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ABSTRACT

Motivation: The identity of cells and tissues is to a large degree

governed by transcriptional regulation. A major part is accomplis-

hed by the combinatorial binding of transcription factors at regulatory

sequences, such as enhancers. Even though binding of transcription

factors is sequence-specific, estimating the sequence similarity of two

functionally similar enhancers is very difficult. However, a similarity

measure for regulatory sequences is crucial to detect and under-

stand functional similarities between two enhancers and will facilitate

large-scale analyses like clustering, prediction and classification of

genome-wide data sets.

Results: We present the standardised alignment-free sequence simi-

larity measure N2, a flexible framework that is defined for word neigh-

bourhoods. We explore the usefulness of adding reverse complement

words as well as words including mismatches into the neighbourhood.

On simulated enhancer sequences as well as functional enhancers in

mouse development, N2 is shown to outperform previous alignment-

free measures. N2 is flexible, faster than competing methods and

less susceptible to single sequence noise and the occurrence of repe-

titive sequences. Experiments on the mouse enhancers reveal that

enhancers active in different tissues can be separated by pairwise

comparison using N2.

Conclusion: N2 represents an improvement over previous

alignment-free similarity measures without compromising speed

which makes it a good candidate for large-scale sequence compa-

rison of regulatory sequences.

Availability: The software is part of the open source C++ library

SeqAn (www.seqan.de) and a compiled version can be downloaded

at: http://www.seqan.de/projects/alf.html

Contact: JG: goeke@molgen.mpg.de; MV: vingron@molgen.mpg.de

1 INTRODUCTION

Mammalian organisms consist of several hundred different cell

types. Every cell has the same repertoire of genes, however, only

a subset will be expressed to enable cell-type-specific phenotypes.

Many different factors regulate gene expression, of which geneti-

cally encoded transcriptional regulation seems to play the major

∗to whom correspondence should be addressed

part (Wilson et al., 2008). Sequence dependent gene regulation

is mainly achieved through the binding of transcription factors at

short DNA motifs. These transcription factor binding sites often

occur in regulatory clusters in the genome, called cis-regulatory

modules (CRMs). Some CRMs can repress transcription, whereas

others, referred to as ’enhancers’, can enhance gene expression.

Studies in Drosophila showed that the combination of binding sites

together with the set of transcription factors actively recruited to a

CRM determines its cell-type-specificity (Goto et al., 1989; Small

et al., 1991; Zinzen et al., 2009). More generally speaking, regula-

tory sequences with a similar binding site content can be expected

to drive similar expression patterns. This is analogous to coding

sequences, where sequence similarity has been used for many

years to estimate functional similarity. The pairwise similarity of

coding sequences is usually computed using global (Needleman and

Wunsch, 1970) or local (Smith and Waterman, 1981) alignments.

This approach works well for sequences which are at least par-

tially alignable, however this is not the case for non-homologous

CRMs. The location and orientation of binding sites in CRMs that

show similar cell- type-specific activity may differ widely, making

it impossible to produce alignments.

Alignment-free methods compare sequences according to their

word content, see Vinga and Almeida (2003) for an overview. The

initial purpose was to design a fast and accurate measure of pairwise

(dis-)similarity that could be used in databases where traditional ali-

gnments were too slow (Blaisdell, 1986; Hide et al., 1994; Carpenter

et al., 2002). In the meantime, alignment-free methods have been

applied in other contexts such as phylogeny (Wu et al., 2009) and

motif finding (Gordn et al., 2010). The idea to describe a sequence

by its word content directly fits the model of CRMs, where we

assume that a similar function is reflected in a similar binding site

content.

Word-count-based methods have been used to compare regulatory

sequences (Kantorovitz et al., 2007; van Helden, 2004). However,

these methods calculate the similarity of sequences based on exact

word counts, whereas transcription factor binding sites are gene-

rally more flexible patterns. Furthermore, the genomic orientation

of CRMs and of the binding sites within is most often unknown,

highlighting the need to compare sequences according to the word

counts on both strands simultaneously. As an example, the word

w = CATAAT might be bound by the same transcription factor as
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the words CTTAAT and ATTATG, the former having one substitu-

tion, the latter being on the reverse strand. Exact word comparison

methods consider these words dissimilar. More generally, let n(w)
be the set of words which are similar to w (the ’neighbourhood’ of

w). To overcome the limitation of exact word comparison methods,

we need to develop a similarity measure that compares sequences

based on word neighbourhoods. Theoretical approaches that consi-

der approximate word matches have been studied before (Burden

et al., 2008; Fort et al., 2006), however no applicable method has

been published for the purpose of pairwise comparison.

In this study we define N2, an alignment-free comparison method

that integrates all words in the neighbourhood of w. We com-

pare N2 to other alignment-free methods on simulated sequences

and tissue-specific enhancer sequences identified in vivo in mouse

embryos. The code and an executable file of the N2 similarity and

other alignment-free methods presented here is available as part of

the open source C++ library SeqAn (Doering et al., 2008).

2 METHOD

2.1 The N2 similarity score

Traditionally, the idea of alignment-free methods is to compare two

sequences S1 and S2, of length l1 and l2, based on the numbers of occur-

rences of all words w of length k over the alphabet Σ = {A,C,G,T}. Let

A be the set of all such words w with |A| being the total number of words

(4k in the case of DNA sequences). We associate a sequence S of length l

with the word count vector

NS =(NS
w1

, NS
w2

, ..., NS
w|A|

) , with (1)

NS
w =

l−k+1
X

i=1

1(S[i...i + k − 1] = w) . (2)

To overcome the restriction to exact word counts, we extend equation (2)

to word neighbourhood counts. We define the set of words in the neigh-

bourhood of the word w as n(w). The neighbourhood may be defined

appropriately for every application, for example, to fit transcription factor

binding motifs, to allow for reverse complement word counts or to include

mismatches. Integrating neighbourhood counts for every word w reduces

the influence of w itself. This leads to word counts ’smoothing’, i.e. inexact

words are considered similar, but also to ’blurring’, since inexact words

might not be related. To control for these effects, we associate every word

w′ in n(w) with a weight aw′ which may differ for the considered applica-

tion. We then compute the weighted word neighbourhood counts Nn(w) for

every word w of the sequence S:

NS
n(w) =

X

w′∈n(w)

aw′NS
w′ .

Depending on the choice of n(w), NS
n(w)

might be the sum of highly depen-

dent variables since word occurrences of overlapping words such as CAAAA

and AAAAA are strongly correlated. Additionally, the variance of individual

word counts should be considered, since, for example, a high number of

CAGCTG occurrences is more informative than a high count of self over-

lapping words such as AAAAAA where a Poly-A stretch of length 15 already

gives 10 occurrences. Furthermore, some words are more likely to occur than

others, GC-rich words for example are less frequent in mammalian genomes

than AT-rich words. We correct for inter-variable dependency, word count

variances and word probabilities by standardising the word neighbourhood

counts:

ÑS
w =

NS
n(w)

− E[NS
n(w)

]
q

V[NS
n(w)

]
.

Since the word counts might be dependent, the covariance of all words in

the word neighbourhood has to be computed to obtain V[NS
n(w)

] (see 2.2).

We now calculate the normalised standardised neighbourhood count vector

N̂S = (N̂S
w1

, N̂S
w2

, ..., N̂S
w|A|

) with

N̂S
w =

ÑS
w

‖ÑS‖

where ‖·‖ represents the Euclidean norm. We define the N2 similarity of

two sequences as the inner product of their normalised standardised word

neighbourhood count vectors:

N2(S1, S2) =< N̂S1 , N̂S2 > (3)

=
X

w∈A

N̂S1

w × N̂S2

w . (4)

As a consequence of the normalisation, −1 ≤ N2(S1, S2) ≤ 1, and

S1 = S2 ⇒ N2(S1, S2) = 1, i.e. equal sequences will always have

the maximum pairwise similarity of 1.

2.2 Calculation of expected value and variance

The N2 score can be computed with Markov models of any order. Here,

we illustrate the calculation of the expected value E[NS
n(w)

] and variance

V[NS
n(w)

] assuming a first order Markov model. For clarity, the superscript

indicator for sequence S is omitted in the following. Let the sequences be

modelled by a first-order homogeneous stationary Markov chain with tran-

sition probabilities π(i, j) (Robin et al., 2005). The probability µ(w) that

a word w occurs at a specific position i depends on the probability that the

first letter occurs, denoted µ(w[1]) (stationarity of the Markov chain) and

can be calculated as follows:

µ(w) = µ(w[1]) ×
k

Y

j=2

π(w[j − 1], w[j]) .

With this at hand, we can calculate the expected value E[Nn(w) ] of the

word neighbourhood counts (Robin et al., 2005):

E[Nn(w)] = E

2

4

X

w′∈n(w)

aw′Nw′

3

5

=
X

w′∈n(w)

aw′E[Nw′ ] , with

E[Nw′ ] = (l − k + 1)µ(w′) .

The variance is important to correct for the dependency of overlapping words

in the word neighbourhood. The variance V[Nn(w)] of the word neighbour-

hood counts corresponds to the variance of the sum of the weighted word

counts Nw:

V[Nn(w)] = V

2

4

X

w′∈n(w)

aw′Nw′

3

5

=
X

w′∈n(w)

X

w′′∈n(w)

aw′aw′′Cov[Nw′ , Nw′′ ] .
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The covariance of word counts can be calculated according to Robin et al.

(2005):

Cov[Nw, Nw′ ] = (5)

µ(w)

k−1
X

d=1

(l − k − d + 1) (6)

2

4εk−d(w, w′)
k

Y

j=k−d+1

π(w′[j − 1], w′[j])− µ(w′)

3

5

(7)

+µ(w′)

k−1
X

d=1

(l − k − d + 1) (8)

2

4εk−d(w′, w)
k

Y

j=k−d+1

π(w[j − 1], w[j]) − µ(w)

3

5 (9)

+µ(w)µ(w′)

l−2k+1
X

t=1

(l − 2k − t + 2) (10)

»

πt(w[k],w′[1])

µ(w′[1])
+

πt(w′[k],w[1])

µ(w[1])
− 2

–

(11)

−(l − k + 1)µ(w)µ(w′) . (12)

with ε indicating word overlaps:

εu(w, w′) =

(

1 if w[k − u + 1...k] = w′[1...u]

0 otherwise .

In the case where w = w′, we have Cov[Nw, Nw′ ] = V[Nw]. The word

count variance can be calculated as follows (Robin et al., 2005):

V[Nw] = (l − k + 1)µ(w)[1 − µ(w)] (13)

+2µ(w)

k−1
X

d=1

(l − k − d + 1) (14)

2

4εk−d(w)
k

Y

j=k−d+1

π(w[j − 1], w[j])− µ(w)

3

5 (15)

+2[µ(w)]2
l−2k+1

X

t=1

(l − 2k − t + 2) (16)

»

1

µ(w[1])
πt(w[k],w[1]) − 1

–

. (17)

Terms (17) and (11) are costly to compute and have minor effects on the

variance and covariance. In the following, we will therefore neglect those

terms, thereby assuming that the occurrence of non-overlapping words is

independent of the sequence in between (µ(w[1]) ≈ πt(w[k],w[1])).

2.3 Implementation and instances of N2

The implementation that we provide for N2 is part of the SeqAn library

(Doering et al., 2008). It requires a set of sequences in .fasta format as input

and returns a matrix with all pairwise similarity scores. The word length k

(default k = 5) and the background model order (default 1) may be chosen

manually and the normalised standardised word neighbourhood counts may

be returned to obtain additional information on important words. The cal-

culation of the scores is divided into two steps, a pre-processing step and a

comparison step.

The pre-processing step is run for every sequence individually. We esti-

mate the background Markov model, count the words, and calculate the

word’s probabilities and covariances. To avoid computing the full cova-

riance matrix, only required entries are dynamically computed and stored.

We then compute the standardised normalised word neighbourhood counts.

The running time of this step depends on the length of the input sequences,

the Markov model’s order, the word length and the size of the word

neighbourhood. It is linear in the number of input sequences.

In the comparison step, the inner product of the standardised normalised

word neighbourhood counts is computed for all pairs of sequences. The run-

ning time of this step depends on the word’s length and is quadratic in the

number of input sequences.

The most basic instance of N2, with n(w) = w will be referred to as

N2∗. In our implementation, n(w) may be extended to include its reverse

complement (rc),

nrc(w) = {w, rc(w)} (18)

all words equal to w with one mismatch (mm),

nmm(w) = {w′|disthamming(w, w′) <= 1} (19)

or the combination of both (mm, rc), where

nmm,rc(w) = {w′, rc(w′)|disthamming(w, w′) <= 1} . (20)

In the following, we will refer to these instances as N2rc, N2mm,

N2mm,rc. The word count of w (and its reverse complement when selec-

ted) is always weighted with aw = 1, for all other words w′ in n(w) an

alternative weight aw′ may be chosen. The weights for mismatch neighbour-

hood counts are indicated in superscript, we use aw′ = 1 (N2mm(1.0)) if

not stated otherwise. Note that in equations (19) and (20) our neighbourhood

definition only covers direct neighbours, not neighbours of neighbours.

2.4 Other methods

The simplest score between two sequences S1 and S2 is obtained by cal-

culating either the euclidean distance (Blaisdell, 1986) or the inner product

(Lippert et al., 2002) of the word count vectors NS1 and NS2 as defined

in equation(1). Both methods are called D2 and have been applied to biolo-

gical data (Hide et al., 1994; Carpenter et al., 2002). Here we focus on the

latter version using the inner product:

D2(S1, S2) =< NS1 , NS2 >

=
X

w∈A

NS1
w × NS2

w .

D2 is directly dependent on the length of the sequences, it can therefore not

be used for comparing sequences of different length.

The D2 z-score (D2z) was proposed to obtain a standardised D2 score

for which the significance can be estimated (Kantorovitz et al., 2007):

D2z(S1, S2) =
D2(S1, S2) − E[D2(S1, S2)]

p

V[D2(S1, S2)]
.

The expected value for D2 has been studied for approximate word matches,

and upper and lower bounds for the variance have been calculated (Burden

et al., 2008). This work is largely of theoretical nature for Bernoulli back-

ground models and no implementation is provided, therefore we could not

integrate this work into the analysis (see Discussion).

The D2∗ score (Reinert et al., 2009) standardises the word counts instead

of the inner product. Similarly to N2, D2∗ is defined as the inner product

of the standardised word counts as shown in equation (3), but in this case

n(w) only contains w itself, and the background model is computed on the

concatenation of both sequences.

Let µ(w) be the probability of w, the expectation of NS
w is then estimated

by E[NS
w ] = (l − k + 1)µ(w). The authors assume a Poisson distribution,

which implies that the variance is equal to the expected value. D2∗ was

originally proposed with a Bernoulli background model for the computation

of µ(w). Here, we extended this score to use Markov background models

of higher order. For the purpose of pairwise comparison, the D2, D2∗ and

D2z scores have been implemented in the SeqAn library (Doering et al.,

2008) and are part of the executable that is available online.
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Fig. 1. Running time comparison. All pairwise scores were calculated for

random sequences of length 1000bp.

2.5 Estimating the background Markov model

Calculation of the expected value and variance of the word counts assumes

that we know the background model that describes the sequence. For N2, we

estimate the background model separately for every sequence. This allows us

to precompute word probabilities and variances (see 2.3) leading to a great

reduction in computational costs. Since CpG dinucleotides in mammalian

genomic sequences are very rare (Gardiner-Garden and Frommer, 1987), a

Bernoulli background model is insufficient to estimate word probabilities.

This can be seen on simulations, where the first order Markov model consi-

stently outperforms the Bernoulli model across all methods (Supplementary

Table 1). The optimal order for the Markov background model for enhan-

cer sequences is an unknown function of organism complexity and sequence

length. Due to the limited size of enhancer sequences, estimating higher

order Markov models likely results in overfitting and poor estimates. Our

analysis will therefore rely on a first order Markov chain as background

model for all methods throughout this analysis.

2.6 Masking repeats

Repeats such as SINE elements have a substantial influence on pairwise sco-

res. We use the UCSC pre-masked genome sequence (hg19, RepeatMasker

(www.repeatmasker.org), TandemRepeatsFinder(Benson, 1999)) in order to

hide those repetitive elements. Any repeat-masked sequence is split into a

set of repeat-free sub-sequences by cutting out all repeat regions. Words

are counted in this set such that no articial words are created by concate-

nation. We use (number of counted words) + k − 1 as an estimation of

the length of the repeat-free sequence. Repeat-masked sequences are trea-

ted equally for all methods. Note that this is slightly different to the original

method proposed for D2z, which introduced articial words by concatenating

sequences.

3 RESULTS

3.1 N2 can be computed quickly

Genome-wide data sets consist of many thousand regulatory

sequences. The computation of pairwise similarities needs to be effi-

cient for large-scale usage. We estimated the running time of each

score on sets with various numbers of sequences where we com-

puted the matrix of all pairwise similarities (quadratic number of

Running time in O notation

D2 O(nl + n24k)
D2z Kantorovitz et al. (2007)

D2∗ O(n2(l + 4k + 4m))

N2 O(n(l + 4m + 4kNeighbourhoodSize2) + n24k)
Table 1. Running time of the different methods in O-notation. n: number

of sequences; l: average sequence length; k:k-mer size; m: Markov model

order. The running time for D2∗ is dominated by the quadratic term. The

running time for N2 is dominated by the linear term (pre-processing).

scores computed). The methods show strong differences in prac-

tise (Figure 1), but N2 and its variants are always faster than the

other scores with a statistical model for realistically chosen num-

bers. Computing pairwise scores for 5000 enhancers with k = 6
takes 2 hours (h) for N2∗ (4h for N2rc, 20h for N2rc,mm), it takes

about 42 h for D2∗ and 91 h for D2z.

The computation of N2 is dominated by the pre-processing step

which scales linearly in the number of sequences since the neigh-

bourhood counts are calculated once for every sequence in advance

(Fig. 1, Table 1, see Methods). In contrast, D2z and D2∗ can-

not precompute normalised counts like N2, and scale quadratically

in the number of sequences. D2z calculates z-scores on pairs of

sequences which are not preprocessed (Kantorovitz et al., 2007),

and D2∗ calculates the background model on the concatenation

of sequences which cannot be precomputed (Reinert et al., 2009).

While this is likely to increase the accuracy of the model, running

times are drastically higher. Computing pairwise scores for reali-

stically large data sets is therefore nearly impossible for both D2z

and D2∗. This makes the N2 score very attractive for large-scale

applications such as classification of regulatory sequences, or app-

lications that support precomputed data structures such as database

searches.

3.2 N2 is robust against single sequence noise

Ideally, the pairwise score between two sequences should reflect

the sequences’ similarity. However, in practise, word-count-based

methods can be heavily influenced by noise specific to individual

sequences, meaning that some sequences will intrinsically have high

(or low) scores (Lippert et al., 2002; Reinert et al., 2009). Without

proper correction, the pairwise score is an attribute of the indivi-

dual sequence rather than of the pair of sequences. This is especially

prominent for D2, where a high number of occurrences of a repe-

titive self-overlapping word (such as AAAAA) in one sequence will

always induce high pairwise scores. To quantify the influence of

single-sequence-specific noise on pairwise scores, we studied the

behaviour of D2, D2z, D2 and N2 for scoring pairs of unrelated

sequences simulated by the same background model. We calcula-

ted scores for all sequence pairs (Si, Sj ) for 500 such unrelated

sequences. We chose a threshold t to select the top 5% highest

scoring sequence pairs (’high scoring pairs’). For every sequence

Si, we calculated the number of high scoring pairs’ Ci: Ci =
P

j
1(score(Si, Sj) ≥ t). Since all sequences were generated by

the same model, the expected value of Ci, E(Ci), is equal for all

sequences Si. Here, 5% of the 499 sequence pairs of Si are expected

to have a score greater than t, thus E(Ci) = 24.95. As as reference,

we calculated C = {C1, ..., Ci} when we randomly assign scores
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Fig. 2. Influence of single sequences on pairwise scores. All pairwise scores

for 500 sequences generated by the same model were calculated. Ci mea-

sures the number of sequence pairs for sequence Si among the highest 5%

of all scores (’high scoring pairs’). Since all sequences were created using

the same model, the distribution of C = {C1, ..., Ci} from alignment-free

methods should be similar to the distribution of C obtained from a ran-

dom scoring method (’expected’, black line). A different distribution would

indicate that the number of high scoring pairs is strongly dependent on the

individual sequence, indicating that pairwise scores are dependent on the

single sequence noise rather than on the similarity of the sequence pair. (A)

Uniform nucleotide distribution, all methods show the expected behaviour.

(B) AT rich nucleotide distribution, D2 and D2z differ from the expected

behaviour, showing that these pairwise scores are strongly influenced by the

sequence composition.

to sequence pairs. This method is not influenced by the sequence at

all and therefore recapitulates the expected behaviour for unrelated

sequence pairs (Figure 2, black line). We then calculated C for the

four alignment free sequence comparison methods.

The distribution of C when N2∗ is used is close to the expec-

ted distribution for unrelated sequences (Figure 2). This shows that

N2 is robust against single-sequence-specific noise as the numbers

of high scoring sequence pairs are not influenced by the indivi-

dual sequences (see Supplementary Figures 1 and 2 for N2rc and

N2mm,rc). In contrast, D2 and D2z show a very different distri-

bution of C from the expected behaviour in the non-uniform case.

Figure 2 B shows that the number of high scoring pairs strongly

varies, suggesting that the expected number for Ci is different for

every sequence Si, even though all sequences were generated by

the same model. This shows that the number of high scoring pairs

detected with these methods is strongly influenced by the individual

sequence, indicating that pairwise scores measure the individual

sequence composition and not the similarity of the sequence pair.

Prior work comparing regulatory sequences using alignment-free

methods did not consider this effect (Kantorovitz et al., 2007; Dai

et al., 2008). The above results confirm that neither the D2 nor the

D2z-score should be applied to real biological sequences (Lippert

et al., 2002; Reinert et al., 2009).

Other sequence noise such as repeats and stretches of low com-

plexity occurs frequently in genomic data. N2 is more robust to

this type of noise than D2∗ and D2z due to its correction for word

overlaps and normalisation of counts (Supplementary Table 2). Our

Performance with implanted k-mers, random strand

5%-Precision AUC ROC AUC PR

Motif setting: m1r8 m4r2 m1r8 m4r2 m1r8 m4r2

D2 0.88 0.59 0.72 0.54 0.72 0.54

D2z 0.91 0.64 0.74 0.56 0.73 0.56

D2∗ 0.87 0.66 0.71 0.58 0.70 0.57

N2∗ 0.86 0.65 0.71 0.58 0.70 0.57

N2rc 0.93 0.71 0.77 0.60 0.77 0.59

Table 2. Comparison of the different methods (k = 6) when the geno-

mic orientation of the motif is unknown. Bold numbers indicate best

performance.

Performance with implanted k-mers, mismatch

5%-Precision AUC ROC AUC PR

Motif setting: m1r8 m4r2 m1r8 m4r2 m1r8 m4r2

D2 0.59 0.51 0.53 0.48 0.53 0.49

D2z 0.59 0.54 0.54 0.51 0.53 0.51

D2∗ 0.60 0.54 0.54 0.51 0.54 0.51

N2∗ 0.59 0.54 0.54 0.51 0.54 0.51

N2mm(0.01) 0.60 0.54 0.55 0.51 0.54 0.51

N2mm(1.0) 0.65 0.55 0.57 0.52 0.57 0.53

Table 3. Comparison of the different methods (k = 6) when motifs are sam-

pled from all k-mers with one mismatch to the word. Bold numbers indicate

best performance.

analysis suggests that N2 should be used when repeat-masking is

not an option.

3.3 Simulation studies

To test the performance of N2 on simulated data, we randomly

generated sequences with a similar dinucleotide content as the

mouse genome (Thomas-Chollier et al., 2011) (mm9) as back-

ground sequences (’negative set’). We then implanted m randomly

chosen motifs of length 5 r times into the same background

sequences to simulate CRMs (’positive set’; m1r8: m = 1, r = 8;

m4r2: m = 4, r = 2). Following Kantorovitz et al. (2007), we

computed all pairwise scores for the corresponding negative and the

positive sets. The pairwise scores from the negative and the positive

sets were combined and ranked. Based on this ranked list, we eva-

luated the performance of the above methods for pairwise sequence

comparison using the area under ROC curve (AUC ROC) and area

under Precision-Recall curve (AUC PR). We further estimated the

interpolated precision at 5% recall which we term 5%-Precision

for short. Results show average values over 25 simulations, each

time drawing 100 random sequences of length 1000 bp and inser-

ting random motifs, thus covering different motif compositions in

an unbiased way. We tested the performance counting words of size

k = 6 using a first order Markov model for word probabilities (see

Supplementary Tables 3 and 4 for k = 5).

We simulated two different settings to evaluate the performance

of the neighbourhood concept of N2. First, we implanted ran-

domly sampled 5-mers into the forward and backward strand of

the sequences to simulate the orientation independence of binding

sites in CRMs. We specifically designed the N2rc variant for this
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Fig. 3. Precision-Recall curve for enhancers active during mouse develop-

ment. The plots show the precision average over 25 samples each time

drawing 500 enhancer sequences (’positive’) and 500 unrelated genomic

sequences of equal length as the enhancers (’negative’). (A) Precision-

Recall curve for forebrain enhancers. (B) Precision-Recall curve for limb

enhancers.

scenario and, indeed, N2rc performs best (Table 2). Second, we

randomly sampled words and implanted these with one mismatch

at a random position to simulate more flexible motifs. The N2mm

variant was designed for this scenario as it considers the word

neighbourhood for the similarity. In these simulations, the N2mm

variant with mismatch weights aw = 1.0 shows the best perfor-

mance, demonstrating the value of neighbourhood counts to score

sequences with approximate word matches (Table 3, see Supple-

mentary Figures 3 and 4 for different choices of aw). These simu-

lations confirm the value of extending exact word count methods to

word neighbourhoods.

3.4 Pairwise comparison of tissue-specific enhancers

The above simulations demonstrated the ability of N2 to distinguish

artificial CRMs from unrelated sequences. Currently, our know-

ledge on regulatory sequences is limited and simulations can only

approximate the real nature of enhancers. Tissue-specific enhancers

in mouse embryos have been identified in a genome-wide man-

ner using the co-activator protein p300 (Visel et al., 2009; Blow

et al., 2010). These data sets allow us to test whether alignment-free

methods are able to discriminate in-vivo identified enhancers that

show similar activity from genomic background. We used enhancers

active in forebrain, midbrain, limb and heart tissue of the developing

mouse embryo as positive sets (Visel et al., 2009; Blow et al., 2010).

We compared pairwise scores from these tissue-specific enhancers

with pairwise scores from genomic sequences of the same length

randomly sampled from the mouse genome, ensuring a maximum

of 30% of repetitive sequence for every negative sample. To obtain

accurate estimations, we calculated the average over 25 samples,

each time drawing 500 sequences from the positive set. Using the

same evaluation measures as in the previous section, we tested the

ability of alignment-free sequence comparison methods to detect

functional similarity of regulatory sequences.

The choice of parameters will influence the results obtained from

alignment-free comparisons. For N2, the main parameters are the

length of the k-mers k and the weights of the words in the neigh-

bourhood (aw). We therefore tested k = 4, 5, 6 and mismatch

Fig. 4. Precision-Recall curve for forebrain enhancers in the mouse. Enhan-

cers active in different tissues were used as the background set.

weights aw = {1, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01, 0.001} (Supple-

mentary Figures 5-8). This analysis indicates that aw should be

larger for higher values of k where the expected number of k-mer

occurrences is below 1. While different parameters might improve

results for different data sets (Kantorovitz et al., 2007), we selec-

ted k = 6 and mismatch weights of 1 as reasonable parameters

throughout the analysis to have a consistent and comparable setup.

Figure 3 and Table 4 show the results for pairwise comparison

of tissue-specific enhancers with alignment-free methods. Across

all tissues, N2mm(1.0),rc gives the best results, demonstrating that

N2 is most suitable to detect tissue-specific activity of regula-

tory sequences. The results also confirm the value of the word

neighbourhood concept: comparing N2rc with N2∗ shows that the

neighbourhood extension to the reverse complement is always pre-

ferable (Table 4). Extending the word neighbourhood to all words

with one mismatch (N2mm(1.0),rc) further improves the results

by 6-15% (Table 4). These results support the usage of N2 with

word neighbourhood counts to score the similarity of regulatory

sequences.

Tissue-specificity of enhancers. The above results indicate that

tissue-specific enhancer sequences indeed have a similar word con-

tent. However, a comparison of ChIP-Seq data with randomly

sampled genomic sequences might be biased towards measuring

similarities introduced by the technology, such as similar GC con-

tent. To test this, we verified whether we can discriminate enhancers

according to the tissue where they drive expression. For that pur-

pose, we computed all pairwise scores of enhancers active in the

same tissue (’positive set’) and all pairwise scores between enhan-

cers active in other tissues (’negative set’), discarding all enhancers

active in multiple tissues. To correct for length differences between

data sets from different tissues, we selected 750bp in the middle

of the reported enhancer sequences. Figure 4 shows that tissue-

specific enhancers can be discriminated by alignment-free methods

(see Supplementary Figure 9 for the other data sets). While the per-

formance decreases compared to using random sequences as the

negative set, these results show that activity in a similar tissue is

indeed reflected in a higher sequence similarity. gain, the neighbour-

hood extensions of N2 improves the results, further highlighting the

value of this concept for regulatory sequences.
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Performance on tissue-specific enhancer sequences

5%-Precision AUC ROC AUC PR

Tissue: F M L H F M L H F M L H

D2 0.61 0.64 0.55 0.50 0.55 0.55 0.50 0.45 0.54 0.55 0.51 0.47

D2z 0.66 0.69 0.63 0.56 0.57 0.57 0.56 0.53 0.57 0.57 0.55 0.52

D2∗ 0.71 0.70 0.67 0.60 0.62 0.62 0.59 0.55 0.60 0.60 0.58 0.54

N2∗ 0.65 0.64 0.62 0.58 0.58 0.57 0.56 0.53 0.57 0.56 0.55 0.53

N2rc 0.71 0.67 0.68 0.60 0.61 0.59 0.58 0.55 0.60 0.58 0.58 0.55

N2mm(1.0),rc 0.84 0.82 0.79 0.66 0.66 0.64 0.63 0.57 0.66 0.64 0.63 0.57

Table 4. Comparison of the different methods on tissue-specific enhancers. Bold numbers indicate the best performance. Positive sequences were obtained by

ChIP-Seq of p300 in forebrain (F), midbrain (M), limb (L), and heart (H) tissue of the mouse embryo. Negative sequences were randomly sampled from the

mouse genome. All pairwise scores were computed with repeats masked, k = 6, background Markov model of order 1. Results show average values over 25

samples each time drawing 500 sequences.

4 DISCUSSION

In this study we showed that N2 improves alignment-free sequence

comparison through its flexible extension to word neighbourhood

counts, thereby covering approximate and orientation independent

word matches. Previously, the D2z score has been extended to allow

for approximate matching words using estimates for the expecta-

tions and the variances based on a Bernoulli background model,

however no implementation is available (Burden et al., 2008; Fort

et al., 2006). The framework that we present here is much more

general and powerful. We allow for any desired word neighbour-

hood and associate words with weights such that the signal of words

matching exactly is not lost. Furthermore, N2 can be computed on

any background model order, which is essential to properly des-

cribe genomic sequences. Finally, N2 is much faster than D2z even

without approximate matching, suggesting that a z-score calculation

for an approximate D2 score would be infeasible for any data set of

realistic size.

The differences between N2∗ as used in this study and D2∗

are mainly due to the estimation of the background model. The

better performance of D2∗ suggests that the concatenation of the

sequences improves the accuracy of the background model, howe-

ver it drastically increases the running time. Here we observe that

the improvement due to the extension to the word neighbourhood

(N2∗ vs. N2mm,rc) is better than the improvement due to different

background model estimates (N2∗ vs. D2∗, see Table 4).

With simulation studies we showed that N2 performs well on

the task it was designed for, namely finding similarities between

sequences based on shared words. Importantly, N2 is also able to

measure similarity of in-vivo identified enhancer sequences. This

allows us to verify and increase our understanding of the architec-

ture of regulatory elements: word-count-based similarity measures

are able to detect tissue specific activity of enhancers, suggesting

that CRMs contain scattered binding sites that contribute to their

tissue-specificity. Extending the word neighbourhood to the reverse

complement (N2rc) improves the performance, showing that bin-

ding sites can occur on both strands of the CRM. Extending the

neighbourhood to words with one mismatch (N2rc,mm) further

improves the performance on experimentally identified enhancers.

This suggests that there are subtle signals like a common content

of similar but not equal words which are characteristic of genomic

enhancers.

In this work we assume that a high number of shared words

represents a similar binding site content of enhancers. This assump-

tion is violated by repeats, having a high number of shared words

only due to high sequence similarity. For this reason we mask

repeats before calculating pairwise scores. Although some trans-

cription factor binding sites have been found in repetitive sequences

(Kunarso et al., 2010; Zemojtel et al., 2009), the sequence similarity

of repeats is largely unrelated to regulatory activity and will eclipse

any shared word count from common DNA binding motifs. We

therefore recommend the usage of repeat masked sequences when

comparing regulatory elements.

The N2 similarity can be applied to other tasks than pairwise

comparison. Alignment-free methods have been used to predict cis-

regulatory modules in flies and mouse (Kantorovitz et al., 2009).

Our results on pairwise comparison of enhancers suggests that the

N2 similarity could as well be used to predict the regulatory out-

come of enhancers. In contrast to pairwise comparison, where we

only rely on two sequences, prediction would allow to use training

data, therefore we expect that the performance would improve for

this task. Nevertheless the large size of mammalian genomes limits

prediction of regulatory sequences in a genome-wide manner due

to an inevitable large number of false positive predictions. Among

the applications where N2 might be very insightful are clustering

and classification of regulatory sequences obtained from genome-

wide studies using transcription factor or co-activator binding data

(Lee et al., 2011), DNase hypersensitivity sites or enhancer specific

histone modifications.

5 CONCLUSION

In this study, we have presented N2, a novel alignment-free mea-

sure of sequence similarity that overcomes the limitations imposed

by traditional exact-word-count based methods. We have inclu-

ded the general concept of weighted word neighbourhood counts

and shown that it improves the ability to detect similarity bet-

ween regulatory sequences. The task of pairwise comparison of

regulatory sequences is much harder than traditional pairwise ali-

gnment since only very few shared words might lead to a similar

activity. We have demonstrated on a large-scale data set of mam-

malian enhancer sequences that pairwise sequence similarity of

non-homologous regulatory sequences is able to estimate similar in

vivo activity. We are therefore getting closer to understanding the
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sequence-dependent regulatory code within CRMs that enables the

establishment of a large diversity of cell types coded in one genomic

sequence.

ACKNOWLEDGEMENT

We thank Sarah Behrens and Alena Myšičková for their help on
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