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Compact binary systems with total masses between tens and hundreds of solar masses will produce
gravitational waves during their merger phase that are detectable by second-generation ground-
based gravitational-wave detectors. In order to model the gravitational waveform of the merger
epoch of compact binary coalescence, the full Einstein equations must be solved numerically for the
entire mass and spin parameter space. However, this is computationally expensive. Several models
have been proposed to interpolate the results of numerical relativity simulations. In this paper
we propose a numerical interpolation scheme that stems from the singular value decomposition.
This algorithm shows promise in allowing one to construct arbitrary waveforms within a certain
parameter space given a sufficient density of numerical simulations covering the same parameter
space. We also investigate how similar approaches could be used to interpolate waveforms in the
context of parameter estimation.

I. INTRODUCTION

Searches for gravitational waves from binary black
holes with total masses between tens and hundreds of
solar masses benefit from the complete model of the
gravitational waveform obtained by numerical relativ-
ity [1, 2]. Numerically solving Einstein’s equations is
now quite routine [3–9], yet still computationally bur-
densome. Reference [10] suggests that there is a finite
density of numerical simulations that would adequately
cover the parameter space for certain ground-based de-
tectors. In this work we explore this concept and extend
the numerical techniques presented in [11] and [12], to
interpolation of template waveforms using the singular
value decomposition. This should allow for the construc-
tion of gravitational waveforms with parameters between
the numerically generated waveforms.

The idea of interpolating gravitational waveforms has
existed for over a decade. Interpolation of waveforms
generated by post-Newtonian techniques was described
in [13] and [14]. In these references analytic formulae for
waveform interpolation were derived for particular PN
models. Since 2005 the numerical relativity community
has been generating a substantial number of gravitational
waveforms for the coalescence of binary black holes [3–9].
Interpolation of these waveforms has been accomplished
primarily by (i) phenomenologically fitting the simula-
tions to closed-form expressions [15–17] or (ii) by numer-
ically solving simpler differential equations that capture
the orbital dynamics combined with numerical stitching
of the ringdown phase [18–23]. In this work we propose a
different approach to interpolate a set of template wave-
forms. This approach does not require careful tuning
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of fitting formulae or stitching of waveforms and can be
applied to any waveform set of sufficient density.

This paper is organized as follows. First, we describe
the technique for interpolating waveforms via the singu-
lar value decomposition. Second we apply the technique
to a set of waveforms containing all phases of the compact
binary coalescence, inspiral, merger and ringdown. Third
we discuss how these results might be applied to the con-
truction of waveform families, ongoing gravitational wave
searches, and parameter estimation.

II. INTERPOLATION TECHNIQUE

It was shown in [11] that the singular value
decomposition (SVD) reduces the number of template
waveforms needed to search a given parameter space. Ad-
ditionally, [12] showed that arbitrary waveforms within
the parameter space could be reconstructed from the
SVD of a sufficiently dense template bank. Here we
demonstrate a method to directly obtain approximate
reconstruction coefficients for arbitrary waveforms in the
parameter space via interpolation. Consider a wave-
form family h(x, y) described by the physical parameters
(x, y), and consider a set of these waveforms enumerated
by the index α drawn from a region of the parameter
space, h(xα, yα). Recall that a SVD of these waveforms
allows each to be written as a linear combination of basis
waveforms uµ with coefficients Mµ(xα, yα)

h(xα, yα) =
∑
µ

Mµ(xα, yα)uµ, (1)

where, in the formalism of [11] and [12], Mµ(xα, yα) :=
σµ(v(2α−1)µ + iv(2α)µ) is the αth combination of singu-
lar values σµ and reconstruction coefficients v(2α−1)µ and
v(2α)µ. Recall also that waveforms with arbitrary physi-
cal parameters from the same region of parameter space
can also be reconstructed using the basis vectors uµ by
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projecting the waveforms onto the basis vectors to ob-
tain the reconstruction coefficients—a computationally
expensive procedure,

h(x, y) ≈
∑
µ

(h(x, y) · uµ)uµ. (2)

This can be used to define the arbitrary reconstruction
coefficients as

Mµ(x, y) = h(x, y) · uµ. (3)

We seek the set of interpolated reconstruction coefficients
M ′µ(x, y) that can approximately reconstruct an arbi-
trary waveform from that region of parameter space.

Compact binary gravitational waveforms with negligi-
ble effects from spin and eccentricity are characterized by
their component masses. We will assume for concreteness
a two parameter family of waveforms h(x, y) where x and
y are M and q, respectively, where M = m1 +m2 is the
total mass of the system and q = m1/m2 is the mass
ratio of the system.

Chebyshev polynomials of the first kind are known to
be good for interpolation, however other interpolation
schemes are also possible. We start with a set of basis
vectors uj covering the desired region of parameter space.
We choose a net of points, scaled such that each dimen-
sion covers the interval [−1, 1], located at the Jmaxth
order Chebyshev nodes. For a single dimension, these
nodes occur at the locations

xj = cos

(
π

j + 1
2

Jmax + 1

)
, (4)

where j ranges from 0 to Jmax. This choice of net re-
duces Runge’s phenomenon when used with the Cheby-
shev polynomials, which, for a single dimension, are given
as

TJ(x) =
(x−

√
x2 − 1)J + (x+

√
x2 − 1)J

2w
, (5)

where w =
√

(1 + δJ0)(Jmax + 1)/2 is a normalization
factor for the polynomials and δJ0 is the Kroenecker
delta. Both xj and w depend on the choice of Jmax,
however for ease of notation we will leave this implied.
The polynomials TJ(x) satisfy the discrete orthogonality
condition

Jmax∑
j=0

TI(xj)TJ(xj) = δIJ . (6)

It is straightforward to extend this to higher dimensions.
In order to obtain the reconstruction coefficients for

these locations, we project waveforms from these loca-
tions onto the basis vectors. From the values on this
net, we interpolate to other positions in parameter space
using 2D-Chebyshev interpolation for each set of recon-
struction coefficients Mµ(x, y). Specifically, these values

are projected onto the Chebyshev polynomials

CKLµ =

Kmax∑
k=0

Lmax∑
l=0

TK(xk)TL(yl)Mµ(xk, yl). (7)

This results in coefficients for the 2D-Chebyshev poly-
nomials which can be used to evaluate the interpolated
reconstruction coefficients M ′µ(x, y) at other points in pa-
rameter space

M ′µ(x, y) =

Kmax∑
K=0

Lmax∑
L=0

CKLµTK(x)TL(y). (8)

In the next section we explore this approximation tech-
nique using gravitational waveforms containing all three
phases of binary coalescence, inspiral, merger and ring-
down.

A. Reconstruction Errors

Errors in reconstructing these waveforms come in two
types: errors due to SVD truncation, and errors due to
reconstruction coefficient interpolation. The truncation
errors have previously been shown to take the form(

δρ(x, y)

ρ(x, y)

)
trunc

=
1

4

N∑
µ=N ′+1

|Mµ(x, y)|2, (9)

where the sum is over the basis vectors that are discarded.
The interpolation errors have a similar form(

δρ(x, y)

ρ(x, y)

)
interp

=
1

4

N ′∑
µ=1

|Mµ(x, y)−M ′µ(x, y)|2. (10)

It should be noted that here the sum is over the basis
vectors that are kept from the SVD. By setting the re-
construction coefficients with µ > N ′ to zero, these can
be combined into a single expression

δρ(x, y)

ρ(x, y)
=

1

4

N∑
µ=1

|Mµ(x, y)−M ′µ(x, y)|2. (11)

III. RESULTS

We apply this procedure in two ways. In section III A
we investigate using this approach in the context of in-
terpolating whitened waveforms. This would be useful in
the context of parameter estimation. Specifically, one
could obtain reconstruction coefficients that would be
used for constructing filter outputs associated with arbi-
trary points in parameter space using the filter outputs
from the SVD basis vectors.

In section III B, we apply similar techniques to interpo-
late raw waveforms. This is done in the context of wave-
forms one would receive from numerical relativity simu-
lations (i.e., time series of Ψ2(t) = ∂2t h+(t) + i∂2t h×(t)
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FIG. 1. Reconstruction coefficients as a function of M and q
associated with the 3rd and 21st basis vectors are shown in the
left and right columns, respectively. The top row shows the
real part of the reconstruction coefficients. The bottom row
shows the imaginary part of the reconstruction coefficients.

that are restricted to lie along lines of constant M). This
approach could be taken to extend numerical relativity
waveform catalogs at greatly reduced computational cost.

A. Whitened waveforms

We apply this procedure to non-spinning phenomeno-
logical inspiral-merger-ringdown (IMR) waveforms [17]
with M ∈ [60M�, 80M�], q ∈ [1, 10], whitened with
an initial LIGO amplitude spectral density (ASD), and
transformed to the time domain. We generate a stochas-
tic template bank [24] with 99% minimal match for this
range of parameters. Since we are working with IMR
waveforms, there is no well defined end of the waveform.
We choose to align the whitened waveforms according to
their peak amplitudes and compute the SVD basis vec-
tors from these waveforms using the procedure described
in [11]. At this intermediate stage, if we were to look at
how the resulting reconstruction coefficients vary in pa-
rameter space, we would see high frequency features that
would be difficult to resolve with interpolation without a
high density interpolation net.

Fortunately, these features can be ameliorated by a
complex rotation of the input waveforms, which is equiv-
alent to a complex rotation of the reconstruction coeffi-
cients,

Mµ(x, y)→ e−i argM1(x,y)Mµ(x, y). (12)

This rotation is chosen such that = [M1(x, y)] = 0. Fig. 1
shows the reconstruction coefficients associated with the

FIG. 2. The upper panel shows the fitting factor residual
associated with using the interpolation net as templates in
a template bank. The lower panel shows the interpolation
mismatch for waveforms from with the parameter space. The
interpolation mismatch is more than an order of magnitude
smaller than the fitting factor residual.

3rd and 21st basis vectors after this complex rotation.
The smoothness of these reconstruction coefficients indi-
cates that interpolation should be possible.

In order to perform the interpolation, waveforms from
the (12,12) order 2D-Chebyshev net are then projected
onto these basis vectors to obtain the interpolation co-
efficients, as described by (7), and rotated as described
above. 40 × 40 test waveforms from within the param-
eter space, laid out in a grid, are used for computing
mismatches between the interpolated waveforms, given
by (8), and the original waveforms. Fig. 2 compares the
fitting factor residual, which we define to be one minus
the fitting factor, obtained from using the net waveforms
as templates with the interpolation mismatches associ-
ated with the test waveforms. We see that the largest
interpolation mismatch is more than an order of magni-
tude smaller than the fitting factor residual from the net
waveforms.

B. Raw waveforms

We apply similar techniques to waveforms of a type
that would be provided by numerical relativity simu-
lations. Specifically, we use non-spinning phenomeno-
logical IMR waveforms [17] with M ∈ [60M�, 80M�],
q ∈ [1, 6], multiplied by f2, which is equivalent to tak-
ing two time-derivatives, and transformed to the time
domain. We use the same alignment and rotation tech-
niques described in section III A to prepare the wave-
forms for interpolation.
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FIG. 3. The upper panel shows the locations for which wave-
forms were produced, chosen by a stochastic template place-
ment algorithm. These waveforms were used in constructing
the basis vectors enclosing this region of parameter space. The
lower panel shows the interpolation mismatch for waveforms
from within the parameter space. Waveforms interpolation
accuracies are below a few times 10−4.

To generate the basis vectors that enclose this pa-
rameter space, we construct a stochastic template bank
with an additional constraint. The mass ratios of the
templates are restricted to take on values q ∈ {qj =
5xj + 1|j ∈ [1, 6]}, where xj are the nodes associated
with the 10th order Chebyshev polynomial.

With the basis vectors in hand, we project the wave-
forms from an interpolation net consisting of the (20,10)
2D-Chebyshev nodes onto the basis vectors to obtain the
reconstruction coefficients. These complex coefficients
are rotated as described above, and then used to ob-
tain the interpolation coefficients. Again, 40 × 40 test
waveforms from within the parameter space, laid out
in a grid, are used for computing mismatches between
the interpolated waveforms and the original waveforms.
We find comparable interpolation mismatches for these
non-whitened waveforms, shown in figure 3, as for the
whitened waveforms.

IV. CONCLUSION

Using the procedure described above, we have shown
it is possible to produce gravitational waveforms for ar-

bitrary points in parameter space by interpolating recon-
struction coefficients from the SVD of a set of waveforms
uniformly covering the space.

Results have been presented for both whitened wave-
forms, and raw waveforms. The former could be use-
ful in the context of parameter estimation associated
with compact binary coalescence (CBC) gravitational-
wave (GW) signals, which frequently uses Monte Carlo
Markov Chain methods to measure the likelihood ratio
from many points in parameter space. This requires the
generation of the waveforms for each point in parameter
space and the overlap computation between the waveform
and the data. Using the interpolated reconstruction co-
efficients, the same computation could be approximately
performed with generating a subset of the total wave-
forms, reconstructing the overlap by appropriately re-
combining the filter outputs from the basis vectors. The
latter could be used to accurately interpolate waveforms
that are computationally costly to produce, as is the case
for numerical relativity waveforms.

For future work, these techniques should be expanded
to include additional dimensions of parameter space (e.g.,
binary object spin parameters). In addition, other inter-
polation schemes that use equispaced or random points
in parameter space might be found to be favorable for dif-
ferent applications. We also note that these techniques
could be applied to other gravitational waveforms such as
supernova waveforms where singular value decomposition
has also been applied [25], or where other methods have
been used to reduce the rank of the parameter space [26].
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