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Summary 

One of the hallmarks of Alzheimer’s disease (AD) is the self-assembly of the 

microtubule-associated protein tau into fibers termed “paired helical filaments” (PHF). 

However, the structural basis of PHF assembly at atomic detail is largely unknown. 

Here, we applied solid-state nuclear magnetic resonance (solid-state NMR) 

spectroscopy to investigate in vitro assembled PHF from a truncated three-repeat tau 

isoform (K19) that represents the core of PHF. We found that the rigid core of the fibrils 

is formed by amino acids V306 to S324, only 18 of 99 residues, and comprises three β-

strands connected by two short kinks. The first β-strand is formed by the well-studied 

hexapeptide motif 306VQIVYK311 that is known to self-aggregate in a steric zipper 

arrangement. Results on mixed [15N:13C]-labeled K19 fibrils show that β-strands are 

stacked in a parallel, in-register manner. Disulfide bridges (DSB) formed between C322 

residues of different molecules lead to a disturbance of the β-sheet structure and 

polymorphism in solid-state NMR spectra is observed. In particular residues K321-S324 

exhibit two sets of resonances. Experiments on K19 C322A PHF further confirm the 

influence of DSB formation on the core structure. The structural data are supported by 

H/D exchange NMR measurements on K19 as well as a truncated four-repeat isoform of 

tau (K18). Site-directed mutagenesis studies show that single point mutations within the 

three different β-strands result in a significant loss of PHF aggregation efficiency 

highlighting the importance of the β-structure rich region for tau aggregation. 
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Zusammenfassung 

Eines der bedeutendsten Kennzeichen des Morbus Alzheimer ist die 

Zusammenlagerung des Mikrotubuli-assoziierten Proteins Tau in Fibrillen, die als 

„gepaarte helikale Filamente“ (PHF) bezeichnet werden. Allerdings sind die 

strukturellen Grundlagen der PHF Aggregation auf atomarer Ebene weitestgehend 

unbekannt. 

In dieser Studie wurden mittels Festkörper-Kernspinresonanz-Spektroskopie (FK-

NMR) in vitro hergestellte PHF einer Tau Isoform untersucht, die aus drei 

Wiederholungseinheiten besteht und den Kern der PHF repräsentiert (K19). 

Wir haben herausgefunden, dass der rigide Kern der Fibrillen von den Aminosäuren 

V306 bis S324 – lediglich 18 von 99 Residuen – gebildet wird und aus 3 β-Faltblatt-

Strängen besteht, die durch zwei kurze Knickstellen miteinander verbunden sind. Der 

erste β-Strang wird von dem gut untersuchten Hexapeptid 306VQIVYK311 gebildet. Von 

diesem ist bekannt, dass es sich ebenfalls zusammenlagern kann und dabei so genannte 

hydrophobe „steric zipper“ Kontakte ausbildet. 

Ergebnisse an einer gemischt [15N:13C]-markierten K19 PHF Probe zeigen, dass sich 

die β-Stränge parallel und nicht zu einander verschoben übereinander lagern. Zwischen 

C322-Resten verschiedener Moleküle bilden sich Disulfid-Brücken (DSB) aus, die zu 

einer lokalen Beeinträchtigung der β-Faltblatt-Struktur führen, wodurch in den FK-

NMR Spektren Polymorphismus beobachtbar ist. Insbesondere die Aminosäurereste 

K321-S324 weisen zwei Resonanz-Sätze auf. Des Weiteren bestätigen Experimente, die 

an K19 C322A PHF durchgeführt wurden, den Einfluss der DSB auf die Struktur des 

Fibrillenkerns. Die Strukturdaten werden durch H/D-Austausch NMR Messungen an 

K19 sowie K18, einer Isoform bestehend aus vier Wiederholungseinheiten, gestützt. 

Zielgerichtete Mutagenese-Studien an K19 zeigen, dass Mutationen innerhalb der 

drei verschiedenen β-Stränge zu einem signifikanten Verlust der PHF 
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Aggregationseffizienz führen, was die Bedeutung der β-Strang-reichen Region für die 

Zusammenlagerung von Tau Proteinen unterstreicht. 
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Introduction  

1.1 Theoretical aspects of biological solid-state NMR 

1.1.1 Basic idea and purpose 

Since the 1980’s, not only X-ray crystallography, but also solution NMR (nuclear 

magnetic resonance) spectroscopy became a powerful technique for the investigation of 

protein structures at atomic resolution (1). Through ongoing developments regarding 

higher magnetic fields, advanced probes, selected pulse sequences, efficient sample 

preparation, and specific labeling schemes solution NMR has emerged as a well-

established standard method to study the high-resolution structure as well as dynamics 

of proteins with a molecular weight of up to 1 MDa (2, 3). 

However, neither X-ray crystallography, nor solution NMR can be used as the 

method of choice for insoluble proteins that do not or only poorly crystallize, due to 

their intrinsic nature. In the last two decades, solid-state NMR has achieved to become 

an excellent method to study the structure and dynamics of those insoluble proteins (4, 

5). 

Solid-state NMR does not depend on tumbling rates or long-range order, and 

therefore can be used for a diversity of insoluble molecules, e.g. powders, 

microcrystalline proteins (6-14), membrane proteins (15-17), and assemblies of 

molecules, such as amyloid fibrils (18-33), large protein complexes (34, 35) and 

protein-ligand complexes (36, 37), respectively. 

As in solution NMR, ongoing developments of tailored labeling schemes (6, 38-40), 

deuterium dilution (41-45), multidimensional spectroscopy (46) and  state-of-the-art 

hardware support a permanent improvement of resolution and sensitivity in solid-state 

NMR spectroscopy (5). 
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1.1.2 Theoretical background 

It is necessary to have a basic understanding about NMR spectroscopy, particularly 

the functionality of solid-state NMR, to comprehend the information encoded in spectra. 

This Chapter provides a short overview only. For further reading, academic books and 

reviews are available (1, 47-50). 

NMR spectroscopy is based on first-principle interactions that arise between 

magnetic moments of nuclei with the local magnetic field, between two magnetic 

moments through direct (dipolar) or indirect (J-) coupling, or between the electric 

quadrupolar moment of the nucleus and electric field gradients. Source of the local 

magnetic field can be the external static field (B0) and an applied external field (B1) 

generated by radio frequency pulses. Each nucleus with a non-zero spin has a resulting 

magnetic moment and is thus detectable by NMR spectroscopy. In biological solid-state 

NMR, especially nuclei with a spin-½, such as 1H, 13C and 15N are investigated, because 

they are either ubiquitously abundant as a natural isotope (1H) or they form the 

backbone of polypeptide chains (13C, 15N), comprising diverse information about the 

structure and dynamics of proteins. Because the natural abundance of the latter isotopes 

is very low, samples have to be isotopically labeled using molecular biological methods 

such as recombinant expression of proteins (see 1.1.3). 

In solid-state NMR, there are two undesired interactions causing line broadening that 

need to be eliminated: 

(i) Chemical shift anisotropy: Each nucleus is surrounded by electrons. When 

exposed to external magnetic fields, currents are generated in the electron clouds, which 

in turn produce an induced field. This local induced field influences the effective 

magnetic field (Beff) of the nucleus by shielding it from the external field, altering the 

nuclear resonance frequency. This chemical shift (δ) consists of two parts, an isotropic 

one, and an orientation-dependent one, called CSA (chemical shift anisotropy). The 

CSA derives from a non-spherical distribution of electrons, which results in a loss of 

spectral resolution. Nevertheless, with respect to B0, the shielding effects depend on the 

orientation of the surrounding electrons and with that on the orientation of the molecule 

itself, which can be used for orientation-dependent measurements (51). 

(ii) Dipolar coupling: When two magnetic moments are in spatial proximity to each 

other, dipolar coupling occurs by mutual influence of the two spins, dependent on the 
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orientation of the internuclear vector relative to B0, their gyromagnetic ratios (γ) and the 

internuclear distance. The dipolar couplings are called heteronuclear between different 

isotopes (e.g. 1H, 13C) and homonuclear between identical isotopes (e.g. 1H, 1H). 

In solution NMR, the tumbling rate of the studied molecules is sufficient to average 

out the orientation-dependent terms of chemical shift anisotropy and dipolar couplings 

over time. In contrast, insoluble proteins or molecules in an environment that does not 

allow for tumbling can be studied by MAS (magic-angle spinning) solid-state NMR 

(52). Here, isotropic tumbling is imitated by spinning the sample around an axis 

inclined to B0 with an angle of 54.74° to average out the anisotropic parts of the CSA 

and dipolar couplings (Figure 1). Combined with heteronuclear decoupling (53), MAS 

effectively increases spectral resolution. Homonuclear dipolar couplings can be 

neglected, because couplings for the usually acquired 13C are sufficiently small enough 

(~ 5 kHz) to be eliminated by MAS (47, 48). 

 

 

Figure 1. Magic-Angle Spinning. The spinning axis is inclined at an angle of 54.74° relative to the external 

magnetic field B0. Spinning rates (υr) of more than 60 kHz are used to average out anisotropic parts of the 

chemical shift and dipolar couplings which leads to a narrow linewidth. 

 

As already mentioned, a diversity of information on the structure and dynamics of a 

protein can be studied using solid-state NMR. Encoded in the spectra of nuclei 

belonging to a polypeptide is the information about flexibility, dihedral angles (ψ, φ) 

and spatial proximities. 

The isotropic part of the chemical shift (δ) can be directly obtained from the position 

of a signal in a spectrum. δ reflects the chemical environment of a nucleus. By 

comparing Cα and Cβ values with reference values of carbons that are in a random coil 
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conformation, secondary structural elements in the peptide backbone, such as α-helical, 

β-sheet or random coil conformations, can be deduced (54-56). In the BMRB (57) and 

PDB (58) databases, chemical shifts of protein structures are deposited. Programs, such 

as TALOS+ (59) or DANGLE (60), predict backbone torsion angles (ψ, φ, Figure 2) of 

the investigated protein by comparing its chemical shifts with those deposited in the 

databases. 

 

 

Figure 2. Dihedral angles in a protein backbone. Different secondary structures of protein backbone atoms result 

from different dihedral angle conformations that can be predicted by programs like TALOS+ (59). 

 

Generally, pulse sequences used for solid-state NMR assignments are based on 

dipolar-coupling polarization transfer and reveal information about distances (d), e.g. 

dCC, dHH and dNC that are indispensable for the assignment process and can provide 

additional structural constraints for structure calculations (61). In addition, those 

distances can be used to learn more about protein-protein interactions, such as protein-

ligand-binding (37). 

Adequate experiments use specific heteronuclear (e.g. NCACX, NCOCX) (62) 

magnetization transfers or homonuclear dipolar recoupling sequences (e.g. PDSD 

(proton driven spin diffusion) (63, 64), DARR (dipolar assisted rotational resonance) 

(65)). As the name implies, in PDSD protons are used to accelerate moderate 

magnetization transfer among low abundant and low γ nuclei (a process called spin 

diffusion). The same principle holds for DARR, including 13C-1H dipolar recoupling. 
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To gain higher polarization transfer efficiencies, a special adiabatic dipolar filtering 

scheme is introduced in the DREAM (dipolar recoupling enhancement through 

amplitude modulation) sequence (66, 67). In addition, INEPT (insensitive nuclei 

enhanced by polarization transfer)-based experiments give information about local 

molecular flexibility, combining polarization transfers based on through-bond J-

coupling (68-70). Further information can be provided by a diversity of methods, e.g. 

studies of water-accessibility and water-protein interactions (71-75) or application of 

paramagnetic spin labeling to determine paramagnetic spin-residue distances (76-78). 

 

1.1.3 From sample preparation to structure determination 

The fundament of each biological solid-state NMR study is the sample preparation. 

Because mainly nuclei with a spin-½ (1H, 13C, 15N) are detected, the protein has to be 

recombinantly expressed in e.g. Escherichia coli using growth medium that contains 

[13C]- or [15N]-isotopically labeled D-glucose or NH4Cl, respectively. Dependent on the 

labeling scheme, the protein is either uniformly labeled or enriched with specific isotope 

labeled molecules like [1, 3-13C]/ [2-13C]-glycerol or [1-13C]/ [2-13C]-glucose as the 

only carbon source, leading to a reduction of dipolar truncation effects and thus 

allowing to obtain long-range information (6, 38-40, 79). Furthermore, there is the so 

called reverse labeling or forward labeling with only selected amino acids being not or 

fully labeled, respectively (22, 80), decreasing spectral overlap. 

The time-consuming assignment procedure mainly consists of three steps: (i) 

Identifying spin-systems and the type of amino acids (aa) they belong to (intraresidue 

assignment), (ii) retracing the primary sequence by correlating vicinal aa with each 

other (sequential assignment), and (iii) finding long-range correlations to gain spatial 

information about the tertiary structure (interresidue assignment). 

For the intraresidue assignment, not only homonuclear 13C-13C experiments such as 

DREAM, DARR or PDSD, but also heteronuclear techniques, such as NCA and 

NCACX are commonly recorded. Experiments that involve correlations to preceding 

residues, such as NCO and NCOCX, or vicinal aa (e.g. PDSD) are required for a 

sequential assignment (Figure 3). 

 



6 Theoretical aspects of biological solid state NMR 
 

 

 

Figure 3. Sequential assignment procedure. (A) On the left, a 13C-13C PDSD (tmix = 150 ms) spectrum, on the 

upper right, an NCA spectrum and on the lower right, an NCOCX spectrum are shown. Blue circles symbolize 

residue i, red ones residue i-1. Circles showing both colors stand for a sequential correlation. By following the 

numbered arrows, a sequential walk is shown. (B) Depicted is a section of a protein backbone with red atoms 

standing for residue i-1, blue for residue i and gray for residue i+1. By arrows the polarization transfers of PDSD, 

NCA and NCOCX are indicated.  

 

PDSD and DARR sequences include a spin diffusion step, which allows the 

magnetization to spread in a time-dependent manner. The longer the mixing time (ms 

scale), the farther the polarization can be transferred, introducing further spatial 

information. Hence, spectra recorded on uniformly labeled samples with a 13C-13C 

mixing of 20 ms are analyzed for intraresidue correlations, while a longer mixing time 

of 150 ms leads to sequential or even medium-range (residue i to i ± 2 to 4) correlations. 

Longer mixing times provide long-range (residue i to i ± ≥5) information, e.g. PDSD 

experiments recorded on sparsely labeled samples with mixing times of 500 ms. 

To obtain as many long-range restraints as possible, different experimental 

approaches have been developed recently. CHHC/ NHHC experiments are based on fast 
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polarization transfer between highly abundant 1H-spins encoded in highly resolved 

evolution and detection periods of rare spins (13C, 15N) (81). The indirect detection of 
1H-1H contacts using such CHHC/NHHC experiments became a standard method to 

complete structure determination (23, 82-86). Next to that, pulse sequences, such as 

PAR (proton-assisted recoupling) (87) and PAIN-CP (proton-assisted insensitive nuclei 

cross polarization) (88) have been developed to determine structures and structural 

properties, e.g. the stacking of molecules within protein complexes (27, 34, 89). 
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1.2 Amyloid proteins 

1.2.1 Definition 

In 1854, Virchow introduced the term “amyloid” (from Latin ‘amylum’ for ‘starch’), 

when he observed aggregates behaving starch-like in positive iodine staining 

experiments (90). According to the classical definition, amyloid proteins are 

extracellular deposits with distinctive β-sheet structure that can be stained with Congo 

red dye and show an enhanced apple-green birefringence in polarizing light (91-94). 

Similarly, thioflavine T or S (ThT/S) can be used for identification. In the presence of 

amyloid aggregates a shift in fluorescence emission is observed (95, 96). 

 

 

Figure 4. Characteristics of amyloids. (A) Electron micrograph of tau K19 amyloid fibrils (scale bar = 100 nm). 

Schematic representations of amyloid fibrils comprising two, three and four protofilaments, respectively, (B) and 

of typical X-ray fiber diffraction pattern with a meridional reflection at ~4.7 Å (red) and an equatorial reflection 

at 6-11 Å (blue) (C). (D) The characteristic pattern corresponds to repetitive spacing of the cross-β structure in 

amyloid fibrils (inter-sheet distance: blue; inter-strand distance within one β-sheet: red; backbone hydrogen bonds 

are indicated by dashed lines). 

  

Because in recent studies amyloid deposits were also found intracellular (97-99), the 

classical definition has been expanded to include more biophysical aspects. Hence, 

amyloid proteins are first of all characterized as in vivo or in vitro elongated, 

unbranched self-assembled polypeptides, mainly in a fibrillar form (100, 101). In 1967, 

electron microscopy (EM) data of Shirahama and Cohen revealed that amyloid fibrils 

are composed of smaller subunits, called protofilaments (Figure 4A and B) (102-105). 
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Further insight into the quaternary structure was provided by X-ray diffraction 

studies (Figure 4C and D). Due to a repeating cross-β sheet motif within the amyloid 

fibers that runs perpendicular to the fibril axis, a characteristic X-ray diffraction pattern 

can be observed. A meridional reflection at ~4.7 Å and an equatorial reflection at ~6-

11 Å occur, corresponding to the distance between β-strands stacked within one sheet 

(inter-strand distance within one sheet) and the β-strand spacing between two vicinal 

sheets perpendicular to the fibril axis (inter-sheet distance), respectively (106-112). The 

cross-β motif is especially promoted by extensive hydrogen bonding between the β-

strands. Up to now, several amyloid fibrils have been characterized by solid-state NMR, 

e.g. fungal prion protein HET-s (23) and yeast Ure2 prion protein (14, 113, 114), human 

prion protein (115) and Amyloid β (116-118). Notably, to the current knowledge, most 

of these amyloids feature an in-register parallel supramolecular β-strand orientation that 

probably increases stabilizing interactions by aligning hydrophobic and polar side 

chains, respectively, with themselves. 

 

1.2.2 Folding and aggregation of amyloid proteins 

By analyzing protein denaturation processes as well as disulfide bond formation, 

fundamental insights into protein folding and thermodynamics were provided already 

several decades ago (119). Later findings about transcriptional regulation, 

posttranslational modification, and assistance by chaperones or membranes are only 

some examples that proved that protein folding is a complex procedure (120-122). 

Under physiological conditions, a functional protein is folded into its so-called 

“native state”, typically forming a compact 3D structure. Nevertheless, cellular 

processes are accompanied by partially and natively unfolded proteins as well (123). 

However, under destabilizing conditions, native folds can be reorganized resulting in a 

different 3D structure and a change of functionality of the protein. Dependent on the 

gain or loss of function, rearranged protein structures are called to be in an alternative or 

misfolded state, respectively (120). 

In case of amyloid proteins, rearrangement of folding causes self-association – 

mostly driven by hydrophobic interactions – into stable supramolecular organized 

structures. Recent studies of aggregation kinetics suggest different pathways and rate-
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limiting steps (124-128). Though detailed information is still missing, in general the 

self-assembly of amyloids is initiated from high energy states, with the state of 

maximum energy termed aggregation nucleus. After the critical step of nucleation, the 

aggregation process yields conformations with lower energy, either by incorporation of 

further subunits or by another conformational rearrangement leading to the mature 

amyloid fibril, as represented in Figure 5. 

 

 

Figure 5. Energy landscape representing folding and aggregation of amyloid proteins. The purple area shows a 

diversity of conformations that are available for a single molecule “funneling” to the native state. In contrast, the 

pink area describes conformations made of intermolecular contacts moving either toward amorphous aggregates 

or amyloid fibrils. Protein aggregation can derive from intermediates assembled during de novo folding or by 

destabilization of the native state into partially folded states. Intermediates of amyloid fibril formation can result 

in oligomeric aggregates. [Reprinted by permission from Macmillan Publishers Ltd: Nat. Struct. Mol. Biol. (120), 

copyright (2009).] 

 

1.2.3 Classes of amyloid proteins 

As amyloid aggregates can be beneficial or pathogenic, amyloid proteins can be 

classified as follows: (i) Functional amyloids, (ii) non-neuropathic amyloids, and (iii) 

neuropathic amyloids. A diversity of more than 20 human diseases is linked to amyloid 

depositions (exemplified in Table 1), either in single types of organic tissue, systemic, 
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or exclusively in the brain (91, 129). The pathology of these disorders may result from 

proteins that did not reach their native fold or that required refolding due to altering 

conditions in the (extra-) cellular environment that causes a change in protein 

functionality as well. Especially in neurodegenerative diseases, such as Alzheimer’s, 

Parkinson’s, or Huntington’s (AD, PD, HD), amyloid aggregates play a central role 

(123). 

Table 1. Examples of amyloid proteins in vivo. 

Class 
Amyloid protein 

or peptide 
Native state 

structure Amyloid structure 
Amyloid function or 

 pathological phenotype 
Ref. 

Functional 
amyloids Peptide hormones Diverse Amyloid-like Storage (130) 

 
Pmel17 Globular In-register amyloid 

Accelerates covalent 
polymerization of reactive 

small molecules into melanin 
in mammalian skin 

(131-
134) 

 
HET-s Partially 

unfolded Triangular β-solenoid Prevents parasitism in fungus 
Podospora anserina 

(23, 135-
137) 

 
Ure2p Partially 

unfolded 

Parallel in-register 
amyloid or native-

like 

Regulates the utilization of 
poor nitrogen sources in yeast 

(113, 
138-140) 

Non-
neuropathic 

amyloids 

Fragment of serum 
amyloid A protein 

α-helical 
unknown 

fold 
Amyloid AA amyloidosis (systemic) (141, 

142) 

 

Immunglobulin (Ig) 
light chain or 

fragment 

β-strand Ig-
like fold Amyloid AL amyloidosis (systemic) (141, 

143) 

 
Islet amyloid 

polypeptide (IAPP) Unfolded Out-of-plane β-strand 
hairpin model Type II diabetes (144) 

Neuropathic 
amyloids Amyloid β Unfolded Parallel β-sheets Alzheimer's disease (118, 

145-148) 

 
Tau Unfolded Parallel in-register 

amyloid Alzheimer's disease (149-
152) 

 
Prion Partially 

unfolded 
Triangular β-helical 
trimers or globular 

Transmissible spongiform 
encephalopathies 

(153-
155) 

 
α-Synuclein Unfolded Parallel in-register 

amyloid Parkinson's disease (22, 26, 
39) 

 
Huntingtin (with 

poly-Q tail) 
Partially 
unfolded 

In-register amyloid 
core with α-helical 

extensions 
Huntington's disease (156, 

157) 

 

Moreover, it was demonstrated that many proteins and peptide sequences are able to 

aggregate into amyloid fibrils in vitro under carefully selected conditions. This paved 

the way for extensive investigations of nucleation steps, intermolecular interactions, 
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fibrillar structures, transgenic animal models (e.g. in M. musculus, C. elegans, 

D. melanogaster, D. rerio), as well as toxicity of certain species such as oligomeric 

aggregates, with the objective of developing potential therapeutics (158-165). 
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1.3 Tau protein 

1.3.1 Tau isoforms and domains 

In 1975, the intrinsically unfolded tau protein has been discovered as an essential 

factor for microtubule assembly (166, 167). Human tau is encoded on chromosome 

17q21 by the MAPT (microtubule-associated protein tau) gene (168, 169), and tau 

protein emerges mainly in the CNS (central nervous system) in neuronal axons. 

 

 

Figure 6. Tau isoforms and constructs K18 and K19. (A) Tau is encoded by the MAPT gene and expressed in the 

adult human brain in six isoforms with htau40 as the longest and htau23 as the shortest one. While K18 is a 

truncated form of htau40, K19 originates from htau23. Repeat domains common to all constructs are shown in 

orange, whereas the alternatively spliced R2 is depicted in blue – as well as N-terminally exons E2 and E3 (light 

blue). In K19, amino acids (aa) are labeled in bold that are unique within the construct sequence and valuable for 

solid-state NMR studies. The proline-rich region is labeled with “PPP”. (B) Aa sequence of the constructs K19 

and K18. Aa from R2 (K18) are shown in blue. Underlined residues belong to hexapeptide motifs that are known 

to promote fibril formation. Aa in bold letters are exclusively present in one of the repeats and have unique 

chemical shifts that make them easily identifiable in NMR spectra. 
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Due to alternative splicing, the adult brain comprises largely six different isoforms 

(Figure 6): Two amino (N) -terminal exons and the second out of four repeats (R2) in 

the carboxy (C) -terminal microtubule (MT) -binding domain can be present or absent 

(170, 171). Additionally, another tau isoform of high molecular weight occurs in the 

peripheral nervous system (e.g. in dorsal root ganglia), consisting of both N-terminal 

exons and R2, as well as of another exon, 4a (172, 173). In the CNS, htau40 is the 

longest tau isoform that comprises 441 aa. In contrast, htau23 lacks all three exons and 

consists of only 352 residues. The ratio of three repeat (3R) and four-repeat (4R) tau is 

dependent on developmental stages and approximately 1:1 in adult human brain tissue 

(174). 

 

 

Figure 7. Physiological role of tau. Tau is an important microtubule (MT) -associated protein that stabilizes αβ-

tubulin dimers to form the cylindrical MT in neuronal axons. Important for MT-binding is the MT-binding 

domain (orange) in the C-terminal half of tau protein. N-terminally located are the projection domain and a 

proline-rich-region. [Adapted from (175)] 

 

Independent of the isoform, tau has an overall similar domain structure. The C-

terminal part of the protein is mainly defined by the MT-binding domain, which 

consists of either 3R or 4R with each repeat comprising ~31 residues. As implicated in 

Figure 7, this domain interacts with MT to promote their assembly and stabilization 

(176). Especially residues 200 to 400 show a distinct interaction with MT, covering the 

MT-binding domain and some flanking aa (177, 178). Additional weak interactions with 

MT were demonstrated for further C-terminal parts as well (150). Because the N-

terminal half of tau is not binding to but projecting away from the MT, it is called the 
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projection domain (178, 179). N-terminally, the MT-binding domain is flanked by a 

proline rich domain (approximately residues 150 to 240). This region contains many 

Ser-Pro and Thr-Pro motifs that are known targets for kinases and play an important 

role in tau-related disorders termed tauopathies (175, 178, 180). 

 

1.3.2 Tau as a key player in neurodegenerative diseases 

The major physiological role of tau is to bind to MT (a major component of the 

eukaryotic cytoskeleton) and regulate their dynamics ensuring axonal transport (181). 

However upon abnormal phosphorylation, tau detaches from microtubules and self-

assembles into amyloid fibrils (182-184).  

 

 

Figure 8. Pathological features of AD. (A) Physiological binding of tau to MT. (B) Abnormally phosphorylated tau 

detaches from MT that causes a collapse of MT into its αβ-dimers. (C) Electron micrograph of self-assembled tau 

K19 molecules into amyloid PHF (scale bar = 100 nm). (D) Schematic representation of PHF that further 

aggregate into neurofibrillary tangles. 

 

In AD and other tauopathies abnormally phosphorylated tau aggregates into PHF 

(paired helical filaments) (185), which represent the major constituents of NFT 



16 Tau protein 
 

 

(neurofibrillary tangles; Figure 8) (97). A progressive intraneuronal accumulation of 

these tangles is one of the neuropathological hallmarks of AD (186). 

Table 2. Most prevalent tauopathies. [Reprinted and adapted with permission from Wiley: Intern Med J (187), 

copyright (2006).] 

 
Pattern of dementia Movement disorder 3R:4R 

Predominantly tau 
pathology    

PSP Frontal dysexecutive, 
PNFA 

Axial rigidity with postural instability and 
ophthalmoplegia or asymmetric parkinsonism 1:2-4 

CBD Parietal, frontal 
dysexecutive, PNFA 

Asymmetric parkinsonism, dystonia, myoclonus 
or tremor, alien limb 1:2 

Argyrophilic gain 
disease Limbic dementia No 1:2 

Pick disease Frontal dysexecutive, 
PNFA, SD Rare 3:1 

FTDP-17 Frontal behavioral or 
amnestic 

Variable parkinsonism, can be PSP-like or CBD-
like 

1:2, 1:1 
or 2:1 

Post encephalitic 
parkinsonism Rare Symmetric rigidity with bradykinesia, 

ophthalmoplegia 1:1 

Parkinsonism-
dementia complex of 

Guam 

Frontal dysexecutive, 
cortical 

Symmetric rigidity with bradykinesia, 
ophthalmoplegia 1:1 

Guadeloupean 
parkinsonism Frontal dysexecutive Symmetric rigidity with bradykinesia, 

ophthalmoplegia 1:2 

Associated with 
amyloid deposition    

AD Amnestic, cortical Rare 1:1 

Down syndrome Amnestic, cortical No 1:1 

Dementia pugilistica Amnestic, cortical Parkinsonism 1:1 

Familial British 
dementia Amnestic, cortical No - 

Familial Danish 
dementia Amnestic, cortical No - 

In association with 
other pathology    

Myotonic dystrophy Frontal behavioral No 2:1 

Hallervorden-Spatz 
disease Mental retardation Gait disturbance, extrapyramidal syndrome - 

Niemann Pick type C Mental retardation Dystonia, ataxia, ophthalmoplegia - 

SSPE Mental retardation Myoclonus, ataxia, late rigidity - 

PSP: progressive supranuclear palsy; PNFA: progressive non fluent aphasia; CBD: corticobasal degeneration; 

SD: semantic dementia; FTDP-17: frontotemporal dementia with parkinsonism linked to chromosome 17; SPPE: 

subacute sclerosing panencephalitis. 
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Intracellular deposits of tau in the human brain occur in more than 20 

neurodegenerative disorders with the most prevalent tauopathies listed in Table 2 (187, 

188). 

Tau-linked disorders occur sporadic or are hereditary, and can be divided into 

different classes (187): (i) Prototypical tauopathies exhibit amyloid deposits in the CNS 

primarily derived from tau, e.g. PSP (progressive supranuclear palsy) (189), CBD 

(corticobasal degeneration) (190), or Pick disease (191). (ii) Next to tau deposits, 

additional amyloid aggregates emerge intra- or extracellular. The best-known tauopathy 

of this class is AD, with an intracellular accumulation of tau into NFT and an 

extracellular formation of Amyloid β plaques caused by wrong cleavage of the amyloid 

precursor protein (APP) (for review see e.g. (192-194)). Recently, a direct link between 

tau missorting from axons to dendrites and Amyloid β toxicity could be demonstrated 

by Ittner and coworkers (192). (iii) Some tauopathies are associated with further 

pathological characteristics, such as Myotonic dystrophy and SPPE (subacute sclerosing 

panencephalitis) (187). 

Common to all tauopathies is the deposition of tau-based amyloid fibrils. A detailed 

understanding about the assembly mechanism as well as the structure of tau aggregates, 

such as PHF, is essential to develop target-specific drugs that prevent or dissolve tau 

deposits and promotes degradation of pathological tau molecules (193, 195). Despite 

tremendous research in the field of tauopathies, fundamental problems remain unsolved 

and therapeutics that modify or prevent an onset of tau-linked disorders are still missing 

(193). 

 

1.3.3 Recent findings of the rigid core of AD-like tau PHF 

The sporadic form of AD is the most common dementia that mostly affects people of 

the age of ~65. In 2001, the number of people in that age suffering from sporadic AD 

was estimated to be approximately 24 million worldwide. Studies further predict a 

global increase of about 80 million patients suffering from AD in the year 2040 (196, 

197). Thus, solving fundamental mechanisms and developing promising therapeutics is 

inevitable. 
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For PHF – that are the matter of this work – several facts were revealed already: Tau 

PHF can be structurally divided into two regions, (i) a rigid amyloid core and (ii) a 

highly flexible fuzzy coat of more than 200 residues that transiently attaches to the 

amyloid core (198). Protease digestion and solvent accessibility studies indicated that 

the core of PHF is mainly built from amino acids belonging to the repeats R2 (present 

only in 4R isoforms) and R3 (199, 200). Furthermore, CD (circular dichroism) 

spectropolarimetry, FTIR (Fourier transform infrared) spectroscopy, together with X-

ray diffraction and selected area electron diffraction have indicated the presence of 

cross-β structure, where β-strands run roughly perpendicular to the fiber axis (201-203). 

In addition, EPR (electron paramagnetic resonance) studies have suggested that within 

tau fibrils, β-strands are arranged in-register and parallel (151, 152).  

Because the tau construct K19 is relatively short (99 aa), compared to htau40 

(Figure 6), and features all known residues that are essential for fibril formation, it 

recently has become object to investigations using solid-state NMR. A previous study 

by Andronesi et al. has shown that K19 fibrils consist of a rigid core surrounded by 

regions of higher flexibility. The most rigid, water-inaccessible part of the fibrils was 

found to be formed by repeat R3, whereas R1 and R4 are more water-accessible (204). 

Nevertheless, detailed information about the tau PHF core residues and their structural 

arrangement are still missing.  
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1.4 Purpose of this work 

Despite all improvements in understanding the principles of tau fibril formation, a 

detailed insight into the residue-specific structural arrangement of β-strands formed by 

the amino acids in R2 and R3 is still not available. In this regard, MAS solid-state NMR 

spectroscopy constitutes a powerful method to obtain structural information on 

insoluble PHF assembled in vitro from the 99 aa tau construct K19 (Figure 6). It 

corresponds to the juvenile htau23 isoform of tau, containing a 3R version of the MT-

binding domain. In a recently performed study on these fibrils, a pronounced structural 

heterogeneity resulting in substantial line broadening hampered the determination of the 

exact arrangement of the β-structure within the core (204). Based on improved sample 

preparation and an extensive labeling strategy we aimed for a detailed solid-state NMR 

analysis of the K19 core structure. 

 

This thesis is based on: 

Daebel V, et al. (2012) β-sheet core of tau paired helical filaments revealed by solid-

state NMR. J Am Chem Soc 134:13982-9. 
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Materials and Methods 

2.1 Sample preparation and characterization 

Recombinant expression, purification, aggregation and characterization of all tau 

samples were performed by Mandelkow et al., based until middle of 2011 at the Max 

Planck Unit for Structural Molecular Biology, 22607 Hamburg, Germany and since then 

in the “German Center for Neurodegenerative Diseases” (DZNE) and the CAESAR 

Research Center in 53175 Bonn, Germany. A detailed description of materials and 

methods has been published in 2005 by Barghorn et al. (205). A brief overview 

focusing on labeling schemes and aggregation is following in this Chapter. 

2.1.1 Chemical reagents and proteins 

Heparin (average molecular weight of 5,000 Da or 3,000 Da; see Table 3) and 

thioflavine S (ThS) were purchased from Sigma-Aldrich (Munich, Germany). Labeled 
15NH4Cl, [13C]-glucose and selectively [13C]-labeled glycerol were obtained from 

Euriso-Top GmbH (Saarbrücken, Germany). All tau constructs were expressed in the 

pNG2 vector in E. coli strain BL21 (DE3) and purified by heat treatment and FPLC 

(fast performance liquid chromatography) Mono S chromatography (GE Healthcare, 

Freiburg, Germany) as described previously (205). 

2.1.2 Labeling schemes for solid-state NMR samples 

Uniform isotopic labeling of K19 protein with 15N and 13C was achieved by 

expressing K19 in M9 minimal medium containing 1 g L-1 of 15NH4Cl and 4 g L-1 of 

[13C]-glucose. Selectively labeled protein was obtained by growing bacteria exclusively 

on [2-13C] glycerol or [1, 3-13C] glycerol as carbon source (6, 40, 79). 

Reverse labeling of specific residues was accomplished by adding natural abundance 

amino acids in excess to the M9 minimal medium, containing 15NH4Cl and [13C]-
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glucose (22, 80). Using an analogous method, [13C]-labeled residues were incorporated 

into an otherwise natural abundance protein (forward labeling). 

To get a mixed labeled K19 PHF sample, equimolar ratios of [13C]-labeled K19 

monomers and [15N]-labeled K19 monomers were combined for aggregation. The 

monomers were expressed using either 15NH4Cl and [12C]-glucose, or 14NH4Cl and 

[13C]-glucose, respectively, in the growth medium (206). 

An overview about the different labeling approaches can be found in Table 3. 

2.1.3 PHF assembly 

Aggregation was initiated by incubating soluble monomeric tau protein, typically in 

the concentration range of 50 µM and in the volume range of 100-150 µl, in the 

presence of the anionic cofactor heparin for ~3 days at 310 K. The buffer contained 

20 mM BES, 25 mM NaCl, pH 7.4 and a protein to heparin ratio of 4:1. The 

polymerized solution was then centrifuged at 160,000 × g for 40 min. In some cases, the 

pellet was stored at 277 K and the supernatant was complemented again with heparin 

for another incubation time of 3-5 days (see Table 3). The reaction was then pelleted at 

160,000 × g for 40 min. Pellets were pooled and washed once with 50 mM sodium 

phosphate, pH 6.8, containing 0.1 % NaN3. (204) 

Table 3. Overview about K19 PHF samples. 

Sample Labeling 
Molecular Weight 

Heparin 2nd Incubation Yield 

  

[Da] Time [d] [mg] 

uK19old uniformly-[13C, 15N] 5,000 none 22 

K19Krev uniformly-[13C, 15N]; except Lys-[12C;14N] 5,000 3 24 

K191:1 (1:1)-([13C, 14N]:[12C, 15N]) 5,000 3 10 

K19KFLVrev 
uniformly-[13C, 15N]; except (Lys, Phe, Leu, Val)-

[12C;14N] 5,000 3 60 

K192glyc [2-13C]-glycerol- and uniformly-[15N] 5,000 3 40 

K191,3glyc [1, 3-13C]-glycerol- and uniformly-[15N] 5,000 none 33 

uK19 uniformly-[13C, 15N] 5,000 none 41 

uK19CA uniformly-[13C, 15N] 3,000 3 28 

K19CA2glyc [2-13C]-glycerol- and uniformly-[15N] 3,000 4 22 

K19CA1,3glyc [1, 3-13C]-glycerol- and uniformly-[15N] 3,000 5 45 

K19CYLfw uniformly-[12C, 14N]; except (Cys, Tyr, Leu)-
[13C;15N] 5,000 none 30 
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The formation of aggregates was monitored by ThS fluorescence and the 

morphology of filaments was analyzed by electron microscopy. Samples were sent to 

Göttingen as pellets covered with buffer at room temperature and stored at 277 K 

afterwards. 

2.1.4 ThS fluorescence 

The binding and subsequent increase in ThS fluorescence is specific for the cross-β 

structure, which is typical for amyloid aggregates (95, 96). 5 µl of PHF reaction mixture 

was added to 45 µl of 50 mM NH4Ac (pH 7) containing 20 µM ThS. ThS fluorescence 

was measured in a Tecan spectrofluorimeter (Crailsheim, Germany) with an excitation 

wavelength of 440 nm and an emission wavelength of 521 nm (slit width 2.5 nm each) 

in a 384 well plate (black microtiter 384 plate round well; ThermoLab Systems, 

Dreieich, Germany). Measurements were carried out at 298 K and the background 

fluorescence from ThS alone was subtracted. Measurements were carried out in 

triplicates. (167) 

2.1.5 Electron microscopy 

The protein samples were diluted to 1-10 µM and placed on 600 mesh carbon coated 

copper grids for 45 seconds, washed twice with H2O, and negatively stained with 2% 

uranyl acetate for 45 seconds. The specimens were examined with a Philips CM12 

electron microscope at 80 kV. 

2.2 Structural biology 

2.2.1 Solid-state NMR spectroscopy 

Prior to filling of MAS rotors, the protein pellets were ultra-centrifuged for 45 min at 

60,000 rpm in a Beckman TLA100.3 rotor (Beckman Instruments GmbH, München, 

Germany). MAS rotors were stored at 277 K. 

All solid-state NMR experiments were conducted on aggregated tau K19 PHF 

samples using 4 or 3.2 mm triple-resonance (1H, 13C, 15N) MAS probes at static 

magnetic fields of 20, 18.8, and 14.1 T (Bruker Biospin, Karlsruhe, Germany) 

corresponding to 1H resonance frequencies of 850, 800, and 600 MHz, respectively. 13C 
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and 15N chemical shifts were calibrated either with Adamantane as an external reference 

or with DSS as an internal reference (207). In the latter case the temperature-dependent 

position of the water proton resonance was used to calculate the temperature inside the 

MAS rotor (208). Typical proton field strength for 90° pulses and SPINAL-64 (209) 

high-power 1H-13C decoupling was 83 kHz. 

For the detection of flexible regions within the protein, 13C-13C correlation spectra 

were measured at a spinning frequency of 8.33 kHz using INEPT-based 1H-13C transfer 

(68) and TOBSY-mixing times of 6 ms (Figure A3) (69). For these experiments, GARP 

(53) decoupling with a field strength of 2.5 kHz was applied on protons. 

DREAM (Figure A4) (66) and PAIN-CP (Figure A5) (88) experiments were 

recorded at 18 kHz, all other spectra were acquired at a spinning frequency of 11 kHz. 

An initial ramped cross-polarization (CP) was used to transfer magnetization from 1H to 
13C or 15N with contact times between 700 and 1200 µs. 13C-13C transfer was achieved 

via PDSD (63) with mixing times of 20, 150, and 500 ms to obtain intra-residue, 

sequential, and medium- and long-range correlations, respectively (Figure A6). 

Sequential assignments were also obtained by means of NCACX and NCOCX 

experiments (Figure A7 and Figure A8). 15N to 13Cα transfer utilized SPECIFIC-CP 

(62) for a contact time of 2.5-3.5 ms. In these experiments, PDSD or DARR (65) 

elements were used for homonuclear 13C-13C transfer. Intermolecular 15N to aliphatic 
13C transfer was achieved with PAIN-CP and a contact time of 5 ms. Inter-scan delays 

were set to 2-2.5 s. All NMR spectra were processed using Topspin (version 2.1, Bruker 

Biospin, Karlsruhe, Germany) and analyzed using Sparky (version 3.100, T. D. 

Goddard & D.G. Kneller, University of California). 

A detailed list of experimental conditions can be found in Table A1. 

 

2.2.2 NMR-detected solvent protection of K18 and K19 filaments 

This part of the study has been performed in collaboration with Zweckstetter et al., 

based in the Department of NMR-based Structural Biology at the Max Planck Institute 

for Biophysical Chemistry in Göttingen. 
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15N-labeled recombinant K19 and K18 constructs were expressed, purified, and their 

fibrillation was achieved as described in Chapter 2.1 – additionally for the aggregation 

of K18 DTT was added to prevent intramolecular disulfide bond formation.  

To determine the level of protection from amide proton exchange in the fibrillar 

state, a previously developed protocol (210) was applied. To remove residual 

monomeric protein and buffer, K18 and K19 filaments were subjected to three 

consecutive steps of centrifugation for 30 minutes at 25,000 × g. For forward amide 

proton exchange, the resulting pellet (8.5 mg K19 and 7.2 mg K18) was then incubated 

for a total of 36 hours in 200 µl 99.9% D2O at 278 K. Next, the filaments were pelleted 

as described above and dissolved in 50% D2O/50% H2O, 0.04% formic acid, pH 2.34 

and 2 M GuSCN. The backward amide proton exchange was then assessed by a series 

of two-dimensional 1H-15N HSQC spectra recorded at 278 K on Bruker NMR 

spectrometers with 1H resonance frequencies of 600 MHz (14.1 T; K19 PHF) and 

700 MHz (16.45 T; K18 PHF) equipped with a 5 mm triple-resonance, pulsed-field z-

gradient cryogenic probe. Spectra were recorded with 4 transients and 256 increments in 

the 15N dimension, resulting in a total experimental time of 47 or 42 minutes, 

respectively. The delay time between the dissolvation of the PHF and the start of the 

first experiment was approximately 14 or 10 minutes, respectively. Exchange curves 

were fitted using IgorPro 5.01. The deuterium incorporation was calculated as described 

previously (210). 

For sequential assignment of K18 in the denatured state, three-dimensional TOCSY-

HSQC (F1:132 x F2:128 x F3:2K total points) and NOESY-HSQC (F1:144 x F2:144 x 

F3:2K total points) experiments were acquired in 2 M GuSCN, pH 2.34, 0.04% formic 

acid, and 50% D2O/50% H2O at 700 MHz on a room-temperature 5 mm triple–

resonance, pulsed-field z-gradient probe. Together with previously established 

assignments of K19 and K18 (177) as well as full-length tau (150) in phosphate buffer, 

the spectra enabled unambiguous assignment of the backbone signals of K18. Taking 

advantage of the sequence identity of K18 and K19, K19 was assigned based on 

chemical shift similarities in the HSQC spectra relative to K18. All spectra were 

processed and analyzed using NMRPipe (211) and CcpNmr Analysis (212). 
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Results and Discussion 

3.1 High resolution spectra obtained with solid-state NMR 

We applied two-dimensional solid-state NMR spectroscopy to assign the resonances 

of PHF formed by the construct K19. In order to reduce spectral overlap and to 

unambiguously assign the observed residues we investigated not only a uniformly [13C, 
15N]-labeled sample (uK19), but in addition samples with different labeling schemes. 

Furthermore, we studied a uniformly [13C, 15N]-labeled K19C322A PHF sample 

(K19CA) as well as sparsely labeled mutants using [1, 3-13C]- and [2-13C]-labeled 

glycerol. In K19, the mutation of the only cysteine, C322, to an alanine avoids 

intermolecular disulfide bond (DSB) formation. 

The average 13C line width in the spectra of K19 PHF (e.g. Figure 11 and Figure 13) 

was found to be around 0.5-0.8 ppm. This narrow line width reflects a higher degree of 

structural order in the fibrils and much better resolved resonances than seen in the 

previous solid-state NMR study on K19 PHF by Andronesi et al. (204) and may be the 

result of optimized hydration (see Chapter 1.3.3). Differences in the identified core 

region (that will be discussed below) could also suggest that the samples investigated in 

the previous study were of a different polymorph than the samples of the present study. 

This can be rationalized by small differences in the sample preparation (e.g. different 

people who prepared the sample, different batches of heparin used, etc.). In contrast, the 

spectra of wild type K19 samples (prepared with different labeling schemes) presented 

in this work overlay well with each other (differences < 0.5 ppm), indicating that all 

these samples are of the same polymorph. 

An overview about the different samples and abbreviations can be found in Table 3, 

spectra that were used for the assignment process are given in the Appendix. 
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3.2 Flexible regions of tau K19 PHF in R1 and R4 

In order to detect the flexible segments of K19 PHF, which do not belong to the rigid 

core, we performed INEPT-based CC-TOBSY solid-state NMR experiments (Figure 

A3) (68-70). In the resulting spectra only resonances of residues with increased mobility 

(on the ps to ns time scale) are observed. 

 

 

Figure 9. Dynamic segments of K19 PHF. (A) Positions of the three unique residues A246 (in repeat R1), Y310 (in 

R3), and F346 (in R4). (B, C) Overlay of 2D [13C, 13C]-INEPT-CC-TOBSY (tmix = 6 ms) spectra of K19Krev 

(black) and K19KFLVrev (blue) PHF, both acquired on an 850 MHz spectrometer at 8.333 kHz MAS and 5 °C. (B) 

An alanine peak is present in the aliphatic region and (C) phenylalanine resonances are visible in the aromatic 

region of the spectra. The dashed circles indicate positions where tyrosine resonances should appear if Y310 was 

flexible enough. Notice the absence of phenylalanine resonances in the reverse-labeled K19KFLVrev spectrum, thus 

validating the F346 assignment. Peaks marked with single letters (e.g. L) were not sequentially assigned. 

 

The K19 sequence features three unique aa, A246 in R1, Y310 in R3, and F346 in R4 

(Figure 9A), with distinct chemical shifts that can be easily identified. While the 

INEPT-CC-TOBSY spectra exhibit resonances with unambiguous random coil 

chemical shifts of alanine (Figure 9B) and phenylalanine (Figure 9C, black spectrum), 

tyrosine resonances are clearly absent (Figure 9C, dashed circles).  

To unequivocally validate that the signal in Figure 9C originates from 

phenylalanine, we repeated the experiment on the K19KFLVrev sample. Since 

phenylalanine is not [13C, 15N]-labeled, the corresponding peaks vanish in the spectrum. 

The appearance of F346 and A246 as well as the absence of Y310 in the INEPT-CC-

TOBSY spectra show that R1 and R4 are much more flexible than R3. Furthermore, the 
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absence of the Y310 signals implies that the resonances in the spectra do not originate 

from soluble, monomeric K19 protein. In this case, the INEPT-CC-TOBSY spectra 

would contain signals from all residues of the molecule. 

 

3.3 Solid-state NMR studies on K19 PHF identify a well-
defined rigid fibril core 

13C-13C correlations for residues of the rigid fibril core were obtained using PDSD 

experiments (63) with mixing times of 20, 150, and 500 ms to gain intra-residue, 

sequential, together with medium- and long-range correlations, respectively (Figure 

A6). 

 

Figure 10. 13C-13C correlation experiments with different transfer schemes. Overlay of PDSD (orange; 

tmix = 20 ms; recorded on an 850 MHz spectrometer at 11 kHz MAS at 7 °C) and DREAM (black: positive 

contours; blue: negative contours; tmix = 3 ms; recorded on an 800 MHz spectrometer at 18 kHz MAS at 7 °C) 

spectra of uniformly [13C, 15N]-labeled K19 PHF. 
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Figure 11. Sequential resonance assignment of the rigid core of K19 PHF. (A) Overlay of 2D [13C, 13C]-PDSD 

spectra (black: tmix = 150 ms; purple: tmix = 20 ms) measured on the uK19 sample on an 850 MHz spectrometer at 

11 kHz MAS and 7 °C. Intraresidual (black), sequential (blue), medium- and long-range (orange) connections are 

highlighted to exemplify the sequential assignment. Resonance assignments for V306 to S324 (in repeat R3) 

could be obtained. (B) 2D [13C, 13C]-PDSD spectrum (tmix = 500 ms) of the K19CYLfw sample acquired on a 

600 MHz spectrometer at 11 kHz MAS at 7 °C. Noteworthy is the presence of two cysteine resonances, both in 

an oxidized form (as seen by the chemical shifts), although cysteine is unique in the K19 sequence (C322). 

Further experimental details are given in Table A1. 
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Other experiments were performed as well (e.g. DREAM, see Figure 10 and Figure 

A4), but the maximum number of spin systems could be observed in the PDSD 

experiments (Figure 11). Sequential assignments were also obtained by means of 

NCACX and NCOCX experiments (Figure A12 and Figure A8) (62). 

As expected from the previous study by Andronesi et al. (204), the measured 

resonances cover only a subset of the 99 aa of the entire K19 sequence. With V306 to 

S324 (see Table 4), in total 18 residues are assigned to the rigid K19 PHF core. These 

residues belong to the repeat R3, which corroborates the results from the INEPT-based 

experiments. 

 

 

Figure 12. Variable temperature measurements. Overlay of PDSD spectra (tmix = 20 ms) of K19CA PHF recorded 

on an 800 MHz spectrometer at 11 kHz MAS at different temperatures (blue: -4 °C; red: +5 °C; black: +15 °C). 

 
To probe the missing ~80 % of the K19 sequence we conducted PDSD experiments 

(tmix = 20 ms) at variable temperatures of -4, 5 and 15 °C (Figure 12). While the spectra 

recorded at 5 and 15 °C resemble each other in peak intensity and resolution, spectra 

recorded at -4 °C exhibit significantly increased signal intensity and broader lines as 

well as a large number of additional peaks. 
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Table 4. Chemical shift assignment for the rigid core of K19 PHF. For residues V306-S324, 94% of all backbone 

and side chain 13C atoms could be assigned. Chemical shifts are given in ppm. 

Residue N C CA CB CG/CG1 CG2 CD/CD1 CD2 CE/CE1 CE2 CZ 

V306 124.7 - 60.38 35.17 24.99 21.25      

Q307 125.1 174.7 54.05 34.08 34.78  178.9     

I308 124.8 174.6 60.52 42.37 29.12 17.7 16.36     

V309 128.3 173.0 61.87 33.81 21.2 20.1      

Y310 132.2 172.9 57.52 40.24 127.7  134.5 133.7 118.8 118.2 157.3 

K311 125.2 171.2 54.08 33.05 24.79  30.53  42.05   

P312 134.8 175.5 63.58 32.85 27.44  51.02     

V313 119.4 174.8 61.42 34.66 21.35*       

D314 128.2 174.1 53.07 41.79 179.5       

L315 129.0 177.1 54.34 42.89 28.0  26.91*     

S316 119.8 174.1 59.78 65.37        

K317 116.4 176.2 55.27 37.09 25.65  30.05  42.36   

V318 127.2 175.5 61.48 35.24 22.92 21.52      

T319 124.0 172.9 61.08 72.44  21.4      

S320 119.6 173.9 55.5 65.44        

K321 124.4 - 54.1 34.2 -  -  -   

C322 115.3 174.1 51.72 44.08        

G323 111.9 - 45.79         

S324 114.3 173.3 56.8 66.63        

…                                                                                                                                                                                                                                      
… 

2K321 123.6 174.7 55.79 33.9 25.41  29.91  42.3   

2C322 123.6 173.7 59.17 37.44        

2G323 112.8 - 45.05         

2S324 121.3 173.7 57.88 67.53        

- indicates unassigned resonances. 

* indicates Cγ1/Cγ2 or Cδ1/Cδ2 resonances with identical chemical shift. 

 

Thus, when aggregated into PHF, ~80% of the K19 residues are highly dynamic and 

become only sufficiently rigid to be observed in dipolar-based solid-state NMR 

experiments when the sample is frozen. 

This result is reminiscent of observations by Jaroniec and coworkers who found that 

signals from approximately 100 residues (i.e., ~80% of all residues) of human PrP(23-

144) amyloid fibrils are not detected above approximately -20 °C in dipolar-based solid-

state NMR experiments (115). 
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3.4 Spectra of K19 PHF reveal two conformations for residues 
K321-S324 

Surprisingly, in PDSD spectra of a sample, where only cysteine, tyrosine and leucine 

are [13C, 15N]-labeled (K19CYLfw; Figure 11B), we unambiguously detected two 

cysteine resonances – despite the fact that only one, C322, is present in the K19 

sequence (Figure 6). Both resonances (in the following: C322 and 2C322), exhibit 

chemical shifts typical for oxidized cysteines involved in DSB formation (55, 213). 

To exclude chemical exchange (on a time scale of µs) of the cysteine resonances, we 

recorded a CHHC experiment. Due to the short 1H-1H mixing time (250 µs), a cross 

peak between the two cysteines would not be expected if the different cysteine 

conformations were due to chemical exchange. Indeed, a C322-2C322 signal was 

observed (Figure A10). Furthermore, the presence of two conformationally different 

cysteines in the fibril core could be confirmed by PDSD experiments on a sparsely 

labeled K192glyc sample (Figure 13), where we observed two sets of resonances for 

residues K321 to S324 (set 1: K321 to S324 shown in green and set 2: 2K321 to 2S324 

shown in blue; Table 4). 

Notably, not only sequential and medium-range connections within the sets (Figure 

13A) were observed, but five long-range correlations between the two sets as well 

(C322-2K321, C322-2C322, C322-2S324, 2C322-S324, S324-2G323; Figure 13B). 

Furthermore, both sets are sequentially connected to the preceding residues – that are 

observed only once – indicating a structural difference only in the C-terminal part of the 

PHF core. 

To unequivocally assure that the splitting of residues K321 to S324 is due to the 

presence of an intermolecular DSB, we mutated C322 to alanine. The NCA spectrum of 

K19CA PHF clearly reveals a simplified resonance pattern compared to K19 wild type 

(WT; Figure 14) with two interesting findings: (i) Instead of two cysteine resonances, 

one strong alanine signal is observed – with chemical shifts indicative of β-sheet 

structure. Also residues K321-S324 do not give rise to two sets of signals with equal 

intensity any more. 
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Figure 13. Sequential assignment of residues with two sets of resonances. (A, B) 2D [13C, 13C]-PDSD spectrum of 

K192glyc PHF (tmix = 500 ms) recorded on an 850 MHz spectrometer at 11 kHz MAS at 11 °C. Sequential 

correlations of resonance sets 1 (green) and 2 (blue) (A), and medium-range as well as inter-set correlations (B) 

are indicated. (C) 2D [15N, 13C]-NCA spectrum of K192glyc acquired on an 800 MHz spectrometer at 11 kHz 

MAS and 5 °C. Note, that Leu Cα is not labeled in the K192glyc sample. Correlations labeled in gray could not be 

assigned unambiguously. 

 
Nevertheless, peak doubling still occurs to a small extent, as seen e.g. by a second 

weak alanine signal (2A322 in Figure 14). (ii) In the WT spectra, some peaks appear 

that do not show sequential correlations and therefore could not be assigned (marked 

with asterisks in Figure 13C and Figure 14). These resonances may arise from 

additional peak doubling due to multiple conformations in the K19 WT. In contrast, 

they are absent or occur only weakly in spectra of K19CA PHF. Thus, further 
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investigations on the K19CA mutant seem promising (see Outlook). However, in this 

study we focused on the WT K19 construct. 

 

 

Figure 14. Effect of disulfide bond formation on solid-state NMR spectra. Comparison of 2D [15N, 13C]-NCA 

spectra of K19CA PHF (orange) and K19 WT PHF (dark gray; same K192glyc spectrum as in Figure 13C), both 

recorded on an 800 MHz spectrometer at 11 kHz MAS and 5 °C. Resonance assignments of set 1 (green) and 2 

(blue) are based on K192glyc, while black assignment labels are for the mutant. For the sake of clarity, only 

assignments for S320 to S324 are shown. Residues in the dashed box belong to glycines of the 332PGGG335 motif 

that is only visible for the K19CA PHF sample. The correlations marked with asterisks could not be assigned in 

K19 WT, but occur only weakly in the mutant in the noise. 

 

3.5 Secondary structure analysis of the K19 PHF core 
residues 

In Figure 15A and B, secondary chemical shifts (SCS) – indicative of the secondary 

structure (56) – for residues V306 to S320 (gray) as well as the two sets K321 to S324 

and 2K321 to 2S324 are depicted. 
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Figure 15. Analysis of secondary chemical shifts (SCS). (A) Cartoon representation of the secondary structure of 

the two sets (set 1: green; set 2: blue). (B) Consecutive negative values indicate a β-strand conformation, 

discontinuities in the negative values a kink between β-strands. The SCS reveal the presence of three β-strands 

interrupted by kinks at P312, a known β-strand breaker, and S316. The first β-strand is formed by the hexapeptide 

motif 306VQIVYK311. From K321 to S324 the sequence is split into two sets of resonances. (C) A TALOS+ 

analysis, predicting Phi (rhombs) and Psi (circles) dihedral torsion angles for set 1 (green) and 2 (blue), 

corroborates the results from the SCS analysis. (All predictions are classified by TALOS+ as “good”, except for 

2G323.) (D) Protonation levels of the assigned rigid core of K19 filaments after 36 hours forward-exchange to 

D2O as a function of residue number. The open bar is an averaged value from overlapped residues (see also 

Figure 16). 
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Based on our chemical shift assignment, and in line with the previous solid-state 

NMR study (204) the fibril core is predominantly found in β-strand conformation. This 

is further corroborated by backbone dihedral angle predictions obtained from the 

program TALOS+ (59) (Figure 15C; predictions for all residues were classified as 

“good”, except for 2G323). A Ramachandran plot of the predictions is given in the 

Appendix (Figure A1). 

Exceptions to β-sheet conformation occur for residues P312, S316, G323, as well as 

2C322 and 2G323. The SCS of these residues indicate the presence of kinks that disrupt 

the β-strands (Figure 15) and might change the characteristic inside-outside order of 

side chains observed in a fully extended conformation. 

Previous studies have shown that the hexapeptide 306VQIVYK311 in R3 displays β-

sheet propensity in disordered full-length tau and is furthermore able to self-assemble 

into fibrils by itself (159, 177, 214, 215). Consistently, SCS identify the first β-strand 

from V306 to K311. At P312 a kink is probably formed, because proline is a known β-

strand breaker and the Cα chemical shift of P312 is larger than the random coil value, 

indicating a non-β-strand conformation. P312 is followed by a second, short β-strand, 

V313 to L315, and another kink located at residue S316. In molecules belonging to set 1 

the third strand extends from K317 to C322 followed by a further kink at G323. In set 2 

molecules, the third β-strand comprises only residues K317 to 2K321, and a larger kink 

is formed by 2C322 and 2G323. 

Bibow et al. have recently shown that a spin label attached to C322 in tau PHF can 

be quenched by the reducing agent DTT, indicating that the side chain of Cys322 is not 

fully buried in the fibril core (198) – in line with formation of a kink at C322. 

Downstream of this kink, S324 as well as 2S324 chemical shifts indicate β-strand 

structure. However, as there is no unambiguous assignment for the consecutive 

residues, it is not clear whether a fourth β-strand follows. 

While deletion of the C-terminus of full-length tau tends to enhance fibril formation, 

the deletion of residues D314 to S320 abrogates fibrillation (216), probably as it 

eliminates strands β2 and β3. Interestingly, 314DLSK317 shows conformational 

propensity for a turn in natively unfolded tau in solution as well as in chemical 

denaturant, as observed by secondary chemical shift and residual dipolar coupling 
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analysis (177, 217). This indicates that the turn conformation might be a precursor to 

fibril conformation similar to the hexapeptide motif. 

 

3.6 H/D exchange experiments 

To probe the accessibility of the residues forming the core of PHF, we conducted 

H/D exchange experiments, a technique to identify solvent-protected backbone amide 

protons, using solution NMR (210). 

 

 

Figure 16. Protonation levels of K18 and K19 filaments after 36 hours forward-exchange to D2O as a function 

of residue number. Horizontal red lines indicate the average protonation of all residues. Gaps arise from either 

proline residues or residues that could not be detected. Open bars are averaged values from overlapped residues. 

On top, the domain orientation of K18 is shown, with the vertical gray bars highlighting the two hexapeptide 

motifs and the red bar marking the rigid core of K19 PHF. Interestingly, residues identified by the solid-state 

NMR study to be within the core region of K19 show the strongest protonation levels in K18 as well, indicating 

that this region is of central importance also to K18 PHF. 
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Figure 17. H/D exchange data of K19 and K18. (A) Superposition of [1H, 15N]-HSQC spectra of K18 (black; 

acquired on a 700 MHz spectrometer at 5°C) and K19 (red, acquired on a 600 MHz spectrometer at 5°C) 

monomers in 2 M GuSCN, 0.04% formic acid, pH 2.34 and 50% H2O/50% D2O showing that resonances 

overlay well. Selected residues, in particular of the two hexapeptide motifs 275VQIINK280 (K18) and 
306VQIVYK311 (K18 and K19), are marked. Note, that V306 in K19 and V275 in K18 are surrounded by a similar 

chemical environment due to the same sequence motif (GKVQI). For this reason, V306 in K19 is shifted with 

respect to V306 in K18, but overlays well with V275, which itself is not present in K19. (B) Time dependence of 

the HSQC cross-peak intensities of two selected residues, V248 (outside the core region) and V313 (within the 

core region) of K18 (black) and K19 (red) during backward-exchange are depicted. Intensities are normalized to 

the intensity of the first spectrum. In both constructs V313 in PHF is protected while V248 is not. 

 

In these experiments, residues that are protected from solvent exhibit high 

protonation levels, while solvent-exposed residues do not.  



40 H/D exchange experiments 
 

 

Although the H/D data for K19 PHF do not exhibit a large variation due to a fast 

exchange rate, a trend can be found in the protonation levels that are in agreement with 

the solid-state NMR results (Figure 15D): The most protected region in K19 PHF 

belongs to residues I308 to V313, with a certain degree of protection visible for residues 

D314 to K321 as well. In contrast, residues of R1 and R4 are solvent-exposed to a 

higher extent (Figure 16). 

Furthermore, we probed how repeat R2 contributes to the fibril core using PHF that 

were formed by K18 monomers. Since the exchange rate of K18 was much slower 

compared to K19 PHF, the protonation levels are more variable than for K19 (Figure 

16). The H/D exchange behavior is similar for K19 and K18 (Figure 17) and the most 

protected region in both constructs is repeat R3 (Figure 16). The protective 

environment provided by the fibril core in R3 might explain why residue Y310 is the 

only tyrosine in tau that is nearly resistant to chemical modification by site-specific 

nitration (218) and that gives the most extensive shift changes in fluorescence spectra 

even in full-length tau during PHF aggregation (199). K18 residues of repeat R2 are 

also protected from exchange with solvent (Figure 16). In particular, the hexapeptide 
275VQIINK280 at the N-terminus of R2 is highly protected, indicating its involvement in 

the rigid fibril core of K18 PHF. 

 

3.7 Aggregation behavior of K19 single mutants 

The β-strand β1 of the PHF core corresponds to the hexapeptide 306VQIVYK311 that 

has been studied extensively (159, 202, 214, 219, 220). 

 

 

Figure 18. Overview of the K19 single point mutations within the assigned PHF core region. β-strand breaking 

proline mutants: I308P, V313P, and T319P. K19 inhibitory mutants: L315E, S320E, and L325E. K19 stimulatory 

mutant: S320V. 
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It was shown that β-strand breaking proline point mutations within this motif, e.g. 

I308P, abrogate PHF formation (202). On the other hand, the influence of strands β2 

and β3 (corresponding to V313 to C322/ V313 to 2K321) on fibril formation and 

stability is largely unknown. Hence, in the current study we introduced single point 

mutations in this part of the K19 core (Figure 18) and followed the aggregation 

behavior of the mutant proteins. Kinetics of aggregation was monitored fluorimetrically 

using the ThS assay (Figure 19). The presence and morphology of PHF were monitored 

by electron microscopy (Figure 20). 

 

 

Figure 19. PHF assembly of different K19 single mutants monitored by ThS fluorescence. (A) K19 WT and β-

strand breaking proline mutants I308P, V313P, and T319P. (B) K19 inhibitory mutants L315E, S320E, and 

L325E, and (C) K19 stimulatory mutant S320V. 

 

First, K19 proline mutants were designed, which were expected to be inhibitory for 

aggregation by disrupting the β-strands β1, β2, and β3, respectively (Figure 19A and 

Figure 20). As expected, the mutations V313P and T319P disrupt the β-strands and 

prevent fibril formation. The most pronounced inhibition was observed for V313P, 

which leads to nearly complete abrogation of aggregation, comparable to the previously 

described I308P mutation. 
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Furthermore, we generated the mutations L315E within β2 and S320E as part of β3, 

but also L325E, which is just outside of the assigned region (Figure 19B). These 

mutations disrupt PHF formation to different degrees. The furthest C-terminal mutation, 

L325E, shows the least drastic effect. 

With S320V, a hydrophilic serine is replaced by a hydrophobic valine. Figure 19C 

illustrates the aggregation kinetics of S320V, which is even faster than of the WT. 

 

 

Figure 20. Electron micrographs of the different K19 mutants. In the presence of heparin (scale bars = 200 nm). 

 
Figure 20 summarizes the fibril structures of WT and mutants observed by negative 

stain EM. The control sample of K19 WT PHF shows abundant long filaments, 

predominantly with twisted substructure. The morphology of K19 S320V fibrils is 

indistinguishable from PHF of K19 WT. In the remaining micrographs we can 

distinguish between two different morphologies: (i) fragmented short filaments formed 

by the mutants S320E, and L325E and (ii) amorphous deposits without filaments for the 

mutants I308P, V313P, L315E, and T319P. 

In summary, the aggregation behavior of the proline mutants provides evidence that 

the β-structure is highly important for fibril formation in the overall region of residues 

306 to 325. 

A hydrophobic influence on the stability of the PHF core was probed by mutating 

hydrophobic to charged residues. These mutations abrogate WT-like fibril formation. In 

contrast, replacing S320 by a more hydrophobic valine (S320V) actually leads to an 



Results and Discussion 43 
 

 

enhancement of fibrillation, indicating hydrophobic interactions to be a substantial 

stabilizing factor for K19 PHF. 
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3.8 Supramolecular arrangement of K19 molecules within the 
fibril core 

3.8.1 Intermolecular stacking 

To elucidate the intermolecular arrangement of tau K19 molecules in the cross-β 

structure, a two-dimensional [15N-13C]-PAIN-CP (88) spectrum of the K191:1 sample 

was measured. 

 

 

Figure 21. Comparison of magnetization transfers in NCA and PAIN-CP experiments. (A, B) Indicated is a 

protofilament with an in-register and parallel stacking of four molecules along the fibril axis. [15N]-labeled and 

[13C]-labeled nuclei are shown in red and blue, respectively. Unlabeled nuclei are depicted in gray. While the 
15N(i)-13Cα(i) polarization transfer is mainly intramolecular in NCA experiments (A), only intermolecular 

magnetization transfer is responsible for the correlations seen in PAIN-CP spectra (B). 

 

These PHF were aggregated from an equimolar mixture of [15N]-labeled and [13C]-

labeled K19 protein. Since no 15N-13C-spin pairs are present within one K19 molecule 

of such mixed-labeled fibrils, 15N(i)-13Cα(i) correlations obtained in a PAIN-CP 
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spectrum must be intermolecular (206) (Figure 21). The spectrum overlays well with an 

NCA spectrum of the uK19 sample (Figure 22) revealing a parallel, in-register 

arrangement of the β-strands along the fibril axis, in line with previous EPR studies 

(151, 152). 

Notably, no intermolecular 15N(i)-13Cα(i) correlations are detected for residues 

within each of the two sets (K321 to S324/ 2K321 to 2S324; orange circles in Figure 

22), indicating that this part is either not stacked parallel, in-register or that set 1 and set 

2 molecules are stacked in an alternating arrangement, which would result in a different 

resonance pattern (see discussion in the next Chapter). 

 

 

Figure 22. Intermolecular stacking of tau K19 PHF. Overlay of a 2D [15N, 13C]-PAIN-CP correlation spectrum 

(blue; tmix = 5 ms) of PHF containing a 1:1 mixture of u-[13C]- and u-[15N]-labeled K19 molecules (K191:1) 

acquired on an 850 MHz spectrometer at 18 kHz MAS at 5 °C with a 2D [15N, 13C]-NCA spectrum (black) of 

uK19 recorded on an 850 MHz spectrometer at 11 kHz MAS at 7 °C. The labeled resonances indicate that the β-

strands are arranged in-register and parallel. Note, that all resonances in the NCA spectrum belonging to the 

doubled region (K321-S324 / 2K321-2S324) do not appear in the PAIN-CP spectrum (orange circles). * The 

Y310N-Cα correlation appears in the noise of the PAIN-CP spectrum. 

 

3.8.2 Intermolecular disulfide bonds 

All investigated samples were prepared under oxidizing conditions in which DSB 

formation can occur. The chemical shifts of the two assigned cysteines (C322 and 

2C322) show that this happens indeed. Importantly, five long-range restraints 
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correlating the two sets were detected in the PDSD 500 ms spectrum of the K192glyc 

sample (Figure 13). 

Because cysteine is a unique amino acid within the K19 sequence (Figure 6), the 

DSB must be formed intermolecular (Figure 23). In principle, two possibilities are 

conceivable: (i) an intermolecular DSB within one protofilament along the fibril axis 

(Figure 23A), which is possible because of the parallel, in-register arrangement (221, 

222), and (ii) an inter-protofilament DSB or rather a DSB formed by symmetrically 

non-equivalent (as indicated by the different chemical shifts) monomers in a lateral 

dimer within one protofilament (Figure 23B) (223, 224). 

The possible arrangements can be expected to show characteristic 15N(i)-13Cα(i) 

correlations. For an intra-filamentous DSB, only correlations between the two sets are 

possible (“inter-set”, Figure 23A), whereas for a laterally formed DSB, the spectrum 

should be dominated by correlations within the two different sets (“intra-set”; Figure 

23B). Nevertheless, cross peaks predicted from the assignment are absent for both intra- 

and inter-set correlations (Figure A2). Thus, for the moment we can neither exclude nor 

favor a model, due to missing unambiguous spectral data. 

 

 

Figure 23. Models for cysteine disulfide bond (DSB) formation within K19 PHF. The molecules shown in green 

and blue relate to the two observed resonance sets for the residues close to C322. (A) DSB formation along the 

fibril axis within one protofilament. (B) Laterally formed DSB. 

 
Nevertheless, intermolecular DSB must be an important factor for fast and stable 

aggregation of K19 PHF, not least because DSB-linked tau dimers are known to 

successfully seed PHF aggregation (225). Moreover, aggregation assays on K19 

molecules under reducing conditions using DTT investigated by ThS and EM reveal 

that K19 is still able to form PHF, but at a much slower rate (226). 
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K19CA - an Outlook 

4.1 Partial Assignment of the K19CA PHF core 

As observed from the NCA spectrum in Figure 14, a spectral simplification by using 

K19CA instead of WT PHF is a promising approach for solid-state NMR studies that 

aim for structure determination of the K19 PHF fibril core. Therefore, we recently 

performed further experiments necessary for the assignment process. Here, we present 

and discuss preliminary results. 

Again, 13C-13C correlations for residues of the rigid fibril core of the C322A mutant 

were obtained using PDSD experiments (Figure A17), while sequential 15N-13C 

correlations were gained from NCC spectra (Figure A18). 

As already described in Chapter 3.4, one strong alanine signal is observed instead of 

two cysteine resonances. Furthermore, the strong splitting of residues K321 to S324 

converted to a small extent into peak doubling for a variety of residues as indicated e.g. 

for the second alanine (2A322) that shows β-strand propensity. Due to a less 

polymorphic nature than K19 PHF, in the K19CA PHF spectra the observed resonances 

are extended C-terminally. Partial resonance assignment from Q307 to E338 was 

obtained so far (Table 5). 

 

Table 5. Partial chemical shift assignment for the rigid core of K19CA PHF. For most residues of Q307 to E338, 

a preliminary assignment was obtained that needs to be refined and confirmed. Chemical shifts are given in ppm. 

Residue N C CA CB CG/CG1 CG2 CD/CD1 CD2 CE/CE1 CZ 

Q307 - 173.8 54,36 32.76 34.66 
 

179.4 
   

I308 - 174.2 59,70 42.34 27.62 17.06 14.77 
   

V309 128.7 173.2 61.45 34.15 - - 
    

Y310 132.1 - 57.54 40.22 128.0 
 

- - - 157.4 

K311 125.7 - 54.28 35.31 - 
 

- 
 

- 
 

P312 - - 63.82 32.63 27.46 
 

51.32 
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Residue N C CA CB CG/CG1 CG2 CD/CD1 CD2 CE/CE1 CZ 

V313 119.6 - 61.12 35.35 21.34 21.84 
    

D314 128.7 174,1 53.27 41.70 180.6 
     

L315 129.1 177.2 54.49 43.28 27.86 
 

- - 
  

S316 120.5 174,23 59.80 65.34 
      

K317 116.7 - 55.30 36.90 25.67 
 

30.06 
 

42.44 
 

V318 - - - - - - 
    

T319 127.3 174.1 61.27 70.26 
 

21.96 
    

S320 123.4 172.8 56.74 64.93 
      

K321 - - 54.61 36.23 - 
 

- 
 

- 
 

A322 127.2 175.8 50.62 19.96 
      

G323 106.2 173.9 46.20 
       

S324 121.0 171.7 58.39 67.39 
      

L325 118.0 175.9 55.44 45.45 29.44 
 

- 26.55 
  

G326 106.6 173.7 44.25 
       

N327 118.6 174.1 53.21 40.22 177.0 
     

I328 - - 59.55 39.00 27.91 17.35 - 
   

H329 - - - - - 
  

- - 
 

H330 - - 55.50 - - 
  

- 137.1 
 

K331 - - - - - 
 

- 
 

- 
 

P332 - 177.3 62.83 - 28.33 
 

- 
   

G333 110.6 174.6 45.08 
       

G334 109.5 174.2 43.90 
       

G335 106.6 172.8 44.65 
       

Q336 - - 54.87 31.82 34.10 
 

180.1 
   

V337 124.5 174.3 60.59 34.98 19.95 22.98 
    

E338 127.3 - 54.55 33.94 36.21 
 

182.0 
   

2A322 123.3 
 

50.25 22.19 
      

- indicates unassigned resonances. 

 

Residues V306, V318, H329, and K331 as well as most side chain assignments are 

omitted due to spectral overlap and limited time for a complete analysis of all recorded 

spectra. In contrast to K19 WT, the assigned residues belong to almost the whole repeat 

R3 and the very beginning of R4. 

As in K19 WT fibrils (Figure 15), SCS analysis of the partially assigned K19CA 

resonances (Figure 24) reveal the presence of the first three β-strands (β1-3) interrupted 

by kinks at P312 and S316. No splitting such as in the K19 WT occurs; rather β3 is 
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formed by K317 to A322, followed by a kink formed at G323. A fourth β-strand that 

was assumed in K19 WT PHF is in agreement with the K19CA SCS (S324 to I328). 

The consecutive three residues (H329 to K331) are not or only partially assigned. 

Because of the aa sequence, the formation of a turn of residues P332 to G335 is likely 

and in agreement with the SCS (177). Residues Q336 to E338 show a clear β-strand 

propensity. 

 

 

Figure 24. Analysis of preliminary SCS of core residues in K19CA PHF. Consecutive negative values indicate a 

β-strand conformation, discontinuities in the negative values a kink between β-strands. SCS suggest the presence 

of the three β-strands (β1-3, white arrows) interrupted by kinks at P312, a known β-strand breaker, and S316. 

Strand β3 is formed by K317 to A322, followed by a kink at G323 and a fourth β-strand (β4, black arrow). 

Likely, the 332PGGG335 motif forms a turn, while residues Q336 to E338 show a clear β-strand propensity (β5, 

black arrow). On top of the diagram a cartoon representation of the secondary structure elements is shown. * Not 

assigned so far. ** Missing Cβ assignment. 

 
Next to completing the assignments of the rigid core of K19CA fibrils, it will be 

reasonable to perform temperature-dependent as well as INEPT-CC-TOBSY 

measurements to probe the missing ~67 % residues of the K19 sequence – as has been 

done for K19 WT (Figure 9 and Figure 12). 

 

4.2 Possible arrangements of β-strands β1 to β3 in the K19 
PHF core 

Although assignments for V306 and V318 are missing, SCS analysis of the partially 

assigned K19CA resonances suggests a secondary structure in the region of Q307 to 

A322 that is conserved in WT and mutant K19 PHF (white arrows in Figure 24). Due 
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to the missing DSB formation, the core of the mutant PHF is less polymorphic, resulting 

in only one major set of resonances, which especially influences β-strand three (K317 to 

A322). 

 

 

Figure 25. Different schematic models for the orientation of the three β-strands within the core of K19 PHF 

(using the K19CA aa sequence) based on the SCS analysis. (A-D) Positively charged residues are colored in 

blue, negatively charged ones in red, hydrophilic ones in green and hydrophobic ones in white. (A) Clockwise U-

shape arrangement of the three β-strands leads to the formation of a hydrophobic core (UCW). (B) Counter-

clockwise U-shape arrangement with charged and hydrophilic residues inside the core (UCCW). (C, D) Z-shape 

arrangements with the first kink turning either clockwise (C; ZCW) or counter-clockwise (D; ZCCW). 

 

Based on the analysis of K19 WT, consistent with the K19CA data, we have 

generated different models for the orientation of the conserved three β-strands of one 

K19 molecule within the rigid core of PHF. As there are two one-residue-kinks between 

the three β-strands, four general models are conceivable (Figure 25; For the sake of 

clarity regarding β3 we used the aa sequence of the K19CA mutant), all characterized 

by a typical inside-outside arrangement of the side chains within each β-strand: (i) A 

clockwise U-shape arrangement of the β-strands (UCW), (ii) a counter-clockwise U-

shape arrangement (UCCW), (iii) a Z-shape arrangement with the first kink turning 

clockwise (ZCW), and (iv) a Z-shape arrangement with the first kink turning counter-

clockwise (ZCCW). 
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The UCW model features two consecutive side chains pointing outward at the kinks 

(K311/ P312 and S316/ K317, respectively). The side chains of all charged and most 

hydrophilic residues point outward, while most hydrophobic residues point to the inside 

of the U-shape resulting in a hydrophobic core made up of side chains from residues 

V306, I308, Y310, V313, L315, V318, S320, and A322. The proposed UCW model of 

K19 PHF is reminiscent of the Amyloid β1-40 model put forward by Tycko and 

coworkers (28). This model consists of two extended β-strands connected by a turn, 

which results in the formation of a hydrophobic cluster of side chains. 

In contrast, the UCCW model buries the side chains of all charged and most 

hydrophilic residues inside the core (Q307, V309, K311, D314, K317, T319, and 

K321). The resulting electrostatic repulsion of the three positively charged lysine side 

chains (K311, K317, and K321) makes the UCCW arrangement seem unlikely. 

Furthermore, two extended Z-shape arrangements of the β-strands with different kink 

directions are conceivable. Without sizeable contacts between β-strands one and three, 

such arrangements would not be stable by themselves. In this case, stability may be 

provided by a lateral growth of the fibers. 

Unfortunately, unambiguous long-range correlations supporting any model could not 

be obtained so far, neither in the K19 WT nor in the mutant PHF. However, when 

revisiting the results of the mutation study from Chapter 3.7, stabilizing effects on PHF 

assembly by hydrophobic interactions were shown. In detail, replacing hydrophobic 

residues, such as L315, S320 and L325 by a negatively charged glutamic acid, 

disruption of fibril aggregation was observed (revisit Figure 20). The degree of 

disturbance was the strongest for L315E, while S320E and L325E formed short 

filamentous aggregates. Finally, by replacing S320 by a more hydrophobic valine, the 

assembly efficiency was increased compared to K19 WT (Figure 19). 

When comparing the mutation sites with the suggested models, a UCW-shaped 

arrangement is in perfect agreement with our results. L315 as well as S320 would be 

buried inside a suspected hydrophobic core. Replacing these residues by charged ones 

would cause disruption of fibril formation, while substitution with a more hydrophobic 

residue would further stabilize the hydrophobic effects. 

Due to electrostatic repulsion of three positively charged lysine side chains (K311, 

K317 and K321/ 2K321) pointing inward and a hydrated environment surrounding the 
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core, an UCCW arrangement seems unfavorable and less probable. Additionally, the 

mutagenesis data that demonstrate the importance of hydrophobic interactions on the 

core stability (e.g. the stimulatory mutant K19S320V) are in contradiction to an UCCW 

arrangement. 

Nevertheless, solid-state NMR distance restraints are still missing. In a UCW model, 

β-strands one and three should be in close proximity to each other featuring observable 

long-range correlations. In light of the extended core assignment of K19CA PHF, a 

larger hydrophobic U-shape model with more than three β-strands is conceivable. This 

could explain why no long-range restraints between β1 and β3 are observed. 

Additionally, due to the disulfide bond in K19 WT PHF, assignment downstream of 

S324 was impossible. Thus, assignment of further β-strands required for obtaining 

distance information was unfeasible. 

Another possibility are the extended Z-shape arrangements that cannot be excluded 

either and would not lead to plenty of long-range correlations, not least because of the 

parallel and in-register arrangement of the K19 molecules along the fibril axis. 

Fortunately, sparsely labeled samples of K19 CA PHF exhibit well-resolved spectra 

and appear to be promising on the way towards structure determination of the rigid core 

of K19 PHF (Figure A19). 
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Conclusion 

As tau aggregation into PHF is one of the hallmarks of AD, it is important to 

understand structural features of the fibril core as well as the fibrillation process itself. 

Our site-specific solid-state NMR study on K19 PHF reveals a well-defined rigid core 

(V306 to S324; from R3), composed of three β-strands. Our data unambiguously 

disclose a parallel, in-register supramolecular arrangement, including the presence of 

intermolecular disulfide bonds between tau monomer units. The occurrence of DSB 

leads to polymorphism in solid-state NMR spectra. Consistently, we found that PHF 

formed from the tau mutant K19CA exhibits solid-state NMR spectra with less 

polymorphism. Ongoing research is aimed at the collection of long-range distance 

restraints for K19CA PHF that will be essential for the determination of an atomic 

model of tau PHF. 
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Appendices 

6.1 Experimental details 

Table A1. Details of experiments measured on K19 PHF samples. 

Sample 1H 
freq. υr Experiment Mixing 

time CP time TD1 aq1 ns Total 
time T 

 
[MHz] [kHz] 

 
[ms] [µs] 

 
[ms] 

 
[d; h] °C 

uK19old 800 18 DREAM 3 700 250 6.9 464 2 ; 17 7 

K19Krev 850 8.33 INEPT-CC-
TOBSY 6 (P93

1) / 1024 16 160 3; 0 5 

K191:1 850 18 PAIN-CP* 5 900 26 6.3 20352 12; 5  5 

K19KFLVrev 850 8.33 INEPT-CC-
TOBSY 6 (P93

1) / 896 14 112 1; 19 5 

K192glyc 600 11 PDSD 100 700 854 10 256 5; 15 7 

 
600 11 PDSD 500 700 854 10 512 13; 9 7 

 
800 10.5 PDSD 700 1000 768 9.8 464 11; 6 8 

 
850 11 PDSD 500 1000 960 10.7 384 13; 0  11 

 
800 11 NCA / 800/5000 66 8.5 1392 2; 16 5 

K191,3glyc 600 11 PDSD 100 700 684 8 320 5; 14 7 

 
600 11 PDSD 500 700 684 8 1168 23; 22 7 

 
850 11 PDSD 500 1000 1024 10.2 336 12; 6 5 

uK19 850 11 PDSD 20 900 880 9.8 112 2; 22 7 

 
850 11 PDSD 150 900 880 9.8 128 3; 12 7 

 
850 11 CHHC 0.25 1200/100/100 360 10 1248 13; 0 8 

 
850 11 INEPT-CC-

TOBSY 6 (P93
1) / 964 15 64 1; 3 6 

 
850 11 NCA / 900/3000 56 8.1 832 1; 9 7 

 
850 11 NCA / 900/3000 146 7.1 224 0; 23 7 

 
850 11 NCACX 50 

(DARR) 700/3500 48 7 6528 7; 6 7 

 
850 11 NCOCX 30 

(DARR) 900/3500 48 6.9 4480 5; 2 7 

 
600 11 PDSD 150 1500 854 10 272 8; 4 5 

K19CA 800 11 PDSD 20 900 784 10 160 3; 16 5 

 
800 11 PDSD 150 900 784 10 144 3; 12 5 



68  
 

 

Sample 1H 
freq. υr Experiment Mixing 

time CP time TD1 aq1 ns Total 
time T 

 
[MHz] [kHz] 

 
[ms] [µs] 

 
[ms] 

 
[d; h] °C 

 
600 11 PDSD 150 800 872 12 272 7; 19 5 

 
800 11 NCA / 600/3000 58 8.1 1088 1; 16 5 

 
800 11 NCACX 50 

(PDSD) 600/3000 52 8 3920 5; 9 5 

 
800 11 NCOCX 50 

(PDSD) 600/4000 52 8 5472 7; 14 5 

 
800 11 PDSD 20 900 784 10 48 1; 3 -4 

 
800 11 PDSD 20 900 784 10 48 1; 3 15 

K19CA2glyc 850 11 PDSD 500 800 960 10.7 368 12; 11 5 

 
850 11 NCA / 800/2500 46 6.1 800 1; 2 5 

K19CA1,3glyc 850 11 PDSD 500 1000 960 10.7 336 11; 9 6 

K19CYLfw 600 11 PDSD 50 1200 600 7 256 3; 19 7 

 
600 11 PDSD 500 1200 600 7 368 6; 13 7 

* PAIN-CP-conditions: 73.4 kHz on 1H (pl13); 37.1 kHz on 13C (pl14); 27.3 kHz on 15N (pl15). 
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Figure A1. Ramachandran plot. Depicted are the TALOS+ dihedral angle (Phi, Psi) predictions for the set 1 (blue 

diamonds) and set 2 (black boxes) core residues of K19 PHF. The red, yellow and light yellow colors represent 

the favored, allowed and generously allowed regions, respectively (B = β-sheet; A = α-helix; L = left-handed 

helix). Except for 2G323, all predictions are located in the allowed regions. Predictions for S316 dihedral angles 

are in both sets in the helical region ”A”. (227, 228) 
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Figure A2. Predictions for the intermolecular DSB formation compared with experimental data. Overlay of a 

2D [15N, 13C]-PAIN-CP correlation spectrum (blue; tmix = 5 ms) of K191:1 with a 2D [15N, 13C]-NCA spectrum 

(black) of uK19 (as in Figure 21). All resonances in the NCA spectrum belonging to the doubled region (K321-

S324 / 2K321-2S324) do not appear in the PAIN-CP spectrum (orange circles). On top of the spectra predictions 

of the doubled resonances are plotted for 15N(i)-13C(i) intra-set contacts (orange crosses) and inter-set contacts 

(purple crosses) as would be expected for the formation of an intra-sheet DSB (as in Figure 23). 
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6.2 Pulse programs 

6.2.1 INEPT-CC-TOBSY (Insensitive Nuclei Enhancement by 
Polarization Transfer-13C-13C-Total Through-Bond-Correlation 
Spectroscopy) 

 

 

Figure A3. INEPT-CC-TOBSY pulse sequence (68, 69). t1 = indirect dimension; t2= direct dimension. 

 
Pulse program using a P93

1 mixing element: 

1  ze 

2  d1 do:f2 

 

; set initial power levels 

   2u fq=0:f2 

   1m rpp7 

   1m rpp8 

 

   2u pl2:f2 

   2u pl1:f1 

 

;90 f2 

    p2:f2 ph1 
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;spin echo 

   d4  

   (p1*2 ph4):f1 (d14 p2*2 ph2):f2  

   d4 

 

;polarization transfer 

   (p1 ph5):f1   (d13 p2 ph3):f2  

 

;spin echo 

   d3 

   (p1*2 ph6):f1 (d14 p2*2 ph2):f2  

   d3 

 

;t1 evolution 

  1u pl12:f2 

  1u cpds2:f2 

  d0 

  2u do:f2 

 

;TOBSY mixing (P931 element) 

   2u pl11:f1  

   p11:f1   ph10 

3  p11*1:f1 ph7 

   p11*4:f1 ph8^ 

   p11*3:f1 ph7^ 

   lo to 3 times l5 

   p11:f1   ph11 

 

;acquisition  

   1u pl12:f2 

   1u cpds2:f2 

   go=2 ph31  

   1m do:f2 

   100m wr #0 if #0 zd 

   1m id0 

     1m ip5 

      lo to 2 times td1 

 HaltAcqu, 1m    

exit 

 

ph1 = 0 2 

ph2 = 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0 

      2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2 

ph3 = 1 

ph4 = 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0 

      2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2 
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ph5 = 0 0 2 2 

ph6 = 0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 0 

      2 2 2 2  2 2 2 2  2 2 2 2  2 2 2 2 

ph7 = (16384)     0  1820  3641  5461  7282  9102 10923 12743 14566 

ph8 = (16384)  8192 10012 11833 13653 15474   910  2730  4551  6371 

ph10= 1 

ph11= 0 0 0 0  1 1 1 1  2 2 2 2  3 3 3 3 

ph31= 0 2 2 0  1 3 3 1  2 0 0 2  3 1 1 3 
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6.2.2 DREAM (Dipolar Recoupling Enhancement through Amplitude 
Modulation) 

 

 

Figure A4. DREAM (Dipolar Recoupling Enhancement through Amplitude Modulation) pulse sequence (66). 

CP = cross polarization; t1 = indirect dimension; t2= direct dimension. 

 

Pulse program: 

1 ze 

2 d1 do:f2 

  1u fq=0:f1 

  1u fq=0:f2 

 

; 90 f2 

  (p2 pl2 ph1):f2 

 

;CP f2--f1 

  1u pl6:f2 

  (p15 pl5 ph2):f1 (p15:sp0 ph0):f2 

 

;t1 evolution 

  1u pl12:f2 

  1u cpds2:f2 

  d0 

 

; Dream mixing 

; parameters for shape pulse: TangAmpModulation 
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; size of shape = 1000 

; amplitude of modulation = 4500 

; adiabaticity =  66 

; amplitude scaling factor = 100 % 

 

  (p25:sp1 ph3):f1 

 

;acquisition with decoupling 

  go=2 ph31 

  1m do:f2 

  100m wr #0 if #0 zd 

  1m id0 

  1m ip2 

  lo to 2 times td1 

 

HaltAcqu, 1m 

exit 

 

ph0 = 0 

ph1 = 1 3 

ph2 = 1 1 3 3 

ph3 = 1 

ph31= 0 2 2 0 
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6.2.3 PAIN-CP (Proton Assisted Insensitive Nuclei Cross 
Polarization) 

 

 

Figure A5. PAIN-CP (Proton Assisted Insensitive Nuclei Cross Polarization) pulse sequence (88). CP = cross 

polarization; t1 = indirect dimension; t2= direct dimension. 

 

Pulse program: 

1  ze 

2  d1 do:f2 

   1u fq=0:f2 

 

;90 f2 

   1u pl2:f2 

   p2:f2 ph1 

 

;cp f2 -> f3 

   (p15 pl5 ph2):f3 (p15:sp0 ph0):f2 

 

;t1 evolution f3 

   1u pl12:f2 

   1u cpds2:f2 

   d0 

   2u do:f2 
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;cp f3 -> f1 

(p25 pl14 ph4):f1  (p25 pl15 ph3):f3  (p25 pl13 ph0):f2 

 

;acquisition 

   1u pl12:f2 

   1u cpds2:f2 

   go=2 ph31 

   1m do:f2 

   100m wr #0 if #0 zd 

   1m id0 

   1m ip2 

   lo to 2 times td1 

HaltAcqu, 1m 

exit 

 

ph0 = 0 

ph1 = 1 3 

ph2 = 0 0 2 2 

ph3 = 0 

ph4 = 0 0 0 0  1 1 1 1  2 2 2 2  3 3 3 3 

ph31= 0 2 2 0  1 3 3 1  2 0 0 2  3 1 1 3 
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6.2.4 PDSD (Proton Driven Spin Diffusion) 

 

 

Figure A6. PDSD pulse sequence (63). CP = cross polarization; t1 = indirect dimension; t2= direct dimension; tCC = 
13C-13C mixing time. 

 

Pulse program: 

1  ze 

2  d1 do:f2 

1u fq=0:f2 

 

;cp 

   1u pl2:f2 

   p2:f2 ph1 

   1u pl5:f1 pl6:f2 

   (p15 ph2):f1 (p15:spf0 pl6 ph0):f2 

 

;t1 evolution 

   2u pl12:f2 

   2u cpd2:f2 

   d0 

   2u do:f2 

 

;proton-driven spin diffusion 

   1u pl1:f1 

   p1:f1 ph3 

   d11 

   p1:f1 ph4 
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;aquisition 

   5u pl12:f2 

   5u cpd2:f2 

   gosc ph31 

   1m do:f2 

   lo to 2 times ns 

   100m wr #0 if #0 zd 

   1m id0 

   1m ip2 

   lo to 1 times td1 

 

HaltAcqu, 1m 

exit 

 

ph0 = 0 

ph1 = 1 1 1 1  1 1 1 1  3 3 3 3  3 3 3 3 

ph2 = 0 0 0 0  2 2 2 2 

ph3 = 1  

ph4 = 3 0 1 2 

ph31= 0 1 2 3  2 3 0 1  2 3 0 1  0 1 2 3  
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6.2.5 DCP (Double Cross Polarization: NCA/ NCO) 

 

 

Figure A7. DCP pulse sequence (62). CP = cross polarization; t1 = indirect dimension; t2= direct dimension; Dec. = 

Decoupling. 

 

Pulse program: 

1  ze 

2  d1 

   2u fq=0:f2 

   2u pl2:f2     

   (p2 ph1):f2  

 

;cp f2 -> f3 

   1u pl5:f3 pl6:f2 

   (p15 ph2):f3 (p15:spf0 pl6 ph0):f2 

 

;t1 evolution 

   2u pl12:f2 

   2u cpd2:f2 

   d0 

   1u do:f2 

 

;cp f3 -> f1 

   2u pl13:f2  
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   2u cpds1:f2          

   1u pl15:f3 pl16:f1 

   (p25 ph3):f3 (p25:spf1 pl16 ph4):f1 

   1u do:f2 

 

;acquisition 

   5u pl12:f2 

   10u cpd2:f2 

   gosc ph31 

   1m do:f2 

   lo to 2 times ns 

   100m wr #0 if #0 zd 

   1m id0 

   1m ip2 

   lo to 2 times td1 

 

HaltAcqu, 1m 

exit 

 

ph0 = 0 

ph1 = 1 1 1 1  1 1 1 1   3 3 3 3  3 3 3 3 

ph2 = 0 

ph3 = 0 0 0 0  2 2 2 2 

ph4 = 0 1 2 3 

ph31= 0 1 2 3  2 3 0 1   2 3 0 1  0 1 2 3 
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6.2.6 NCC experiments (NCACX/ NCOCX) 

 

 

Figure A8. NCC pulse sequence (62, 63, 65, 66). The NCA/ NCO pulse sequence is combined with a 13C-13C 

mixing (tCC) using PDSD, DREAM, or DARR sequences, respectively. For the latter, a 1H-13C-recoupling is 

achieved by proton r.f. irradiation during the tCC-mixing (gray box). CP = cross polarization; t1 = indirect 

dimension; t2= direct dimension. 

 

Pulse program using DARR for 13C-13C mixing: 

1 ze 

2 d1 do:f2 

  1u fq=0:f2 

  1u fq=cnst20:f1 

 

;90 proton 

  1u pl2:f2 

  p2:f2 ph1 

 

;cp f2--f3 

  (p15 pl5 ph2):f3 (p15:sp0 ph0):f2 

 

;t1 evolution f3 

   1u pl12:f2 

   1u cpds2:f2 

   d0 

   2u do:f2 
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;cp f3--f1 with CPDS1 decoupling 

  1u pl13:f2 

  1u cpds1:f2  

  (p25:sp1 ph4):f1  (p25 pl15 ph3):f3 

  2u do:f2 

 

;DARR mixing f1 

   (p1 pl1 ph5):f1 

   1u fq=0:f1 

   (p10 pl10 ph10):f2 

   (p1 pl1 ph6):f1 

 

;acquisition 

  1u pl12:f2 

  1u cpds2:f2 

  go=2 ph31 

  1m do:f2 

  100m wr #0 if #0 zd 

  1m id0 

  1m ip2 

  lo to 2 times td1 

 

HaltAcqu, 1m 

exit 

 

ph0 = 0 

ph1 = 1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1 

      3 3 3 3  3 3 3 3  3 3 3 3  3 3 3 3 

ph2 = 0 0 0 0  0 0 0 0  2 2 2 2  2 2 2 2 

ph3 = 0 

ph4 = 0 0 0 0  2 2 2 2 

ph5 = 1 

ph6 = 0 1 2 3 

ph10= 0 

ph31= 0 1 2 3  2 3 0 1  2 3 0 1  0 1 2 3 

      2 3 0 1  0 1 2 3  0 1 2 3  2 3 0 1 
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6.2.7 CHHC 

 

 

Figure A9. CHHC pulse sequence (81). CP = cross polarization; t1 = indirect dimension; t2= direct dimension; tHH 

= 1H-1H mixing time. 

 

Pulse program: 

1  ze 

2  d1 

   1u fq=0:f2 

 

;cp to carbons 

   1u pl2:f2 

   p2:f2 ph1 

   1u pl5:f1 pl6:f2 

   (p15 ph2):f1 (p15:spf0 pl6 ph0):f2 

 

;t1 evolution 

   2u pl12:f2 

   2u cpds2:f2  

   d0 

   2u do:f2 

 

;cp to protons 

   1u pl5:f1 pl6:f2 

   (p16 ph3):f1 (p16:spf0 pl6 ph4):f2 

 

;mixing protons 

   1u pl2:f2 

   p2:f2 ph5 
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   d5 

   p2:f2 ph6 

 

;cp to carbons 

   1u pl5:f1 pl6:f2 

   (p16 ph8):f1 (p16:spf0 pl6 ph7):f2 

 

;acquisition 

   5u pl12:f2 

   5u cpds2:f2  

   gosc ph31 

   1m do:f2 

   lo to 2 times ns 

   100m wr #0 if #0 zd 

   1m id0 

   1m ip2 

   lo to 2 times td1 

 

HaltAcqu, 1m 

exit 

 

ph0 = 0  

ph1 = 1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1 

      3 3 3 3  3 3 3 3  3 3 3 3  3 3 3 3 

ph2 = 0  

ph3 = 0 0 2 2 

ph4 = 1  

ph5 = 0  

ph6 = 0 2 

ph7 = 1 

ph8 = 0 0 0 0  1 1 1 1  2 2 2 2  3 3 3 3 

ph31= 0 2 2 0  1 3 3 1  2 0 0 2  3 1 1 3 

      2 0 0 2  3 1 1 3  0 2 2 0  1 3 3 1 

 



 

 

6.3 Spectra that were used for the assignment process of K19 PHF and K19CA PHF 

6.3.1 uK19 

 

Figure A10. CHHC spectrum of uK19 PHF. Encircled in red is the CA-CA cross peak between the two cysteines, C322 and 2C322, excluding chemical exchange due to the short time 

scale (250 µs). Experimental details are given in Table A1. 



 

 

 

Figure A11. PDSD spectra of uK19 PHF recorded on an 850 MHz spectrometer. 13C-13C-mixing time of 20 ms (orange) and 150 ms (blue). Further experimental details are given in 

Table A1. 

  



 

 

 

Figure A12. NC-spectra of uK19 PHF. NCACX (blue), NCA (orange) and NCOCX (black). Experimental details are given in Table A1. 



 

 

6.3.2 [1, 3-13C]-glycerol labeled K19 

 

Figure A13. PDSD spectra of K191,3glyc PHF. 13C-13C-mixing time of 100 ms (orange) and 500 ms (black, green), recorded on a 600 MHz spectrometer (orange, black) and 850 MHz 

instrument (green). Further experimental details are given in Table A1. 



 

 

6.3.3  [2-13C]-glycerol labeled K19 

 

Figure A14. PDSD spectra of K192glyc PHF recorded on a 600 MHz spectrometer. 13C-13C-mixing of 100 ms (orange) and 500 ms (blue). Experimental details are given in Table A1. 



 

 

 

Figure A15. PDSD spectra of K192glyc PHF. 13C-13C-mixing of 700 ms and recorded on an 800 MHz spectrometer (orange). 13C-13C-mixing of 500 ms and recorded on an 850 MHz 

spectrometer (blue). Further experimental details are given in Table A1. 



 

 

6.3.4 K19CYLfw 

 

Figure A16. PDSD spectra of K19CYLfw PHF. 13C-13C-mixing of 50 ms (orange) and 500 ms (blue). Experimental details are given in Table A1. 



 

 

6.3.5 K19CA 

 

Figure A17. PDSD spectra of K19CA PHF recorded on an 800 MHz spectrometer. 13C-13C-mixing of 20 ms (orange) and 150 ms (blue). Further experimental details are given in 

Table A1. 



 

 

 

Figure A18. NC-spectra of K19CA PHF. NCACX (blue), NCA (orange) and NCOCX (black). Experimental details are given in Table A1. 



 

 

6.3.6 [1,3-13C]- and [2-13C]-glycerol labeled K19CA 

 

Figure A19. PDSD spectra of K19CAglyc PHF. 13C-13C-mixing of 500 ms (blue: K19CA1,3glyc; red: K19CA2glyc). Experimental details are given in Table A1. 
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