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How do listenersdecodecoarticulatedspeech?Through-
out the history of speech perception research, this has
been one of the central issues. There are two essential as-
pects to the issue that cannot be addressed independently.
The first is the question of the basic recognition unit:
What is the size of the unit onto which the acoustic sig-
nal is mapped initially?After some 50-odd years of speech
perception research, there is no consensus on this issue.
There are still active supporters for units across the en-
tire range of possible sizes, such as the distinctive fea-
ture (Lahiri & Reetz, 1999; Stevens, 1995), the phoneme
(Nearey, 1990, 1997; Norris, McQueen, & Cutler, 2000),
the syllable (Massaro, 1998; Segui, Frauenfelder, &
Mehler, 1981), and the word (Goldinger, 1998; Johnson,
1997).

The second aspect of the issue of how listeners decode
coarticulated speech is concerned with the recognition
process itself. Owing to coarticulation, the acoustic real-
ization of any linguisticsymbol in the speech stream is af-
fected by surrounding symbols, irrespective of the size of
the recognition unit. Does listeners’ categorization of lin-
guistic symbols reflect these dependencies and, if so, in
what way? In other words, what are the processing depen-
dencies, if any, in the recognition of linguistic symbols?

The present research approaches the two issues intro-
duced above from a pattern classification perspective.
First, the problem is redefined in terms of the acoustic
patterns that form the input to a classifier. Next, a cate-
gorization model is introduced that incorporates hierar-
chical dependencies to optimally deal with this input. If
listeners do behave like statistical pattern recognizers,
they may use strategies incorporated in the model. Fi-
nally, a method is presented for predicting categorization
strategies that are likely to be used by listeners on the
basis of distributions of acoustical cues as they occur in
natural speech.

Testing for processing dependencies in phonetic cate-
gorization is far from straightforward, as is evidenced by
the lack of consistency of the findings reported in the lit-
erature. For example, Mann (1980), Whalen (1989), and
Wood and Day (1975) claim to have found dependencies
between the recognitionof successive phonemes,whereas
Fletcher (1953), Massaro and Cohen (1983), and Nearey
(1997) claim independence. These apparent discrepan-
cies in the reported findings may result from the fact that
the different experimental methodologies adopted in the
various studies actually tapped into different components
of the phonetic categorization process. The process that
maps the acoustic signal onto linguistic units is generally
assumed to consist of several distinct processing stages,
such as auditory stimulus encoding, extraction of rele-
vant acoustic cues, mapping of the cue vector onto re-
sponse probabilities, and response selection (e.g., Mas-
saro, 1987; Smits, 1997). Distinct types of processing
dependencies may be associated with each of these pro-
cessing stages, which may have been confounded in
some of the studies mentioned above.

History has shown that two types of dependency are
particularly prone to confounding—namely, acoustic de-
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pendency and phonological dependency. There exists an
acoustic dependency between two phonetic categoriza-
tions if both share acoustic cues. Consider the example
of the recognition of the liquid and stop in nonsense
words ALDA ARDA ALGA ARGA, as first studied by
Mann (1980). If the third formant frequency at the offset
of the liquid is used in both the stop classification and
the liquid classification, there is an acoustic dependency
between the two. If, on the other hand, the stop classifi-
cation depends on the perceived liquid identity, there is
a phonological dependency. Mann’s experiments showed
that at least one of the two types of dependencies was
present, but they could not distinguish between the two.
Recently, Lotto and Kluender (1998) showed that at least
part of the observed boundary shift in the stop catego-
rization has an acoustic/auditory basis.

Relatively recently, a number of researchers have ad-
vocated a pattern recognition approach to the study of
phoneticperception (Massaro, 1987, 1998; Nearey, 1990,
1997; Smits, 1997). The pattern recognition approach
has two essential components. First, it is assumed that
many aspects of the phonetic categorization process in
adult listeners are the result of training on previously
perceived and categorized speech. In other words, at
least some of the strategies and parameter settings of the
system are based on acoustical statistics of natural speech.
Second, the approach advocates quantitative modeling
of the entire recognition process to unravel certain as-
pects of the process of phonetic categorization, such as
the basic recognition unit and processing dependencies.
By explicitly modeling the various levels of information
processing and their possible interactions, the previously
mentioned confounding between acoustic and phono-
logical context effects may be avoided.

Within the pattern recognition framework, both Mas-
saro and colleagues (Massaro, 1987, 1998; Oden & Mas-
saro, 1978) and Nearey (1990, 1997) have defined mod-
els for the categorization of coarticulated speech (these
models will be discussed extensively in later sections).
The present article introduces a new model, called
HICAT (from hierarchical categorization), which repre-
sents a competitor to Massaro’s and Nearey’s models. The
core distinguishing feature of the new model is that it in-
corporates a particular type of processing dependency—
that is, hierarchical dependency, which has been fre-
quently hypothesized in the literature but never explicitly
captured in a quantitative model (e.g., Carden, Levitt,
Jusczyk, & Walley, 1981; Eimas, Tartter, Miller, & Keu-
then, 1978; Harris, 1958; Miller, 1981; Nearey, 1992). A
hierarchical categorization can be defined as the case in
which one categorization depends on the output of an-
other categorization, but not vice versa. In other words,
there is a one-way phonological dependency. Neither
Massaro’s nor Nearey’s model incorporates such hierar-
chical dependencies.

In the formulation of the HICAT model, the relation
between the effects of coarticulation on the acoustic
manifestation of successive phonemes and the useful-
ness and nature of potential processing dependencies in

the human speech recognition system plays a central
role. The explicit relation between natural cue distribu-
tions and phonetic categorization has so far not received
much attention in Massaro’s work, whereas in the re-
search of Nearey and colleagues, quantitative predic-
tions of categorization behavior from acoustic data have
been limited to single-phoneme categorizations (An-
druski & Nearey, 1992; Hillenbrand & Nearey, 1999;
Nearey & Assman, 1986; Nearey & Hogan, 1986). As
will be shown in later sections, the HICAT model is set
up so that it produces optimal hierarchical categoriza-
tion, given certain geometries in cue distributions that
are likely products of coarticulation. In addition, a
method is presented that predicts what types of depen-
dencies are most likely to occur in listeners’ categoriza-
tion strategies, given a set of acoustic cue distributions.

The paper is structured as follows. In the next section,
a theoretical consideration is presented of the potential
effects of coarticulation on the statistical distributions of
acoustic cues. An examination of how a pattern classifier
would deal with this problem reveals that, under certain
conditions, classification performance would benefit
from the use of certain types of hierarchical categoriza-
tion dependencies. Next, the HICAT model for the hier-
archical categorization of phonemes that encorporates
such dependencies is presented. HICAT is compared
with competing categorization models—namely, the
fuzzy-logical model of perception (FLMP), the diphone-
biased secondary-cue model (DBSCM), and general
recognition theory (GRT). The following section gives a
simple formula by which the reliability of the inference
of dependency direction can be estimated for practical
HICAT model fits. Finally, a technique is presented for
predicting processing dependencies from acoustical
measurements on natural utterances.

PATTERN RECOGNITION OF
COARTICULATED PHONEMES

Acoustic Consequences of Coarticulation
How does the pattern recognition approach to pho-

netic perception address the problem of the decoding of
coarticulated phonemes? Recall that an essential as-
sumption of the approach is that listeners base their
recognition strategies on statistics of relevant acoustic
parameters. Nearey (1992) considered the recognition of
the English syllables /si su Si Su/ from a pattern classifi-
cation angle. On the basis of the mean values of the fre-
quencies of the second formant and the main fricative
resonance (the dominant cues in this recognition prob-
lem) derived from Soli (1981), Nearey discussed several
classification strategies by which to approach optimal
performance while keeping the classifier relatively sim-
ple. Below, I will try to extend Nearey’s (1992) reflec-
tions in several ways, by first considering the likely con-
sequences of coarticulation on statistical distributions of
acoustic cues as they occur in natural speech, followed
by an analysis of how hierarchical strategies can be em-
ployed to deal with these acoustic patterns.
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First, let us consider a simple hypothetical situation
concerning the production and perception of consonant–
vowel (CV) syllables, specifically the Dutch CV sylla-
bles /si sy Si Sy/. This set is interesting because, in
Dutch, the phoneme /S/ is unrounded, so the pair /s S/
differ only in place of articulation, whereas the vowel
pair /i y/ differ only in rounding. In the natural produc-
tion of these syllables, rounding spreads from the vowel
to the preceding fricative. Let us imagine, however, that
this spreading of rounding did not take place and that the
production of the Dutch CV syllables /si sy Si Sy/ were
completely defined by the following idealized charac-
teristics: (1) The CVs are produced without coarticula-
tion; (2) /s/ and /S/ differ only in the frequency of a spec-
tral prominence Ffr in the frication noise; (3) /i/ and /y/
differ only in the frequency of the third formant; (4) dif-
ferent tokens of the same CV syllable are distributed as
a two-dimensional Gaussian stochastic variable; (5) the
Gaussian distributions associated with different CV syl-
lables have equal diagonal covariance matrices—that is,
they differ only in their means. Figure 1A gives a graphic
representation of this situation. Essentially, the means
for /si sy Si Sy/ form the corners of a rectangle.

Next, consider the case in which assumptions 1 and 2
are relaxed—that is, rounding does spread to the frica-
tive, whereas the influence of the fricative on the vowel
is negligible. Owing to assimilation, the main fricative
cue Ffr will change with vowel context (e.g., Soli, 1981).
Such change can be decomposed into two components.
First, the spectral prominence in the frication noises of
/sy/ and /Sy/ may shift down in frequency by an equal
amount (see Figure 1B). Second, the spectral promi-
nences in the frication noises of /sy/ and /Sy/ shift in op-

posite directions—that is, they converge (Figure 1C). In
a more realistic situation, a combination of these two ef-
fects is expected to occur, because roundinggenerally does
have the effect of lowering spectral prominences, but not
by equal amounts for /s/ and /S/. The reason for this is that,
because the length of the front cavity (the cavity “down-
stream” from the fricative constriction) is smaller for /s/
than for /S/, the relative increase in the length of the front
cavity is larger for /s/ than for /S/ and, therefore, the
downward shift of the spectral prominence is expected to
be larger for /s/ than for /S/. This case is illustrated in
Figure 1D. Although often a mixture of the shift and con-
vergence effects is expected, it is useful to keep them
separate, as will become clear in later sections.

The acoustic effects of coarticulation shown in Fig-
ure 1D are expected to be quite common, even in situa-
tions in which there is no actual feature spreading, as in
the fricative–vowel case. Consider, for example, the
much-discussed dependency of the frequency of the sec-
ond formant at voice onset (F2o) and in the vowel (F2v)
in stop-vowel syllables. Sussman and colleagues (e.g.,
Sussman, McCaffrey, & Matthews, 1991), and others be-
fore them, have shown that, owing to coarticulation, F2o
changes with F2v, but more for /b/ than for /d/. This de-
pendency appears to be quite regular and can be well de-
scribed by the so-called locus equations. Plotting F 2o
horizontally and F2v vertically, measured on several to-
kens of the syllables /bi/, /di/, /bu/, and /du/, will prob-
ably produce a geometry which, like Figure 1D, com-
bines the shift and the convergence patterns. The major
difference with Figure 1D would be that now the top two
distributions (/bi/ and /di/ ) will be closer together than
the bottom two (/bu/ and /du/).

Figure 1. Geometries of distributions of acoustic cues F3 and Ffr for four hy-
pothetical varieties of coarticulation. Circles represent isoprobability contours
of two-dimensional Gaussian pdfs. Panel A represents absence of coarticula-
tion, panels B and C represent shifted and converged geometries due to co-
articulation, respectively, and panel D represents a combination of B and C.
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Categorization Strategies
How would a pattern recognizer deal with the situa-

tions illustrated in Figure 1? Before this question can be
answered, performance of a classifier must be defined.
As in Nearey’s normal a posteriori probability model
(NAPP, Nearey & Hogan, 1986), it is assumed that lis-
teners represent phoneme categories as multidimen-
sional Gaussian probability density functions (pdfs) that
reflect the statistics of relevant acoustical cues in natural
speech. Furthermore, it is assumed that listeners map an
incoming sound not onto a single discrete phonological
label, but instead onto phoneme category goodness or
activation levels by reading off the likelihoodsof the var-
ious phoneme pdfs, given the cue vector for the incom-
ing sound. During normal speech recognition, these
fuzzy goodness levels are used to activate lexical items,
and no categorical decisions about phonemes are made.
Only in phonetic categorization experiments, when listen-
ers are forced to make categorical decisions at the pho-
neme level, are the goodness levels actually mapped onto
a single phonetic response. Given this set of assump-
tions, the performance of a classifier is (qualitatively)de-
fined as the similarity of the classifier’s fuzzy output to
the pdfs of the relevant acoustical cues.

Like the studies by Massaro and Cohen (1983), Wha-
len (1989), and Nearey (1990, 1992), the present research
focuses on four-response categorization (4RC) experi-
ments involving two binary decisions on two consecutive
phonemes (/si sy Si Sy/ ). In general, the optimal clas-
sif ier—that is, the classifier with the highest perfor-
mance—in a four-way categorization bases its catego-
rization on the acoustical distributions associated with
each of the four responses. This means that, for the pre-
sent experiments, the optimal classifier uses the syllable
or diphone as a unit. However, when we scale this dis-
cussion up to more realistic proportions, it is more eco-
nomical to use the phoneme as a recognition unit than
the syllable, because in all languages the set of phonemes
is much smaller than the set of syllables or diphones. For
most languages, the number of phonemes lies, roughly,
between 10 and 100, whereas the number of diphones or
syllables lies between 1,000 and 100,000 (Maddieson,
1984; for more elaborate considerations on the impli-
cations, see Dupoux, 1993; Nearey, in press). Therefore,
it is easier to train a phoneme-based recognizer than a
syllable-based recognizer, because it contains fewer pa-
rameters. Also, recognition is easier and faster, because
the number of comparisons of the input to the categories
is much smaller.

On the other hand, provided there is unlimited training
material and processing capacity, a syllable-based rec-
ognizer will generally have higher performance than a
phoneme-based recognizer. The question is, does this
potential difference in performance warrant the use of
the syllable as a unit, even at a cost of much higher com-
plexity? Or, to put it more succinctly, has the human
speech recognition system selected the quick-and-dirty
option or for the slow-and-accurate option? The present
research favors the quick-and-dirty option. Moreover, it

will be shown that this option need not, in fact, be so
dirty. Below, it will be argued that, if the acoustic conse-
quences of coarticulation of two consecutive phonemes
are so severe that phoneme-based recognition perfor-
mance drops significantly, this may be repaired by in-
troducing dependencies between the categorizations of
the phonemes that reflect the regularities in the acoustic
effects of coarticulation. Thus, the performance of a
phoneme-based recognizer can be increased at the cost
of a slight increase in complexity, but without switching
to the syllable unit.

Given the choice of the phoneme as the unit of recog-
nition, let us—for the moment, only qualitatively—
consider likely strategies dealing with the problems il-
lustrated in Figure 1. The pattern recognitionproblem of
Figure 1A is easily, and optimally, solved by using a hor-
izontal boundary separating the vowels /i/ and /y/ and a
vertical boundary separating the fricatives /s/ and /S/.
This strategy, which is equivalent to the strategy of Fig-
ure 2a in Nearey (1992), is illustrated in Figure 2A.

The problem of Figure 1B, where the pdfs for /sy/ and
/Sy/ are shifted with respect to those of /si/ and /Si/, can
be approached in two ways. The first is to make the frica-
tive categorization dependent on F3. In Nearey’s (1990,
1992, 1997) terms, the “secondary cue” F3 is used beside
the “primary cue” Ffr. In the context of the present model,
I will use the term acoustic context to indicate this situa-
tion. That is, in the categorization of a phoneme (/s/–/S/),
an acoustic parameter is used that is measured from the
following vocalic portion. This strategy results in the
nonvertical boundary between /s/ and /S/, as is indicated
in Figure 2B (see also Figure 2D in Nearey, 1992).

Figure 2C illustrates a different strategy for dealing
with the same acoustic distributions. In this case, the
fricative categorization does not depend on F3 in the
vowel, but on the vowel label. The /s/–/S/ boundary in
context /y/ is shifted with respect to context /i/, reflect-
ing the shift of the pdfs. This is a hierarchical depen-
dency, because the fricative categorization depends on
the vowel categorization, and not vice versa. As in Fig-
ure 2B, there is a context effect, but rather than being
acoustic, it is phonological. Figure 2B in Nearey (1992)
represents essentially the same strategy.

The distinction between acoustic and phonological
context effects is essential, but, as was discussed earlier,
the two are easily confused on the basis of categoriza-
tion data. Suppose one were to investigate the influence
of the following vowel on the categorization of a pre-
ceding fricative using an /s/–/S/ continuum followed by
/i/ in one condition and /y/ in another. This is compara-
ble to making two horizontal cross-sections of the two-
dimensional acoustical/perceptual space given in Fig-
ure 2. The results of such an experiment could not be
used to distinguish between the strategies represented by
Figures 2B (acoustical context) and by 2C (phonological
context). In both cases, the categorization functions
would display a shift of the category boundary.

How would a pattern classif ier choose between
acoustical and phonological context strategies? When
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coarticulation is moderate—that is, when the horizontal
shift of the pdfs for /sy/ and /Sy/ with respect to /si/ and
/Si/ is small—use of acoustic context will still give good
performance. When coarticulation is high, however—
that is, in case of a large shift—performance seriously
degrades, and the use of a hierarchical dependency be-
comes necessary. (Note that the circles in Figures 1 and
2 indicate isoprobability contours, not the ranges, of the
cue distributions—that is, it is assumed that there is sig-
nificant overlap between the four distributions.) If a
strategy involving phonological context is chosen, how
to decide which categorization should depend on which
is not a trivial matter. Figure 2D represents a hierarchy
opposite to that of Figure 2C—that is, the vowel catego-
rization now depends on the fricative categorization. As
in Figure 2C, this strategy results in better performance

than does the acoustic context strategy (Figure 2B). Pos-
sible ways of choosing the dependency direction will be
discussed later.

At a first glance, the categorization problem of Fig-
ure 1C is no more difficult than that of Figure 1A. A sim-
ple horizontal and vertical boundary would give good
separation. However, as will be explained later in the
quantitative section, the performance of a classifier that
bases its label selection on fuzzy match of the input to the
pdfs for the relevant categories can be increased by the
introduction of a hierarchical dependency. Again, both
dependency directions are possible. If the fricative cate-
gorization depends on the vowel categorization, the cat-
egory boundaries are indeed horizontal and vertical, as
in Figure 2A, but there is a dependency in terms of the
steepness of the fricative categorization functions on the

Figure 2. Categorization strategies for the pdf-geometries of Figures 1A–1C. The panels in the left-hand column (indicated by
“F V”) represent category boundaries for categorization strategies without use of phonological context for the rectangular (A),
shifted (B), and converged configurations (E). Panels in the middle column (indicated by “F ¬ V”) give boundaries for strategies
in which the fricative categorization depends on the perceived vowel for the shifted (C) and converged (F) geometries. The dotted
sigmoid shapes in panel F indicate that the /s/–/S/ boundary is steeper in /i / context than in /y/ context. Finally, the panels in the
right-hand column illustrate boundaries for the reverse hierarchy in which the vowel categorization depends on the perceived
fricative for the shifted (D) and converged (G) geometries.
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vowel. Because the fricative pdfs in /i/ context are well
separated, the /si/–/Si/ categorization would produce a
steep categorization function. The fricative pdfs in con-
text /y/, on the other hand, are less well separated, which
results in a shallow /sy/–/Sy/ categorization function.
This type of hierarchical dependency is illustrated in
Figure 2F, where the dotted sigmoid functions below and
above indicate the boundary steepness below and above
the horizontal boundary. If the vowel categorization de-
pends on the fricative categorization, the recognition
performance can be improved, as compared with the
strategy of Figure 2E, by adjusting the orientationsof the
/si/–/sy/ boundary and the /Si/–/Sy/ boundary in oppo-
site directions, as is illustrated in Figure 2G. Note that
the latter two types of hierarchical categorization were
not considered by Nearey (1992), who only discussed
boundary-shift dependence.

In summary, when neighboringphonemes are severely
coarticulated, a pattern recognizer that makes indepen-
dent phoneme categorizations may perform less than op-
timally. Introducing a hierarchical dependency between
the categorizations—that is, making one of the phoneme
categorizations dependent on the other—may repair this
drop in performance. Different patterns in the acoustic
effects of coarticulation call for different types of de-
pendency—that is, (1) dependency of the boundary lo-
cation (Figures 2B and 2C), (2) dependencyof the bound-
ary steepness (Figure 2F), or (3) dependency of the
boundary orientation (Figure 2G).

Earlier, it was mentioned that, from a pattern classifier’s
point of view, hierarchical categorization dependencies
are particularly beneficial in cases in which assimilation
processes cause the geometry of cue distributions to de-
viate strongly from the rectangular pattern (Figure 1A).
The following questions arise: (1) When exactly should
a dependency be used? and (2) which direction should it
have? These issues should be considered within the con-
texts of the full-scale speech recognition system and the
complete phoneme inventory in a language. Instead of
ad hoc procedures for each diphone,more general strate-
gies may be used. For example, a possible general strat-
egy might be to make Phoneme 1 dependent on Pho-
neme 2 in cases in which there is feature assimilation
from 2 to 1. In the present case, the recognitionof a frica-
tive would then be made dependent on the first vowel
following the fricative. Alternatively, dependencies may
simply be associated with all possible phoneme pairs,
where some dependencies will be strong and experi-
mentally detectable, whereas others will be very weak
and difficult to observe. In this first theoretical study,
these issues are left open.

THE HICAT MODEL

Mathematical Definition
For explanatory reasons, I will take a shortcut in the

presentation of the mathematics of the HICAT model.
The model defined in terms of the response probabilities
as a function of the stimulus coordinates is remarkably

simple and interpretable. The three types of hierarchical
dependencies introduced earlier (dependency of bound-
ary position, steepness, and orientation) are explicitly
modeled, each represented by a single parameter. In the
next section and Appendix A, I will show that HICAT
has optimal conditional phoneme-based categorization
performance, given the geometries of acoustical cue dis-
tributions presented earlier in Figures 1 and 2. These de-
rivations are somewhat more complex and might distract
some readers from the important results.

The model is restricted to four-alternative forced-
choice experiments, where the four alternatives arise
from two orthogonal binary phoneme categorizations (as
in the /si sy Si Sy/ example). Also, the stimulus space is
restricted to only two dimensions. It is assumed that a
stimulus, represented by vector f® in physical space F, is
mapped onto vector y® in psychological space Y by uni-
dimensional monotonic mappings:

(1)

, (2)

where } is an “appropriate” monotonic psychophysical
mapping for physical quantity f. Examples of such psy-
chophysical mappings are the square root for auditory
durations (Nearey, 1990), and the equivalent rectangular
bandwidth scale for auditory frequencies (Glasberg &
Moore, 1990). It is possible that the actual psychological
axes are not just “warped” physical axes, as in Equa-
tions 1 and 2 but, instead, are linear combinations of
warped physical axes. The HICAT model is insensitive
to such linear transformations, because the yx and yy in
turn undergo a linear transformation in Equations 3 and
4 below. Therefore, Equations 1 and 2 do not impose un-
necessary restrictions.

In psychological space Y, we define two axes a and b
as follows:

a = p0 + pxyx + pyyy (3)

b = q0 + qxyx + qyyy. (4)

Parameter vectors p
®

and q
®

are chosen so that, along axes
a and b, the probabilities of choosing either of the two
alternatives (A1 vs. A2 for a, and B1 vs. B2 for b ) change
most rapidly.

Let p(A1 |Si) indicate the conditional probability that
stimulus Si receives the label A1 on categorizationA. The
probabilities of choosing either alternative on catego-
rization A are assumed to be related to a by a logistic
function. This is most conveniently expressed as a log-
odds ratio (e.g., Bishop, Fienberg, & Holland, 1975):

(5)

The same holds for distinction B and axis b, except
that here a term is added:

(6)log
( | , )
( | , )

( )
p B A S
p B A S

c c ci

i

1 1

2 1
0= + + +b a ba b

log
( | )
( | )

.
p A S

p A S
i

i

1

2

= a

y fy y y= } ( )

y fx x x= } ( )
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. (7)

The parenthetical term in the right-hand terms of
Equations 6 and 7 represents the dependency of catego-
rization B on A. Crucially, the sign of this term depends
on the outcome of the categorization A. It is noted that
Equations 3 and 4 allow only a linear relationship be-
tween a and b and the psychological axes. Of course,
these may, in certain cases, be extended to include qua-
dratic or higher order terms, while preserving the hier-
archical dependencies.

The categorization dependency defined by the paren-
thetical term has three components associated with pa-
rameters c0, ca , and cb : c0, dependency of the position of
the B boundary on categorization A, ca , dependency of
the orientation of the B boundary on categorization A,
and cb , dependency of the steepness of the B boundary
on categorization A.

The probabilities of choosing either of the four sylla-
bles are calculated simply by multiplying the appropriate
(conditional) phoneme probabilities:

(8)

(9)

(10)

(11)

Note that, if c0 = ca = cb = 0, categorizations A and B
are independent in the statistical sense, because in that
case,

p(A1, B1 |Si) = p(A1 |Si)p(B1 |Si), (12)

and similarly for the other three syllables. For example,
let A and B represent the /i/–/y/ and /s/–/S/ distinctions,
respectively. Fricative and vowel are categorized inde-
pendently for a given stimulus if, for that stimulus,

p(/si/ ) = p(/s/ )p(/i/), (13)

and similarly for the other syllables.

The full dependencymodel defined above has nine free
parameters: p0, px, py, q0, qx, qy, and the dependency pa-
rameters c0, ca , and cb . The independent categorization
model is nested under the dependent model and has only
six free parameters (p0, px, py, q0, qx, and qy). The inde-
pendent model coincides with Nearey’s four-alternative
logistic regression model without any diphone terms.

Appendix A contains the quantitative derivation of
HICAT from the distributions of acoustical cues that
were introduced in Figures 1 and 2. It is shown that the
three dependency strategies associated with the bound-
ary location, orientation, and steepness, as implemented
in HICAT, give the optimal conditional categorization of
the cue distributions of Figure 1. Appendix A also lists
the relationships between HICAT’s parameters and the
parameters of the distributions of Figure 1.

Theoretical Examples
In order to illustrate the effects of the three types of hi-

erarchical dependencies on the probability surfaces and
territorial maps for the four responses, this section pre-
sents some simple theoretical examples. Figure 3 gives
graphical representations of four cases: independence,
position dependence, orientation dependence, and steep-
ness dependence.

For all four cases, the relations between a and b psy-
chological axes yx and yy are simple:

a = yy (14)

b = yx, (15)

by setting py = qx = 1 and p0 = px = q0 = qy = 0. The top
two panels of Figure 3 (A and B) represent independence
(c0 = ca = cb = 0). The left panel gives the probability
surfaces in psychological space; the right panel (territo-
rial plot) gives only the syllable boundaries—that is, the
points in psychological space at which the probabilities
of choosing two adjacent syllables are equal. The A1–A2
boundary is a horizontal line, and the B1–B2 boundary is
a vertical line. Note that the fact that the lines are paral-
lel to the coordinate axes stems from the choice of vec-
tors p

®
and q

®
(Equations 14 and 15) and is unrelated to

phonological independence.
Panels C and D (second row) of Figure 3 display the

shape of the model when c0 is nonzero (c0 = 1). Panel D
shows that the B1–B2 boundary is shifted to the left for
A1 and to the right for A2. Interestingly, the shift does not
leave the A1–A2 boundary itself unaffected. As can be
seen in panel D, the A1–A2 boundary is not linear any-
more (i.e., not a straight line), except for the segment
separating categories A1B1 and A2B2. The representation
of a boundary position dependency, as given in Figure 2B
(as well as Figure 2B in Nearey, 1992), should really be
viewed within the context of a boundary-based model
like GRT (Ashby & Townsend, 1986). In a similarity-
based model like HICAT, territorial plots with the shape
of Figure 2B can occur only when the categorization
function associated with the primary categorization is a

p A B S p A S p B A S

c c c

i i i( , | ) ( | ) ( | , )

exp( )
.

exp( )

2 2 2 2 2

0

1
1

1
1

=

=
+ + - - -a b a ba b

p A B S p A S p B A S

c c c

i i i( , | ) ( | ) ( | , )

exp( )
.

exp( )

2 1 2 1 2

0

1
1

1
1

=

=
+ + - + + +a b a ba b

p A B S p A S p B A S

c c c

i i i( , | ) ( | ) ( | , )

exp( )
.

exp( )

1 2 1 2 1

0

1
1

1
1

=

=
+ - + + + +a b a ba b

p A B S p A S p B A S

c c c

i i i( , | ) ( | ) ( | , )

exp( )
.

exp( )

1 1 1 1 1

0

1
1

1
1

=

=
+ - + - - - -a b a ba b

log
( | , )

( | , )
( )

p B A S

p B A S
c c ci

i

1 2

2 2
0= - + +b a ba b



1116 SMITS

Figure 3. Illustration of the effect of three types of dependencies on response surfaces (left column)
and territorial plots (right column). Panels A and B represent independence, panels C and D rep-
resent position dependence (c0 = 1, ca = cb = 0), panels E and F represent orientation dependence
(ca = 0.5, c0 = cb = 0), and panels G and H represent steepness dependency (cb = 0.5, c0 = ca = 0).
For all figures, py = qx = 1, p0 = px = q0 = qy = 0.
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step function—that is, is entirely noise-free—which is
unrealistic (see the section on model comparison,
below). On the whole, the territorial plot of panel D is
reminiscent of Nearey’s diphone-biased primary-cue
model, although they are not identical. The similarities
are more fully discussed in a later section.

Panels E and F (third row) give the probability surfaces
and territorial plot, respectively, for the boundary orien-
tation dependency (ca = 0.5). The B1–B2 boundary has
rotated clockwise for A1 and counterclockwise for A2.

Finally, panels G and H give the probabilitysurfaces and
territorial map for the steepness dependency (cb = 0.5).
Panel G shows this dependencymost clearly: The two re-
sponse surfaces to the “front” of the graph (for negative
yy ) are rather shallow, whereas the two toward the
“back” of the graph are much steeper. Again, the A1–A2
boundary is affected by this dependency. Because the
probabilities for categories A1B1 and A1B2 rise more
quickly with yx, they “gain” somewhat on categories
A2B1 and A2B2, as is evident in panel H.

Figure 3 illustrates that whenever either c0 or cb is
nonzero, some of the boundaries shown in the territorial
plot—that is, the boundaries associated with categoriza-
tion A—are nonlinear. This may seem somewhat coun-
terintuitive, given that only linear logistic functions are
used in the above model definition. The nonlinearity can
be understood as follows. The category boundaries for
phoneme categorizations A and B, as defined in Equa-
tions 5–7, are linear, as would be evidenced by territor-
ial plots for the phoneme categorizations. What is visi-
ble in the territorial plots of Figure 3, however, are the
boundaries between syllable regions A1B1, A2B1, and so
on, not between phoneme regions. These boundaries are
derived from the syllable probabilities, which are prod-
ucts of (conditional) phoneme probabilities (see Equa-
tions 8–11). It is easy to evaluate from Equations 8–11
that the syllable boundaries are linear only if c0 = cb = 0.

Information Processing Architecture
The definition of the HICAT model given above di-

rectly links response probabilities to stimulus character-
istics. An important remaining issue is the processing ar-
chitecture implementing the dependency strategies.
Basically, two strategies are possible: serial or parallel.
The mathematical definition of HICAT seems to suggest
a serial architecture. However, it will be argued below
that a parallel architecture is not only compatible with
HICAT’s definition, it is also theoretically more appeal-
ing. The various processing steps in the HICAT model
that were omitted in the earlier mathematical model de-
finition will be fully defined in the description of both
architectures.

Serial architecture. Figure 4 presents the information
processing diagram of the serial implementation of
HICAT. In Figure 4 (as well as Figure 5), the vertical di-
mension roughly corresponds to time, flowing bottom up.

Stimulus Si is first mapped onto an internal represen-
tation yi

®
by the box labeled auditory processing. Next,

categorization A is completed in three steps. First, yi
® is

matched to stored category information, represented by
category goodness functions gA1(y

®
) and gA2(y

®
) for cate-

gories A1 and A2, respectively. gA1(y
®

) and gA2(y
®

) are two-
dimensional Gaussians on psychological space Y with
equal covariance matrices CA:

(16)

where m®A1 = (mA1x, mA1y) is the mean of gA1, sAx and sAy are
standard deviations of gA1 (and gA2) along yx and yy, and
rA is the correlation coefficient of gA1 (and gA2). An anal-
ogous expression holds for gA2. Note that the “self-
similarity” of the goodness functions equals one—that
is, gA1(mA1x, mA1y) = 1.

The matching process yields goodness values gA1(yi
®

)
and gA2(yi

®
) for stimulus Si. Next, the probabilitiesp(A1 |Si)

and p(A2 |Si) of assigning labels LA1 or LA2 to stimulus Si
are calculated from the goodness values, using Luce’s
choice rule (Luce, 1963):

(17)

and p(A2 |Si) = 1 p(A1 |Si). Finally, a choice is made be-
tween response labels LA1 and LA2 on the basis of p(A2 |Si)
and p(A1 |Si), using the binomial distribution.

The secondary categorization B will start only when a
discrete label is selected for the primary categorization.
The details of the goodness match for categorization B
depend on the outcome of categorization A. That is, the
goodness functions for B1 and B2 are different for A1 and
A2. The goodness functions for B1 and B2 given A1 are
indicated as gB1 |A1 and gB2 |A1, and analogously for A2. The
conditionalprobabilitiesfor B are calculated by applying
Luce’s choice rule to the conditionalgoodness functions:

(18)

with p(B2|Si, A1) = 1 p(B1|Si, A1), and analogously for
A2. Finally, the two labels are combined, and the output
syllable label LAB is generated.

The serial architecture is unattractive for two reasons.
First, the output of the architecture will always be a dis-
crete label. Although this is not a problem in the context
of a phonetic categorization experiment (indeed, it is ex-
actly what the task requires), it will raise problems in the
context of everyday speech recognition. The reason for
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this is that it is better if a classification process that in-
volves multiple levels of representation—for example,
phonemes and words—does not make hard, irreversible
decisions at low levels prior to making such decisions at
higher levels. It is better to retain phoneme probabilities
or goodness values, so that all possible recognition re-
sults remain possible and the best one can be selected
at a word or sentence level recognition (see Marslen-
Wilson, 1987, and Nearey, in press, for more elaborate
discussions).

The second reason the serial architecture is unlikely is
the assumption that categorization B has to wait for A to

finish before it can start. Several studies have suggested
that this is not the way in which the human recognition
system operates. For example, Repp (1980) and Whalen
(1984) have presented evidence that phonetic informa-
tion is continuouslyextracted from the speech signal and
is mapped onto phonetic categories as soon as it be-
comes available. The parallel processing architecture
presented below does not suffer from either of these
drawbacks.

Parallel architecture. Figure 5 presents the informa-
tion processing diagram of the parallel implementation
of HICAT.

Figure 4. Information-processing diagram for the serial architecture of HICAT. The left-hand
branch corresponds to categorization A, the right-hand branch to B. Dotted lines represent
boundaries between the subject and the physical world. Ellipses represent directly observable
information, rectangles represent processing modules, and arrows represent information flow.
For the meaning of symbols, refer to the text.
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Essentially, both categorizations run simultaneously
in the parallel architecture. As in the serial architecture,
stimulus Si is first mapped onto an internal representation
yi
®

. Next, yi
®

is matched to category representations gA1(y
®

)
and gA2(y

®
) for A1 and A2, as well as to gB1(y

®
) and gB2(y

®
)

for B1 and B2. gA1, gA2, gB1, and gB2, are the optimal good-
ness functions under the assumption of independence,
with the additional assumption that the covariance ma-
trices of A1 and A2 are equal and those of B1 and B2 are
equal as well. Next, the goodness values gB1(yi

®
) and

gB2(yi
®

) are adjusted to increase performance. The ad-
justment leads to four conditional goodness values for
categorization B: gB1|A1, gB2|A1, gB1|A2, and gB2|A2. These val-
ues are indicated in Figure 5 as g ¢B. In the next step,
Luce’s choice rule is applied to gA1 and gA2 (see Equa-
tion 17) and to gB1 |A1, gB2 |A1, gB1 |A2, and gB2 |A2 (see Equa-
tion 18). Finally, the appropriate (conditional) probabil-
ities are multiplied, yielding syllable probabilities, and a
single syllable label LAB is selected using the multino-
mial function.

It is assumed that during normal speech recognition,
the goodness values gA1, gA2, gB1 |A1, and so on, are passed
on to higher level processes for recognizing words. Ap-

plication of the choice rule plus subsequent response se-
lection is thus assumed to be invoked by the experimen-
tal task.

The processing step that introduces the hierarchical
dependency is the adjustment of the goodness values gB1

and gB2. It is important to realize that the adjustment is
not a form of feedback. There is simply a lateral infor-
mation flow at the level of phoneme goodness values, so
the architecture remains essentially bottom-up. It is also
noted here that a parallel architecture with lateral infor-
mation flow, such as the one presented in Figure 5, is ca-
pable of producing contextual effects of phonotactics
(e.g., Massaro & Cohen, 1983), even though hard pho-
neme decisions are deferred as long as possible. The rea-
son is that, as was explained above, all conditional pho-
neme probabilities remain available throughout and are
combined appropriately at the decision stage, where one
of the combinations is chosen. Consequently, the result-
ing probability functions for the parallel implementation
are mathematically equivalent to those for the serial im-
plementation.

Conceptually, the goodness value adjustments involve
a shift of the goodness functions gB1(y

®
) and gB2(y

®
) in

Figure 5. Information-processing diagram for the parallel architecture of HICAT. For fur-
ther information, see Figure 4.
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psychological space, plus, in some cases, a bias. The
shift may be along the axis joining the means of gA1 and
gA2, in which case the original (independent) functions
gB1 and gB2 are multiplied or divided by a factor

gB1 and gB2 may also be shifted along the axis joining the
means of gB1 and gB2 themselves, in which case the factor
is of the form

In the case of position dependency, the mathematical
definitions of the adjustments are the following:

(19)

(20)

(21)

(22)

The equations for orientation dependency are:

(23)

(24)

(25)

(26)

In the case of steepness dependency, the adjustment is
defined mathematically as follows:

(27)

(28)

(29)

(30)

Appendix B shows that Equations 19–30 lead to the ac-
tual HICAT model as defined in Equations 3–7. In addi-
tion, Appendix B lists the relations between the param-
eters p, q, and r to the pdfs of acoustical cues of Figures 1
and 2.

COMPARISON OF HICAT TO
OTHER CATEGORIZATION MODELS

HICAT models processing dependencies in two bi-
nary categorizations. Three other models (or model
classes) explicitly address this issue.

1. The fuzzy-logicalmodel of perception (FLMP; Oden
& Massaro, 1978), which is a special case of the recently
proposed multinomial processing tree model (MPTM;
Batchelder & Crowther, 1997).

2. The diphone-biasedsecondary-cuemodel (DBSCM;
Nearey, 1990).

3. General recognition theory (GRT; Ashby &
Townsend, 1986), a constrained version of which has
been applied to phonetic perception by Kingston and
Macmillan (1995).

The Fuzzy-Logical Model of Perception and the
Multinomial Processing Tree Model

FLMP has been used to model 4RC data as well as
two-response categorization (2RC) data (see Massaro,
1998). The present discussion is focused on the 4RC ver-
sion of FLMP. The application of FLMP to the catego-
rization of successive phonemes is limited (Massaro &
Cohen, 1983). Still, it is very useful to compare the two
models. FLMP distinguishes three processing steps. In
the evaluation phase, relevant psychophysical features
are extracted from the stimulus in a deterministic (i.e.,
noise-free) fashion. Each feature is matched to proto-
typical feature values for each category, resulting in a
measure of category goodness, or fuzzy truth, for each
feature for each of the categories. In the integration
phase, the fuzzy-truth values for multiple features are
combined through a multiplicative rule (or logical con-
joining), resulting in a total category goodness of the
stimulus for each of the relevant categories. Finally, in
the decision phase, a single response is selected on the
basis of the relative goodness of the stimulus for all cat-
egories, using Luce’s choice rule.

The HICAT model is similar to FLMP in using essen-
tially the same processing steps of deterministic stimu-
lus encoding, followed by an integration phase resulting
in a goodness value and, finally, by a stochastic response
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selection. HICAT differs from FLMP on a number of
points, however. The most fundamental difference con-
cerns the assumptions underlying the integration of in-
formation from separate stimulus dimensions. This is il-
lustrated in Figure 6.

In FLMP (left-hand panel of Figure 6), the physical
stimulus dimension fx is mapped directly onto goodness
levels gA and 1 gA for categories A1 and A2, and fy is
mapped onto goodness levels gB and 1 gB for catego-
ries B1 and B2. Next, the appropriate goodness levels
are multiplied, yielding syllable goodness levels gAgB,
(1 gA)gB, and so on, and Luce’s choice rule is applied
to the syllable goodness levels. These assumptions imply
that the four syllable prototypes form the corners of a
rectangle in psychological space, with sides parallel to
the stimulus dimensions. Thus, in FLMP each stimulus
dimension is related to one phoneme only. In HICAT
(right-hand panel of Figure 6), on the other hand, physi-
cal stimulus dimensions fx and fy are initially mapped
onto psychological dimensions yx and yy. Next, good-
ness levels for categories A1 and A2 are calculated on the
basis of both psychological dimensions. The same holds
for B1 and B2. Next, the goodness levels are converted
into phoneme probabilities separately for A and B, after
which the probabilities are combined, through multipli-
cation, to form syllable probabilities. So Luce’s choice

rule is applied at the phoneme level in HICAT, not at the
syllable level.

These differences in processing assumptions in FLMP
and HICAT have important consequences. First of all, in
its usual 4RC implementation, FLMP is restricted to
having category boundaries that are parallel to the phys-
ical stimulus dimensions (as also was observed by
Batchelder & Crowther, 1997). In other words, FLMP
cannot model situations with significant sharing of
acoustic cues. This restriction does not apply to HICAT.
It is confusing, however, that this restriction also does
not apply to the two-alternative forced-choice implemen-
tation of FLMP. It remains, therefore, unclear whether
the assumption, implicitly made in the 4RC implemen-
tation, that cue sharing is not allowed is essential to the
FLMP framework.

Early versions of FLMP (Massaro & Cohen, 1983;
Massaro & Oden, 1980; Oden & Massaro, 1978), hence-
forth indicated as FLMPmod, incorporated so-called fea-
ture modifiers in the prototype definitions. The modi-
fiers were introduced to allow for the possibility that
features may have more extreme values for some proto-
types than for others. For example, voice onset time
(VOT), which is a primary cue for stop voicing, is known
to play a secondary role in stop place recognition, where
/d/ is expected to have a longer VOT than /b/. Mathe-

Figure 6. Comparison of information processing diagrams for the four-response
categorization fuzzy-logic model of perception (FLMP, left), the diphone-biased
secondary-cue model (DBSCM, middle), and HICAT (right). Rectangles repre-
sent processing modules; arrows represent information flow. Note that the good-
ness functions depend on one physical variable only in FLMP versus a dependence
on both in DBSCM and HICAT, and note how information for two phonemes is
combined at the level of the goodness function in FLMP and DBSCM versus at the
probability level in HICAT.
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matically, the modifiers are implemented by using expo-
nentials in the prototype definitions. The fuzzy match
g (Sij) of stimulus Sij to the four prototypes A1B1, A1B2,
A2B1, and A2B2 can be expressed as follows:

(31)

(32)

(33)

(34)

where ai and bj indicate psychological effects of two in-
dependently varied stimulus parameters and mk repre-
sents feature modifier k. As in the basic FLMP formula-
tion, Luce’s choice rule is applied to the goodness levels
g (Sij). When one or more feature modifiers are different
from unity, the categorizations of A and B are no longer
independent, because now

(35)

(36)

When a modifier is applied to a prototype definition, the
location of the prototype is unchanged—that is, the four
prototypesstill form a rectangle.The modifier only affects
the spread of the goodness function around the proto-
type. Modifier values larger than one make the goodness
function narrower, thus requiring feature values closer to
the prototype for perceiving the associated category.

Although, thus described, the effect of the modifiers
is transparent and appealing, it is difficult to gauge the
added modeling capacity of FLMPmod in terms of con-
straints on categorization function positions, orienta-
tions, and steepnesses, especially when the full set of
eight modifiers is used, as in Oden and Massaro (1978)
and Massaro and Oden (1980). This makes a comparison
of FLMPmod with HICAT difficult. However, given cer-
tain constraints on the feature modifiers, FLMPmod can
model certain hierarchical dependencies in a similar, al-
though not identical, fashion to HICAT. Dependencies
of the position and steepness of the B1–B2 categorization
function on categorization A can be modeled with three
free parameters, as follows:

(37)

(38)

(39)

(40)

where m0 is the average modifier value and m1 and m2
are associated with position and steepness dependency,

respectively. Note that the modifiers apply only to cate-
gorization B. With respect to orientation dependence, it
is noted that Oden and Massaro (1978, Figure 5, p. 185)
illustrated that the general definition of FLMPmod with
eight modifiers (Equations 31–34) can model category
boundaries that are neither parallel to the stimulus dimen-
sions nor necessarily mutually parallel (as in Nearey’s
DBSCM). I have, however, not been able to find con-
strained expressions for FLMPmod in the vein of Equa-
tions 37–40 in which a single parameter captures a hier-
archical boundary orientation dependency. As we saw
earlier for the HICAT model, the present analysis of
FLMP with feature modifiers shows once again that it is
possible to have (hierarchical) categorization dependen-
cies without violating the autonomy of the categoriza-
tion process or the independence of the initial fuzzy pho-
neme or feature categorization.

Besides differing in assumptions about information
processing, FLMP and HICAT support different recog-
nition units. Massaro supports the syllable as the basic
recognitionunit (e.g., Massaro, 1998). Indeed, in FLMP’s
applications to categorization of successive phonemes,
the category prototypes are syllable prototypes (Massaro
& Cohen, 1983). However, FLMP’s integration rule via
a simple multiplication of phoneme goodness levels is
essentially equivalent to an assumption of independence
of phoneme decisions, which suggests that, actually, the
phoneme would be a good candidate for a recognition
unit (see Nearey, in press, for a similar argument). In
HICAT, the unit of recognition is defined as the unit at
which the goodness functions are defined (and stored in
memory), which is the phoneme.

A related difference between the two models concerns
the information contained in the actual category repre-
sentation. In FLMP, this is a syllable prototype, of the
form “low fx and high fy,” and so on, where fx and fy are
physical stimulus parameters. In HICAT, on the other
hand, the category representation is a multidimensional
Gaussian goodness function. Besides the location of a
prototype (i.e., the mean of the distribution), such a func-
tion also contains information about its spread in the
form of variances and covariances around the mean.

In HICAT, it is assumed that the stored goodness func-
tions representing the categories are equal to the (unnor-
malized) pdfs of acoustic cues in natural speech. The re-
lation of the model parameters of individual FLMP fits
to cue distributions in natural speech has not featured
prominently in the work by Massaro and colleagues. In
a qualitative sense, it is claimed that, through exposure
to speech, infants quickly acquire the prototypes neces-
sary for speech recognition and that infants raised in dif-
ferent language environments have different prototypes
(Massaro, 1998). Oden (1992) proposed a learning pro-
cedure using error backpropagation, which enables
FLMP to learn its fuzzy propositions from individual
training trials.

Finally, FLMP and HICAT differ in the way the map-
ping of the physical stimulus parameters to the goodness
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functions is usually implemented. In FLMP’s standard
implementation, separate parameters are assigned to
each level of each stimulus dimension. This makes
FLMP mathematically equivalent to a log-linear model
(Crowther, Batchelder, & Hu, 1995). In contrast, HICAT
assumes that the goodness functions are Gaussian, which
leads to continuous logistic categorization functions. In-
spection of FLMP parameters reported in studies by
Massaro and colleagues shows that they always exhibit
sigmoid-like shapes, which gives some support for the
constraint made in HICAT. It should be mentioned, how-
ever, that Oden and Massaro (1978) did use a continuous
physical-to-psychological mapping function in one of
their model analyses. Applicationof this constraint wors-
ened the goodness of fit only by a very small amount.
So, although the constrained stimulus encoding in FLMP
has, to my knowledge, never been used since, it can be
argued that the usual choice of discrete stimulus encod-
ing is not so much a core processing assumptionof FLMP
as a mere implementation issue. Nevertheless, with re-
spect to the standard implementation of FLMP, it is use-
ful to note that, in one sense, HICAT is more constrained
than FLMP by assuming logistic categorization func-
tions where FLMP allows for arbitrary categorization
functions. At the same time, FLMP is more constrained
than HICAT, in the sense that it assumes independence,
both acoustically and phonologically, where HICAT al-
lows for cue sharing and hierarchical dependency.HICAT
is most similar to 4RC FLMP when py = qx = 0 (no
acoustic context) and c0 = ca = cb = 0 (no phonological
context), leaving only four free parameters.

Recently, Batchelder and Crowther (1997) introduced
the family of MPTMs, of which FLMP is a special case.
In MPTM, FLMP is extended in two ways: (1) Both cat-
egorizations are allowed to depend on both stimulus di-
mensions, and (2) one of the categorizations is allowed
to depend on the outcome of the other. Essentially, these
two types of processing dependencies are exactly those
included in HICAT. HICAT is, therefore, mathematically
very similar to MPTM, except that HICAT assumes
Gaussian goodness functions, resulting in logistic cate-
gorization functions, whereas MPTM, like FLMP, as-
sumes nominal stimulus levels. In practice, this differ-
ence is important, because HICAT’s constraint keeps the
number of parameters down to a maximum of nine,
whereas especially Generalization 1, given above, leads
to a proliferation of parameters to twice the number of
parameters in FLMP or more.

An additional important difference between MPTM
and HICAT is that HICAT is proposed as a genuine psy-
chological model of categorization. It not only includes
explicit descriptions of hypotheses regarding the various
processing stages in categorization, it also can be used to
predict processing dependencies on the basis of acoustic
measurements on natural utterances (as will be more fully
discussed below). In contrast, Batchelder and Crowther’s
presentation of MPTM is more statistically than psycho-
logically oriented, and the aim of the model is analysis
only. MPTM is a very useful generalization of FLMP,

however, because it allows for explicit statistical test-
ing of various processing hypotheses that FLMP does
not incorporate.

Diphone-Biased Secondary-Cue Model
For more than a decade, Nearey (1990, 1997, in press)

has supported a model of speech perception in which the
phoneme is the unit of recognitionand the classifications
of successive phonemes are phonologically independent.
The model deviates from the strongest form of indepen-
dence, as represented by, for example, FLMP, in two
ways: Cue sharing (using secondary cues in Nearey’s ter-
minology) is allowed, as are so-called diphone biases.
Diphone biases favor particular combinations of pho-
nemes over others; for example, given a choice between
/si/, /su/, /Si/, and /Su/, /su/ and /Si/ are generally more
likely than /si/ and /Su/. Such preferences are genuine re-
sponse biases because they do not depend on stimulus
information.Because of these core assumptions,Nearey’s
model is referred to as the DBSCM.

The middle panel of Figure 6 illustrates the processing
architecture of the 4RC version of DBSCM. As in
HICAT, the first processing step involves a mapping of
physical stimulus parameters fx and fy to psychological
parameters yx and yy. Next, phoneme goodness values
are calculated from the two stimulus dimensions. Finally,
diphone probabilities are calculated on the basis of the
phoneme goodness values and the relevant diphone bi-
ases, indicated in Figure 6 as bAB.

As Figure 6 illustrates, the initial stages of the physical-
to-psychological mapping and goodness calculation are
identical in HICAT and DBSCM. They diverge in the
subsequent processing of the goodness values. Whereas
in HICAT there is a one-way lateral influence among the
goodnessvalues, they remain independentin the DBSCM.
Furthermore, in HICAT individual phoneme response
probabilities are calculated, whereas in DBSCM the
phoneme goodness values, together with the diphone bi-
ases, are transformed to syllable probabilities in one
step. However, if diphone biases or higher order interac-
tions are excluded from the DBSCM, it is mathemati-
cally equivalent to HICAT without hierarchical depen-
dencies (c0 = ca = cb = 0).

The effect of HICAT’s position dependency, coded by
parameter c0, is similar to that of the diphone bias in
DBSCM. In a territorial plot, both have the effect of cre-
ating a section of the space where two diagonally op-
posed categories (e.g., bat and bed in Experiment 1 of
Whalen, 1989) share a border, whereas the other two
categories never touch. Compare, for example, Figure 3
in Nearey (1990) to Figure 3B in the present paper or
Figure 2 in Smits (in press). HICAT’s other two depen-
dency parameters (ca and cb ) have no analogues in
DBSCM.

The psychological reality and function of the diphone
bias have been subjected to discussion. Whalen (1992)
criticized the diphone bias for making the DBSCM too
unconstrained. No predictions are made concerning
which diphones will actually be favored over which oth-
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ers. Kluender and Lotto (1999), on the other hand, ar-
gued that the DBSCM with diphone bias is sensibly con-
strained in the sense that it supports only territorial map
structures in which only one response region is associ-
ated with each response—that is, XOR-type classifica-
tions cannot be modeled. Nearey (in press) himself has
offered the following potential interpretations of the di-
phone bias. First, it may code likelihoodsof co-occurrence
of diphones and phonotactic constraints. In a given lan-
guage, some phoneme combinations are more common
than others, which can be effectively captured by diphone
biases. Second, they may be employed to approach opti-
mal recognition, given natural cue distributions. It can
be shown that the optimal unconditional classification of
the shifted geometry (Figure 1B) involves the use of a di-
phone bias.

Nearey (1990, 1997) has used logistic regression (LR)
as a statistical framework to test for the hypotheses in-
corporated in DBSCM. In LR, the influence of various
experimental parameters on frequencies in a stimulus–
response matrix are systematically decomposed into
main stimulus effects, main response effects, and vari-
ous interactions, in a fashion similar to the analysis of
variance model, allowing for statistical testing of the sig-
nificance of each of the terms. The saturated version of
the LR model includes terms that are equivalent to
phonological dependencies. If such stimulus-tuned di-
phone terms would prove to be signif icant in an LR
analysis of a set of categorization data, this would be in-
terpreted by Nearey as evidence for a recognition unit
larger than the phoneme. In contrast, HICAT allows for
three types of phonological context, while the phoneme
unit is still adhered to. Importantly, however, the depen-
dencies in HICAT, being hierarchical, are different from
the stimulus-tuned diphone terms, which are symmetri-
cal—that is, nonhierarchical—in nature.

Nearey has always emphasized the importance of scal-
ing up the issues of the recognition unit and processing
dependencies from individual model fits to a realistic
speech recognition situation involving all phonemes in a
particular language (see, especially, Nearey, in press).
Nearey’s argument for allowing diphone biases but dis-
allowing stimulus-tuned diphone terms was centered
around a reflection on the complexity of the speech
recognition system, as quantified by its number of pa-
rameters. In Nearey’s approach, every diphone bias leads
to one extra free parameter in the speech recognition sys-
tem, which would add, at most, a few thousand param-
eters to an independent phoneme recognizer. Inclusion
of stimulus-tuned diphone terms, on the other hand,
would add a number of parameters equal to the number
of diphones (a few thousand) times the number of cues
for each diphone (perhaps, on the order of 10?). It is im-
portant to note that hierarchical dependencies, as they
are implemented in HICAT, do not lead to such an unde-
sirable increase in processing complexity.Like Nearey’s
diphone bias, each dependency parameter would, at
most, lead to a few thousand extra parameters in the full
system.

Finally, it is worth noting that in its first formulation
(Nearey, 1990), the DBSCM was related to the NAPP
model of Nearey and Hogan (1986). Nearey (1990) in-
dicated that the 4RC version of DBSCM is equivalent to
an optimal fuzzy classifier if the natural cue distribu-
tions are multidimensional Gaussian with equal covari-
ance matrices for the four syllables. As was mentioned
earlier, Nearey (1992) qualitatively discussed how the
variously constrained versions of the model would deal
with the classification of the syllables /si/, /su/, /Si/, and
/Su/, given the natural cue values derived from a study by
Soli (1981). Nearey never attempted, however, to quan-
titatively link the observed categorization patterns to
acoustical measurements on naturally produced speech.
Nevertheless, it is important to note that the diphone
term gets a new interpretation, not previously proposed
by Nearey, when considered in the context of such cue
geometries. In fact, it can be shown that Nearey’s
diphone-biased model gives an optimal (unconditional)
fuzzy categorization of the shifted geometry of Fig-
ure 1B. (Recall that HICAT gives the optimal conditional
categorization.)Nearey has proposed an interpretation of
the diphone bias as capturing phoneme transition proba-
bilities (Nearey, 1990, 1997). Interestingly, the same set
of parameters would therefore code shifts in acoustical
cue distributions owing to coarticulation and phoneme
transition probabilities.

General Recognition Theory
GRT (Ashby & Townsend, 1986) is a multidimen-

sional signal-detection model. The perceptual effect of
repeated presentations of a stimulus is modeled by a
multidimensional (usually Gaussian) pdf on a psycho-
logical space. The space is divided into regions, each of
which corresponds to a response. On presentation of a
stimulus, the stimulus is mapped onto a point in percep-
tual space, in which region the point is located is evalu-
ated, and the associated response is emitted. Because
GRT is a relatively unconstrained framework for catego-
rization theories incorporating a variety of potential pro-
cessing dependencies, an information processing archi-
tecture of GRT in the context of speech perception (in
the vein of Figure 6) is not available.

Essential to the GRT framework is the distinction be-
tween (in)dependence at the perceptual versus decisional
stages, where the perceptual stage refers to stimulus en-
coding and the decisional stage to response selection.
Originally, Ashby and Townsend (1986) distinguishedfive
types of independence in categorization within the GRT
framework. Two of those, perceptual and decisional sep-
arability, have been featured in subsequentwork by Ashby
and Maddox (e.g., Maddox, 1992) and have been the
focus in the applicationof GRT to speech perception (e.g.,
Kingston & MacMillan, 1995). I will therefore limit the
discussion to perceptual and decisional separability.

Perceptual separability holds if the perceptual effect
of one variable does not depend on the value of another
variable. In an orthogonal combination of two binary
variables A and B, the marginal distributionof perceptual
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effects of stimulus A1B1 along dimension A should be
identical to that of stimulus A1B2, and so forth. In terms
of the fricative–vowel example used earlier, perceptual
separability holds if a rectangular stimulus array in the
physical F3 3 Ffr space is mapped onto a rectangular
array in psychological space. If, for example, a rectan-
gular stimulus array in physical space is instead mapped
onto a parallelogram in psychological space, perceptual
separability is violated.This particular type of violationis
indicated as mean-shift integrality (Maddox, 1992).
Kingston, Macmillan, and colleagues (Kingston & Mac-
millan, 1995; Kingston,Macmillan,Walsh-Dickey,Thor-
burn, & Bartels, 1997; Macmillan, Kingston, Thorburn,
Walsh-Dickey, & Bartels, 1999) carried out detection-
theory analyses of vowel categorization data produced
with the Garner paradigm. The studies showed that, in
listeners’ categorizations of English vowels, mean-shift
integrality applies to acoustic dimensions associated
with separate articulations.

Decisional separability refers to the response selec-
tion mechanism only. Decisional separability holds if the
decision about one component of the stimulus is inde-
pendent of the value of the other. This is equivalent to the
decision bounds’ being parallel to the coordinate axes. In
terms of the fricative–vowel perception, decisional sep-
arability holds if the perceived fricative is unaffected by
F3 and the vowel is unaffected by Ffr, as in Figure 2A.

An important difference between HICAT and GRT
concerns the assumptions about the locus of the sto-
chastic component.This makes it difficult to find equiv-
alents for every conceivable type of independence in
both models. However, it is relatively straightforward to
translate perceptual and decisional separability to the
HICAT framework. HICAT allows for violations of both
perceptual and decisional separability. As was discussed
earlier, one of the assumptions underlying HICAT is
that cue sharing is common in speech perception and,
accordingly, decision bounds are allowed to have any
orientation. HICAT can indeed be used to test for deci-
sional separability by testing for the significance of pa-
rameters px, py, qx, and qy in Equations 3 and 4. HICAT
cannot, however, be used to test for perceptual separa-
bility. As in GRT, violation of perceptual separability in
HICAT is equivalent to the mapping of a rectangular
stimulus array onto a nonrectangular one. However, we
need to distinguish between distributions of the physi-
cal parameter values found in natural speech, as repre-
sented in Figures 1 and 2, and distributions of the per-
ceptual effects of repeatedly presented stimuli. If in
HICAT decision bounds are found to be nonparallel to
the coordinate axes, this may be due either to violations
of perceptual separability or to the classifier’s having
chosen the boundary orientations to deal with natural cue
distributions that are themselves not arranged in a neat
rectangle. Of course, the two may even be superimposed.

Distinguishing Competing Models Empirically
How can HICAT, FLMP, DBSCM, and GRT be dis-

tinguished on the basis of experimental data? Massaro

and Friedman (1990) and Cohen and Massaro (1992)
compared several models of information integration to
FLMP, including GRT, multidimensional scaling (MDS;
e.g., Shepard, 1962), and certain connectionist models.
They compared 2RC and 4RC versions of the models
theoretically, as well as empirically, by evaluating model
fits to simulated FLMP-generated data and to experi-
mental data. Both studies showed that, despite important
differences in the assumptions on the locus of the sto-
chastic component and on the decision mechanism,
many of the models could be reduced to a likelihood-
product form and are, thus, mathematically equivalent
and indistinguishable on the basis of standard factorial
categorization data. Cohen and Massaro suggested that
alternative dependentmeasures, such as ratings, similar-
ity judgments, and reaction times, might allow the mod-
els to be discriminated empirically.

These results should be put in perspective, however.
As was discussed earlier, category prototypes in the 4RC
version of FLMP are always assumed to form the four
corners of a rectangle in psychological space, with the
sides parallel to the psychological axes corresponding
with the physical stimulus dimensions. In Massaro and
Friedman (1990) and Cohen and Massaro (1992), this
constraint was imposed on the 4RC versions of all alter-
native models, although they are not in any way “inher-
ent” to the models. Therefore, the general conclusion
reached in both studies that most models are mathemat-
ically equivalent, although appropriate for the 2RC ver-
sions, is too strong for the 4RC case. The correct con-
clusion for the 4RC models would be that certain
constrained variants of the models are mathematically
equivalent to FLMP. In particular, in the MDS and
SDT/GRT models, the prototype-rectangle constraint is
neither in any way built in nor commonly made in prac-
tice. In their usual application, these models allow cate-
gory prototypes to be located anywhere in psychological
space.

An empirical comparison of the categorizationmodels
discussed above should focus on four aspects: (1) the
locus of the stochastic component, (2) acoustical depen-
dencies (cue sharing), (3) (hierarchical) phonological
dependencies, and (4) the linking of category represen-
tation and processing mechanisms to distributions of
natural data. Concerning the locus of the stochastic com-
ponent, it is important to realize that although the theo-
retical assumptions of stochastic stimulus encoding ver-
sus stochastic choice are fundamentally different, they
generally lead to similar or even identical predictions
with respect to categorization functions (see also Mas-
saro & Friedman, 1990). Thus, the two hypotheses are in
practice difficult to discriminate on the basis of catego-
rization data. If the extra assumption is made that the cat-
egory goodness values evoked by a stimulus are equiva-
lent to the probability densities of the natural cue
distributions, testing becomes easier. However, reported
results are still equivocal.Ashby and Gott (1988), for ex-
ample, found evidence for the use of hard decision crite-
ria in basic visual categorization, whereas Lee and Zen-
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tall (1966) found support for Luce’s choice rule. In the
context of phonetic categorization, Nearey and Hogan
(1986) found that both hypotheses gave good descrip-
tions of listeners’ categorizations of voicing in Thai
stops. Furthermore, Nearey and Assman (1986) and An-
druski and Nearey (1992) showed that Luce’s choice
rule, applied to natural distributions of acoustic dimen-
sions of vowels, leads to accurate predictions of listeners
categorizations of the vowels, but similar results may be
obtained in a GRT framework. In any case, the issue of
the locus of the stochastic component in phonetic cate-
gorization is far from settled.

It is proposed here that a possible test between the two
alternatives may be based on so-called range effects—in
particular, the influence of variation of the size of a stim-
ulus continuum on categorization functions (e.g., Par-
ducci, 1965). The trace-context model of SDT incorpo-
rates range effects and makes very explicit predictions
about the influence of stimulus range on discrimination
and identif ication performance (Durlach & Braida,
1969; Macmillan, Goldberg, & Braida, 1988). In con-
trast, a strict version of Luce’s choice rule applied to
stimulus distributions, as used in HICAT, predicts the
absence of range effects in phonetic categorization.
Range effects have indeed been reported for phonetic
categorization, but they are often small (Repp & Liber-
man, 1987). Of course, SDT-type perceptual noise asso-
ciated with context variance could be straightforwardly
incorporated in a categorizationmodel like HICAT. Such
a hybrid model would predict a shallower categorization
function with increasing continuum size, thus incorpo-
rating range effects. However, an empirical finding of a
phonetic categorization function that is steeper than
would be predicted from Luce’s choice rule applied to
natural cue distributions could not be handled by such a
hybrid model, because adding a stochastic component to
the stimulus encoding stage can only make categoriza-
tion functions shallower. To my knowledge, such find-
ings have not yet been reported.

The second potential diagnostic discriminating be-
tween the various models concerns the presence or ab-
sence of acoustic context effects. This issue can be di-
rectly addressed by using two-dimensional stimulus
continua, where one acoustic dimension, which is pre-
sumably associated with one phoneme distinction, is or-
thogonally crossed with another dimension associated
with an adjacent phoneme. It is now generally accepted
that phonetic categories are essentially multidimensional
and that human categorization of every conceivablepho-
netic categorization is influenced by many acoustic pa-
rameters (e.g., Diehl & Kluender, 1987;Lisker & Abram-
son, 1970). More important, there is ample evidence that
cues are shared between categorizations of successive
phonemes. Whalen (1989) showed how the categoriza-
tion of both the vowel and the final consonant depended
on the duration and frequency of the f irst formant in
/bVC/ words. Nearey (1997) conducted an extended ver-
sion of Whalen’s experiment, orthogonally varying four
acoustic parameters and employing 10 response cate-

gories. As for Whalen’s experiment, the results left no
doubt that cues were shared between vowel and conso-
nant judgments. As was indicated earlier, 4RC FLMP
without the feature modifiers cannot account for such
acoustic context effects.

The third aspect on which the models can be distin-
guished concerns (hierarchical) phonological context ef-
fects. Essentially, HICAT allows for such dependencies,
whereas the other models do not, although DBSCM and
GRT can model diphone biases, which, although theo-
retically distinct, are expected to be experimentally dif-
ficult to distinguish from HICAT’s shift dependency.The
little data relevant to the issue of phonological depen-
dencies is equivocal. Smits (in press) applied HICAT to
the data sets from Experiments 1 and 3 of Whalen (1989).
Although good DPSCM fits of these data sets had been
reported by Nearey (1990), Smits’s analyses provided an
alternative interpretation involving hierarchical depen-
dencies. Goodnesses of fit of the two models were compa-
rable, however, so there was no basis for a choice between
the models. Smits (in press) subsequently presented new
data from an experiment in which listeners categorized
stimuli from a two-dimensional stimulus continuum as
/si/, /sy/, /Si/, or /Sy/. HICAT model analyses showed
clear evidence for a dependency of the /s/–/S/ boundary
on the perceived vowel. Although HICAT fitted the new
data better than did DPSCM, a direct statistical compar-
ison of the two models was hindered by the fact that they
are not nested. In the future, cross-validation techniques
may offer a general solution here. Alternatively, given
the mathematical similarity of HICAT and DPSCM, it
should not be too difficult to construct a “supermodel”
that includes both models as a special case, thus allow-
ing for systematic significance testing of various param-
eters. The supermodel approach is more difficult for
comparisons of HICAT and FLMP, or HICAT and GRT,
because the mathematical structures of the models are so
different.

A fourth way of distinguishing the models may con-
centrate on how well they predict various aspects of the
categorization of coarticulated phonemes on the basis of
natural distributionsof relevant acoustical cues. Currently,
HICAT is unique in making such predictions both quali-
tatively and quantitatively. Again, future comparison with
DPSCM shouldbe easiest, because the prediction method
presented in a later section can probably be adapted for
this model.

Finally, as has been suggested by Massaro and Fried-
man (1990), reaction times may provide an alternative
empirical basis for discriminating the models. At pres-
ent, only FLMP and GRT explicitlymodel the time course
of categorization (Ashby & Maddox, 1994; Massaro &
Cohen, 1991). HICAT and DPSCM only model catego-
rization probabilities and need to be fleshed out to in-
corporate reaction times. In particular, hypotheses need
to be formulated about the potential influence of time
pressure on the size of the dependencies in HICAT. Does
the lateral influence of one phoneme categorization on
the other take time to build up? Similarly, the applica-
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tion of diphone biases in DPSCM may have a temporal
component.

MODEL SELECTION PROCEDURE

One of the obvious uses of the HICAT model is to de-
termine, in cases of hierarchical dependencies, what the
dependency direction is. The simplest approach to this
issue would be to fit HICAT on the data in both ways,
one with categorization A depending on B and one the
other way around, and then selecting the model that
gives the better fit. This is generally not a reliable ap-
proach. Owing to the stochastic nature of the categoriza-
tion data, the model representing the incorrect direction
may accidentally give a better fit than the correct one, es-
pecially for small data sets. It is therefore important to de-
velop some sense of the reliability of a specific model
choice, given a data set. I decided to test the reliability of
the model choice through Monte Carlo simulations. The
following parameters were thought to be potentially of in-
fluence on the probabilityof making the correct choice and
were therefore varied in the simulations: number of stim-
uli Ns = 25 (5 3 5), 100 (10 3 10); number of presentations
of each stimulus Np = 25, 100; position dependency pa-
rameter c0 = 0, 0.2, 0.8; orientationdependencyparameter
ca = 0, 0.05, 0.2; steepness dependency parameter cb = 0,
0.05, 0.2; size of vectors and p

®
and q

®
= 3, 12; and angle

between vectors p
®

and q
®

= 45º, 90º.
These seven parameters were varied orthogonally in

the simulations. Leaving out the cases in which c0 = ca =
cb = 0, this led to a total of 416 parameter settings. For
each parameter setting, the HICAT model was used to gen-
erate 10 different sets of categorization data. On each of
the 4,160 resulting data sets, the HICAT model was fit-
ted for both dependency directions, and the G2 values for
the two dependencydirections were recorded, with lower
G2 corresponding to better fit (e.g., Agresti, 1990). It
was evaluated whether the correct model indeed gave the
lower G2 .

Next, LR was carried out, with a parameter indicating
whether the correct dependency direction was found to
be a dependent variable and various combinations of the
seven parameters listed above, plus the absolute differ-
ence in G2 for the two directions (|DG2|), to be indepen-
dent parameters. The analyses showed that a good pre-
diction of the probability pc of choosing the correct
direction could be made on the basis of |DG2| alone. The
prediction formula is

(41)

Equation 41 predicts, for example, that a difference in
G2 between the fits for the two dependency directions of
10 or 20 leads to probabilities of correct choice of pc =
.98 and pc = .9995, respectively. Of course Equation 41
is based on the assumption that one of the models is in
fact the true model. In practice, categorization data are a
good deal noisier than those in the Monte Carlo simula-

tion, and G2 values can become rather large. Therefore,
it was thought useful to repeat the process for the ab-
solute difference in G2 for the two directions, relative to
either the largest value G2

max of the two

or the smallest

The variable

turned out to be the better predictor, especially when
combined with the number of stimuli Ns. The resulting
prediction formula is

(42)

In short, the proposed procedure for fitting HICAT to
a data set is as follows. First, the independent model is
fitted, setting c0, ca , and cb to zero. Next, the full HICAT
model, including c0, ca , and cb , is fitted for the two de-
pendency directions. If one or both of the resulting G2

values are sufficiently different from G2 for the inde-
pendent model, it is concluded that a dependency is pres-
ent. Next, the best-fitting dependencydirection is chosen,
and Equation 42 can be used to estimate the probability
that this choice is actually correct. (Equation 41 can be
used on the rare occasionswhen G2 values are low enough
to conclude that there is no significant lack of fit.) Fi-
nally, statistical tests can be carried out on the selected
model to establish whether parameters can be left out
without significant loss of fit.

PREDICTING PROCESSING
DEPENDENCIES FROM

ACOUSTICAL CUE DISTRIBUTIONS

As was discussed earlier, one of the basic claims of
the pattern classification approach to speech perception
is that important aspects of listeners’ categorization of
speech sounds are tuned to the statistical properties of
the acoustic material that serves as input to the system.
Starting from this claim, the HICAT model was defined,
and the previous sections have focused on the mathe-
matical structure of the HICAT model, why it represents
a useful categorization strategy, and how it can be used
to infer processing strategies from a set of categorization
data. The present section presents an even stronger test
of the above claim. A method is proposed for predicting
likely categorization dependencies, given a set of acous-
tic measurements on natural utterances.
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In natural data, we will generally not encounter pdf
geometries as neat as the basic ones presented in Fig-
ure 1. Even when the assumed relations between covari-
ance matrices more or less hold, the obtained geometries
may be rotated, stretched, and/or mirrored versions of
those in Figure 1. The method presented below starts
with two successive linear transforms that remove such
linear distortions from the data and make the problem
identical to that of Figure 1 (after applicationof the same
linear transforms). Next, hierarchical processing as-
sumptions are straightforwardly translated into assump-
tions on the means and covariance matrices of phonemes
B1 and B2. These assumptions can, in turn, be translated
into conditions on “inferred” syllable distributions.
Given these conditions, the optimal conditional catego-
rization model can be derived.

Transform 1
Transform 1 “whitens” the pdfs of the phonemes

A1and A2, so that their covariance matrices become iden-
tity matrices (e.g., Fukunaga, 1990).

First, means m®A1 and m®A2 and covariance matrix CA for
categories A1 and A2 are estimated from the acoustical
data (after appropriate transforms to psychological
axes). Let the Nt training vectors for the syllable A1B1 in
psychological space Y be indicated by y® i

A1B1, i = 1..Nt
and similarly for the other syllables. m®A1 and m®A2 are esti-
mated by

(43)

, (44)

and CA is estimated by

(45)

where v®2 stands for v® . v®t.
Next, linear coordinate transform T 1 : Y ® Y¢ is car-

ried out on the training data. T 1 shifts mean m®a of all
training vectors to the origin and “whitens” CA—that is,
maps CA onto the identity matrix I (Fukunaga, 1990).
Matrix T1 associated with transformation T 1 contains the
eigenvectorse

®
1 and e

®
2 of covariance matrix CA, divided by

the square root of their respective eigenvalues l1 and l2:

(46)

The mapping of an arbitrary vector y® in Y onto y®¢ in Y¢
is thus defined as

(47)

Transform 2
T 2 maps m®¢A1 and m®¢A2 onto the y-axis (i.e., m¢¢A1x = m¢¢A2x =

0), with m¢¢A1y = m¢¢A2y, and m¢¢A1y > 0, and leaving C ¢A un-
changed (i.e., C ¢¢A = I ).

Let C ¢a denote the covariance matrix of all T 1-
transformed training vectors. C ¢a can be written as

(48)

Because m®¢a = 0
®

and C¢A = I, this reduces to

(49)

Matrix T2 associated with coordinate transformation T 2
is now defined as

(50)

Note that T2 contains the eigenvectorsof C¢a in ascending
order of their respective eigenvalues.

The two-step transformation is illustrated for a syn-
thetic data set in Figure 7. The synthetic data set was
constructed so that it contains three types of dependen-
cies: shift dependency along the horizontal axis, conver-
gence along the horizontal axis, and convergence along
the vertical axis. Panels A, B, and C show the untrans-
formed data set, the data set after T 1, and the data set
after both T 1 and T 2, respectively. The ellipses shown in
Figure 7 are isoprobability contours of the pdfs associ-
ated with categories A1 and A2.

Derivation of Optimal Conditional Classifiers
After applying T 1 and T 2 to the training data, inde-

pendence of categorizations A and B, as well as the three
types of dependencies of B on A, can be translated into
simple conditions on the distributions associated with
categories B1 and B2 in the double-transformed space
Y¢¢. These conditions can be derived by applying T 1 and
T 2 to the idealized pdf geometries of Figure 1, as quan-
tified in the previous section. The conditions thus de-
rived also apply for any linear transformation of these
geometries in Y, because such linear transformation is
removed by T 1 and T 2.

Independence. If we apply T 1 and T 2 to the indepen-
dent geometry illustrated in Figure 1A and defined in
Equations A6–A14, we find the following conditions on
the means and covariance matrices of B1 and B2:

(51)

(52)

(53)

where rB1 is the correlation coefficient of the pdf of B1.
In Equations 51–53 and in the equations below, the dou-
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ble primes are left out to improve legibility. Recall that,
in addition to Equations 51–53, in general m®B1 = m®B2,
because m®a = 0.

Given a set of phoneme pdfs (i.e., means and covari-
ance matrices for A1, A2, B1, and B2 ), we can define in-
ferred syllable pdfs (i.e., means and covariance matrices
for A1B1, A1B2, A2B1, and A2B2) as the syllable pdfs that
yield exactly the given phoneme pdfs, with the only re-
striction being that the covariance matrices of A1 and A2
are equal. Application of T 1 and T 2 to the geometries of
Figure 1 leads to relatively simple relations between the
means and covariance matrices of the inferred syllable
pdfs and those of the phoneme pdfs. These relations are
given in Appendix C.

Position dependence. As compared with the inde-
pendent model, two conditions on the B1 and B2 pdfs are
relaxed when the boundary position of categorization B
is assumed to depend on A: mB1y and mB2y are allowed to
differ, and rB1 and rB2 may differ from 0. This leaves only
the following condition:

(54)

Orientation dependence. Under the assumption that
the boundary orientation of categorization B depends on
A, the covariance matrices CB1 and CB2 are no longer
equal. Their vertical variances are allowed to differ as
follows:

(55)

(56)

(57)

Steepness dependence. Under the assumption that
the boundary position of categorization B depends on A,
again the covariance matrices CB1, CB2 are different. This

time they have opposite correlation coefficients. The con-
ditions for this situation are given in Equations 58–61:

(58)

(59)

(60)

(61)

The procedures for estimating the optimal conditional
classification models are illustrated in Figure 8, using
the same set of synthetic data as that for Figure 7.

The first, second, third, and fourth rows of subfigures
in Figure 8 illustrate the estimation method for the as-
sumptions of independence, position dependence, orien-
tation dependence, and steepness dependence, respec-
tively. The left-hand and middle columns of subfigures
show the double transformed space with the four sets of
four data points. In addition to the data points, the sub-
figures in the left-hand column contain isoprobability
contours of the phoneme pdfs for A1 and A2 (dashed cir-
cles) and for B1 and B2 (solid ellipses). The middle col-
umn shows, apart from the data, the isoprobability con-
tours of the inferred syllable pdfs (solid ellipses), the
A1–A2 boundaries (horizontal lines), and the conditional
B1–B2 boundaries (the more vertically oriented lines).
The right-hand column again shows the data, syllable
isoprobability contours, and category boundaries, but
now in the original space Y, after applying the inverse
transforms of T 2 and T 1 to the data of the middle column.
The figure shows how conditions defined by Equations
51–56 on the means and covariance matrices of B1 and
B2 in Y¢¢ are visually expressed in the locations and
shapes of the ellipses in the left-hand column and how
these translate into syllable ellipses and (conditional)
phoneme boundaries in spaces Y¢¢ and Y.

r rB B1 2
= - .

s sB y B y1 2
=

s sB x B x1 2
=

m mB y B y1 2
0= =

r rB B1 2
0= = .

s sB x B x1 2
=

m mB y B y1 2
0= =

C CB B1 2
= .

Figure 7. Illustration of the two linear transformations on a synthetic set of acoustic-perceptual data for four syllables
(represented by symbols s, 3, *, 1). (A) Original data in psychological space Y. Ellipses represent isoprobability contours
for categories A1 and A2, assuming that they have equal covariance matrices. (B) Data in Y¢ after transformation T 1. Note
that as a result of whitening, ellipses for A1 and A2 are circles. (C) Data in Y¢¢ after transformations T 1 and T 2. Note that the
means of the circles for A1 and A2 are on a vertical line.
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Prediction of Dependency Direction and
Ordering of Dependency Types

Above, a method was presented for estimating the op-
timal hierarchical categorizationof phonemes, given a set
of acoustical measurements. Two questions remain unan-
swered: How do we predict (1) the most likelydependency
direction and (2) the most likely dependency type? I first
address the second point. The method presented below
gives a ranking of the usefulness of each of the possible
dependency types, given a set of acoustic data. The rea-

soningbehind the method is as follows. The optimal fuzzy
classification strategy in a 4RC problem involving two
successive phonemes uses the syllable as a unit, as was ar-
gued earlier. The most obvious way to evaluate the poten-
tial performance gain that is due to the introduction of a
dependencyin a phoneme-based classifier is, therefore, to
compare its fuzzy output to that of the syllable-basedclas-
sifier. There are two basic ways of doing this: comparing
the goodness functions or comparing the probability sur-
faces. I decided to concentrate on the goodness functions

Figure 8. Illustration of the prediction method for the synthetic data set of Figure 7. The first, sec-
ond, third, and fourth rows of subfigures are associated with assumptions of independence, posi-
tion dependence, orientation dependence, and steepness dependence, respectively. The left-hand
and middle columns show double transformed space Y¢¢; the right-hand column shows the original
space Y. The subfigures in the left-hand column contain isoprobability contours of phoneme pdfs
for A1 and A2 (dashed circles) and for B1 and B2 (solid ellipses). The middle column shows isoprob-
ability contours of inferred syllable pdfs (ellipses), A1–A2 boundaries (horizontal lines), and condi-
tional B1–B2 boundaries (more vertically oriented lines). The right-hand column shows syllable iso-
probability contours and category boundaries in the original space Y , after applying inverse
transforms of T 2 and T 1 to the data of the middle column.
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for two reasons. First, it was assumed that the goodness
levels, not the probabilities, are actually passed on to
higher processing levels during speech recognition. It
seems therefore better to base the comparison on good-
ness functions, rather than on probabilities. The second
reason is of a more practical nature. Techniques for com-
paring Gaussian pdfs are relatively straightforward and
are available in the literature. If one wants to compare
probability surfaces, on the other hand, one has to make a
somewhat arbitrary decision on what section of the space
Y this comparison should be restricted to. It was therefore
decided to express the dissimilarity of the goodness func-
tions corresponding to the inferred syllable pdfs to those
correspondingwith the actual syllable pdfs in terms of the
average Bhattacharyya distance (e.g., Fukunaga, 1990)
between corresponding pdfs. Note that this method is
compatiblewith the qualitativedefinitionof classification
performance introduced in an earlier section. The calcu-
lation therefore results in a ranking of the three depen-
dency types in terms of their performance.

The dependency direction most likely to be used by
listeners can be predicted by simply selecting the direc-
tion that leads to the smallest Bhattacharyya distance. As
was discussed earlier, however, an “optimal” depen-
dency direction should really be considered within the
larger context of everyday speech perception, where the
system has to find a fast but accurate way of dealing with
all possible phonemes in all possible contexts within a
language. This is a topic for future research.

SUMMARY AND CONCLUSIONS

The present theoretical paper addresses the issue of
the perception of coarticulated phonemes. The starting
point of the study was the assumption that listeners be-
have like pattern classif iers that try to deal with the
acoustic input in the simplest, but sufficiently accurate,
fashion. A reflection on the hypothetical effects of coar-
ticulation on the statistical distributions of acoustic cues
produced some useful insights. First, in many cases, the
categorization of successive phonemes may perform
close to optimally, using a strategy involving an acous-
tic, but not a phonological context—that is, cues are
shared between categorizations, but otherwise the cate-
gorizations are independent. Nevertheless, the results
suggested that, in cases of severe coarticulation, it might
be necessary to adopt a strategy involving some re-
stricted forms of phonological dependency. Three types
of hierarchical dependency were proposed: dependency
of the position, orientation, and steepness of the category
boundary for one categorizationon the output of the other
categorization.

Next, the HICAT model of hierarchical categorization
was defined in which these three types of hierarchical
dependency were explicitly modeled. The model in-
volves several processing steps. First, the stimulus is
mapped onto a point in multidimensional psychological
space. In this space, goodness functions are defined for

the relevant phonemes. These functions are Gaussian ap-
proximations to the distributions of acoustic cues in the
phonemes as they occur in natural speech. A compari-
son of the stimulus with the relevant goodness functions
results in goodness levels for the phonemes. The as-
sumption is made that there is a one-way lateral inter-
action between the goodness levels of the successive
phonemes. Finally, the goodness levels are transformed
into probabilities of choosing each of the possible re-
sponses, using Luce’s choice rule. HICAT’s architecture
is parallel and bottom-up.

A comparison of HICAT with FLMP revealed a num-
ber of differences between the two models. The most im-
portant difference was that the 4RC version of FLMP
without feature modifiers allows neither acoustic nor
phonological context effects, whereas HICAT allows
both. FLMP with feature modifiers, on the other hand,
was shown to be capable of modeling at least two types
of hierarchical dependencies, although in a somewhat
different fashion from HICAT. A comparison of HICAT
with Nearey’s DBSCM showed that the effect of Nearey’s
diphonebias is similar, althoughnot equal, to the effect of
the position dependency parameter in HICAT. HICAT’s
steepness and orientation dependencies, on the other
hand, are absent in DBSCM. A comparison of HICAT
with the GRT modeling framework concentrated on per-
ceptual and decisional separability. Essentially, HICAT
was shown to allow for violations of both types of inde-
pendence.

Finally, a method was presented that can be used for
predicting, on the basis of a set of measurements of
acoustic cue values in natural utterances, which type of
dependency is most likely to be used by listeners. This
method represents a very strong test of a basic assump-
tion of the pattern-recognition approach, which says that
important aspects of listeners’ categorization strategies
are tuned to the statistical properties of the acoustic
training data.
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APPENDIX A
HICAT Derivation From Acoustical Distributions

The following assumptions are made.
1. The unit of recognition is the phoneme.
2. An incoming stimulus Si is mapped onto a point (y i

x, y i
y) in a two-dimensional psychological space Y

spanned by axes yx and yy.
3. The category goodness of stimulus Si for phoneme A1 is given by a goodness function gA1(yx, yy) on psy-

chological space Y (and analogously for other phonemes).
4. Each goodness function is based on a statistical descriptionof points (yx, yy) associatedwith previously

perceived exemplars of that phoneme. These statistical descriptions are well approximated by multidimen-
sional Gaussian pdfs.

5. For all phonemes, the goodness value at the mean of the distribution (self-similarity) equals unity. Thus,
the goodness functions are not sensitive to a priori phoneme probabilities.

6. CategorizationB depends on categorization A.
7. The Gaussian pdfs associated with phonemes A1 and A2 have equal covariance matrices.
8. The Gaussian pdfs associatedwith syllables A1B1, A1B2, A2B1, and A2B2 have equal covariancematrices.
9. The Gaussian pdfs associatedwith the syllables have covariancesequal to zero. (This seems a very strong

claim, but it is actually part of the geometry definitions of Figures 1 and 2, as will be discussed later.)
In the derivations presented below, first a geometry of syllable pdfs is defined, and next the optimal hier-

archical phoneme classifier for that geometry is derived. During the derivations, I will refer back to Figures
1 and 2, where A is the vowel categorization and B is the fricative categorization. Based on Assumptions 7
and 8, the following relationsgenerallyhold between the means m®A1, m®A2 and covariancematrix CA of phonemes
A1 and A2 and the means m®A1B1, m®A1B2, m®A2B1, m®A2B2 and covariance matrix CAB of the four syllables (see, e.g.,
Fukunaga, 1990):

(A1)

(A2)

(A3)

Cb
A and Cw

A in Equation A3 are the between-group and within-group covariance matrices, respectively, de-
fined by

(A4)

(A5)

where v®2 is a short notion for v® . v®t.

Independence
The geometries of the pdfs of syllable cues in Figure 1A can be defined by the following relations:

(A6)

(A7)

(A8)

(A9)

(A10)s m m s2 2 21
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(A11)

(A12)

(A13)

(A14)

In general, the goodness function gA1 is defined as

(A15)

and analogously for the other phonemes and syllables.
Using Luce’s choice rule, the probability p(A1) of choosing phoneme A1 is defined as

(A16)

Substituting Equations A6–A15 in Equation A16 and computing the log-odds ratio leads to

(A17)

Equation A17 shows that, for the problem given in Figure 1A, the probability of choosing response A1 (or
A2) as a function of the psychologicalcoordinates is given by a logistic function that depends only on yy. The
coefficient of yy—that is,

—defines the steepness of the logistic function. Steepness increases with increasing separation between the
means and with decreasing variance of gA1 and gA2. The point at which p(A1) = p(A2 ) = 1�2 gives the boundary
location of the logistic function.Here, the boundary location is given by yy = 1�2(mA1y + mA2y), which is halfway
between the means of gA1 and gA2.

In a similar fashion, the following relation can be derived for the response probabilities for categorization
B:

(A18)

The probabilities of choosing each of the syllable responses equal the product of the appropriate phoneme
probabilities:

(A19)

and analogously for the other syllables.
Equations A17–A19 are of the same type as Equations 5–7 in the HICAT model definition. It is therefore

possible to express the HICAT model parameters in terms of the parameters of the syllable pdfs:

(A20)

(A21)

(A22)

It is easy to show that, for the geometry of Figure 1A, the syllableprobabilitiesbasedon the optimalphoneme-
based categorization (as given above) are equal to the syllable probabilities based on the optimal syllable-
based categorization. A syllable-based categorization strategy is based on syllable goodness functions gA1B1,
gA1B2, gA2B1, gA2B2. The probability of choosing response A1B1 is now given by
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and analogouslyfor the other syllables.Substitutionof EquationsA6–A14 in Equation A23 leads to the same
expression as Equation A19.

Boundary Location Dependence
In Figure 1B, the syllable pdfs were shifted along the horizontal axis within a vowel by the amount D x.

Means and covariances of the phoneme and syllable pdfs in this geometry are given below:

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

(A31)

(A32)

Using Equations A15 and A16, we find

(A33)

The optimal conditionalcategorization for B given A1 is, by definition, based on the syllable goodness func-
tions gA1B1 and gA1B2:

(A34)

This leads to

(A35)

Equation A35 shows that that the optimal boundary between B1 and B2 given A1 is identical to the optimal
B1–B2 boundary in the independencecase shifted to the right by the amount Dx. The optimal conditional cat-
egorization for B given A2 leads to an expression for

that is identical to Equation A35, with Dx replaced by Dx—that is, a boundary shift of Dx to the left.
ExpressionsA33 and A35 are of the same type as Expressions 5–7 in the HICAT model definition.The re-

lations of HICAT model parameters to parameters of the syllable pdfs are as follows:

(A36)

(A37)

(A38)

Boundary Orientation Dependence
Figure 2C showed two different strategies for dealing with the converged geometry of Figure 1C. The

dashed lines of Figure 2C indicate the strategy with the orientation dependence, but here the vowel catego-
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rization is dependenton the fricative.For an orientationdependencewith the reverse dependency,we consider
the geometry of Figure 2C rotated 90º counterclockwise—that is, with a convergence of the pdfs within a
fricative category along the vertical axis. Means and covariances of the phoneme and syllable pdfs are given
below:

(A39)

(A40)

(A41)

(A42)

(A43)

(A44)

(A45)

(A46)

(A47)

Using Equations A15 and A16, we find that

(A48)

The optimal conditionalcategorization for B given A1 is again based on the syllable goodness functions gA1B1

and gA1B2, which leads to

(A49)

Equation A49 shows that the optimal boundary between B1 and B2 given A1 is identical to the optimal B1
and B2 boundary in the independence case rotated clockwise around the point

The optimal conditional categorization for B given A2 leads to an expression for

that is identical to Equation A49, with Dy replaced by Dy and mA1y replaced by mA2y.
The relations of HICAT model parameters to parameters of the syllable pdfs are as follows:

(A50)

(A51)

(A52)

Boundary Steepness Dependence
The dotted lines in Figure 2C showed the categorization strategy with the steepness dependence.Equations

A53–A61 give the means and covariances of the phoneme and syllable pdfs for this case:
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(A57)

(A58)

(A59)

(A60)

(A61)

Using Equations A15 and A16, we find that

(A62)

The optimal conditional categorization for B given A1 is again based on the syllable goodness functions
gA1B1 and gA1B2, which leads to

(A63)

Equation A63 shows that that the optimal boundary between B1 and B2 given A1 is identical to the optimal
B1–B2 boundary in the independence case but is steeper. The expression for

is equal to Equation A63, with Dy replaced by Dy—that is, here the boundary is shallower than that for the
independent case.

The relations of HICAT model parameters to parameters of the syllable pdfs are as follows:

(A64)

(A65)

(A66)

APPENDIX B
Mathematics of Parallel HICAT Implementation

In this appendix, it is shown that the adjustment of the goodness functions gB1 and gB2 in the parallel archi-
tecture as described earlier leads to the correct HICAT expressions. The strategy is as follows. First, we ex-
press the conditional (i.e., adjusted)goodness functions for B as general functions of the unconditional good-
ness functions for A and B:
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Next, Luce’s choice rule is applied to these conditional goodness functions:

(B5)

(B6)

If the conditionalprobabilitiesp(B1 |A1) and p(B1 |A2 ) in Equations B5 and B6 are optimal, they are by de-
finition equal to p(B1 |A1) and p(B1 |A2 ) derived from the syllable probabilities:

(B7)

(B8)

Substitutionof Equations B1–B4 in Equations B5 and B6 and applicationof Equations B7 and B8 leads to
a set of equations expressing factors containing the exponentsp1, p2, q1, q2, r1, and r2 in terms of gB1, gB2, and
gA1B1, gA1B2, gA2B1, gA2B2.

Next, these expressions are applied to the pdf geometries of Figures 1 and 2, using parameter definitions
Equations A24–A61. Tedious but straightforward calculations lead to the following relations between expo-
nents p1, p2, q1, q2, r1, r2 and the parameters of the pdf geometries in the three dependency situations.
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APPENDIX C
Relations between Inferred Syllable Pdfs and
Phoneme Pdfs in Double-Transformed Space

This appendix lists the relations between parameters of the inferred syllabledistributions and the phoneme
distributions in the double-transformed space Y. The double primes are left out to improve legibility.

Independence

(C1)

(C2)

(C3)

(C4)

(C5)

Position Dependence

(C6)

(C7)

(C8)

(C9)

(C10)

(C11)

Orientation Dependence

(C12)

(C13)

(C14)

(C15)

(C16)

(C17)

(C18)

Steepness Dependence
(C19)

(C20)

(C21)

(C22)

(C23)

(C24)

(C25)

(Manuscript received March 28, 2000;
revision accepted for publication January 15, 2001.)
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