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a  b  s  t  r  a  c  t

Exploring  common  features  and  universal  qualities  shared  by  a particular  class  of  networks  in  biological
and other  domains  is  one  of the  important  aspects  of  evolutionary  study.  In  an  evolving  system,  evolu-
tionary  mechanism  can  cause  functional  changes  that  forces  the  system  to adapt  to  new  configurations
of interaction  pattern  between  the  components  of  that  system  (e.g.  gene  duplication  and  mutation  play  a
vital role  for  changing  the  connectivity  structure  in  many  biological  networks.  The  evolutionary  relation
between  two  systems  can  be retraced  by their  structural  differences).  The  eigenvalues  of the  normalized
graph  Laplacian  not  only  capture  the  global  properties  of  a network,  but  also  local  structures  that  are
produced  by  graph  evolutions  (like  motif  duplication  or  joining).  The  spectrum  of this  operator  carries
many  qualitative  aspects  of  a  graph.  Given  two  networks  of  different  sizes,  we  propose  a method  to
quantify  the  topological  distance  between  them  based  on  the  contrasting  spectrum  of  normalized  graph
Laplacian.

We find  that  network  architectures  are  more  similar  within  the  same  class  compared  to  between

classes.  We  also  show  that the  evolutionary  relationships  can  be  retraced  by  the  structural  differences
using  our  method.  We  analyze  43  metabolic  networks  from  different  species  and  mark  the  prominent
separation  of three  groups:  Bacteria,  Archaea  and  Eukarya.  This  phenomenon  is  well  captured  in  our
findings  that support  the  other  cladistic  results  based  on gene  content  and  ribosomal  RNA  sequences.
Our  measure  to  quantify  the  structural  distance  between  two  networks  is useful  to  elucidate  evolutionary

relationships.

. Introduction

In evolving systems, some dynamics play a role to organize the
onnections between the components of that system. In a broad
ense, due to the interplay between the structure and dynamics,
iological and other networks evolve with different evolution-
ry dynamics are expected to have different structures while
he networks constructed from the same evolutionary process
ave structural similarities. It is important to find the prominent
tructural difference between different types of networks, e.g.,
etabolic, protein–protein interaction, power grid, co-authorship

r neural networks. Studies of common features and universal qual-
ties shared by a particular class of a biological network is one of
he most important aspects of evolutionary studies. In that regard,
ne can think about the differences between the networks within
 same class (for instance among all metabolic networks), and also
ose a question: are two evolutionary metabolic networks from
wo different species more similar than others?
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ohanpur 741252, India.
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In the last few years different notions of graph theory have
been applied and new heuristic parameters have been introduced
to analyze different aspects of network topology such as degree
distribution, average path length, diameter, betweenness central-
ity, transitivity or clustering coefficient, etc. (see Newman, 2003 for
details). These quantities can capture some specific but not all qual-
itative aspects of a graph. With these parameters, it is not always
easy to distinguish or compare the topology of different real net-
works and to predict their source of formation. A popular trend
is to categorize networks according to their degree distribution
which is the distribution of kn, the number of vertices that have
degree n. It has been observed that most of the real networks have
power-law degree distribution (Albert et al., 1999; Barabási and
Albert, 1999; Guimera et al., 2005; Jeong et al., 2000, 2001; Redner,
1998) which is a very general network quality. Graphs with same
degree sequences can have a very different synchronizability (Atay
et al., 2006a,b). The invariants like average path length or diam-
eter of a graph can vary widely depending on the details of the
preferential attachment rule chosen (Jost and Joy, 2002b).  Thus the
power-law degree distribution fails to distinguish networks from

different systems. The relative frequencies of small motifs help to
categorize real networks into some superfamilies (Milo et al., 2002,
2004) but it cannot distinguish the networks very well within a
superfamily. Hence focusing on specific features and qualities is

dx.doi.org/10.1016/j.biosystems.2011.11.004
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
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ot enough to reveal the structural complexity in biological and
ther networks.

In this article, we propose a method to quantify the structural
ifferences between two networks. The basic tool we  employed to
haracterize the qualitative topological properties of a network is
he normalized graph Laplacian (in short Laplacian) spectra (Jost
nd Joy, 2002a).  The multiplicity of the smallest eigenvalue �0 is
qual to the number of components in the graph. The distance of
he highest eigenvalue �N−1 from 2 reflects how far the graph is
way from the bipertiteness. Another property of the spectra of a
ipartite graph is if � is an eigenvalue, 2 − � is also an eigenvalue
f that graph and hence the spectral plot will be symmetric about
. The first nontrivial eigenvalue �1 (for connected graph) tells us
ow easily one graph can be cut into two different components.
or the complete connected graph with N vertices, all nontrivial
igenvalues are equal to N/(N − 1) (see Chung, 1997; Jost, 2007 for
he details). Not only the global properties of a graph structure are
eflected by the Laplacian spectrum, local structures produced by
ertain evolutionary processes like motif joining or duplication are
lso well captured by the eigenvalues of this operator (Banerjee and
ost, 2007a, 2008a, 2009a). For instance, a single vertex (the sim-
lest motif) duplication produces eigenvalue 1, which can be found
ith a very high multiplicity in many biological networks. Duplica-

ion of an edge (motif of size two) that connects the vertices i1 and
2 generates the eigenvalues �± = 1 ± (1/

√
ni1 ni2 ), and the dupli-

ation of a chain (i1 − i2 − i3) of length 3 produces the eigenvalues
 = 1, 1 ±

√
1/ni2 ((1/ni1 ) + (1/ni3 )) (where ni is the degree of the

ertex i). The duplication of these two motifs create eigenvalues
hich are close to 1 and symmetric about 1. For certain degrees of

ertices, the duplication of these motifs can generate specific eigen-
alues 1 ± 0.5 and 1 ± √

0.5 which are also mostly observed in the
pectrum of real networks. If we join a motif � (with an eigenvalue
) with an eigenfunction that vanishes at a vertex i ∈ � by identi-

ying the vertex i with any vertex of a graph �, the new graph will
lso have the same eigenvalue �. As an example, if we join a trian-
le that itself has an eigenvalue 1.5 to any graph, it contributes the
ame eigenvalue to the new graph produced by the joining process
for more details see Banerjee and Jost, 2007a,b, 2008a, 2009a,b).
ee Jost and Joy (2002a), Rangarajan and Ding (2002) and Atay et al.
2004) for how the spectra can influence dynamical properties like
ynchronization. Thus the various local structures of a graph can
eave significant traces in the spectrum which is a good charac-
eristic. The distribution of the spectrum has been considered as a
ualitative representation of the structure of a graph (Banerjee and

ost, 2007b).  In other way around, with the good algorithms one can
econstruct a graph from its spectrum (up to isospectrality) (Ipsen
nd Mikhailov, 2002). Comparative studies on real networks are
ifficult because of their complicatedness, irregular structure and
ifferent sizes. Graphs of similar sizes can be aligned on each other
o compare the structural similarities. For any graph, all eigenval-
es of the graph Laplacian operator are bounded within a specific
ange (0–2). This is an added advantage when comparing spectral
lots of graphs with different sizes.

Spectral plots that can distinguish networks of different origins
ave been widely used to classify real networks from different
ources (Banerjee and Jost, 2008b).  Since networks constructed
rom the same evolutionary process produce very similar spectral
lots, the distance between spectral distributions can be consid-
red as a measure of structural differences. Hence it can be used
o study the evolutionary relation between networks. In this paper
e quantify this distance with the help of a divergence measure

Jensen–Shannon divergence) between two distributions. We  con-
ider this as a quantitative distance measure of those two  structures

nd show that the evolutionary relationships between the net-
orks can be derived from their topological similarities captured

y this quantification.
07 (2012) 186– 196 187

To find the efficiency of this method, we apply it on the
simulated networks constructed from the artificial evolutionary
processes. The method successfully shows that the evolutionary
relations between the networks can be retraced by their structural
differences. Afterwards we apply this method to the metabolic net-
works of 43 species and show that the phylogenic evidences can be
traced from the measurement of their structural distances.

1.1. Previous work

In the last few years, different methods such as elementary
mode analysis (Schuster et al., 2000), method of singular value
decomposition (SVD) of extreme pathways (Price et al., 2002),
comparison of extreme pathways and elementary mode (Papin
et al., 2004), etc. have been applied to characterize and compare
metabolic pathways and networks.

Different graph theoretical approaches like comparison of the
network indices, degree distribution and motif profile (Zhu and Qin,
2005) have been explored to compare metabolic network struc-
tures. For the evolving system, a general graph alignment method
has been considered for the cross-species analysis of interaction
networks (Berg and Lässig, 2006).

Several other methods such as multivariate analysis on the
enzyme and substrate ranking (Poldani et al., 2001), comparison of
network similarity by obtaining the similarity score between the
vertices (Heymans and Singh, 2003), enzyme, reaction, and gene
contents comparison (Ma and Zeng, 2004) have also been applied
to reconstruct the phylogeny comparing the metabolic networks.
Different operations from the set algebra have been used on the net-
work to trace the phylogeny (Forst et al., 2006). Metabolic network
structures have been compared by using graph kernel to recon-
struct the phylogenetic tree (Oh et al., 2006). Mazurie et al. (2008)
has predicted cross species phylogenetic distance by computing
the distances between the vectors with the components of several
network-descriptors which are estimated on the NIP (network of
interacting pathways). Borenstein (2008) has predicted the phylo-
genetic tree by comparing the seed compound content.

In this paper, we  implemented a method that is based on the
graph spectrum and which carries many qualitative aspects of a
graph to compare different network structures. This is a very gen-
eral graph theoretical method and can be applied to any kind
of networks without having any prior knowledge about their
source. Our aim is not to reconstruct the phylogenetic tree, but
rather to find the evolutionary closeness between the networks
from the same evolving system. In the same context, Erten et al.
(2009) performed a phylogenetic analysis of protein–protein inter-
action networks based on the conservation and divergence of
modular components, and Mano et al. (2010) attempted to find
the co-evolutionary relationships between metabolic pathways by
comparing them to the evolutionary relationship between differ-
ent organisms based on the combined similarities of all of their
metabolic pathways.

2. Methods

2.1. Spectrum of graph Laplacian

The normalized graph Laplacian operator (�) is represented on an undirected
and unweighted graph � that represents a network with a vertex set V = {i : i = 1, . . .,
N}.  The vertices i and j are called neighbors if they are connected by an edge. The
degree ni of a vertex i is the number of neighbors of i. The graph Laplacian (Banerjee
and Jost, 2008a; Jost, 2007; Jost and Joy, 2002a)  has been defined as the N × N matrix
�  = (�)ij , i, j = 1, . . .,  N where
(�)ij :=
1 if i = j

− 1
ni

if i and j areneighbors

0 otherwise

(1)
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Fig. 1. Spectral plots of the metabolic networks of (a) P. horikoshii, (b) E. coli, and (c) S. cerevisiae. The sizes of the networks are 945, 2859 and 1812 respectively. The nodes
represent substrates, enzymes and intermediate complexes. (d) Protein–protein interaction network of H. Pylori. Network size = 710. (e) Neuronal connectivity of C. elegans.
Size  of the network = 297. (f) Topology of the Western States power-grid of the United States. Network size = 4941. We plot the spectrum as a collection of the eigenvalues
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i by convolving with a Gaussian kernel (with � = 0.01), i.e. we  plot f (x) =
∑

�i
1/0

Note that this operator has a similar but different spectrum like the operator inves-
igated in Chung (1997) which is usually studied in the graph theoretical literature
s  the (algebraic) graph Laplacian (see Mohar, 1991 for this operator). A nonzero
olution u of the equation �u  − �u = 0 is called an eigenfunction for the eigenvalue
.  � has N eigenvalues, some of which may occur with higher multiplicity. The
igenvalues of this operator are real and non-negative. The smallest eigenvalue is
lways �0 = 0, since �u  = 0, for any constant function u.

.2. Compute the spectral density

We convolve the spectrum of a network with a kernel g(x, �) and get the function
 (x) =
∫

g(x, �)
∑

k

ı(�, �k)d� =
∑

k

g(x, �k) (2)

A0

A2

A11 A12

A122 A123

A1112 A1211A1212 A1221 A1222

A21

A1

A1111

A121

A1231

A22

A211 A212 A221 A222

2222A1222A1212A2112A1112A A2211 A2212 A2213

A111

ig. 2. Evolution of a graph A0 along a definite tree: A1 and A2 have been produced
ndependently in the 2nd generation with a certain evolutionary process from A0. In
he  same way, A11 and A12 have been produced from A1 and A21, A22 from A2 and
o  on. Continuing in the same fashion, we end up with the graphs A1111,. . .,A2222
n  the 5th generation. The tree which is shown here is our true tree. Any evolutionary
rocess can be applied on A0 to produce A1111,. . .,A2222 along this tree.
� exp(−|x − �i|2/0.0002) along the vertical axis.

Clearly

0 <

∫
f (x)dx < ∞ (3)

Here  we  use the Gaussian kernel 1/
√

2��2 exp(−(x − mx)2/2�2) with � = . 01 for all
computation purposes. Choosing other types of kernels does not change the result
significantly since a kernel does not change the distribution unless the value of
the  parameter is profoundly different. Hence the choice of the parameter value is
important (Banerjee and Jost, 2007b, 2009a).

We  compute the spectral density f* by normalizing f as:
f ∗(x) = f (x)∫
f (y)dy

(4)

Table 1
Distance table between metabolic networks of P. horikoshii (�Ph), E. coli (�Ec), S.
cerevisiae (�Sc); protein–protein interaction network of H. pylori (�Hp); neuronal
connectivity network of C. elegans (�Ce) and US power-grid network (�PG). All dis-
tances are computed using the metric D (�1, �2).

Network �Ph �Ec �Sc �Hp �Ce �PG

�Ph 0.0000 0.0904 0.0661 0.1694 0.4704 0.4704
�Ec 0.0904 0.0000 0.0641 0.1036 0.4902 0.5074
�Sc 0.0661 0.0641 0.0000 0.1340 0.4574 0.4738
�Hp 0.1694 0.1036 0.1340 0.0000 0.5086 0.5380
�Ce 0.4704 0.4902 0.4574 0.5086 0.0000 0.2429
�PG 0.4780 0.5074 0.4738 0.5380 0.2429 0.0000
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Fig. 3. Retracing the evolutionary relations, i.e. the leafs of a definite tree, between the networks (Fig. 2) constructed by the ‘Edge-rewiring’ evolutionary mechanism (upper
figure) and ‘Duplication–divergence’ evolutionary mechanism (lower figure). Both the figures show the splits network for the structural distances (calculated by our proposed
metric) of the graphs from the 5th generation. Each band of parallel edges indicate a split. For example, the parallel lines closer to A1111 and A1112 represent the split
{A1111, A1112} versus the others. This tree-like splits network shows that the evolutionary relationships among those graphs is clearly captured by our distance measure.
The  figure has been produced by using Neighbor-Net (Bryant and Moulton, 2004).
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.3.  Jensen–Shannon divergence as a measure for the structural distance

In  a discrete system, Kullback–Leibler divergence measure (K–L) for two  prob-
bility distributions p1 and p2 of a discrete random variable X is defined as

L(p1, p2) =
∑

x∈X

p1(x) log
p1(x)
p2(x)

(5)

ote that the K–L divergence measure is not defined when p2 = 0 and p1 /= 0 for any
 ∈ X. This measure is not symmetric i.e. KL(p1, p2) /= KL(p2, p1) and does not satisfy
he triangle inequality and hence cannot be considered as a metric.

Jensen–Shannon (J–S) divergence measure for two probability distributions p1

nd p2 is defined as

S(p1, p2) = 1
2

KL(p1, p) + 1
2

KL(p2, p); where p = 1
2

(p1 + p2) (6)

his  measure is symmetric and unlike the K–L divergence measure, it is also defined
hen one of the probability measures (p1 or p2) is zero for some value of x (for
ore details see Lin, 1991). The square root of J–S divergence is a metric (for details
sterreicher and Vajda, 2003).

For two different graphs �1 and �2 with spectral density (of graph Laplacian)
∗
1 and f ∗

2 respectively, we  define the structural distance D(�1, �2) between two
ifferent graphs in terms of the J–S divergence measure between f ∗

1 and f ∗
2 :

(�1, �2) =
√

JS(f ∗
1 , f ∗

2 ) (7)

heoretically, there exists isospectral graphs but they are relatively rare in real net-
orks and qualitatively quite similar in most respects (see Wilson and Zhu, 2008

or a systematic discussion). For example, all complete bipartite graphs of the form
m,n (with m + n = constant) have the same spectrum. In this case distances between
hose structures will be zero which is one drawback of this measurement.

Since the eigenvalues of the normalized graph Laplacian are bound between
0, 2] the spectral distributions are easily comparable for the graphs of different
izes. It’s worth noting that eigenvalues are not always smoothly distributed over
0,  2]. One can obtain a high structural difference between two  graphs which are
tructurally the same but have very different sizes. We convolve the spectrum
ith a kernel before computing D to solve this issue. Smoothing the distribu-

ion of the spectrum does not correspond to a different structure (for the reasons
ee  Ipsen and Mikhailov, 2002; Chen et al., 2004) and thus the size difference is
ot a problem for our metric D to measure structural distance between two net-
orks.

.4. Cluster of the metabolic networks by constructing an unrooted tree

We  are interested in extracting the clusters among all metabolic networks from
heir  structural distances which can be implemented by using an unrooted tree
nd invoking a neighbor-joining method. We calculate D(�i , �j) for each pair of
hose networks (�i , �j) and build a distance matrix. We  use the software package
HYLIP (Felsenstein, 1996) and SplitsTree (Huson, 1998) for the tree construction.
ince our interest is to find the evolutionary relationships but not to reconstruct the
hylogenetic tree, the branch length is not important for our purpose. Hence we

gnore the branch length when we plot the tree.
We also use PHYLIP to compute the symmetric difference (Robinson and Foulds,

981)  between two trees.

.5. Compute the normalized Z score of a motif

The normalized Z score of a motif for a given network is the normalized relative
requency of that motif compared to its expression in the randomized version of the
ame network. The statistical significance of a motif � is presented by its Z score,

� = Nreal
� − 〈Nrand

� 〉
SD(Nrand

� )
, (8)

here Nreal
� is the number of times the motif � appears in the network, and

Nrand
� 〉 and SD(Nrand

� ) are the mean and standard deviation of its appearance in the
nsemble of randomized networks. Hence, the normalized Z score of a motif � is
� /(

∑
�

Z2
� )1/2. Here, with the help of the software mfinder1.2 (freely available on

ttp://www.weizmann.ac.il/mcb/UriAlon/),  the Z score of each motif of size 3 and 4
re  computed and normalized.

.6. Data source

We enquired the freely accessible database http://www.barabasilab.com/rs-
etdb.php to obtain metabolic data of the 43 species used in Jeong et al. (2000).
At  the time of database construction, genomes of 25 species (18 bacte-
ia, 2 eukaryotes and 5 archaea) had been completely sequenced while it was
artially sequenced for the remaining 18 species. The analysis of the errors
Jeong et al., 2000) suggests that there would not be a drastic change in
he  final result. We utilized network data for protein–protein interaction of
07 (2012) 186– 196

Helicobacter pylori from http://www.cosinproject.org/ and neuronal connectiv-
ity  (used in Watts and Strogatz, 1998; White et al., 1986) of C. elegans from
http://cdg.columbia.edu/cdg/datasets.

3. Results and discussion

First, we  applied our measure on networks from different classes
and observed the efficiency our measure in capturing the simi-
larities and dissimilarities between the intra-class networks. We
chose:

• Metabolic networks of Pyrococcus horikoshii, Escherichia coli, Sac-
charomyces cerevisiae where nodes are metabolites and metabolic
reactions (network sizes are 945, 2859 and 1812 respectively)

• Protein–protein interaction network of H. pylori where nodes are
proteins (network size 710)

• Neuronal connectivity (network) of Caenorhabditis elegans where
nodes are represented by the neuronal cells (network size 297)

• Western States power-grid of the United States where generator,
transformers, substations are considered as nodes (of size 4941)

For further reference, we  denote these networks by �Ph, �Ec, �Sc,
�Hp, �Ce and �PG respectively. Due to similar mechanisms (many
metabolites or proteins have the same neighbors) of the net-
work formation, it is expected that the metabolic networks will
have a similar architecture with the protein–protein interaction
networks rather than neuronal or power-grid networks. This phe-
nomenon is clearly visible in the spectral plots (Fig. 1) of the above
networks. Then we measured the structural distances between
those networks using our metric D. The differences and similar-
ities between those networks (inter- and intra-class) are clearly
captured by this measurement (see the Table 1). Note that each
network has a different size, but nevertheless, we can measure the
structural distance from the difference of their spectral distribu-
tions. All the distances between these three metabolic networks
are closer to each other than the protein–protein interaction net-
work but far from the neuronal and power-grid network. The
results are similar for the protein–protein interaction network. The
relative distance between neuronal and power-grid networks com-
pared to the other networks, is less but not as close as the one
between the protein–protein interaction network and metabolic
networks. Although the neuronal network is a biological network
but it is structurally more similar to the power-grid network than
the metabolic and protein–protein interaction networks. Unlike
other biological networks, neuronal network exhibits small-world
property like the power-grid network (Watts and Strogatz, 1998).
These structural similarities are well captured by our defined mea-
sure. Our results show that we can consider our suggested metric
as a suitable measure for structural differences.

3.1. Evolutionary relationship from the distance measure

We  explored ways of finding networks which are evolutionary
close to each other based on their structural differences. It is very
likely that the networks constructed from the same evolutionary
process are structurally close to each other and the architectures of
the networks that share the same evolutionary path are expected
to be more similar than others. Hence to a large extent, one can elu-
cidate the evolutionary relationships between the networks within
the same system from their structural distances. To verify this
conviction, we  develop a graph along a tree (see Fig. 2) and pre-

dict the evolutionary relations among the graphs of a generation.
Here we  choose the initial graph A0, a scale-free network con-
structed by Barabási–Albert’s model (Barabási and Albert, 1999)
(m0 = 5 and m = 3) and apply two different evolutionary processes

http://www.weizmann.ac.il/mcb/UriAlon/
http://www.barabasilab.com/rs-netdb.php
http://www.cosinproject.org/
http://cdg.columbia.edu/cdg/datasets
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Fig. 4. The measure D is more accurate than Dmotif and Dpara . Here all the measures have been applied on the graphs constructed by the ‘Edge-rewiring’ evolutionary
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eparately to produce the graphs A1111,. . .,A2222 in the 5th gen-
ration (Fig. 2).

dge-rewiring: This is a very general evolutionary mechanism
where the number of vertices, number of edges, and the
degree sequence remain the same for all graphs produced
by this evolution. We  rewired a certain number of edges
while keeping the degree of each node the same and pro-
duce a graph for the next generation.

uplication–divergence: The duplication and divergence evolu-
tionary mechanism is taken from the model (Vázquez
et al., 2003) and it performs better in predicting the struc-
ture of protein–protein interaction networks compared to

many other models (Middendor et al., 2005). We  dupli-
cated a randomly chosen vertex i and added an edge
between i and its duplicate i′ with the probability p (we
choose p = . 1). For each neighbor j of i, one of the randomly
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te the R–F distances of the trees reconstructed from these summed matrices from

chosen edges (i, j) or (i ′ , j) is removed with the probability
q (q = . 5).

We  applied our measure D (in (7))  on the graphs
A1111,. . .,A2222 (produced by both of the evolutionary mech-
anisms) separately. With these distances, we generated a splits
network (Huson, 1998) for each evolutionary mechanism which
can extract phylogenetic signals that are missed in other tree-
representations. Fig. 3 shows the splits networks constructed
from the distances (measured by D) between the graphs
A1111,. . .,A2222 which are produced by the ‘Edge-rewiring’
and ‘Duplication–divergence’ evolutionary mechanisms respec-
tively. This tree-like network (Fig. 3) shows that the distances

contain a prominent phylogenetic signal and clearly demonstrates
the evolutionary relationships between those graphs.

Next, we explored the performance of the measure D for many
realization (of the evolutionary processes) and the ability to retrace
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ig. 6. The splits network for the structural distances (calculated by the metric D) b
s  tree-like and has some phylogenetic signal. The colors, blue, green and red indi

oulton, 2004) to generate this figure.

he evolutionary relationships for a higher amount of input data.
e also compared D with the other structural difference measures
hich consider different network parameters.

.2. Efficiency of the measure D and the comparison with other
tructural difference measures

To measure the efficiency of our distance measure, we  studied
he reproducibility of the true tree (Fig. 2). We  used the symmetric
ifference measure, defined by Robinson–Foulds (R–F) (Robinson
nd Foulds, 1981), between the tree constructed from a distance
atrix using neighbor-joining (N-J) method and the true tree

hown in Fig. 2. The R–F distance between two trees is the num-
er of bipartitions that can be found in one tree but not in the other
ne. Since our true tree contains two internal nodes (A12 and A221)

f degree 4, the N-J tree with all the internal nodes have degree 3
lways has two bipartitions which are never present in the true
ree. A N-J tree that resembles the true tree most will have a R–F
istance of 2 to the true tree (even the R–F distance of the true tree
n the metabolic networks of 43 species. This network shows that the distance-data
acteria, Eukaryotes and Archaea respectively. We  used Neighbor-Net (Bryant and

itself will be 2). Hence the more similar the trees are, the closer is
the R–F distance to 2.

Other methods can also be used to quantify the structural
similarities of the networks. A common way to compare two
graph structures is to collate the independent heuristic parameters
defined on them. For this purpose, we  chose the following param-
eters: transitivity, diameter, radius, average path length, average
edge-betweenness centrality, and average node-betweenness cen-
trality for this purpose (see Newman, 2003 for the details on these
parameters). We constructed a vector Vpara

�
, with the values of the

parameters mentioned above from a graph � as the components
and computed the structural difference Dpara between two graphs
�1 and �2 as

Dpara(�1, �2) = ‖Vpara
�1

− Vpara
�2

‖ (9)
The other measure (Dmotif) we considered is based on the
normalized Z score (Milo et al., 2002) of the motif of size 3 and
4. It has been shown that the networks can be categorized in dif-
ferent superfamilies (Milo et al., 2004) based on the characteristic
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istribution of the relative frequency of their motifs. In a similar
ay, we constructed a vector Vmotif

�
from a graph � with the values

f the normalized Z score for the motif of size 3 and 4 as the
omponents and computed the structural difference between two
raphs �1 and �2 as

motif (�1, �2) = ‖Vmotif
�1

− Vmotif
�2

‖ (10)

Next, we compared the efficiency of the measure D with Dmotif

nd Dpara to predict the evolutionary relationships among the
raphs. As before, we computed the matrix with the distances
stimated by a particular measure mentioned above between the
raphs that are produced in the 5th generation of the graph evolu-
ion along the tree (Fig. 2) by both of the evolutionary mechanism
Edge-rewiring and Duplication–divergence). We  repeated the pro-
ess 15 times and computed the R–F distance for each time for all
he distance measures. Figs. 4(a) and 5(a) shows the three frequency
istributions of such R–F distances for every measure (for the evo-

utionary mechanism, Edge-rewiring and Duplication–divergence
espectively). This clearly demonstrates that the measure D is more
ccurate than the other two. The limited accuracy can be explained
y the stochasticity in the process of graph evolution.

In order to address whether the accuracy is also influenced by
ystematic effects, we investigated the trend in the R–F distances
f the trees that are constructed by the sum of k distance matrices
roduced by a particular measure over k realizations of graph evo-

ution from the true tree. When k increases (Figs. 4(b) and 5(b)),
he R–F distance decreases and assumes its minimum value 2. For
hese two particular graph evolutions, the evolutionary relation-
hips can be perfectly recovered from information obtained from
he D-measure if the input size is large enough.

Evidently, the spectral distribution, which contains more quali-
ative properties of a network than the heuristic parametric values
nd the expression of the small motifs, captures the traces of an evo-
utionary relationship better when compared to a set of structural

arameter values. Obviously the metric D which we considered, in
ssence, is of higher dimensionality (N, size of the network) com-
ared to the other two measures and that is added advantage for
etter prediction.
ructural distances (calculated by our proposed metric) using the neighbor-joining
spectively and all of them form separate clusters within the tree. Only S. cerevisiae

3.3. Evolutionary relationships between metabolic networks of 43
species

We applied our structural difference measure D to estimate the
distances between the metabolic networks of 43 species. Here,
we consider metabolites and metabolic reactions as vertices. A
metabolic reaction is connected to a metabolite with an edge if the
metabolite is an educt or product of that reaction. We  constructed a
distance matrix between all 43 metabolic networks using D. Fig. 6,
which is a splits network for these distances, supports that the data
contained in that matrix has a substantial amount of phylogenetic
signal and some parts of the data are tree-like. Due to the non-
uniform evolutionary rate of topological change, we  constructed
an unrooted tree from the mentioned distance matrix by using
the neighbor-joining method to analyze the structural similarities
among the networks of all those species.

This tree, which highly resembles the phylogenetic tree of those
43 species, shows different clusters according to the structural sim-
ilarities of the metabolic networks (see Fig. 7). Except Yeast which
belongs to the group of bacteria, we see the prominent separation
of three groups: bacteria, archaea and eukaryotes. This is well cap-
tured in our findings and support the other cladistic results based
on gene content (Snel et al., 1999) and ribosomal RNA sequences
(Woese et al., 1990).

We also used the metabolic-centric networks (where metabo-
lites are the vertices and two  metabolites are connected by an
edge if they participate in a same metabolic reaction) and reaction-
centric networks (where metabolic reactions are considered as
vertices and two reactions are connected if a product of one reac-
tion becomes the educt of another) constructed from the same data
set. Fig. 8 shows the splits networks for the distances between the
metabolic-centric networks and reaction-centric networks respec-
tively as measured by D. The figure supports the existence of
substantial amount of phylogenetic signal in the data contained
in the distance matrices and shows separate clusters for bacte-
ria, archaea and eukaryotes. The separation is prominent for the

metabolic-centric networks. Only A. pernix belongs to the group
of eukaryotes. For the reaction-centric networks, the clusters of
archaea and eukaryotes are not clearly separated from each other
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Fig. 8. The splits networks constructed from the structural distances (calculated by the metric D) between the metabolic-centric networks (on the left) and the reaction-
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acteria, Eukaryotes and Archaea respectively and all of them roughly form separat
his  figure.

hile Yeast belongs to the group of bacteria. All the figures,

igs. 6–8,  show that eukaryotes and archaea are relatively close
o each other than bacteria at the level of metabolic networks. This
s a strong evidence how evolutionary relationship is reflected from

ig. 9. The splits network of the structural distances between (a) 100 networks construct
.  coli and (b) metabolic networks of 32 bacteria. The star-like structure of the splits netw
hat  the data of the distance matrix has a vague phylogenetic signal and the metabolic n
sed  Neighbor-Net (Bryant and Moulton, 2004) to construct both of the splits networks.
 tree-like and has some phylogenetic signal. The colors, blue, green and red indicate
ers within the tree. We  used Neighbor-Net (Bryant and Moulton, 2004) to generate

the structural similarities which are clearly captured by our metric

D.

To a large extent, the above result also holds for metabolite-
centric networks where the currency metabolites (like ATP, water,

ed by randomly deleting 5 percent of the reactions from the metabolic network of
ork in (a), which is very different from the splits network of bacteria in (b), shows

etworks of bacteria are not constructed only by mapping from the E. coli. We have
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tc.) are excluded from the networks. In this case the species hav-
ng similar characteristics are clustered together, e.g. thermophilic
nd mesophilic are clustered separately, and the species are in the
ymbiotic relation clustered together.

.4. Cross validation of the tree construction against the effect of
he enzyme mapping from E. coli

All the metabolic pathways in E. coli have been constructed inde-
endently in wetlab. which is not always the case for the other
acteria. If an enzyme-specific gene that also exists in E. coli was
etected, the same metabolic reactions catalyzed by that enzyme
re incorporated into the database. If there are no other genes which
ave been reported from every other bacteria and that can make
ignificant change in the network structure, all other metabolic
etworks will be very similar and the detection of the phyloge-
etic relationship can be an artifact. In order to verify this fact,
e reconstructed 100 networks by randomly deleting 5 percent

f the reactions from the metabolic network of E. coli and produce
 splits network of the distances between those 100 networks. The
tar-like structure of this splits network, which is very different
rom the splits network constructed from the structural distances
etween the metabolic networks of 32 bacteria, shows that the
istances of those 100 networks have a vague phylogenetic signal
Fig. 9). Hence the evolutionary relationships cannot be detected if
ll other metabolic networks are only mapped from the network of
. coli.

. Conclusions

We suggested a method to compare the architecture of net-
orks with different sizes. With a defined metric, we  quantified

heir structural differences based on the spectral distribution. This
aptures the qualitative properties of the underlying graph topol-
gy which can emerge from the evolutionary process like motif
uplication or joining, random rewiring, random edge deletion, etc.
ith our proposed measure, we showed that the architecture of

he networks are more similar within the same class than between
lasses. Due to the interplay between the structure and dynamics in
any self-organized systems, like biological systems, the networks

onstructed from the same evolutionary process have similar struc-
ures and vice versa. We  applied our topological distance measure
n 43 metabolic networks from different species and apply phy-
ogenetic clustering. In spite of network reconstruction error (see
ource of the data), our method elucidate the evolutionary rela-
ionships between those metabolic networks constructed from 43
ifferent species.

Due to incomplete sequencing of the genome of different
pecies, many biological data are incomplete and they contain sta-
istical errors. To capture a more appropriate (i.e. with less error)
etwork architecture we focused on the big component. It is very
robable that this part of the network is constructed from the
ost studied metabolic pathways, hence consists more complete

ata and capture most of the qualitative properties of the origi-
al complete network. Moreover, in our analysis we  considered
he underlying undirected graphs of the real networks which are
irected in many cases. The reduced graph itself carries a lot of
tructural information and is quite informative about the network.
ne can easily extend this method to directed networks.

One can use the spectrum of non-normalized Laplacian matrix

r adjacency matrix to solve these issues but in some cases the
pectral density of these matrices are influenced by the degree
istribution of the network (Zhan et al., 2010; Dorogovtsev et al.,
004).
07 (2012) 186– 196 195

Our approach can also be useful to explore evolutionary rela-
tionships in other domains like language and society structure and
in other biological areas.
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