Cite this: Chem. Commun., 2012, 48, 7574-7576

www.rsc.org/chemcomm

COMMUNICATION

Lewis base mediated dismutation of trichlorosilane[†]‡

Amit Pratap Singh,^a Rajendra S. Ghadwal,^{*a} Herbert W. Roesky,^{*a} Julian J. Holstein,^a Birger Dittrich,^{*a} Jean-Philippe Demers,^b Veniamin Chevelkov^b and Adam Lange^b

Received 26th April 2012, Accepted 8th June 2012 DOI: 10.1039/c2cc33835a

An abnormal N-heterocyclic carbene (aNHC) has been used as a Lewis base to initiate dismutation of trichlorosilane. This report presents the reactivity differences of a normal N-heterocyclic carbene (NHC) *versus* aNHC with heavier group 14 elements. Three novel compounds (NHC)₂·SiCl₂H₂ (2), aNHC·SiCl₂H₂ (3), and aNHC·GeCl₂ (4) have been synthesized and characterized by single crystal X-ray analysis, solid-state NMR and DFT calculations.

Trichlorosilane (HSiCl₃) is the most important precursor for the synthesis of numerous organosilicon derivatives and plays a significant role in the process of producing ultrapure silicon (Siemens process).¹ Moreover, it is well known that the highly reactive trichlorosilane tends to dismutate in the presence of a base or at higher temperatures. These dismutation reactions often afford Lewis acid-base adducts as intermediates leading to the formation of silicon halides and silane (SiH₄).² In the 1960s, Wannagat et al.³ reported on the first 1:2 adduct of trichlorosilane and pyridine (py) which undergoes the H versus Cl redistribution of HSiCl₃(py)₂ in the presence of polar solvents to form the pyridine adducts of H₂SiCl₂ and SiCl₄. In 1996, Fleischer et al.⁴ described the dismutation of bis(dichlorosilyl)amine in the presence of substituted pyridines (Rpy) to yield H₃SiCl, H₂SiCl₂, and HSiCl₃ adducts. However, Boudjouk et al.5 reported the first structurally characterized dichlorosilane [(teeda) SiCl₂H₂] adduct, obtained from the dismutation of HSiCl₃ in the presence of N, N, N', N'-tetraethyl-1,2ethanediamine (teeda). In a more recent report, Kroke et al.⁶ described the dismutation reaction of HSiCl₃(Rpy)₂, which exhibits various substitution patterns (R = H, 3-Br, 4-CHCH₂,4-CH₃, 4-C(CH₃)₃, 4-N(CH₃)₂, and 4-CH₂CH₃) on the pyridine molecule (py). In all these investigations, the dismutation of trichlorosilane results in octahedral adducts of dichlorosilane. In contrast, we have selectively synthesized a five coordinated aNHC SiCl₂H₂ (3) adduct of dichlorosilane under mild conditions during the dismutation of trichlorosilane in the presence of aNHC as a Lewis base.

We are not aware of any five coordinated dichlorosilane adduct during the dismutation of trichlorosilane.

Scheme 1 Synthesis of compounds 1 and 2.

Recently, we reported a room temperature stable Lewis base stabilized dichlorosilylene NHC·SiCl₂ (1) by reductive elimination of HCl from HSiCl₃ in the presence of NHC (Scheme 1).⁷ NHCs have been extensively used as versatile ligands in main group as well as in transition metal chemistry.^{8,9} Typically NHCs form metal complexes through the carbene center adjacent to two nitrogen atoms. In 2009, Bertrand *et al.*¹⁰ reported an abnormal N-heterocyclic carbene (aNHC) where the carbene center has only one adjacent nitrogen atom. Experimental data suggest that the aNHC is a strong nucleophile as well as an electrophile and may be a better substitute for NHCs. Therefore we became interested in exploring the chemistry of aNHC with heavier group 14 elements such as silicon and germanium.

The reaction of aNHC with $HSiCl_3$ gives the 1 : 1 aNHC-SiCl_2H₂ (3) adduct under elimination of SiCl₄. A similar reaction with NHC produces dichlorosilylene 1. We assume that in the case of NHC, the six coordinated intermediate 1a is formed (Scheme 1) which undergoes reductive elimination of HCl to produce compound 1. However, in the case of aNHC,

Scheme 2 Synthesis of compounds 3 and 4.

^a Institut für Anorganische Chemie, Georg-August-Universität, Tammannstrasse 4, 37077 Göttingen, Germany. E-mail: hroesky@gwdg.de, bdittri@gwdg.de,

rghadwal@uni-goettingen.de

^b Max-Planck-Institut für Biophysikalische Chemie, Am Faßberg 11, D-37077 Göttingen, Germany

[†] This paper is dedicated to Professor Heribert Offermanns on the occasion of his 75th birthday.

[‡] Electronic supplementary information (ESI) available: Experimental details, solid-state NMR and theoretical details. CCDC 883982 (2), 876665 (3) and 876666 (4). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2cc33835a

the presence of bulkier substituents resists the formation of a six coordinated intermediate with another molecule of aNHC. Moreover, the strong nucleophilic nature of aNHC favours the formation of an intermediate 3a involving two molecules of HSiCl₃ (Scheme 2), resulting in the formation of 3 under elimination of SiCl₄. The formation of compound 2 by the reaction of H₂SiCl₂ with NHC (Scheme 1) strongly supports the formation of a six coordinated intermediate during the reaction of NHC with HSiCl₃. Furthermore, we obtained the five coordinated adduct 3 from the reaction of aNHC with H₂SiCl₂. For a comparative study aNHC·GeCl₂ (4) was synthesized by the addition of Cl₂Ge dioxane to the toluene solution of aNHC in a 1:1 molar ratio. All compounds have been characterized by their ¹H and ¹³C NMR spectra and show resonances for their respective ligands. Additionally, the ¹H NMR spectra of compounds **2** and **3** show a slightly broad resonance for the two Si-H protons at 5.58 and 6.14 ppm, respectively. To investigate the electronic environments around the silicon center for compounds 2 and 3 solid- and solution-state ²⁹Si NMR spectra were recorded. The solutionstate ²⁹Si NMR spectra show the resonances at -225.2^{11} and -118.2 ppm for 2 and 3, respectively. The ²⁹Si solid-state NMR spectrum of 2 shows a resonance with an isotropic chemical shift of -225.2 ppm (Fig. 1 and Fig. S1, ESI[‡]). Two ²⁹Si resonances are found for **3**, at -118.0 ppm and -120.4 ppm, which could be due to polymorphism in the sample. The chemical shift anisotropy (CSA), determined from the intensity of the magic angle spinning (MAS) sideband pattern is +24 ppm for 2 and +112 ppm for 3. The very negative chemical shift of 2 arises as both NHC ligands contribute to the electron rich environment at the Si nucleus. Furthermore, in contrast to 2, which has a small CSA due to the molecular symmetry, the single aNHC ligand in 3 generates a large anisotropy of the electronic distribution at the Si nucleus (see ESI[‡], Table S1). Crosspolarization build-up curves for 2 and 3 reach their maximum intensity within 200 µs, confirming the presence of a directly bonded proton on Si atoms (see ESI[‡], Fig. S2). The elimination of SiCl₄ during the dismutation reaction of trichlorosilane was confirmed by recording the ²⁹Si NMR spectrum of the reaction

Fig. 2 ORTEP-representation of the molecular structure of $(NHC)_{2}$ -SiCl₂H₂ (2). ADPs are depicted at the 50% probability level. All C–H hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Si–Cl(2) 2.0494(15), Si–Cl(1) 2.2871(5), Si–Cl(2) 2.2850(5), C(2)–Si–Cl(1) 89.64(4), C(2)–Si–Cl(2) 90.23(4), Cl(1)–Si–Cl(2) 179.25(2).

mixture which shows an additional resonance at -18.0 ppm corresponding to SiCl₄.¹²

In order to establish unambiguously the structural features of compounds 2–4, single crystal X-ray structural analyses were carried out. The molecular structure of 2 reveals that two NHCs are coordinated to the H₂SiCl₂ molecule to afford a six coordinated (NHC)₂·SiCl₂H₂ (2) adduct with an octahedral geometrical environment around the silicon center (Fig. 2). The NHC, hydrogen and chlorine which are coordinated to the silicon center have the same partner in the *trans* position. Both NHCs make an angle of 179.18 (5)° with a C2–Si bond length of 2.0494(15) Å. The molecular structures of compounds 3 and 4 show that aNHC is coordinated to the Si (3) and Ge (4) through the carbene center C5. The structure of 3 reveals that aNHC forms a five coordinated adduct with the H₂SiCl₂ resulting in a trigonal bipyramidal geometry around the silicon (Fig. 3). The carbon C5 and two hydrogen atoms

Fig. 1 ²⁹Si solid-state NMR cross-polarization spectra of **2** (top) and **3** (bottom) recorded at 1250 Hz MAS. Isotropic peaks are indicated by arrows and back-calculated spectra are displayed in red. The high number of spinning sidebands for **3** illustrates the large anisotropy of the electronic environment at the silicon nucleus.

Fig. 3 ORTEP-representation of the molecular structure of aNHC-SiCl₂H₂ (**3**). ADPs are depicted at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Si–C(5) 1.908(2), Si–Cl(1) 2.2977(14), Si–Cl(2) 2.2992(11), C(5)–Si–Cl(1) 91.42(8), C(5)–Si–Cl(2) 91.98(8), Cl(1)–Si–Cl(5) 174.08(5).

Fig. 4 ORTEP-representation of the molecular structure of aNHC-GeCl₂ (**4**). ADPs are depicted at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Ge–C(5) 2.071(2), Ge–Cl(1) 2.2856(7), Ge–Cl(2) 2.3157(6), C(5)–Ge–Cl(1) 92.91(6), C(5)–Ge–Cl(2) 93.33(6), Cl(1)–Si–Cl(2) 98.19(2).

(H1 and H2) are found in the trigonal plane, while the chlorine atoms (Cl1 and Cl2) occupy the axial positions. The average Si-Cl bond lengths for compounds 2 and 3 are 2.286 and 2.298 Å, respectively. The chlorine atoms Cl1 and Cl2 form angles of $179.25(2)^{\circ}$ (2) and $174.08(5)^{\circ}$ (3) with silicon. In both 2 and 3 hydrogen atoms (H1 and H2) coordinated to the silicon were located in the difference Fourier map (see ESI[‡], Fig. S3c and S4c) and were freely refined. The experimental Si-H lengths (1.477(19) and 1.461(18) Å) in 2 are in good agreement with the theoretically predicted value (1.478 Å). However, due to disorder or large amplitude vibrations, the experimentally determined Si-H bond lengths (1.32(3) and 1.14(3) A) in 3 are different from the theoretically calculated value (1.470 Å). The molecular structure of 4 reveals that a distorted trigonal pyramidal geometry has been adopted by the coordinated germanium with the lone pair of electrons at the apex (Fig. 4 and Fig. S5, ESI[‡]). Two chlorine atoms Cl1 and Cl2 are attached to the germanium with an average Ge-Cl bond length of 2.301 Å, which is longer than that found in the analogous compound NHC·GeCl₂ (2.277 Å).¹³ Both chlorine atoms Cl1 and Cl2 are nearly perpendicular (93.12°) to the Ge-C5 bond. The bond angle between the two chlorine atoms Cl1-Ge-Cl2 (98.19°) is a little larger than that for the reported Cl1-Ge-Cl2 (95.13°) of NHC GeCl₂. The aNHC coordinated compounds have shorter M-C_{carbene} bond lengths (1.908(2) Å (3) and 2.071(2) Å (4)) in comparison with that of NHC coordinated 2 and the reported NHC·GeCl₂ (2.112(2) Å).¹³ This is due to the strong nucleophilic nature of aNHC, resulting in a stronger M-C bond. The DFT geometry-optimization results confirm that the calculated deformation densities show the expected electron density accumulations in the bonding regions (for more details see ESI[‡]).

In summary, we have studied the reactivity differences of aNHC versus NHC towards HSiCl₃ and H₂SiCl₂. A dismutation reaction of HSiCl₃ occurred in the presence of aNHC resulting in a five coordinated aNHC·SiCl₂H₂ (**3**) adduct under elimination of SiCl₄. However, a similar reaction of

NHC with $HSiCl_3$ produces dichlorosilylene by reductive elimination of HCl. In addition, a six coordinated **2** and a five coordinated **3** adduct was obtained by the reaction of NHC and of aNHC with H_2SiCl_2 , respectively. This shows that aNHC is more nucleophilic as well as electrophilic in comparison to the NHC. Furthermore, dichlorogermylene aNHC·GeCl₂ (**4**) was synthesized by the treatment of Cl₂Ge-dioxane with aNHC in a 1 : 1 molar ratio. The molecular structures of **2–4** were determined by single crystal X-ray analysis and supported by DFT geometry-optimizations. Compounds **2–4** might prove to be promising candidates for the synthesis of other potentially important compounds with low-valent silicon and germanium. Such type of investigations will be reported in due course from our laboratory.

Support from the *Deutsche Forschungsgemeinschaft* (DFG RO 224/60-1) (H.W.R.), Emmy Noether Fellowship (A.L. and B.D.) and the postgraduate scholarship from NSERC of Canada (J.-P.D.) are gratefully acknowledged.

Notes and references

- (a) R. J. P. Corriu, Pure Appl. Chem., 1988, 60, 99–106;
 (b) R. J. P. Corriu, J. Organomet. Chem., 1990, 400, 81–106;
 (c) C. Chuit, R. J. P. Corriu, C. Reye and J. C. Young, Chem. Rev., 1993, 93, 1371–1448; (d) V. M. Vorotyntsev, G. M. Mochalov and O. V. Nipruk, Russ. J. Gen. Chem., 2001, 74, 621–625;
 (e) O. S. Fishman, Adv. Mater. Processes, 2008, 166, 39–40;
 (f) G. W. Fester, J. Eckstein, D. Gerlach, J. Wagler, E. Brendler and E. Kroke, Inorg. Chem., 2010, 49, 2667–2673.
- 2 G. W. Fester, J. Wagler, E. Brendler and E. Kroke, *Eur. J. Inorg. Chem.*, 2008, 5020–5023.
- 3 (a) U. Wannagat, K. Hensen and P. Petesch, *Monatsh. Chem.*, 1967, **98**, 1407–1414; (b) U. Wannagat, K. Hensen, P. Petesch and F. Vielberg, *Monatsh. Chem.*, 1967, **98**, 1415–1422.
- 4 (a) H. Fleischer, K. Hensen and T. Stumpf, *Chem. Ber.*, 1996, 129, 765–771; (b) K. Hensen, T. Stumpf, M. Bolte, C. Näther and H. Fleischer, *J. Am. Chem. Soc.*, 1998, 120, 10402–10408.
- 5 P. Boudjouk, S. D. Kloos, B.-K. Kim, M. Page and D. Thweatt, J. Chem. Soc., Dalton Trans., 1998, 877–879.
- 6 G. W. Fester, J. Wagler, E. Brendler, U. Böhme, D. Gerlach and E. Kroke, J. Am. Chem. Soc., 2009, 131, 6855–6864.
- 7 R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn and D. Stalke, Angew. Chem., 2009, 121, 5793–5796 (Angew. Chem., Int. Ed., 2009, 48, 5683–5686).
- (a) D. Bourissou, O. Guerret, F. P. Gabbaï and G. Bertrand, *Chem. Rev.*, 2000, **100**, 39–91; (b) S. T. Liddle, I. S. Edworthy and P. L. Arnold, *Chem. Soc. Rev.*, 2007, **36**, 1732–1744; (c) O. Kühl, *Chem. Soc. Rev.*, 2007, **36**, 592–607; (d) V. Dragutan, I. Dragutan, L. Delaude and A. Demonceau, *Coord. Chem. Rev.*, 2007, **251**, 765–794; (e) P. L. Arnold and S. Pearson, *Coord. Chem. Rev.*, 2007, **251**, 596–609; (f) S. Díez-González and S. P. Nolan, *Coord. Chem. Rev.*, 2007, **251**, 874–883; (g) H. Jacobsen, A. Correa, A. Poater, C. Costabile and L. Cavallo, *Coord. Chem. Rev.*, 2009, **253**, 687–703; (h) P. de Frémont, N. Marion and S. P. Nolan, *Coord. Chem. Rev.*, 2009, **253**, 862–892.
- 9 (a) N-Heterocyclic Carbenes in Transition Metal Catalysis, Topics in Organometallic Chemistry, ed. F. Glorius, Springer-Verlag, Berlin, 2007, vol. 21; (b) F. E. Hahn and M. C. Jahnke, Angew. Chem., 2008, **120**, 3166–3216 (Angew. Chem., Int. Ed., 2008, **47**, 3122–3172); (c) D. McGuinness, Dalton Trans., 2009, 6915–6923.
- 10 E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran, G. Frenking and G. Bertrand, *Science*, 2009, **326**, 556–559.
- 11 The value given here is from ¹H-²⁹Si HSQC NMR. No resonances were observed in ²⁹Si NMR for 2 in C₆D₆.
- 12 G. Engelhardt, R. Radeglia, H. Jancke, E. Lippmaa and M. Mägi, Org. Magn. Reson., 1973, 5, 561–566.
- 13 K. C. Thimer, S. M. Ibrahim Al-Rafia, M. J. Ferguson, R. McDonald and E. Rivard, *Chem. Commun.*, 2009, 7119–7121.