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Introduction
Evolution of protein coding sequences remains an 
obscure issue in the molecular evolution of both 
prokaryotes and eukaryotes. In this paper we focus 
exclusively on prokaryotes. In prokaryotes, the main 
driving force in shaping gene length is a point muta-
tion, while in addition to point mutations, eukaryotic 
variations of gene length may be often caused by 
other factors,1 such as insertion of mobile elements 
(transposons and retrotransposons), change to an 
alternative translation start,2 and so on. We will refer 
to the protein coding sequences as simply “genes.” 
The majority of prokaryotic genes have homologs 
in a variety of genomes. Different homologs of a 
gene may significantly vary in length. Point muta-
tions can change gene length in a few ways. One of 
the possible paths for lengthening (or shortening) a 
gene is stop codon shift.3 Single nucleotide substitu-
tions can destroy the existing stop codon, leading to 
uninterrupted translation up to the next stop codon in 
the gene’s reading frame, or create a premature stop 
codon via a nonsense mutation.

Furthermore, short indels-caused frameshifts 
near the 3′-end of a gene may lead to premature stop 
codons (shortening) or to translation past the existing 
stop codon (lengthening). A start codon drift can also 
occur. Reduction of gene length may happen due to 
the mutation of a start codon, and a combination of 
mutations in the upstream region may lead to length-
ening of a gene. Whether variations of gene lengths 
are neutral (some genes become longer than their pre-
decessors, while other genes become shorter, and the 
sizes of these factions are randomly different from 
organism to organism) or depend on organismal evo-
lution, and adaptation is still an open question.

This paper is an attempt to review several rel-
evant methods. We hypothesize that the ranking of 
genomes according to lengths of their genes is the 
most appropriate approach in revealing evolutionary 
driving  factors. For example, we expect that hyper-
thermophiles should have the shortest genes.

The genome ranking problem may be presented in 
the following way: given a set of annotated  prokaryotic 
genomes, the task is to rank each prokaryotic genome 
according to its gene lengths. Until now, this problem 
has been addressed by a (naive) dimension reduction 
technique (DRT) of the averaging method: denote 
length of gene k in genome i as; the ranking is then 

obtained by the averaging method as, where Ri is the 
set of genes in the ith genome.4,5 This method has 
many drawbacks, especially pronounced for anno-
tated genomes. For example, in  Skovgaard et al,6 
the following weakness of the method is  mentioned: 
in microbial genomes, some annotated genes are 
 actually not protein-coding genes, but rather open 
reading frames that occur purely by chance; as a 
result, too many short genes are annotated across 
genomes. Even taking only those genes that have 
orthologs in other genomes does not remove this 
main weakness. Below we present an example of 
averaging to a sparse data set.

Suppose that we want to rank genomes A, B, and C 
according to gene families a, b, and c. From the first row 
of the Table 1, we see that the genome A contains genes 
a and c with lengths 800 and 100,  correspondingly; the 
genome A does not have the gene b. An intuitive order 
of genomes implied by the gene lengths is A, C, B. On 
the other hand, taking the genome average gene length 
does not agree with the intuitive order; it contradicts 
with the ordering of genomes (B, C) according to the 
gene b, and the ordering of the genomes (A, B) and 
(B, C) according to the gene c.

Hence, we present the corrected formulation of the 
genome ranking problem: given a set of prokaryotic 
genomes, a set of genes from a given gene  family (GF), 
and the gene lengths of each genome-GF pair, the 
genome ranking problem is to rate each  prokaryotic 
genome according to its gene lengths. The available 
data is sparse: prokaryotic genomes do not contain 
every GF. Figure 1 shows that less than 2.5% of all 
genomes contain all possible COGs.

The main outcomes described in this paper are 
the following: the formulation of the genome rank-
ing problem, presentation of relevant methodologies 
to solve it, and demonstration of preliminary results 
from prokaryotic genomes ordering.

This paper is organized as follows. Section 2 
reviews ordering methods: finding a ranking vector by 

Table 1. Following an example from (hochbaum et al).20

Gene families Average A-ran king Intuitive  
rankinga b c

A 800 100 450 2 1
B 200 600 400 1 3
c 900 100 500 500 3 2
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optimization of a sum of Kendall’s Tau rank-correlation 
coefficients and obtaining a ranking vector by dimension-
reduction methods. Section 3 compares the prokaryotic 
genome ranking problem with the sports rating prob-
lem. Section 4 presents an example of genome ranking 
using a small dataset. Section 5 is the main contribu-
tion of this paper, that is, applicability of the genome 
ranking to uncover factors affecting gene length.

Review of Dimension-Reduction 
Techniques
In this section we focus on the unsupervised learning 
problem to reveal hidden factors. Unsupervised learn-
ing techniques can be classified as cluster- analysis or 
dimension-reduction techniques.  Different applica-
tions of clustering techniques with regards to a  problem 
of genome classification are reviewed in Bolshoy and 
Vokovich.7 In particular, the problem of genome clas-
sification based on gene lengths is also studied in 
Bolshoy and Volkovich8 and Korenblat et al.9

Cluster analysis approach addresses the following 
problem: given information about n objects, clus-
ter these objects into groups so that objects belong-
ing to the same cluster are similar in some sense. 
 Cluster analysis methods such as k-means, hierarchi-
cal  clustering, and Gaussian mixture models aim to 
find a partition of objects so that the objects on each 
subset (cluster) share some common traits. Genome 
clustering methods define a partition of genomes into 
clusters, with genomes belonging to the same cluster 
sharing common properties, such as a phylogenetic 
signal, such as shown in Korenblat et al,9 or common 
regulatory signals, as suggested in Kozobay-Avraham 
et al.10,11 Cluster analysis can substantially assist in 

revealing factors affecting gene length. Clustering 
is not a straightforward natural way to reveal these 
 factors; however, it may be a useful step in heuristi-
cally constructed procedures of rating. Here we would 
like to present alternative, more natural approaches, 
that is, dimension-reduction techniques (DRTs).

DRTs solve the following problem: given an n × k 
matrix, R, find the n × k′ matrix with k′ , k that best 
captures the content in the original matrix according 
to certain criteria. For the genome segmentation prob-
lem, R is the matrix containing gene lengths’ distribu-
tion of k GF by n prokaryotic genomes, and the output 
is an n × 1 vector that captures relative “gene-length’s 
tendency” of the prokaryotic genomes. Some of the 
widely used DRTs are principal component analysis 
(PCA),12–14 factor analysis (FA),14 multidimensional 
scaling (MDS),15,16 and averaging.

In essence, PCA seeks to reduce the dimension 
of the data by finding a few orthogonal linear com-
binations (the principal components) of the original 
variables with the largest variance. The first principal 
component is the linear combination with the largest 
variance; in this sense, it is the one-dimensional vec-
tor that best captures the information contained in the 
original data.

Factor analysis assumes that the measured vari-
ables depend on some unknown common factors. 
The goal of FA is to uncover them. Typical examples 
include variables defined as various test scores of 
individuals, as such scores are thought to be related 
to a common “intelligence” factor. Here the mea-
sured variables are the gene lengths in a prokaryotic 
genome, and the indeterminate factors of interest 
are taxonomic, environmental, or genomic proper-
ties affecting the prokaryotic genome’s proclivity for 
shorter gene lengths.

Given n items in a k-dimensional space and an 
n × n matrix of distances among the items, MDS pro-
duces a k′-dimensional, k′ , k, representation of the 
items such that the pairwise distances among the n 
points in the new space are similar to the distances in 
the original data.

For PCA and FA, missing data pose serious 
problems.17–19 In the genome ranking problem, assum-
ing full data is equivalent to assuming that every 
prokaryotic genome has representatives of all gene 
families. This assumption does not hold for a hetero-
geneous set of prokaryotic genomes. The PCA and FA 
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Figure 1. histogram of number of genomes contained in each cOg.
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methods require that the missing values are estimated 
and artificially imputed. While modern implementa-
tions of PCA and FA can handle imputed values, they 
require the imputed values to be consistent with an 
underlying stochastic model for the data. There is not 
enough data to fit an underlying stochastic model for 
the genome-ranking task. Thus, PCA and FA in spite 
of being so popular in other fields are not appropriate 
to solve our problem.

We are grateful to Hochbaum for bringing our 
attention to the conceptually similar problem of rating 
customers by their adoption promptness.20 It seems 
that rating customers as well as genome ranking may 
be undertaken by separation-deviation approach21 that 
was used for group decision making22 and country-
credit risk rating.23

Another approach to the ranking problem is to 
solve an optimization problem using Kendall tau rank 
correlation coefficient.24 This coefficient provides a 
measure of the degree of correspondence between 
two vectors. In particular, it assesses how well the 
order of the elements of the vectors is  preserved. In 
 Hochbaum et al,20 it was noted that finding the cus-
tomer rating vector that maximizes Kendall tau rank 
correlation coefficient is a good alternative to other 
optimization methods (reviewed below in 2.1–2.3), 
and the authors believe that it is appropriate to use 
Kendall tau rank correlation coefficient for measuring 
how well the customer ratings recovers “true ranking.” 
However, in Hochbaum et al,20 it is also mentioned 
that finding solution that maximizes Kendall tau 
rank correlation coefficient is a difficult task because 
the problem is (non-deterministic polynomial-time) 
(NP)-hard.25 Another drawback of this approach is 
ignoring the absolute values of dissimilarity between 
elements. In spite of these problems, we believe that 
the approach to using Kendall tau rank-correlation 
coefficient is a superior way to reveal the true order-
ing of the genomes, at least in the case of a relatively 
small amount of genomes.

review of multidimensional scaling  
for genome ranking
Multidimensional scaling (MDS) aims to approxi-
mate given nonnegative dissimilarities, δij, among 
pairs of objects, i and j, by distances between points in 
an m-dimensional MDS configuration X. Here X, the 
configuration, is an n × m matrix with the coordinates 

of the n objects in Rm. The most common function 
to measure the fit between the given dissimilari-
ties, δij, and distances, dij(X), is STRESS, defined as

 STRESS(X) wij ij ij

2

j 1
n

i 1
n d (X)≡ δ −( )== ∑∑  (1)

where wij is a given nonnegative weight reflect-
ing the importance or precision of the dissimilarity 
δij. Note that wij can be set to 0 if δij is unknown. dij(X) is 

a vector norm, defined as dij

n

i j

q
(X)= =1 x x

1
q

ε ε ε∑ −



  

with given parameter q ≥ 1. Usually, dij (X) is the L2 
norm (q = 2) or the L1 norm (q=1).

In a useful MDS technique, the three-way MDS, for 
each pair of objects we are given K dissimilarity mea-
sures from different “replications” (different paralogs 
in our case). This technique is referred to as three-way 
MDS because the input is a three-dimensional matrix, 

δij
k  , as opposed to the two-dimensional matrix in 

“classic” MDS. The objective function of three-way 
MDS is defined as,26

3WAY w d (X)STRESS(X)

K

i 1
n

j 1
n

ij
k

ij
k

ij

2
≡ ∑ ∑ ( )∑=1k = = δ −

 (2)

Unidimensional scaling (UDS) is the important 
one-dimensional case of MDS where the configura-
tion X is an n × 1 matrix. Therefore UDS seeks to 
approximate the given dissimilarities by distances 
between points in a one-dimensional space.

In our particular application, ranking prokaryotic 
genomes according to their gene length proclivity, the 
input data is a matrix R with ri

k giving the gene length 
(relative to GF) of genome i for GF k. This matrix is, in 
general, incomplete and has many missing  elements. 
The objective is to assign each genome i to a scale 
x such that xi most accurately recovers the across-
 genome gene lengths. In order to solve our problem, 
we can setup the following three-way UDS problem:

min (| | | |)
x

w r r x xk 1
K

i 1
n

j 1
n

ij
k

i
k

j
k

i j= = =∑ − − −∑∑ 2

 (3)

Here the objective is that genomes with high dis-
similarities have dissimilar gene lengths and should 
be placed “far from each other” in the desired scale x.

We have to note the most serious drawback of 
formulating our genome ranking problem as the 
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three-way UDS problem (3): by calculating the 
dissimilarities as | |ri

k
rj
k

− , - three-way UDS problem 
(3) ignores the so-called directionality of dominance 
that is the sign of ( r ri

k
j
k− ). There are ways to over-

come this difficulty: there are papers,27,28 that consider 
the case where the  dissimilarities are given in a com-
plete skew- symmetric matrix (ie, δij = −δij).

genome ranking via the separation-
deviation model
Consider a set of genomes, identified by the index i. 
Let ri

k  be the median length of the GF k in a genome i. 
This means that if there is more than one represen-
tative of a GF in a given genome; then in this case 
the median length is chosen to represent the entire 
set of paralogs. Each of the n genomes is associated 
with a K-dimensional vector ri = (r ri

1
i
k, , ) , record-

ing the gene lengths related to the indexed GF. In the 
event that the genome does not have a gene, the cor-
responding entry in the vector is set to zero. Actually, 
it may be regarded as “missing” or “absent”. Statis-
tically saying, the second option is much more fre-
quent. This means that the dissimilarity matrix [δij] 
is skew-symmetric and assumed to have no missing 
entries. (Nevertheless, zero elements ri

k  will be treated 
differently from non-zeroes through ωij

k  values).
One of the important features of the separation-

deviation model is that the model takes a collection 
of pairwise comparisons r ri

k
j
k− between the objects 

(genomes) to be classified as an input. In this particu-
lar application, the SD-model uses the gene lengths 
to create pairwise comparisons among the differ-
ent genomes. (In this sense, formulas (4) and (5) are 
similar to (3) and dissimilar to (6). There are certain 
advantages and disadvantages of using δ ij

k
i
k

j
kr r≡ − . 

For example, a single genome-GF pair can have sev-
eral possibly conflicting pairwise comparisons.

We are interested in differentiating between 
genomes that have shorter genes and genomes that 
have longer genes. In this respect, it is important to 
emphasize that we are not concerned with the problem 
of predicting the gene length when a certain genome 
will acquire a given gene, which is the absolute gene 
length of each genome. The main motivation for con-
sidering pairwise comparisons is given below.

While the specific lengths for different genes might 
have a high variation, the relative difference in the 
lengths might have less variation. So, for example, 

the genome for Helicobacter pylori has genes a and 
c with lengths 800 and 100, respectively, and genome 
Bacillus subtilis has the same genes with lengths 
900 and 156, respectively. Just considering  Helicobacter 
gene lengths is impossible to determine if this genome 
adopts short or long genes; however, comparing the 
genes of H. pylori with B. subtilis we can determine 
that H. pylori has “shorter genes” than B. subtilis.

Here are the formulas for SD:

minx,z ij
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s.t. zij ≡ xi − xj; δ
k

ij ≡ rk
i– rk

j

Let us set ωij
k equal to 1 if both genomes i and j have 

a gene k and set ωij
k equal to 0 otherwise. Following 

 Hochbaum et al20 we set wij
kequal to ωij

k . Similarly, 
we set vi

k equal to 1 if genome i have a gene k, and 
set vi

k equal to 0  otherwise. In problems (4) and (5) 
the parameter M should be chosen in a way such that 
the separation penalty is the dominant term in the opti-
mization problem; the deviation penalty is only used 
to choose among the feasible solutions with minimum 
separation penalty.

The SD optimization model is efficiently solv-
able, resulting in a scalar value for each prokaryotic 
genome representing their overall score based on 
gene lengths.

There are numerous advantages but also some con-
cerns regarding usage of the SD-model for the genome 
ranking problem. First we mention the advantages of 
the SD-model:

• The SD-model is an approach for unsupervised 
learning and hence it does not require a training set.

• The SD-model works well (without any need for 
data preprocessing) in situations where the infor-
mation matrix is sparse.

• The SD algorithm has a polynomial time 
complexity.

• The SD-model does not rely on specified distribu-
tions for different classes, and there is no require-
ment of any specific sample size.
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Here are the concerns whether the following prop-
erties of the SD-model are good or bad for the pur-
pose of genomes ranking:

• The SD-model can use subjective and unreliable 
judgments as an input and produce a misleading 
output with realistically-looking confidence levels. 

• The SD-model uses a collection of pairwise com-
parisons r ki − r kj  between the objects (genomes) as 
an input.
In this manuscript we scrutinize another approach 

presented in the following subsection, which does not 
take into account the value of difference rik-rkj.

Maximization of Kendall tau rank 
correlation coefficient
Kendall’s rank correlation coefficient τ provides a 
distribution free test of independence and a measure 
of the strength of dependence between two variables 
a and b. If the a is just [1, 2, …, n] then τ measures 
how well b is sorted. Let us note υ = [1, 2, …, n]. 
A scale x is a permutation of υ. In our application 
(to rank prokaryotic genomes according to their gene 
length) the input is a matrix R with ri

k  containing 
gene lengths (relative to GF) of genome i for GF k. 
The goal is to assign each genome i to a scale x such 
that xi most accurately recovers the across-genome 
gene lengths. “Most accurately” here means achiev-
ing the maximum of (6):

τ τ=

=
−


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= +=
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mk—is a number of non-zero ri
k elements.

Because solving of this optimization problem 
is NP-hard,25 heuristic methods, such as the simu-
lated annealing procedure (SAP) or another meta-
heuristics, should be used. In the next section we 

present our implementation of SAP and results of its 
application.

comparison of the prokaryotic 
Genome Ranking problem  
with the problem of sports Rating
In many sports there is an officially accepted world 
ranking. Tennis has its (Association for Tennis Profes-
sionals) ATP world ranking, golf has the Sony world 
ranking, and football (soccer, in the United States and 
Canada), its Fédération Internationale de Football 
Association (FIFA) ranking. These rankings create 
some measures of a player’s or a team’s success and 
are sometimes used for seeding or prize money. The 
approaches for ranking may differ; however, they 
may be useful for solving our problem. Genome is 
analogous to a player (or a team), a gene family (GF) 
is analogous to a tournament, and gene lengths cor-
respond to tournament points.

The ATP tennis ranking is based on tournament 
performance and bonus points. A player gained tour-
nament points depending on how far in a tournament 
he/she progressed, and the quality of a  tournament. 
For our problem, formula (6) would be changed to

max ( )x k = 1
K

k i = 1
n

j = i + 1
n

ij
kC x, r∑ ∑∑



ω

 (7)

where ωk reflects the “quality” of a GF k (developing 
this approach is in progress).

An exception to the ad hoc rating systems used in 
most sports is the Elo rating system utilized in chess. 
This purely quantitative rating system is based on 
exponential smoothing of a player’s rating depending 
on the actual proportion of victory compared with that 
expected given the ratings of the opponents. Various 
authors have suggested using exponential smooth-
ing methods for rating in other sports, such as those 
described by Strauss and Arnold29 for racquetball and 
Clarke30 for squash. However, there are difficulties in 
ranking tennis players: the tournaments are played on 
different surfaces (grass, clay, synthetic, etc.). Most 
players have a favorite surface, and their performance 
level changes with different surfaces. We may see a 
direct analogy to protein families here, so the Elo 
rating may be less appropriate to genome ranking 
problem.
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Ranking Genomes From a small Dataset
Description of the database of clusters  
of orthologous groups of proteins
There are several ways to define a gene (protein) 
family.31–33 The presented algorithm is evaluated 
on the subset of the database of clusters of ortholo-
gous groups of proteins (COGs). The principles of 
the database construction are described in.34–37 The 
COGs were constructed by applying the criterion of 
consistency of genome-specific best hits to the results 
of an exhaustive comparison of all protein sequences 
from these genomes. The data in COGs are updated 
continuously following sequencing new prokaryotic 
genomes. For example, at some point in the year 
2012, proteins from a total of about 1500 complete 
genomes were assigned to more than 4500 COGs.

COGs are widely used in comparative genomics 
by a number of research groups.38–42

100-genomes’ dataset
The results presented below are obtained using a 
subset containing randomly selected genomes from 
the National Center for Biotechnology Informa-
tion (NCBI) genomic database and COGs present 
in these genomes. This small dataset R1 consists of 
100 genomes out of 1496. It contains 9 archaeal and 
91 eubacterial genomes. Table 2 contains a list of 
these genomes.

Figure 1 (blue bars) illustrates the input data. The 
complete set related to 1496 genomes consists of 
4692 COGs, and, naturally, there are COGs that no 
genome of R1 has members of these GFs. Therefore, 
we removed those COGs that are present in less than 
35% of genes from R1. After this filtering, our dataset 
contained 1409 COGs (Fig. 1, red bars).

gene-length matrix preparation
The original data is transformed to the following for-
mat: to each (genome, COG) pair we assigned one 
standardized protein length. For a given COG, each 
organism is represented by a calculated length—a 
median length of all paralogous proteins. For exam-
ple, there are 8 paralogs of a gene tryptophan trans-
porter of high affinity (mtr, sdaC, tdcC, tnaB, tyrP, 
yhaO, yhjV, and yqeG) in a genome Escherichia coli 
K12, taxonomy id 83333. These paralogs with lengths 
403, 409, 414, 415, 423, 425, 429, and 443 appear 
as members of COG0814 (amino acid permeases). 

Table 2. List of genomes in a ranking order.

Rank Domain name
1 Archaea Archaeoglobus fulgidus dsm 4304
2 Bacteria Thermotoga sp. rq2
3 Archaea Thermococcus onnurineus na1
4 Archaea Thermoplasma volcanium gss1
5 Bacteria Thermotoga neapolitana dsm 4359
6 Archaea Thermoplasma acidophilum dsm 1728
7 Archaea Pyrococcus abyssi ge5
8 Bacteria Aquifex aeolicus vf5
9 Bacteria campylobacter concisus 13826
11 Archaea Thermococcus sibiricus mm 739
12 Archaea Pyrococcus horikoshii ot3
12 Bacteria campylobacter curvus 525.92
13 Bacteria helicobacter felis atcc 49179
13 Bacteria Dictyoglomus thermophilum h-6–12
15 Bacteria Streptococcus pneumoniae p1031
16 Bacteria Streptococcus agalactiae a909
18 Bacteria Bacillus cereus atcc 14579
19 Bacteria Mycoplasma pulmonis uab ctip
20 Bacteria Bacillus cytotoxicus nvh 391–98
20 Bacteria Listeria monocytogenes serotype 4b
20 Archaea Methanosalsum zhilinae dsm 4017
21 Bacteria Streptococcus agalactiae 2603v/r
22 Bacteria caldicellulosiruptor bescii dsm 6725
25 Bacteria Bacillus amyloliquefaciens dsm 7
26 Bacteria Mycoplasma fermentans m64
27 Bacteria rickettsia canadensis str. mckiel
28 Bacteria Ureaplasma parvum serovar 3
29 Bacteria Francisella sp. tx077308
29 Bacteria Streptococcus zooepidemicus
30 Bacteria Melissococcus plutonius atcc 35311
30 Bacteria Mycoplasma leachii pg50
31 Bacteria Bacillus pumilus safr-032
32 Bacteria Pediococcus pentosaceus atcc 25745
34 Bacteria Mycoplasma genitalium g37
35 Bacteria enterococcus faecalis v583
39 Bacteria Legionella pneumophila str. paris
40 Bacteria natranaerobius thermophilus
40 Bacteria Brachyspira pilosicoli 95/1000
40 Bacteria ruminococcus albus 7
41 Bacteria Bacillus thuringiensis str. al hakam
41 Bacteria Brevibacillus brevis nbrc 100599
41 Bacteria geobacter uraniireducens rf4
42 Bacteria geobacter lovleyi sz
44 Bacteria neisseria meningitidis 053442
44 Bacteria coxiella burnetii rsa 331
45 Bacteria Mycoplasma pneumoniae m129
46 Bacteria Maribacter sp. htcc2170
47 Bacteria Laribacter hongkongensis hlhk9
48 Bacteria Pseudogulbenkiania sp. nh8b
51 Bacteria Zobellia galactanivorans
52 Bacteria Dechloromonas aromatica rcb
53 Bacteria Sodalis glossinidius str. ‘morsitans’
54 Bacteria erwinia amylovora atcc 49946
55 Archaea halalkalicoccus jeotgali b3
55 Bacteria escherichia coli bw2952

(Continued)
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Consistency
R2 = 0.9682

Ranking using 1 dataset
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Figure 3. comparison of rankings produced by two different incomplete 
subsets of cOgs.

Table 2. (Continued)

Rank Domain name
55 Bacteria gramella forsetii kt0803
55 Bacteria Lactobacillus gasseri atcc 33323
55 Bacteria Borrelia turicatae 91e135
60 Bacteria Klebsiella variicola at-22
60 Bacteria candidatus riesia pediculicola usda
61 Bacteria Salmonella enterica subsp. arizonae
61 Bacteria eubacterium eligens atcc 27750
62 Bacteria Sphingobacterium sp. 21
63 Bacteria Methylomonas methanica mc09
63 Bacteria Dyadobacter fermentans dsm 18053
64 Bacteria Yersinia enterocolitica subsp
67 Bacteria chlamydophila pneumoniae ar39
68 Bacteria cronobacter turicensis z3032
69 Bacteria Spirochaeta smaragdinae dsm 11293
71 Bacteria Yersinia pseudotuberculosis pb1/+
72 Bacteria Pelodictyon phaeoclathratiforme
72 Bacteria Tropheryma whipplei tw08/27
73 Bacteria Xanthomonas oryzae
73 Bacteria Desulfovibrio vulgaris
74 Bacteria Dinoroseobacter shibae dfl 12
75 Bacteria Acidiphilium cryptum jf-5
77 Bacteria Thauera sp. mz1t
77 Bacteria Magnetococcus marinus mc-1
78 Bacteria Prosthecochloris aestuarii dsm 271
79 Bacteria Anaerolinea thermophila uni-1
81 Bacteria Sinorhizobium meliloti 1021
82 Bacteria Bordetella petrii dsm 12804
84 Bacteria Chloroflexus aggregans dsm 9485
84 Bacteria Arcanobacterium haemolyticum
85 Bacteria corynebacterium glutamicum r
87 Bacteria cyanothece sp. pcc 7822
87 Bacteria Starkeya novella dsm 506
87 Bacteria gluconacetobacter diazotrophicus
88 Bacteria rhodopseudomonas palustris dx-1
90 Bacteria rhodospirillum centenum sw
91 Bacteria Xanthobacter autotrophicus py2
92 Bacteria Mycobacterium leprae br4923
93 Bacteria Intrasporangium calvum dsm 43043
94 Bacteria Streptomyces scabiei 87.22
94 Bacteria Streptomyces griseus subsp.
96 Bacteria Burkholderia rhizoxinica hki 454
97 Bacteria haliangium ochraceum dsm 14365
98 Bacteria Salinibacter ruber m8
99 Bacteria rothia dentocariosa atcc 17931
100 Bacteria Bifidobacterium animalis

Only one triplet (83333, COG0814, 419) would be 
included in the input data. A number of genes vary 
from genome to genome. Consequently, genomes 
of the dataset R1 are presented by different number 
of COGs, that is, from small mycoplasmas and ure-
aplasma, the smallest and simplest self-replicating 

organisms with genome sizes from about 540 kb and 
less than 300 COGs inside to long genomes with more 
than 900 COGs (see Fig. 2).

Simulated annealing
A variety of combinatorial optimization strategies are 
available for optimization (3), starting with a brute-
force approach and continuing with deterministic and 
stochastic approaches.43 The strategy of local pairwise 
interchange (LOPI) does not guarantee global opti-
mality, but it is very efficient,44 and being enhanced 
by stochastic techniques, brings good results (manu-
script in preparation).

Simulated Annealing45,46 is a generic probabilis-
tic metaheuristics for the global optimization prob-
lem of locating a good approximation to the global 
optimum of a given function in a large search space. 
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Figure 2. number of cOgs that each genome contains. genomes are 
ordered as in Table 2.
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We used acceptance probability function in the form  
α( , , ) min( , ).τ τ

τ τ

new t e
new

t=
−

1  The algorithm was 
implemented in R using mpiR package to enable paral-
lel processing using HPC Wales computer cluster.

results and their interpretation
We performed a random selection of 1050 COGs 
twice (overlap was 777 COGs). For the two subsets of 
COGs, the resulting rankings are significantly corre-
lated (Fig. 3); the Kendall tau correlation coefficient is 
0.908 (2-sided P value , 0.001). Lowest and highest 
ranks agree the most, while genomes from the middle 
portion of the ordering show the most deviation.

Figure 2 shows a modest positive tendency to rank 
genomes that have smaller number of COGs below 
those with a larger number. However, the number of 
COGs in a genome is not the major force that affects 
a rank of a genome. Table 2 aids understanding the 
driving forces behind the ranking.

Table 2 presents the resulting ranking of the 
genomes. Different taxonomic groups appear to 
be tightly clustered within the ordering. For example, 
the majority of archaeal genomes are placed on the 
top of the ranking table. Figure 3 and our calculations 
performed on other genome subsets (unpublished 
data) has led us to discuss at this stage only the most 
stable groups: the top (ranked 1–16 in Table 2) and 
the bottom (ranked 85–100). Among the top 16, 13 
hyperthermophiles are the clear majority. There are 
both archaea and eubacteria in this group.

Among sequenced archaea, there are many organ-
isms living in extreme environments, such as  volcanic 
hot springs, and they are all in the top group. Next 
to Achaea are Thermotogae bacteria. The name of 
this phylum is derived from the existence of many 
of these organisms at high temperatures. Bacteria 
of Aquificae phylum live in harsh environmental 
 settings.  Representatives of Dicyolglomi phylum are 
also extremely thermophilic. In addition to hyperther-
mophiles, two campylobacters and one helicobacter 
accomplish this group. There are no other campy-
lobacters or helicobacters in R1. The two species of 
archaea that are not hyperthermophiles are placed at 
ranks 20 and 50.

The opposite end of the spectrum is occupied by 
Actinobacteria.47 Many species of Actinobacteria are 
found in soil, including some of the most common 

soil life, playing important roles in decomposition 
and humus formation.

conclusions
We have demonstrated the efficacy of the Kendall tau 
rank-correlation coefficient for solving the problem 
of genome ranking. The proposed method is stable, 
yielding meaningful results on a small test set of 
prokaryotic genomes. The presented results agree 
with our prior intuitive ordering, placing thermo-
philic species on top of the ranking table. Simulated 
Annealing approach, in combination with parallel 
implementation of the developed algorithm, allowed 
developing an efficient method that can be scaled up 
to include all prokaryotic genomes. Maximization of 
an average Kendall tau rank correlation coefficient is 
suitable to assess the ordering of genomes since it has 
a simple interpretation. For one column, maximiza-
tion of tau means sorting. For the full input matrix 
(no missing values), such maximization is equivalent 
to sorting the table (the input matrix) to get the best 
average sorting. An extension of this interpretation 
for our sparse input data is not straightforward but 
seems very reasonable.

Our approach can be used for various ranking 
problems, where each subject has multiple categories 
that needed to be taken into account. For example, 
ranking of athletes, consumer products, and so on. 
The method can be further improved by introducing 
different weights for categories based on their rela-
tive importance.
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