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In this article, we describe a new approach that combines the estimation of the
lengths of highly conforming sublists with their stochastic aggregation, to deal
with two or more rankings of the same set of objects. The goal is to obtain a
much smaller set of informative common objects in a new rank order. The input
lists can be of large or huge size, their rankings irregular and incomplete due to
random and missing assignments. A moderate deviation-based inference procedure
and a cross-entropy Monte Carlo technique are used to handle the combinatorial
complexity of the task. Two alternative distance measures are considered that can
accommodate truncated list information. Finally, the outlined approach is applied to
simulated data that was motivated by microarray meta-analysis, an important field
of application.

Keywords Cross-entropy Monte Carlo; Kendall’s �; Moderate deviation; Partial
list; Random degeneration; Rank aggregation; Spearman’s footrule; Top-k
ranked list.

Mathematics Subject Classification 62G86.

1. Introduction

In various fields of application, such as consumer preference, election of political
representatives or social choice, we have to consolidate lists of rankings for the
same set of objects or subjects. The ranking is usually performed by selected
persons (assessors or voters) and recently also by technical devices (e.g., omics
platforms). When the number of items is small and the number of assessors is large,
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Consolidation of Ranked Lists 1153

sometimes called the majority vote problem, statistical methods are available (see,
e.g., Mallows, 1957; Fligner and Verducci, 1986; Cohen et al., 1999). However, we
are interested in the case where the number of items is large or even huge and
the number of assessors (ranking mechanisms) is small. This is typical for tasks
in genomics when information needs to be combined across multiple biological
experiments and laboratory platforms. For instance, in microarray studies, the
use of different technologies means that not all studies yield comparable gene
expression levels. However, we might want to derive a global list of genes which are
differentially expressed between two conditions such as pathogenic vs. normal based
on the complete experimental evidence. This task requires the meta-analysis of the
available experimental outcomes.

Regrettably, combinatorial solutions are NP-hard (e.g., see Fagin et al., 2003)
and standard statistical techniques no longer apply. Alternative, computationally
feasible techniques are in demand. For example, similarities of ordered gene lists
for the meta-analysis of microarray experiments are studied in Yang et al. (2006).
Most recently, a data integration approach has been proposed (Lin and Ding,
2009), which enables dealing with a few lists of up to a few hundred items. Both
concepts are interesting but inappropriate for the consolidation of the very long lists
(usually with rank information degradation) that we address here. An additional
complication is dealing with lists which do not necessarily comprise the same set
of objects. In response to these demands, we suggest a new statistical concept
which: (i) allows us to truncate lists in a pairwise manner when the degree of
overlap of rank positions becomes erratic; and (ii) helps to aggregate the truncated
lists thereby obtained. We finally end up with a consensus-based subset of objects
in a new rank order. Our approach avoids computational complexity to such
an extent that data sets of reasonable size can be handled. For instance, high-
throughput biotechnologies are very demanding because they typically produce tens
of thousands of measurements in each experiment.

For the rest of this article let us assume that the rank assignment in each list
does not depend on the assignment in the other lists, i.e., ranking persons or devices
act stochastically independent of each other. Further more, let us have � such input
lists representing rank positions of the same set of N objects. The ranking of objects
is from 1 to N , without ties, where 1 denotes the highest and N the lowest ranking.

We assume a discrete space O that contains all N objects, denoted by oi, i =
1� � � � � N . Since all objects o can be associated with a unique label i = 1� � � � � N , O
can be viewed without loss of generality as a list O = �1� 2� � � � � N�. Let us denote the
rank of element oi in O by R�i� under a particular assignment. Then a permutation
of O� ��O� = �1� 2� � � � � N�, such that R�i� ≤ R�j� for any i < j, is a complete ranking
of the items in O. Under the assignment mechanism �, we refer to ��O� as a full
ranked list, and to R��i� as the rank of object oi.

In the particular applications we have in mind, a full ranked list is neither
desirable nor available. Instead, one is only interested in a partial list (sub-space)
O′ ⊂ O of length k. Without loss of generality, we assume that the partial ranked list
��O′� = �o′1� o

′
2� · · · � o′k� is ordered according to their ranks such that R�o′i� < R�o′j�

for i < j. It is implicitly assumed that all the items that are in O but not in O′ are
ranked lower than k (i.e., have indices k+ 1� k+ 2� � � � � N ).

In this article, we will have � such lists of length kl (l = 1� 2� � � � � �). Note that
neither the lengths of the lists nor the underlying spaces O1� O2� � � � � O� necessarily
need to be the same.
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1154 Schimek et al.

Our goal is to identify a subset of objects that is characterized by high
conformity across the � lists, more specifically, to arrive at a new ranking of the
items in O′ = ⋃�

l=1 O
′
l, or a top-k list of O′, that integrates the information contained

in the partial (truncated) lists.
This implies that there is similarity between the rankings which can be evaluated

by a distance measure d (a permutation metric) such as Kendall’s � (not to be
confused with the already introduced � denoting a ranked list) or Spearman’s
footrule. The problem with such a measure is: (i) that we need to have a complete
ranking of the objects in all lists (no missing assignments); and (ii) that the amount
of consensus (the probability for overlap in rank position for each object across the
lists) is assumed to remain the same from the highest to the lowest rank. However,
in most applications, especially for large or huge numbers N of objects, it is unlikely
that consensus prevails. This is true for consumer preferences of products as well as
for many applications in science and technology. Typically, we can observe a general
decrease, not necessarily monotone, of the probability for consensus rankings with
increasing distance from the top rank position. Moreover, it is often the case that
there is reasonable conformity in the rankings for the first k items of the lists,
motivating the notion of top-k ranked lists. Hence, for our task, we are required to
aggregate � lists O′

l of various lengths kl under the condition of missing assignments
(incomplete rankings) because a specific object might not be a member of each of the
partial lists. To deal with this condition the distance measure d needs to be adapted
to subspaces.

The idea of distance measure modification will be taken up following the
introduction of Kendall’s � or Spearman’s footrule, respectively. Then our
stochastic approach will be discussed with respect to inference (i.e., estimation of
the kl’s) and integration (i.e., aggregation of objects belonging to the subspace O′

characterized by high conformity of items across lists). Finally, various simulation
evidence motivated by gene expression (microarray) data is provided. However, the
scope of our method goes far beyond microarray data integration as will be pointed
out in the conclusions.

2. Measures of Distance and Their Adaptation to Partial Lists

A measure of distance is essential when objects are aggregated across ranked lists.
Apart from this special application, measures of distance or metrics are relevant for
non-parametric rank-based statistical methods in general. Such measures have been
treated extensively, for instance in Marden (1995).

Here, we discuss two measures, Kendall’s � distance (Kendall, 1938) and
Spearman’s footrule distance (Spearman, 1906), which can both be modified to deal
with truncated lists with presumably different underlying spaces. For a thorough
discussion of space aspects in ranking procedures, see Lin (2010).

2.1. Kendall’s �

Kendall’s � is equal to the number of adjacent pairwise exchanges required to
convert one ranking, or permutation, to another. Essentially, this means counting
the number of pairwise discordances between the two lists. Let us have two full
ranked lists �1 and �2 on space O, and pairwise discordances between the two lists

dk�i� j� = I
[
�R�1

�i�− R�1
�j���R�2

�i�− R�2
�j�� < 0

]
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Consolidation of Ranked Lists 1155

for i� j = 1� � � � � N . I�·� is an indicator function that takes the value of zero or one
depending on whether the condition within the brackets is satisfied or not. Then,
Kendall’s � distance is given by

K��1� �2� =
∑

�i�j�∈O
dk�i� j��

Its maximum is N�N − 1�/2 where N is the list length.
As pointed out already, a complication is handling incomplete rankings

obtained from truncated lists. Conventional distance measures cannot be applied
directly since they deal only with comparing one permutation against another over
the same set of objects (requires complete rankings throughout). But Kendall’s �
can be modified to account for incomplete rankings as shown below.

Let us have two truncated lists, �′1 and �′2 of length k1 resp. k2. Let �1 and �2
be the underlying associated ranking mechanisms over the space O. Assume that
the sub-space O′ contains all the objects that are present in either O′

1 or O′
2 (O′ =

O′
1 ∪ O′

2). Let O′c
m denote the complement of O′

m for m = 1� 2. For each i ∈ O′, if
i ∈ O′

l, then the rank R�m
�i� is defined as in the original list; if i ∈ Om ∩ O′c

m, then
define R�m

�i� = km + 1, otherwise the rank is left undefined. For each pair of items
i� j ∈ O′, let D be the collection of pairs of items that are in both lists. Furthermore,
let B denote the collection of pairs with the following property: both items of each
pair belong to either one of the lists but not to both. We define

d′
k�i� j� =

{
I
[
�R�1

�i�− R�1
�j���R�2

�i�− R�2
�j�� < 0

]
if �i� j� ∈ D ∩ Bc

p otherwise,
(1)

where I�·� is an indicator function and p a penalty parameter taking values between
zero and one, usually set to 1

2 . This definition due to Lin (2010) differs slightly
from the one given in DeConde et al. (2006). The Kendall’s � distance for the
discordances given in (1) amounts to

K��′1� �
′
2� =

∑
�i�j�∈O′

d′
k�i� j��

Hence, the modified measure can be evaluated in a similar fashion to the original
one.

2.2. Spearman’s Footrule

An alternative measure of distance is Spearman’s footrule. Let us assume again two
permutations �1 and �2 of a set O of objects. Spearman’s footrule distance is the
sum of the absolute differences between the ranks of the two lists over all items in O

S��1� �2� =
∑
i∈O

�R�1
�i�− R�2

�i���

where R�m
�i� is the rank of object i in list �m (m = 1� 2). As can be seen from

the formulae, Spearman’s footrule takes the actual rankings of the items into
consideration, whereas in Kendall’s �, only relative rankings matter. The maximum
Spearman’s distance is N 2/2 for N even, and �N + 1��N − 1�/2 for N odd, which
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1156 Schimek et al.

corresponds to the situation in which the two lists are exactly the reverse of each
other.

Spearman’s footrule can also be modified to allow for partial lists. Let us
compare two truncated lists corresponding to the subsets O′

1 and O′
2. Again, we

consider O′ = O′
1 ∪ O′

2. For each i ∈ O′, if i ∈ Om ∩ O′c
m (O′c

m is the complement
of O′

m) we define R�m
�i� = km + 1. Because in Spearman’s footrule not just the

relative orderings are taken into consideration, one cannot simply leave the rankings
of some of the objects undefined. Instead, we also let R�m

�i� = km + 1 if i �∈ Om.
Applying this modification, we can compute the Spearman’s footrule distance for
incomplete rankings in the same manner as for complete rankings.

Note that not all distance measures are also metrics (especially when adapted
to partial lists). For the mathematical theory behind distance measures we refer to
Fagin et al. (2003).

3. A Combined Inference and Integration Approach

A methodology is needed that allows us to consolidate � lists, i.e., to calculate a
new top-k list �∗ (an ordered set of objects) that is characterized by rankings of high
conformity across the assessments up to position k∗.

Our data-driven approach consists of two algorithmic steps. In step one, we
estimate the lengths kl of the truncated lists O′

l from all pairwise combinations of the
� full lists Ol, exploiting the complete information contained in these lists. All items
ranked equal or higher than some overall index k∗ (a function of the individual k’s),
are kept for step two, the aggregation of objects under a stochastic optimization
criterion. Rank aggregation is computationally extremely expensive, thus truncated
lists as input are essential to reduce the computational burden (usually kl 
 N in
empirical data).

3.1. Degeneration of Pairwise Rank Information

Hall and Schimek (2012) developed a moderate deviation-based inference procedure
for random degeneration in paired ranked lists. The concept of moderate deviations
was originally introduced in the context of wavelets by Donoho and Johnstone
(1994).

In practice, the degree of correspondence, i.e., overlap in rank positions for an
arbitrary object, between ranked lists (full or partial) is not high because of irregular
and incomplete rankings due to random and missing assignments. However, the
procedure proposed by Hall and Schimek (2012) is specifically designed to deal with
such complications. For each combination of two full lists, an estimate k̂ for the
length of the partial (top-k) list can be obtained via a moderate deviation argument.
The probability that an estimator, computed from a pilot sample size 	, exceeds a
value z, the deviation above z is said to be a moderate deviation if its associated
probability is polynomially small as a function of 	, and to be a large deviation if
the probability is exponentially small in 	.

Let us have a sequence of indicators, where Ij = 1 if the ranking, given by
the second assessor to the object ranked j by the first assessor, is not more than

 index positions distant from j, and otherwise Ij = 0. Further, let us assume:
(i) independent or modestly correlated (m-dependent) Bernoulli random variables
I1� � � � � IN , with pj ≥ 1

2 for 1 ≤ j ≤ j0 − 1, pj0−1 >
1
2 , and pj = 1

2 for j ≥ j0; (ii)
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Consolidation of Ranked Lists 1157

a “general decrease” of pj for increasing j that does not need to be monotone.
The index j0 is the point of degeneration into noise and needs to be estimated
(ĵ0 − 1 = k̂).

For a pilot sample size 	, the values of z = z	 that are associated with moderate
deviations are

z	 ≡
(
C	−1 log 	

)1/2
� (2)

where C > 0 is a constant. The quantities

p̂+
j = 1

	

j+	−1∑
n=j

In and p̂−
j = 1

	

j∑
n=j−	+1

In (3)

represent estimates of pj computed from the 	 data pairs In for which n lies
immediately to the right of j, or immediately to the left of j, respectively.

The constant C is chosen so that z	 in (2) is a moderate-deviation bound for
testing the null hypothesis H0 that pk = 1

2 for 	 consecutive values of k, vs. the
alternative H1 that pk >

1
2 for at least one of the values of k. In particular, assuming

that H0 applies to the 	 consecutive values of k in the respective series at (3), we
reject H0 if and only if p̂±

j − 1
2 > z	. Under H0, the variance of p̂

±
j equals �4	�−1. This

implies a value for the constant C > 1
4 .

The complex inference problem is solved via an iterative algorithm, adjustable
for irregularity in the rankings. The overall estimate k̂∗ for the � lists �l is calculated
in the following way. The inference procedure is executed for all possible pairs L =
��2 − �� of lists �l, thus we obtain L values k̂j (j = 1� 2� � � � � L). The overall top-k list
length is then defined by k̂∗ = maxj�k̂j�, a conservative assumption chosen to avoid
loosing any information from the pairwise comparisons.

3.2. Rank Aggregation of Several Lists

When we wish to aggregate rank orders in a stochastic manner we need to have an
optimization criterion, which itself is specific to the choice of a distance measure.
Measures conforming with the so-called generalized Kemeny guidelines are most
appropriate for this task (see Dwork et al., 2001). Kendall’s � distance is among
them.

Let us have rankings �1� �2� � � � � �� (these are usually from truncated lists) as
input. Let O′ = ⋃�

l=1 O
′
l and � be the consensus ranking with respect to O′, assuming

that the kl’s are fixed. Then our goal is to find an estimate of � (i.e., an ordered
subset of O′) that minimizes the sum of weighted distances between � and each of
the lists �l. We seek �∗ such that

�∗ = argmin
�

{
�∑

l=1

wld��� �l�� � ⊂ O′
}
� (4)

where w = �w1� w2� w3 � � � � w�� is a weight vector that can be used to specify prior
information on the relative importance of the input lists, and d is a distance
measure. Note again, the ranked lists can be of different lengths and from different
spaces.
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1158 Schimek et al.

When wl = 1
�

for all l and d��� �l� = K��� �l�, denoting Kendall’s distance
measure, the estimate �∗ in Eq. (4) reduces to the Kemeny optimal aggregation (for
details see Schimek et al., in press).

The actual computation of the optimal aggregation of full lists of size N , or
even partial lists when k is large, constitutes a severe combinatorial problem, as
already mentioned. To overcome this obstacle, Markov chain (MC) approaches
have been devised (e.g., see DeConde et al., 2006). Consensus rankings (majority
preferences) between pairs of items across lists are formed. The assumption that
assessors continuously compare pairs of alternatives during their decision process
leads naturally to a MC representation. A decision matrix characterizes the potential
transitions between alternative decisions. The limiting equilibrium distribution
represents the global assessment of all objects. An advantage of MC approaches is
that they do not require all the lists to comprise the same objects. A drawback is
the associated computational effort.

A more recent approach to solve (4) is cross-entropy Monte Carlo (CEMC)
introduced by Rubinstein (1997) for estimating probabilities of rare events in
complex stochastic networks and then followed up with complicated combinatorial
optimization problems. Several authors have taken advantage of this basic principle
for efficient rank aggregation. We prefer the CEMC approach of Lin and Ding
(2009) to the one of Pihur et al. (2007) because the former authors have introduced a
new Order Explicit Algorithm (OEA) which will be described below. It is motivated
by the fact that the orders of the objects in the optimal list are explicitly given in
the probability matrix v. As a result, Lin and Ding’s algorithm is computationally
much more efficient, and equally important, it permits modified distance measures
as we have considered in this article.

Let us assume a random matrix X = �Xjr�N×k with each component variable X

taking the values 0 or 1, and with the constraints of its columns summing up to 1
and its rows summing up to at most 1. This implies that each realization x of X
uniquely determines an ordered list of length k by the position of 1’s in each column
from left to right. The length k of the aggregated top-k list can be any number not
exceeding the size of the union of the full lists, but usually much smaller than N . Let
v = �pjr�N×k denote the corresponding probability matrix (each column sums to 1).
For each column variable, Xr = �X1r � X2r � � � � � XNr�, a multinomial distribution with
sample size 1 and probability vector vr = �p1r � p2r � � � � � pNr� under the constraints of
the joint column variables is assumed. Any realization x of X uniquely determines
the corresponding top-k candidate list without reference to the probability matrix v.
That is, A = f�x� = �xjr � xjr = 1� j = 1� 2� � � � � N� r = 1� 2� � � � � k�. The 1’s in each of
the k columns make up the top-k list, in that order. Given the 1-to-1-correspondence
between A and x, finding A∗ is equivalent to finding x∗ that minimizes ��f�x��.

Using CEMC, x∗ can be obtained by iteratively updating the parameter matrix
v such that, iteration by iteration, Pv�x� will place more and more of its probability
mass on the x’s that are in the “neighborhood” of x∗. Loosely speaking, x is
called a neighbor of x∗ if the corresponding value of the objective function, y =
��f�x� v��, is close to the minimum y∗. Let v be the current estimate of the
parameter matrix. The next parameter update v′ is chosen to minimize the cross
entropy CE�Q∗� Pv′� between the distributions Pv′ = Pv′�x� and Q∗, where Q∗ is the
ideal but unobtainable importance sampling distribution for estimating the rare
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Consolidation of Ranked Lists 1159

probability b = Pv
��f�x� v�� ≤ y�,

Q∗�x� = I
��f�x� v�� ≤ y�Pv�x�
b

�

Minimizing CE�Q∗� Pv′� is equivalent to maximizing

∑
x

�I
��f�x� v�� ≤ y� logPv′�x��Pv�x� = Ev 
I
��f�x� v�� ≤ y� logPv′�x�� �

which is now free from the probability b to be estimated.
Suppose xi = �xijr�N×k, i = 1� 2� � � � � m� is a sample drawn from Pv�x� with

the current parameter specification v and the corresponding candidate top-k lists
denoted as �i = f�xi�, i = 1� 2� � � � � m. Then,

vnew = argmax
v′

{
1
m

m∑
i=1

I
��f�xi� v�� ≤ y� logPv′�xi�

}
(5)

=
[∑m

i=1 I����i� ≤ y�xijr∑m
i=1 I����i� ≤ y�

]
j=1�����N�r=1�����k�

(6)

can be used in the update for the next parameter matrix v′. In addition, the threshold
value y can also be updated iteratively. Equations (5) and (6), respectively, lead to
the construction of a sequence, y0� y1� � � � , which converges to a value y
 close to
y∗ (Margolin, 2005). Similarly, v0� v1� � � � � converges to v
, with the corresponding
Pv
�x� placing most of its probability mass on the x’s that satisfy ��f�x� v�� ≤ y

(Lin and Ding, 2009).

A final remark, when aggregating the top-k lists, the distances in the
optimization criterion to be computed are those between the candidate aggregate list
and each of the input lists �l. Suppose the lengths of the input lists kl are not all the
same, then Kendall’s � as well as Spearman’s footrule distance need to be scaled (to
be independent of the list length). For instance, the maximum feasible distance of
Kendall’s � would be a reasonable scaling factor. The same applies to Spearman’s
footrule.

4. Simulation Evidence

In our approach, the algorithm for inference in step one, as well as the algorithm
for integration in step two, require a number of technical and tuning parameters
to be set. However, most crucial as input to step two is the data-driven choice of
the top-k list lengths of the truncated lists, which also depend on such parameters.
The ad-hoc choice of the k’s, which has prevailed so far, conflicts with our goal of
obtaining an informative ordered subset of objects that is characterized by a high
consensus in the rankings across all � lists.

In various simulation experiments, we studied the impact of the parameter
choice on the aggregation results. Due to page limitations, we will focus on selected
findings.
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1160 Schimek et al.

4.1. Outline of Simulation Study

We generated random samples of microarray data based on a 10-vs.-10 experiment
(number of replicates in each experiment) of N genes, where the first k genes in 10
replicates are differentially expressed. For an introduction to the statistical analysis
of such experiments, see, e.g., McLachlan et al. (2004).

We simulated the microarray data as follows: a data matrix of N rows and
2× 10 columns was randomly generated, each row representing one gene and each
column representing one subject. All 2× 10 subjects are random samples from a
Normal distribution with mean �0 = 0 and standard deviation �0 = 1 (following
Peng et al., 2003). Additionally, to the first k

2 positions of the last 10 subjects,
Normal random errors with different mean values �1 = 0�5� 0�75� 1� 1�25� 1�5 and
standard deviation �1 = 1, and to the positions � k2 + 1�� � � � � k, Normal random
errors with mean values �2 = −0�5�−0�75�−1�−1�25�−1�5 and standard deviation
�2 = 1, were added. The purpose of this was to simulate upregulated and
downregulated genes in a microarray experiment. The combination of those, in
absolute value identical, �1 and �2, generated five settings of increasing effect size.

The SAM package (“Significance analysis of microarrays”) was adopted to the
simulated microarray data to obtain ranked lists of expressed genes based on their
p-values. SAM is available in the R library samr (for details see, Tusher et al., 2001).
It was applied 5 times on 5× 20 different subjects to obtain � = 5 different ranked
lists of N genes.

Finally, for the generation of a complete artificial data set per effect size, the
whole simulation procedure was executed 100 times resulting in 100 simulations of
5 ranked lists of length N .

All tuning parameters, apart from the pilot sample size 	, in the inference and
integration procedures were fixed in compliance with Hall and Schimek (2012) and
Lin and Ding (2009) (default settings). The pilot sample size 	 plays the role of a
smoothing parameter in moderate deviation-based testing and is therefore critical
with respect to the calculation of ̂0. We considered values 	 ∈ 
2� 6� 10� 14� � � � � 98�.
The simulations were performed for distance values 
 ∈ 
0� 4� 8� 12� � � � � 40�, where

 = 20 is most adequate for these data, and both distance measures, Kendall’s � and
Spearman’s footrule. The practice of 
-choice is beyond the scope of this article (for
details, see, Schimek and Budinská, 2010; Hall and Schimek, 2012).

4.2. Simulation Study Results

The following results of our simulation study are given for N = 100 and k = 10.
We display two types of plots, one for the estimation of the overall top-k list length
(defined as the maximum from all L = 10 pairwise comparisons of rankings), and
the other for the aggregation of the five lists applying Kendall’s � and Spearman’s
footrule.

Figures 1 and 2 show series of boxplots of estimated k̂’s, plotted for various
values of the pilot sample size 	 and one selected distance 
 = 20. Figure 1 represents
the cases of small effect size. Its top graph corresponds to the estimates for means
�1 = 0�5 and �2 = −0�5, the middle one to the estimates for means �1 = 0�75 and
�2 = −0�75, and the bottom one to the estimates for means �1 = 1 and �2 = −1.
The dashed horizontal line represents the true value of k. The obtained estimates
for moderate effect size are summarized in Fig. 2 (has the same outline as Fig. 1).
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Consolidation of Ranked Lists 1161

Figure 1. Boxplots of estimates k̂ for the simulated data (N = 100 objects, true k = 10)
under 
 = 20 and 	 = 2� 6� 10� � � � � 50; top: �1 = 0�5, �2 = −0�5, middle: �1 = 0�75, �2 =
−0�75, and bottom: �1 = 1, �2 = −1 (small effect sizes).
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1162 Schimek et al.

Figure 2. Boxplots of estimates k̂ for the simulated data (N = 100 objects, true k = 10)
under 
 = 20 and 	 = 2� 6� 10� � � � � 50; top: �1 = 1�25, �2 = −1�25, and bottom: �1 = 1�5,
�2 = −1�5 (moderate effect sizes).

The top graph corresponds to �1 = 1�25 and �2 = −1�25, and the bottom graph to
�1 = 1�5 and �2 = −1�5.

We can observe that a small effect size in the simulated data goes hand in hand
with a slight underestimation of the true value of k, hardly influenced by the choice
of the pilot sample size 	 unless chosen far too large. This underestimation owes
to the fact that some of the differentially expressed genes are not present in the
top section of the ranked list due to randomness. However, genes sampled from
the standard Normal can be positioned among the top rankings. When considering
the estimated k̂∗ from the simulated data with larger effect size, the precision is
much higher. The results are stable for a wide range of pilot sample sizes 	. For the
strongest effect (�1 = 1�5 and �2 = −1�5), the parameter 	 = 14 seems to be the best
overall choice. In this optimal situation, 54% of all estimated k̂∗ lie in the interval

8� 11�. In general, we can claim that for short lists and a small true value of k,
the selection of a rather small value of 	 is appropriate. When random samples of
artificial microarray data are constructed as in this simulation study, irregularities
occur in the rankings, and a perfect reconstruction of the true top-k list length is not
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Consolidation of Ranked Lists 1163

feasible. However, for an adequate value of 
 and a parameter 	 not too far from
its optimum, the inference procedure can accomplish estimates close to the true k.

Figures 3 and 4 concern the aggregation results for the five truncated input
lists when Kendall’s � and Spearman’s footrule are applied. From both figures, one
can conclude that the first 10 (truly differentially expressed) genes are those that

Figure 3. Aggregation results for Kendall’s � under increasing effect size from top (�1 =
0�5, �2 = −0�5) to bottom (�1 = 1�5, �2 = −1�5) – frequency of appearance of the first 30
objects (of 100) in the simulated data for 
 = 20 and 	 = 6� 14� 22� 30� 38� 46.
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1164 Schimek et al.

Figure 4. Aggregation results for Spearman’s footrule under increasing effect size from top
(�1 = 0�5, �2 = −0�5) to bottom (�1 = 1�5, �2 = −1�5) – frequency of appearance of the first
30 objects (of 100) in the simulated data for 
 = 20 and 	 = 6� 14� 22� 30� 38� 46.

are most frequently identified as part of the top-k list. Even for the smallest effect
size (first row of histograms in Figs. 3 and 4), the frequency to appear in the top-k
list is significantly higher for the first 10 genes than for the remaining ones. With
increasing effect size, this frequency goes up compared to the rest of the gene set
(only the first 30 genes are displayed in Figs. 3 and 4). The obtained results are
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Consolidation of Ranked Lists 1165

consistent for a wide range of pilot sample sizes 	. For cases of small effect size,
larger values of 	 perform better, whereas for larger effect sizes, the whole interval
	 ∈ 
6� 46� is adequate. Let us finally look into potential differences between the
aggregation results due to the adoption of Kendall’s � versus Spearman’s footrule.
The direct comparison of the corresponding histograms in Figs. 3 and 4 makes it
clear: there are only minor differences with respect to the applied distance measure.
Kendall’s � tends to produce higher frequencies for the reconstruction of the top
10 objects compared to Spearman’s footrule, the former occasionally favoring the
first 3–5 of the top list. In summary, all obtained results (histograms) demonstrate
a perfect separation between the 10 true top-ranked objects and the remainder for
a wide range of pilot sample sizes 	, independently of the applied distance measure.

5. Conclusion

In various applications, for example in molecular biology, the consolidation of
full ranked lists is neither desirable with respect to the research goal, nor feasible
because of the high dimensionality of the data. Until now there has been a lack of
statistical procedures to deal with several lists of a dimension of hundreds or even
thousands of ranked objects. In this article, we have introduced an approach that is
powerful enough to handle multiple ranked lists of arbitrary length, while avoiding
combinatorial complexity. Firstly, it allows us to truncate the full lists in a data-
driven manner, yielding partial lists, and secondly to stochastically integrate them
into one aggregated list of objects in a new consolidated rank order.

The involved inference procedure is based on all possible pairwise assessments
and is designed to deal with irregular and incomplete rankings. The integration
procedure takes advantage of a modification of Kendall’s � or of Spearman’s
footrule distance measure, allowing for missing rank information resulting from the
truncation of the full lists.

We have illustrated the features and advantages of the new approach on
simulated data in the context of current microarray-based research. However, the
described methodology could be applied in many other areas such as consumer
preference research or in the consolidation of Web search engine results. Last,
but not least, it should be mentioned that all calculations were carried out with
the �-version of the R package TopKLists developed by the first author and
collaborators.
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