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ABSTRACT

Knowledge of all molecular interactions that poten-
tially take place in the cell is a key for a detailed
understanding of cellular processes. Currently avail-
able interaction data, such as protein–protein inter-
action maps, are known to contain false positives
that inevitably diminish the accuracy of network-
based inferences. Interaction confidence scoring is
thus a crucial intermediate step after obtaining
interaction data and before using it in an interaction
network-based inference approach. It enables
to weight individual interactions according to the
likelihood that they actually take place in the cell,
and can be used to filter out false positives.
We describe a web tool called IntScore which cal-
culates confidence scores for user-specified sets
of interactions. IntScore provides six network
topology- and annotation-based confidence
scoring methods. It also enables the integration
of scores calculated by the different methods into
an aggregate score using machine learning
approaches. IntScore is user-friendly and exten-
sively documented. It is freely available at http://
intscore.molgen.mpg.de.

INTRODUCTION

A detailed map of all interactions that take place between
biomolecules in the cell promises unprecedented insight
into biological processes in health and disease (1–4).
Motivated by this, a number of techniques have been de-
veloped and applied to infer different types of interactions,
such as physical protein–protein interactions (PPIs) (5,6)
or genetic interactions (7,8). Numerous databases have
been developed to store the resulting interaction data (9)
and to assemble detailed interactome maps for human
and for other species. However, current maps often
contain considerable amounts of false positives resulting

mainly from experimental or curation errors (10–12).
Therefore, assigning confidence scores to interactions is
a requirement for both data quality assessment of new
data and predictive network analyses that use large inter-
action data sets. Several methods have been proposed that
assess the confidence of individual interactions within a
given interaction network (13,14). One group of methods
use additional knowledge about the interactions or their
participants like gene ontology (GO), pathway, gene ex-
pression or sequence homology information, while others
exploit the topology of the network data as such for con-
fidence assessment (14). Topology-based methods are the
tools of choice when additional data are missing or biased
(e.g. if the organism from which the interactions originate
is not sufficiently studied). For most of the methods
proposed in the literature, no publicly available software
implementations are available. In addition, we have
recently proposed a network topology-based confidence
scoring method called cluster-based assessment of PPI
confidence (CAPPIC; Kamburov et al., submitted).
Notably, CAPPIC was shown to compare favorably to
other topology-based methods on an extensive benchmark
of several yeast PPI networks.

To provide the research community with a tool for
interaction confidence scoring, we have developed
IntScore (http://intscore.molgen.mpg.de). It enables the
application of six different methods for interaction confi-
dence scoring including CAPPIC, two topology-based
methods proposed by other authors (15,16), as well as
three annotation-based scoring schemes (all methods are
described below). Furthermore, IntScore supports the in-
tegration of confidence scores calculated by different
methods into an aggregate score through different
supervised machine learning approaches. Such integration
is useful because different methods tend to exploit differ-
ent topological and functional features of interactions,
and thus, an aggregate score is expectedly more reliable.
The output of IntScore is a weighted variant of the input
network where the interaction scores calculated by each
user-selected method are provided. The output further
includes score distribution histograms and a correlation
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table that gives a clue about the pairwise coherency of
scoring methods when applied to the given network.
Confidence scores calculated by IntScore can be used,
e.g. as interaction weights when the network is utilized
in computational methods that handle probabilistic
input data. Otherwise, confidence scores can be used as
a filtering criterion to remove interactions that are likely to
be false positive. The input, output and the scoring
methods provided by IntScore are extensively documented
on the website.

A comparable tool for interaction confidence scoring is
PSISCOREweb (17). It serves as a common gateway for
web services that match a list of user-specified interactions
against public databases such as IntAct (18) and MINT
(19) and assign pre-defined scores from those databases to
the interactions found. Similarly, the recently published
tool HIPPIE (20) assigns pre-calculated scores based on
experimental evidence to those interactions from a
user-specified network that have been published previ-
ously. PRINCESS (21) is another complementary inter-
action confidence evaluation system with multiple data
sources, comprising interaction homology, domain inter-
actions, gene ontology (GO) annotation, genome context,
co-expression and network motifs in public inter-
action databases. Like PSISCOREweb and HIPPIE,
PRINCESS also critically depends on the extensiveness
and quality of gene annotations for calculating confidence
scores. Accordingly, scores cannot be calculated for inter-
actions involving non-annotated genes, and reliability
of the scores depends on gene annotation accuracy.
In contrast, IntScore calculates confidence scores dynam-
ically rather than assigning pre-calculated scores: For
example, all topology-based methods (available in our
tool and in none of the others mentioned above) use ex-
clusively the structure of the user-specified network to
assess the confidence of its interactions regardless of
whether the interactions are present in public databases
or not. Thus, IntScore is not restricted to organisms
for which e.g. accurate interactome maps are publicly
available. As for the annotation-based methods,
IntScore allows a greater flexibility than previous tools
regarding e.g. the input accession number namespace
(IntScore supports 11 identifier types while HIPPIE and
PRINCESS support only two types each), the
method-specific parameter settings (e.g. the GO semantic
similarity measure is selectable by the user) and the inter-
action types (IntScore supports both physical and genetic
interactions, while the other tools are focused on physical
interactions only). Similar to PSISCOREweb and
PRINCESS, IntScore also offers GO semantic similarity
measures (detailed below); however, in addition to the
calculated confidence scores, IntScore optionally ex-
ports the respective GO annotations. Likewise, IntScore
supports a literature evidence method similar to
PSISCOREweb, but IntScore optionally also exports the
according PubMed identifiers. Reliability of the literature
evidence and the pathway co-occurrence methods
provided by our tool is achieved through utilizing
ConsensusPathDB, a fairly comprehensive interaction
meta-database developed by us (22). Another advantage
of IntScore over PSISCOREweb and HIPPIE is the

possibility to automatically calculate aggregate scores.
Although PRINCESS does also calculate an aggregate
score, the integration method and the positive/negative
reference sets are fixed while in IntScore they can be
specified by the user. This flexibility is very important,
considering that the scientific community is currently
debating on generic gold standard interaction sets
(11,23,24).

CONFIDENCE SCORING METHODS

IntScore provides overall six interaction confidence
scoring methods. Three of them exploit exclusively the
topology of the given input interaction network for con-
fidence assessment, while three are based on annotation
of interacting genes/proteins and their interactions. The
provided methods are described below.

Topology-based methods

CAPPIC
The CAPPIC method proposed by us exploits the
network’s inherent modular structure for assessing the
confidence of individual interactions. It assigns interaction
scores according to the graphical co-clustering of inter-
actions. Intuitively, low confidence is assigned to inter-
actions that disagree with modularity of biological
networks and high confidence to those that comply with
it. CAPPIC determines algorithmic parameters intrinsic-
ally and does not require any parameter input or reference
sets for confidence scoring. Details on the method will be
described elsewhere (Kamburov et al., submitted).

Common neighbors
In this approach proposed by Goldberg and Roth (15),
interaction confidence is calculated as the level of enrich-
ment of common network neighbors of interacting
proteins. It is quantified by the hypergeometric test
P-value given the number of common neighbors and
total network neighbors of both interacting proteins.
The rationale behind the approach is based on the exist-
ence of densely connected local neighborhoods (neighbor-
hood cohesiveness property) in biological networks
(25,26). Real PPIs are expected to meet the network co-
hesiveness property more frequently than false positives.

Geometric embedding
In this method proposed by Kuchaiev et al. (16), inter-
action networks are embedded into a low-dimensional
Euclidean space based on network metrics (shortest path
length) and then confidence values are calculated depend-
ing on the Euclidean distance between proteins within that
space.

Annotation-based methods

Literature evidence
For every user-specified pair of genes/proteins, IntScore
examines whether and how often (i.e. in how many differ-
ent publications) the corresponding interaction is reported
in the literature. The number of different publications
reporting an interaction has often been used as a reliable
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measure of interaction confidence (11,27). The interaction
meta-database ConsensusPathDB (22) is used as the
source of literature annotation. ConsensusPathDB cur-
rently integrates 30 public interaction and pathway
resources and thus represents a fairly comprehensive
annotation basis. We have shown previously that
ConsensusPathDB can be used for evidence mining of
user-specified interactions (28).

GO semantic similarity
This method calculates the similarity of the GO (29) terms
annotated to interacting genes/proteins, taking into
account the overall structure of the GO to assess the spe-
cificity of shared annotations (30). The rationale behind
this method is that genes/proteins that interact in the cell
are more likely to participate in the same biological
process and cellular compartment (31). Accordingly, true
positive interactions are expected to have more similar GO
annotations and get higher scores than false positives.

Pathway co-occurrence
This method checks pairs of genes/proteins for
co-occurrence in biochemical pathways. As in the GO
semantic similarity method, the rationale is that interact-
ing genes/proteins in the cell are more likely to be involved
in the same biological process. The key difference to
the GO semantic similarity measure is that the pathway
annotation basis is ConsensusPathDB (instead of GO),
which currently contains 3281 curated pathways from
12 public pathway databases. Also, the pathway
co-occurrence results in a binary indicator whereas the
GO semantic similarity measure provides a continuous
score.

Integration of confidence scores from different methods

IntScore offers the possibility to combine confidence
scores calculated by different methods into an aggregate
score. This is generally useful because the different scoring
methods tend to capture different topological or func-
tional features of interactions (an exception is that the
GO biological process semantic similarity score and the
pathway co-occurrence evidence are somewhat redundant
to each other). Thus, an aggregate confidence score should
be more reliable. To enable score integration, two disjoint
subsets from the input interactions must be distinguished
by the user as positive and negative reference sets, respect-
ively. They are used by IntScore to train either a support
vector machine or a logistic regression model (selectable
by the user), where the confidence scores calculated by the
separate methods are treated as interaction features. The
model is then used to predict confidence values for the
whole input network. Although integral for quality assess-
ment of interaction data, the generation of suitable gold
standard positive and negative interaction sets is still a
daunting task (11,23,24). Due to the different and comple-
mentary nature of PPI inference techniques, there are no
generic positive and negative reference sets that are
suitable for data quality assessment. Rather, the different
nature of interaction data can most reliably be assessed
with reference sets accounting for the data properties, such
as whether binary interaction data, co-complex data or

genetic interaction data need to be assessed (32). Due to
lack of a generic, optimal solution, the choice for reference
sets is up to the user. However, if no reference sets are at
hand, IntScore can be used to generate such. A strategy to
do this suggested here is to apply the literature evidence
and GO semantic similarity methods on the network to
distinguish interactions that are likely to be true positives
(e.g. the ones reported in three or more publications) and
gene/protein pairs that are likely to be non-interacting
(e.g. randomized gene/protein pairs without literature
evidence, where the two proteins are located in different
compartments as per GO cellular component annotation)
(13,23). These sets of interactions can then be used as
positive and negative interaction sets for a subsequent
IntScore request. In this case, it should be noted that the
scoring methods used to generate the positive and negative
interaction sets must not be included in a subsequent score
integration because this would bias the aggregate score.

INPUT, OUTPUT AND SCALING BEHAVIOR

Input

The input for IntScore is a binary interaction network, i.e.
a list of interactions each having strictly two participants
(genes/proteins). It can either be uploaded as a flat file or
pasted in the respective input field (Figure 1A). If any
annotation-based methods are to be used, the interaction
participants should be consistently annotated with Entrez,
Ensembl, RefSeq, UniProt, HGNC, CYGD, SGD, MGI
accession numbers or official gene symbols. After
providing an input network, the user should select one
or more methods for confidence scoring. The description
of each parameter for each method can be found on the
IntScore web site and its documentation. If multiple
methods are selected, their output can be integrated into
an aggregate score. In this case, the user should add-
itionally provide two disjoint subsets from the input inter-
action set that represent positive and negative (i.e. non-
interacting), interaction sets, accordingly. As discussed
above, IntScore can be used also to generate such sets.

Output

IntScore returns a zip archive file containing (i) the confi-
dence scores calculated by the user-selected methods for
each interaction as a tab-delimited file (‘network.scored
.tsv’); (ii) the distributions of scores calculated by each
method visualized with an image (‘scoreDistributions
.png’); (iii) a table in tab-delimited format that contains
the Spearman correlation coefficients between scores re-
sulting from different methods, if more than one method is
selected (‘correlationTable.tsv’). Depending on the user’s
request, the zip file may also contain (iv) the PubMed
identifiers of publications that report each interaction
(‘network.pubmedIds.tsv’); (v) the GO terms annotated
to interactors (e.g. ‘network.goBPannotation.tsv’ for bio-
logical process annotations); (vi) the names and database
sources of biochemical pathways where the pair of inter-
acting genes/proteins are found together (‘network.
containingPathways.tsv’); and (vii) a plot resulting from
the clustering granularity (inflation parameter) estimation
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Figure 1. Screenshots of the input form (A) and results page (B) of IntScore. 1) Links to documentation and general information about IntScore;
2) Button for loading example data (high-quality interaction network from (34) with 3% randomly rewired interactions); 3) Input field where
interactions can be pasted; 4) List of methods provided by IntScore, selectable by the user; 5) Download button for results of IntScore; 6) Histograms
showing the score distribution of each user-selected method; 7) Correlation table showing the Spearman correlation coefficients for scores calculated
by different methods.
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procedure of CAPPIC, if the respective option of CAPPIC
is selected (‘cappic_inflationScanPlot.png’) [relevant only
for expert users interested in more details about CAPPIC,
cf. (Kamburov et al., submitted)]. The scores calculated
by the different methods have different ranges, which
are specified in the short description of each method on
the IntScore input form (Figure 1A). However, scores
obtained with each of the six methods increase with
increasing interaction confidence. Aggregate scores corres-
pond to probability estimates, i.e. a low aggregate score
indicates that the corresponding interaction is likely false
positive (or interactors lack biological information,
if annotation-based methods are integrated), whereas a
high aggregate score indicates that an interaction is
likely to be true. Apart from providing the zip file
described above, the web server displays the distributions
of scores, a score correlation table, method-specific details
(e.g. the training accuracy of the score integration proced-
ure, if selected), as well as a process log (Figure 1B). The
weighted network output by IntScore can be used directly
as input for computational analysis tools such as
Cytoscape (33).

Scaling behavior

The runtime of IntScore depends primarily on (i) the size
of the provided network, (ii) which scoring methods are
selected by the user, as well as (iii) the parameter settings
of the selected methods. The runtime performance of
topology-based methods additionally depends on the in-
trinsic structure of the network, e.g. CAPPIC may
perform differently for networks with the same size but
with different modularity. Other factors influencing the
runtime of IntScore are how busy the processing servers
are at the time of the submission, and the user’s internet
connection. Systematic runtime performance estimation is
complicated by the high number of available methods and
parameters. Instead, we summarized in Supplementary
Figure S1, the runtimes for 10 example networks with
different sizes within the range of a typical interaction
screen (although IntScore can handle networks containing
>105 interactions), in order to give users an intuition
about how long it will take to process their request.
Notably, IntScore features an optional e-mail notification
system that sends results to the user as soon as they are
ready.

EXAMPLE APPLICATION

We applied IntScore on a proteome-scale yeast network
derived with the protein-fragment complementation assay
(PCA) (34). The original network consisted of 10 230
interactions among 2293 proteins. For each interaction,
the authors have provided a z-score corresponding to
the significance of the PCA intensity readout. Further-
more, they have distinguished a set of 2770 high-quality
interactions among 1124 proteins based on experimental
interaction evidence. We used the largest connected com-
ponent of the complete network excluding self-
interactions as input for IntScore. This network consisted
of 9605 interactions among 2238 proteins (Supplementary

Data set 1). Our goal was to assess the consistency
between an aggregate score calculated by IntScore that
integrates topology-based and annotation-based methods
with the independent, experimental evidence provided by
the authors of the study. To integrate the scores calculated
by the separate methods in IntScore, we first created
positive and negative reference sets. As a positive inter-
action set, we distinguished 391 interactions from the
input network that had more than two literature refer-
ences. This was done using the literature evidence
method provided by IntScore. To construct a negative
set (i.e. non-interacting protein pairs), we randomly
rewired 3% of the input network, preserving the nodes’
degrees (35). In a subsequent IntScore request, all confi-
dence methods were executed on the input network using
standard parameters. To avoid bias, the literature
evidence method was excluded from the calculation of
the aggregate score, because this method had been used
to construct the positive reference set. The distributions of
the scores calculated by the separate methods and the ag-
gregate score are depicted in Figure 1B. We binned all
interactions ordered by aggregate score into 10 equally
sized bins and calculated the mean experimental intensity
z-score and the fraction of high-quality interactions (as
per experimental evidence) in each bin. Figure 2 shows
that the aggregate interaction confidence score based on
topological and annotation features correlated well with
the independent experimental interaction evidence. The
Spearman correlation coefficient between the aggregate
score and the experimental z-score was 0.31 (P< 10�6).
The fraction of high-quality interactions also increased
with increasing aggregate score. For example, 12 out of
the 100 interactions with the lowest aggregate score and 85
out of the 100 interactions with the highest aggregate score
have been denoted high-quality as per experimental

Figure 2. Experimental interaction score (red line, left-hand side y-axis)
and fraction of high-quality interactions distinguished as per experi-
mental evidence (blue line, right-hand side y-axis) are plotted against
interaction bins with increasing aggregate score as calculated by
IntScore (x-axis). The input network corresponds to an in vivo PCA
map of yeast (34). HQ: high quality.
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evidence. This example application demonstrates that an
aggregate score combining topological and annotation
features of interactions corroborates experimental inter-
action evidence.

CONCLUSION

IntScore is a web server for confidence scoring of biolo-
gical interactions. It provides six methods for confidence
scoring, as well as the possibility to integrate the
method-specific scores. IntScore can serve experimental-
ists to increase the quality of data produced by interaction
screens and assess the performance of those screens, and
can help computational biologists to increase the reliabil-
ity of network-based inferences by controlling the
accuracy of the input interaction data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figure 1 and Supplementary Data set 1.
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