method works with other mechanisms (other than DDI or
RRI) to create correlations among particles can be verified.
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Chapter 4

Detection of n-atom correlations via
scattering in arbitrary geometries

The main results of this chapter will be written up in:
Q. Gulfam and J. Evers

Detection of n-atom correlations via scattering in arbitrary geometries

An ensemble of four Rydberg atoms interacting with each other and driven
resonantly by laser fields in arbitrary position geometries is considered. The
scattered signal containing the information about the atomic correlations is
detected. It is found that due to detection arrangements in certain directions,
as the ensemble expands spatially, 3-particle correlations vanish even before
4-particle does. Two different ways have been used to understand the counter-
intuitive result. It is found that for a large number of random atomic positions,
the average results of n-atom correlations are not distinguishable. A complete
understanding of the system, however, is yet to be developed.

4.1 Introduction

Ensembles of three-level atoms having a ground state, an intermediate state and an excited
state |r〉 of a high principal quantum number, called a Rydberg state have been studied
widely in the recent past because of the exaggerated properties of such atoms. The most
famous property associated with closely lying Rydberg atoms is that of the dipole blockade
which is based on the shift of the resonance due to the dipole-dipole interaction between
the atoms [67]. The blockade effect leads to an elimination of absorption of energy for all
other atoms within the blockade radius, thus creating an optically controlled switch [160].
It can be used to study entanglement of neutral atoms that are at micrometers distances
apart. The strong long-ranged interaction enables the development of quantum logic
gates [161]. Due to the collective effects caused by the Rydberg Rydberg interaction,
many body physics can be studied [66].
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Usually the experiments rely on cooling, trapping, manipulating and detecting single
Rydberg atoms [162] in various spatial geometries, for example, regular optical lattices
or cylinderical geometries etc. In order to simulate a true real behavior of a gas of frozen
Rydberg atoms, it is necessary to consider the atoms in relative arbitrary orientations
and distances. Laser cooling techniques decelerate the atoms of a gas inside vacuum such
that the atomic motion can be neglected on an experimental time scale [163].

Throughout this chapter, we have only changed the atomic position coordinates. The
other parameters such as the Rabi frequencies of the lasers etc are chosen exactly in the
same way as in the last chapter.

4.2 Linear configuration

Until Ch. (3), we have mainly discussed the case of equidistant atoms. Interesting results
are obtained if one allows the inter atomic separation between the atom chain to be
different from each other.

As a first example, in the DDI case for non-equidistant atoms, one can find contour regions
satisfying C3 = 0, which were so far not there. The atomic positions can be chosen as
λ{1.6, 2.3, 3.25, 3.9}, for example. The presence of C3 = 0 contours is, however, not a trait
restricted to non-equidistant, asymmetric positions of atoms. Such contours are also found
if the atoms are placed regularly, for example, at positions like this, λ{0.5, 1.25, 2, 2.75}.
In the same position configuration, another interesting consequence of the changing the
inter atomic separation from a full wave length can be observed. There are contours
corresponding to C3 = 0 and C4 = 0, which means that there are detection directions in
which 3 and 4-atom correlations can be achieved. However, contrary to the expectation,
no contours for C2 = 0 are found. For regularly placed atoms, the probability of detecting
2-atom correlations out of all n-atom correlations is the maximum from C2 = 0 contour
lines. One sees, however, various contours for C2/G

(2) = 10, which means that 2-atom
correlations exist but there are no directions where they can be directly observed. Another
example configuration for this effect is the position vector λ{0.01, 1.54, 2.63, 3.29} of DDI
atoms. In these and many other example configurations no C2 = 0 contours and C3 � G(2)

contours are found. C3/G
(2) usually ranges from very small positive (around 3) to very

large negative values (less than −30). On the other hand, C2/G
(2) usually ranges from

slightly above zero to very large positive values (∼ 102). In short, for many atomic
positions where one finds contours for C2 = 0, there are no contours for C2 � G(2). On
the contrary, position arrangements of atoms that possess C3 = 0 contours contain no
C3 � G(2) contours.

In case of RRI, contrary to DDI atoms, even for non-equidistant atoms again there are no
C3 = 0 contours. Quite interesting is the position ket given by λ{5.8, 8.25, 17.95, 21.34},
where one only finds the green contour lines for C2 = 0. Contour lines corresponding to
C3 = 0, C3/G

(2) = 5, C4 = 0 are totally absent. The reason for the absence of higher n-atom
correlation can be understood from the magnitude of the RRI between different atoms.
From table (4.1), one finds that the RRI between two pairs of different atoms is much
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{i, j} VRR(ri,j)
1,2 168.337
3,4 23.98
1,3 0.011
2,4 0.007
2,3 0.044
1,4 0.002

Table 4.1: VRR between different atom pairs {i, j} for position λ{5.8, 8.25, 17.95, 21.34}

larger than the interaction between any other pair. This is why there exist only 2-atom
correlations between independent pairs of atoms and no higher n-atom correlation. This
fact can be discovered by just looking at the positions of the atoms and considering that
the VRR(ri,j) ∼ |ri,j|−6. The distance between the 1st and the 2nd atom and that between
the 3rd and the 4th atom is much smaller than the distance between the 2nd and the 3rd
and that between 1st and the 4th atom. In this position setting, U3/G

(2) ≈ U4/G
(2) ≈ 0.

There are some position configurations, for example, λ{4.39, 14.79, 17.99, 21.85} for which
one finds many contour lines for C2 = 0 and C3/G

(2) = 5, negligibly small contours for
C4 = 0 but no contours for C3 = 0. Once again, the explanation comes from the magnitude
of RRI between different atoms, table (4.2). Now one can see that the inter atomic distance
between atoms 2, 3 and 3, 4 is small compared to that between atoms 1 and 2 and therefore
the RRI between the former pairs is much larger compared to the latter. This allows 3
atoms to interact contrary to the case mentioned previously. 4-atom correlation, however,
is rare because of the negligible magnitude of RRI between atoms 1 and 2. In this position
setting, again U3/G

(2) ≈ U4/G
(2) ≈ 0.

4.3 Arbitrary positions: RRI case

If DDI atoms are allowed to be in arbitrary geometries, in addition to the already discussed
parallel dipole dipole couplings, also couplings between other orthogonal magnetic sub-
levels occur. This means that even if we choose the laser polarization in such a way that
m = 0 atomic transition is driven, the population may be transferred to m = ±1 Zeeman
levels due to the non-zero orthogonal dipole dipole couplings among these levels. The
result is instead of a two-level atom, a four-level atom with one ground and three excited
states has to be taken into account [164–166]. This implies that for four atoms, we have to
consider 16 atomic levels and thus the system becomes 256 dimensional. This a too large
to be handled numerically. Hence, we can only study arbitrary position configurations for
the RRI case. In RRI case too, an s-state couples to all magnetic sublevels of the p-state.
However, it turns out that the interaction energy is independent of the orientation of the
atoms. Therefore, RRI atoms in s-state, despite having electrons in large n shell, can be
approximated by two-level atoms independent of their relative orientation. In general, for
different angular momentum quantum numbers, this is not true [167].
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{i, j} VRR(ri,j)
1,2 0.028
3,4 11.00
1,3 0.005
2,4 0.007
2,3 33.9
1,4 0.001

Table 4.2: VRR between different atom pairs {i, j} for position λ{4.39, 14.79, 17.99, 21.85}

Let us consider the case of four Rydberg atoms in completely arbitrary position setups in
the following. Obviously, the position vectors of the atoms given so far by ~ri = |~ri|ẑ need
to be redefined. For arbitrarily located atoms, we define

~ri = |~ri|{sin θi cosφi, sin θi sinφi, cos θi}, (4.1)

where θi and φi represent the spherical polar coordinates for the position of ith atom in
the four particle ensemble.

As before, the atoms are driven by a laser fields polarized in the x̂ direction whereas the
dipole moments assumed to be parallel to each other are placed perpendicular to the laser
in the ŷ direction.

The exponential factors in the atom-laser interaction VL may no more evaluate to unity,
hence, they have to be included explicitly.

VL = ~
∑
i

(ΩpA
(i)
eg e

i~kp.~ri + ΩcA
(i)
re e

i~kc.~ri + H.c.) . (4.2)

In the 3-dimensional analysis, we must take into account the dipole radiation pattern as
we did in the last chapter. So, the first and second order correlation functions are given
by Eqs. (3.23).

Eq. (3.8) modifies as written below.

~kn · ~rij =(2π/λ) .~rij {sinαn cos βn, sinαn sin βn, cosαn}
=(2π/λ)

{
sinαn cos βn(|~rj| sin θj cosφj − |~ri| sin θi cosφi) + sinαn sin βn

× (|~rj| sin θj sinφj − |~ri| sin θi sinφi) + cosαn(|~rj| cosφj − |~ri| cosφi)
}
. (4.3)

4.3.1 Observables

The observables again are the first and second order correlation functions of the scattered
light in three dimensions. They are given by Eqs. (3.23). As before, G(2) can be written
as a sum of various n-particle contributions G(2) =

∑4
n=2 Gn. G2 is given by G(2) in

such a way that out of all the atoms in the atomic ensemble only two are distinguishable.
Therefore, out of the four summation indices in G(2), only two are different. Similarly, for
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Chapter 4: Detection of n-atom correlations via scattering in arbitrary geometries

3-particle part G3 of G(2), two out of the four indices in G(2) must be identical. Clearly,
in G4, all indices have to be distinct.

After a bit of simplification and rearrangement of the summation indices, these n-particle
decompositions are explicitly given by

G2 ∝
∑
i,j

〈A(i)
eeA

(j)
ee 〉[1 + ei(

~k1−~k2)·~rij ] , (4.4a)

G3 ∝
∑
i,j,k

〈A(i)
eeA

(j)
eg A

(k)
ge 〉[ei(

~k1+~k2)·~rjk +
∑
n 6=m

ei
~kn·~rik+i~km·~rji ] , (4.4b)

G4 ∝
∑
i,j,k,l

〈A(i)
egA

(j)
eg A

(k)
ge A

(l)
ge 〉ei·

~k1~ril+i~k2·~rjk . (4.4c)

In the above set of equations, every summation is different from all others. This implies
that G4 does not contain G3 or G2.

With the replacement 〈·〉 → 〈·〉U , all constituents of U (2) = U2 + U3 + U4 can also be
written explicitly as in the following.

U2 ∝ NI2
∑
i,j

[1 + ei(
~k1−~k2)·~rij ] , (4.5a)

U3 ∝ NIC
∑
i,j,k

[ei(
~k1+~k2)·~rjk +

∑
n6=m

ei
~kn·~rik+i~km·~rji ] , (4.5b)

U4 ∝ NC2
∑
i,j,k,l

ei·
~k1~ril+i~k2·~rjk , (4.5c)

where I = 〈A(i)
ee 〉 and C = |〈A(i)

eg 〉|2. These equations are extremely helpful because they
readily enable one to write the n-particle correlations Cn in a convenient way.

4.4 Planar configuration

Having performed these theoretical changes, we specialize for the case of the position
configuration of the atoms such that φi, i ∈ {1, 2, 3, 4} is equal to zero. This confines the
atoms to the y − z plane. Next we choose θ1 = 0, θ2 = π/2, θ3 = π, θ4 = −π/2. Also, we
assume all the atoms to have the same distance r from the origin. Explicitly, the position
vectors are written like this.

~r1 = {0, 0, r},
~r2 = {0, r, 0},
~r3 = {0, 0,−r},
~r4 = {0,−r, 0}. (4.6)

To make the analysis simpler, for the detection purposes we arbitrarily fix βn to zero.
This implies that we only detect the scattered light in the x− z plane, where the dipole
radiation pattern enumerates to unity.
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4.4. Planar configuration

We start the numerical investigations by setting r to a small value and go on increasing it.
For small distances from the origin, for example, At r = λ or 5λ/2, contours corresponding
to the presence of all n-atom correlations, that is, C2 = 0, C3/G

(2) = 5, C4 = 0 and
C4/G

(2) = 5 are found. Increasing r to the value 5λ results in elimination of two out of
four of these contours. Here, interesting contours corresponding to C2 = 0 and C4/G

(2) = 5
still exist, which means that in this spatially expanded system, 2- and 4-atom correlations
persist, however, there are no 3-atom correlations. Intuitively, one would expect that as
the inter particle separation is increased, 4-atom correlations should be the first to vanish.
Further increase in r should result in the extinction of 3-particle correlations and finally at
very large r, 2-atom correlations are supposed to be eliminated, too. Separating the atoms
even beyond, at r = 15λ/2, the atoms are uncorrelated such that no n-atom correlation
contours are to be seen.

The counter-intuitive consequences found at r = 5λ led to a deeper analysis. We have
used two different ways to comprehend the systems’ response.

4.4.1 Gn analysis of the reduced system

We reduced the actual system of 4 atoms to 2 by taking into account the interactions
between any two of the atoms and neglecting the other two atoms completely. This
results in 4P2 = 4!/(4 − 2)! = 6 permutations. In this case, G(2) = G2 and thus C2 =
G(2)−G2 +U2 = U2. So C2 is always given by the uncorrelated part U2. This means that a
negligible Rydberg Rydberg interaction results in a large C2/G

(2) for a system consisting
of a pair of atoms.

The study of the system reduced to three particles is done in a similar way by considering
the interactions between any three of the atoms. There are 24 possible different atomic
arrangements given by the permutations 4P3 = 4!/(4 − 3)!. From Eqs. (4.4), we notice
that all components of the second order correlation function consist of a product of two
parts: the first part is an expectation value of atomic operators, which is calculated from
the steady state of the density matrix. The second part consists of various phase factors.
We found with our numerical techniques that for these 24 arrangements of 3 atoms, the
steady state can have only three different values. Exactly 8 arrangements correspond to
one such value of the steady state. Therefore, within a set of 8 different permutations
corresponding to the same steady state of the density matrix if there is a difference,
that difference is attributed solely to the phase factors part. We further discovered that
within such a set of 8 same steady state configurations, some contained C3/G

(2) = 5
contours while other did not. In fact, out of the 24 permutations, exactly 12 had 3-atom
correlations while the remaining 12 had none, independent of the value of the steady
state. This directed us to a more elaborated study of the phase factors rather than the
steady state part. We found that those combinations that had an inter atomic distance
vector along or perpendicular to the z axis possessed 3-atom correlations, while those
that had no such inter atomic distance vector had also no C3 � G(2). The picture can be
understood by noting that for 3-atom correlations to occur, all three inter atomic distance
vectors (which lie in y−z plane) must have a non-zero projection on the detection vectors
(which is carried out in x− z plane). If two out of the three inter atomic distance vectors
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have non-zero scalar products with the detection vectors, this means that only two pairs
of two atoms are correlated but 3 atoms, as a whole, are not. So, 2-atom correlations exist
but 3-atom correlations do not. All 24 combinations have at least one separation vector
proportional either to the z axis or to the y axis. Those having a vector in y direction
have ~kn · |~rij|ŷ = 0, and therefore possess no correlated 3 atoms. This highlights the vital
role played by the choice of the detection vectors in the determination of the behavior of
the system. Had the detection vectors been chosen differently, there would be different
results.

The true recognition of the system properties can, however, be done only from the full
system of 4 atoms. We also analyzed all permutations for G4. Again the total number
of permutations is given by 4P4 = 24. Nevertheless, now all 24 arrangements possess the
same steady state as well as the same phase factors as in every permutation the same
4 atomic positions enter the summation. Therefore, all arrangements of G4 lead to the
same conclusion, that is, contours for C2 = 0 and C4/G

(2) = 5 are present but no contours
relevant for 3-atom correlation are detected.

4.4.2 Cn analysis of the full system

We have also performed our analysis in a completely different way as follows, Using
Eq. (3.11), Cn = (G(2) − Gn) + Un. Also we have, G(2) − Gn =

∑
m6=nGm. Using these

two equations, one can write

C2 = G3 +G4 + U2, (4.7a)

C3 = G2 +G4 + U3, (4.7b)

C4 = G2 +G3 + U4. (4.7c)

Comparison of Eqs. (4.7b) and (4.7c) shows that the term G2 is common in both of them.
Via our numerical computations, we verified that U3/G

(2) ≈ 0 and also U4/G
(2) ≈ 0.

Therefore, the main difference is accounted for by the terms G4 and G3. As the distance
between the atoms is increased, first the four-atom part of G(2), i.e., G4 decreases, which
resultantly reduces the quantity C3/G

(2). Therefore, C3 � G(2) contours are extinguished
at r = 5λ. However, still at this r, G3 is large enough to render C4 � G(2). Only if the
distance is even further increased, e.g., r = 15λ/2, G3 decreases too and makes C4/G

(2)

small.

U2 which is the largest of all Un in Eq. (4.7a) is balanced by the sum of G3 and G4 in
such a way that contours corresponding to C2 = 0 exist at r = 5λ.

This result that with increasing the inter atomic separation, G4 decreases more than G3

and G3 decreases more than G2 seems to be a general one. Hence, we checked it for other
atomic geometries too.

A known example now is the case of linear chain of atoms, which is achieved by setting
θi = 0 in Eq. (4.1) such that all atoms are aligned along the z axis, that is, ~ri = |~ri|ẑ.
For realizing an atomic chain, we set |~ri| = r. At r = 5λ, C2 = 0, C3/G

(2) = 5, C4 = 0
contour lines are seen. As r is increased to 8.95λ, 9λ or 9.25λ, again only contours related
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to C2 = 0 and C4 = 0 survive and no contours for the presence of C3 are found. Finally,
at r = 10λ, contours associated with C4 also vanish and only C2 = 0 contours are located.

In order to check whether the result holds also for an irregular position configuration,
we fix the atomic position coordinates as ~r1 = {0, 0, 0}, ~r2 = {0, 5/

√
2, 5/
√

2}λ, ~r3 =
{0, 10, 0}λ and ~r4 = {0, 15/2, 15

√
3/2}λ. Once again, contours related to C2 = 0 and

C4 = 0 are found while no contours belonging to C3 are obtained.

4.5 Average dynamics

With our numerical calculations, we have calculated the values of different observables
for various random spatial structures of four atoms and then calculated the expectation
values of these observables. This corresponds to a simulation of a gas of 4 interacting
atoms in which the atomic positions are not fixed. We found that when averaged over a
large number of configurations, 〈G(2)〉 ∼ 〈C2〉 ∼ 〈C3〉 ∼ 〈C4〉. According to Eq. (3.11),
this implies that 〈Un〉 = 〈Gn〉, which is also confirmed by the result of the numerical
computation.

4.6 Summary

We have studied RRI atoms in various position setups. While a complete analysis em-
ploying completely arbitrary atomic geometries is yet to be performed, we discovered
some interesting results regarding the orientation of the photo detectors. If a large num-
ber of random position arrangements of the atoms are considered, the interesting n-atom
correlations cannot be distinguished.

4.7 Outlook

• One can employ detectors at arbitrary orientations and see how the results that we
presented are affected. Specifically, instead of setting βn to zero, a range around
zero should be included. A three dimensional detection is required which can also
be achieved in an experiment.

• More atoms in the ensemble or higher N as suggested in the outlook of the chap-
ter (3) should be used.
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This research work is a study of quantum entanglement. Despite being a phenomenon
that has been investigated for years but alludes physicists even today, entanglement can
be used as a ‘resource’ in many important practical applications of the quantum theory.
Tasks that are impossible to be carried out using classical resources, can be performed
using entangled systems. Entanglement can be created, manipulated, distributed, de-
tected and can also be destroyed. It does not carry the information itself, however, still
can be used to establish communication between parties that are macroscopic distances
apart. It has played a key role in the development of quantum computing and is of fun-
damental importance for quantum cryptography and many other applications. In this
work, we have analyzed quantum entanglement in non-Markovian environments, resolu-
tion enhancement utilizing entangled sources of light and developed procedures to detect
entanglement through scattered light using various model systems.

In the first part, entanglement has been studied in systems that possess retardation effects.
We have considered a system of identical two-level atoms inside an ideal multi mode uni-
dimensional ring-cavity. Entanglement can be created between the atoms via interaction
with the cavity field. Retardation effects become pronounced when the atomic states are
coupled simultaneously to many modes of the field. The parameters are selected in such a
way that atomic decay as well as the cavity losses can be ignored. Using time-dependent
Schrödinger’s equation, the probability amplitudes have been calculated for both cases,
that is, when the system contains a single excitation and when two photons are allowed
to reside inside the cavity. Not only the populations of the two atoms are affected due to
the presence of retardation effects but also the entanglement between them. The atomic
entanglement has been measured using concurrence. Clear signatures of retardation are
visible in the time evolution of concurrence. At short intervals of time given by a few
iterations of the photon between the atoms and the cavity walls, an obvious periodic
evidence of retardation is found. The retardation effects change the system dynamics not
only at large inter atomic distances but also at sub-wavelength separations. We have taken
into account short-time as well as long-time dynamics of concurrence. The presence of
retardation does not only affect the dynamics quantitatively but also quantitatively. For
example, there are conditions for which there is no entanglement without retardation and
the presence of retardation induces entanglement and vice versa. Moreover, interesting
effects like sudden death, sudden birth and revival of entanglement that can be observed
in the double excitation case can also be modified by retardation. In particular, for some
inter atomic separations, an initially entangled system never experiences sudden death
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but for other distances entanglement dies even if all other parameters remain unchanged.
As an outlook, we propose that instead of assuming fixed atoms at definite positions, one
should treat them to be confined in a trap such that a little movement of the atom inside
the trapping well can be taken into account in the numerical simulations.

In the next part, resolution enhancement based on entanglement is considered. Non-
classical sources of light (with entangled photons) having an effective wavelength which
is much smaller than the wavelength of a single photon can be exploited to surpass the
Rayleigh diffraction limit. Quantum lithography relies on the absorption of multi photons.
Reliable multi photon detection is quite challenging in an experiment. Optical centroid
measurements use arrays of single photon detectors. The detectors are so small that
there is a very low probability of multi photon detection. The scheme works by noting
the position of the detector that absorbed a photon and enumerating the centroid. The
measurements are repeated several times since a distribution of the centroid is required.
We have employed ‘numerical experiments’ to analyze the proposal. We have developed
techniques to randomly generate events as positions of the photons from the incident
non-classical wave function. Using a large number of such random numbers, we could
reconstruct the centroid probability distribution. We have characterized the error in the
measurement by root mean square(rms) deviation. The resolution enhancement with an
increase in the number of entangled photons in the impinging state is verified. For different
non-classical states, we have studied the rms deviation as a function of the detector size.
As expected, only small detectors are suited better for the detection purpose, however,
these detectors also correspond to numerical fluctuations in the measurement. We have
exploited two different methods in order to simulate the detection in an experiment and
have explained the results with both methods. Using our numerical data, we could develop
methods to study multi photon absorption, required for quantum lithographic techniques,
for various states and parameters in dependence of the size of the detector. For future
research, we suggest the development of a method by which more than two photons can
be detected from the correlated cat states such that the results with different number of
photons can be compared.

The third part is a study of an atomic system in which correlations are created by either
dipole-dipole interaction or Rydberg-Rydberg interaction. The system which is an atomic
linear chain is driven resonantly by light fields and the scattered intensity is recorded as a
function of detection directions. It is found that the higher order correlation functions can
be decomposed such that the correlations among various number of atoms can be identi-
fied. Moreover, the scattered light contains the information about the different individual
n-atom correlations imprinted on it. However, the fluorescent signal is highly anisotropic
because of the interactions among the atoms. We have developed the necessary mathe-
matical formalism to estimate the coincidence count rate from the relevant directions that
highlight these individual atomic correlations. We found that a count rate large enough
for an experimental implementation is obtained. We also estimated the total intensity
and the count rate for various atomic correlations as a function of the number of atoms
with a realistically modeled detection system. A direct extension of the work can be to
use an even larger number of atoms in the array. To fix the increased simulation time
and memory problem, one can utilize the blockade effect to truncate the Hilbert space in
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case of RRI such that only one excitation is possible within a blockade radius.

Later, we have allowed the atoms to acquire more generalized spatial geometries. We found
out that the detection scheme developed in the previous part also works for generalized
geometries. We discovered the strong effect of detection in certain directions. We still
want to consider even more general position configurations not only for the atoms but
also for the photo detectors.
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[127] M. D’ Angelo, M. V. Chekova, and Y. Shih, Phys. Rev. Lett. 87, 013602 (2001).

112



BIBLIOGRAPHY

[128] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006).

[129] C. M. Caves, Phys. Rev. D 23, 1693 (1981).

[130] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33, 4033 (1986).

[131] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).

[132] W. N. Plick, C. F. Wildfeuer, P. M. Anisimov, and J. P. Dowling, Phys. Rev. A 80,
063825 (2009).

[133] M. Kiffner, J. Evers, and M. S. Zubairy, Phys. Rev. Lett. 100, 073602 (2008).

[134] Z. Liao, M. Al-Amri, and M. S. Zubairy, Phys. Rev. Lett. 105, 183601 (2010).

[135] H. Shin, K. W. C. Chan, H. J. Chang, and R. W. Boyd, in Frontiers in Optics (Opt.
Soc. Am., ADDRESS, 2010), p. FMM2.

[136] Y. Kawabe, H. Fujiwara, R. Okamoto, K. Sasaki, and S. Takeuchi, Opt. Express
15, 14244 (2007).

[137] T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, Science 316,
726 (2007).

[138] M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Nature (London) 429, 161
(2004).

[139] M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, Nature (London)
431, 1075 (2004).

[140] I. Afek, O. Amber, and Y. Silberberg, Science 328, 879 (2010).

[141] I. Afek, O. Amber, and Y. Silberberg, Phys. Rev. Lett 105, 093603 (2010).

[142] C.-Y. Lu et al., Nature 3, 91 (2007).

[143] A. Auffeves, P. Maioli, T. Meunier, S. Gleyzes, G. Nogues, M. Brune, J. M. Rai-
mond, and S. Haroche, Phys. Rev. Lett. 91, 230405 (2003).

[144] C.-Y. Chen, S.-H. Li, and M. Feng, J. Phys. B 40, 2961 (2007).

[145] V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Physica 72, 597 (1974).

[146] R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963).

[147] R. J. Glauber, Phys. Rev. 130, 2529 (1963).

[148] R. J. Glauber, Phys. Rev. 131, 2766 (1963).

[149] C. C. Gerry, Phys. Rev. A 59, 4095 (1999).

[150] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, Science 312, 83
(2006).

113



BIBLIOGRAPHY

[151] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik,
Phys. Rev. Lett. 97, 083604 (2006).

[152] K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, Opt. Express 15, 3568 (2007).

[153] W. P. Schleich, Quantum Optics in Phase Space (WILEY-VCH, Berlin, 2001).

[154] H. Schempp, G. Günter, C. S. Hofmann, C. Giese, S. D. Saliba, B. D. DePaola, T.
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