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Compact binary systems with total masses between tens and hundreds of solar masses will produce

gravitational waves during their merger phase that are detectable by second-generation ground-based

gravitational-wave detectors. In order to model the gravitational waveform of the merger epoch of

compact binary coalescence, the full Einstein equations must be solved numerically for the entire mass

and spin parameter space. However, this is computationally expensive. Several models have been

proposed to interpolate the results of numerical relativity simulations. In this paper we propose a

numerical interpolation scheme that stems from the singular value decomposition. This algorithm shows

promise in allowing one to construct arbitrary waveforms within a certain parameter space given a

sufficient density of numerical simulations covering the same parameter space. We also investigate how

similar approaches could be used to interpolate waveforms in the context of parameter estimation.
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I. INTRODUCTION

Searches for gravitational waves from binary black holes
with total masses between tens and hundreds of solar
masses benefit from the complete model of the gravita-
tional waveform obtained by numerical relativity [1,2].
Numerically solving Einstein’s equations is now quite
routine [3–9], yet still computationally burdensome.
Reference [10] suggests that there is a finite density of
numerical simulations that would adequately cover the
parameter space for certain ground-based detectors. In
this work, we explore this concept and extend the numeri-
cal techniques presented in [11,12], to interpolation of
template waveforms using the singular value decomposi-
tion. This should allow for the construction of gravitational
waveforms with parameters between the numerically gen-
erated waveforms.

The idea of interpolating gravitational waveforms has
existed for over a decade. Interpolation of waveforms
generated by post-Newtonian techniques was described
in [13,14]. In these references, analytic formulae for wave-
form interpolation were derived for particular post-
Newtonian models. Since 2005 the numerical relativity
community has been generating a substantial number of
gravitational waveforms for the coalescence of binary black
holes [3–9]. Interpolation of these waveforms has been
accomplished primarily by (i) phenomenologically fitting
the simulations to closed-form expressions [15–17] or
(ii) by numerically solving simpler differential equations
that capture the orbital dynamics combined with numerical
stitching of the ringdown phase [18–23]. In this work we

propose a different approach to interpolate a set of template
waveforms. This approach does not require careful tuning
of fitting formulae or stitching of waveforms and can be
applied to any waveform set of sufficient density.
This paper is organized as follows. First, we describe the

technique for interpolating waveforms via the singular
value decomposition. Second, we apply the technique to
a set of waveforms containing all phases of the compact
binary coalescence, inspiral, merger and ringdown. Third,
we discuss how these results might be applied to the
construction of waveform families, ongoing gravitational
wave searches, and parameter estimation.

II. INTERPOLATION TECHNIQUE

It was shown in [11] that the singular value decomposi-
tion (SVD) reduces the number of template waveforms
needed to search a given parameter space. Additionally,
[12] showed that arbitrary waveforms within the parameter
space could be reconstructed from the SVD of a suffi-
ciently dense template bank. Here, we demonstrate a
method to directly obtain approximate reconstruction co-
efficients for arbitrary waveforms in the parameter space
via interpolation. Consider a waveform family hðx; yÞ de-
scribed by the physical parameters ðx; yÞ, and consider a set
of these waveforms enumerated by the index� drawn from
a region of the parameter space, hðx�; y�Þ. Recall that a
SVD of these waveforms allows each to be written as a
linear combination of basis waveforms u� with coeffi-

cients M�ðx�; y�Þ
h ðx�; y�Þ ¼

X
�

M�ðx�; y�Þu�; (1)

where, in the formalism of [11,12], M�ðx�; y�Þ :¼
��ðvð2��1Þ� þ ivð2�Þ�Þ is the �th combination of singular
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values �� and reconstruction coefficients vð2��1Þ� and

vð2�Þ�. Recall also that waveforms with arbitrary physical

parameters from the same region of parameter space can
also be reconstructed using the basis vectors u� by pro-

jecting the waveforms onto the basis vectors to obtain the
reconstruction coefficients—a computationally expensive
procedure,

h ðx; yÞ � X
�

ðhðx; yÞ � u�Þu�: (2)

This can be used to define the arbitrary reconstruction
coefficients as

M�ðx; yÞ ¼ hðx; yÞ � u�: (3)

We seek the set of interpolated reconstruction coefficients
M0

�ðx; yÞ that can approximately reconstruct an arbitrary

waveform from that region of parameter space.
Compact binary gravitational waveforms with negli-

gible effects from spin and eccentricity are characterized
by their component masses. We will assume for concrete-
ness a two parameter family of waveforms hðx; yÞ where x
and y are M and q, respectively, where M ¼ m1 þm2 is
the total mass of the system and q ¼ m1=m2 is the mass
ratio of the system.

Chebyshev polynomials of the first kind are known to be
good for interpolation, however other interpolation
schemes are also possible. We start with a set of basis
vectors uj covering the desired region of parameter space.

We choose a net of points, scaled such that each dimension
covers the interval ½�1; 1�, located at the Jmax th order
Chebyshev nodes. For a single dimension, these nodes
occur at the locations

xj ¼ cos

�
�

jþ 1
2

Jmax þ 1

�
; (4)

where j ranges from 0 to Jmax. This choice of net reduces
Runge’s phenomenon when used with the Chebyshev pol-
ynomials, which, for a single dimension, are given as

TJðxÞ ¼ ðx�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
ÞJ þ ðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
ÞJ

2w
; (5)

where w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �J0ÞðJmax þ 1Þ=2p
is a normalization

factor for the polynomials and �J0 is the Kroenecker delta.
Both xj and w depend on the choice of Jmax, however for

ease of notation we will leave this implied. The polyno-
mials TJðxÞ satisfy the discrete orthogonality condition

XJmax

j¼0

TIðxjÞTJðxjÞ ¼ �IJ: (6)

It is straightforward to extend this to higher dimensions.
In order to obtain the reconstruction coefficients for

these locations, we project waveforms from these locations
onto the basis vectors. From the values on this net, we
interpolate to other positions in parameter space using

2D-Chebyshev interpolation for each set of reconstruction
coefficients M�ðx; yÞ. Specifically, these values are pro-

jected onto the Chebyshev polynomials

CKL� ¼ XKmax

k¼0

XLmax

l¼0

TKðxkÞTLðylÞM�ðxk; ylÞ: (7)

This results in coefficients for the 2D-Chebyshev polyno-
mials which can be used to evaluate the interpolated
reconstruction coefficients M0

�ðx; yÞ at other points in

parameter space

M0
�ðx; yÞ ¼

XKmax

K¼0

XLmax

L¼0

CKL�TKðxÞTLðyÞ: (8)

In the next section, we explore this approximation
technique using gravitational waveforms containing all
three phases of binary coalescence, inspiral, merger and
ringdown.

A. Reconstruction errors

Errors in reconstructing these waveforms come in two
types: errors due to SVD truncation, and errors due to
reconstruction coefficient interpolation. The truncation er-
rors have previously been shown to take the form

�
��ðx; yÞ
�ðx; yÞ

�
trunc

¼ 1

4

XN
�¼N0þ1

jM�ðx; yÞj2; (9)

where the sum is over the basis vectors that are discarded.
The interpolation errors have a similar form

�
��ðx; yÞ
�ðx; yÞ

�
interp

¼ 1

4

XN0

�¼1

jM�ðx; yÞ �M0
�ðx; yÞj2: (10)

It should be noted that here the sum is over the basis
vectors that are kept from the SVD. By setting the recon-
struction coefficients with �>N0 to zero, these can be
combined into a single expression

��ðx; yÞ
�ðx; yÞ ¼ 1

4

XN
�¼1

jM�ðx; yÞ �M0
�ðx; yÞj2: (11)

III. RESULTS

We apply this procedure in two ways. In Sec. III A, we
investigate using this approach in the context of interpolat-
ing whitened waveforms. This would be useful in the
context of parameter estimation. Specifically, one could
obtain reconstruction coefficients that would be used for
constructing filter outputs associated with arbitrary points
in parameter space using the filter outputs from the SVD
basis vectors.
In Sec. III B, we apply similar techniques to interpolate

raw waveforms. This is done in the context of waveforms
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one would receive from numerical relativity simulations
(i.e., time series of �4ðtÞ ¼ @2t hþðtÞ þ @2t h�ðtÞ that are
restricted to lie along lines of constant M). This approach
could be taken to extend numerical relativity waveform
catalogs at greatly reduced computational cost.

A. Whitened waveforms

We apply this procedure to nonspinning phenomeno-
logical inspiral-merger-ringdown (IMR) waveforms [17]
with M 2 ½60M�; 80M��, q 2 ½1; 10�, whitened with an
initial LIGO amplitude spectral density , and transformed
to the time domain. We generate a stochastic template bank
[24] with 99% minimal match for this range of parameters.
Since we are working with IMR waveforms, there is no
well defined end of the waveform. We choose to align the
whitened waveforms according to their peak amplitudes
and compute the SVD basis vectors from these waveforms
using the procedure described in [11]. At this intermediate
stage, if wewere to look at how the resulting reconstruction
coefficients vary in parameter space, we would see high
frequency features that would be difficult to resolve with
interpolation without a high density interpolation net.

Fortunately, these features can be ameliorated by a
complex rotation of the input waveforms, which is equiva-
lent to a complex rotation of the reconstruction coeffi-
cients,

M�ðx; yÞ ! e�i argM1ðx;yÞM�ðx; yÞ: (12)

This rotation is chosen such that =½M1ðx; yÞ� ¼ 0. Figure 1
shows the reconstruction coefficients associated with the
3rd and 21st basis vectors after this complex rotation. The
smoothness of these reconstruction coefficients indicates
that interpolation should be possible.

In order to perform the interpolation, waveforms from
the (12, 12) order 2D-Chebyshev net are then projected
onto these basis vectors to obtain the interpolation coef-
ficients, as described by (7), and rotated as described
above. 40� 40 test waveforms from within the parameter
space, laid out in a grid, are used for computing mis-
matches between the interpolated waveforms, given by
(8), and the original waveforms. Figure 2 compares the
fitting factor residual, which we define to be one minus the
fitting factor, obtained from using the net waveforms as
templates with the interpolation mismatches associated
with the test waveforms. We see that the largest interpola-
tion mismatch is more than an order of magnitude smaller
than the fitting factor residual from the net waveforms.

B. Raw waveforms

We apply similar techniques to waveforms of a type that
would be provided by numerical relativity simulations.
Specifically, we use nonspinning phenomenological IMR
waveforms [17] with M 2 ½60M�; 80M��, q 2 ½1; 6�,
multiplied by f2, which is equivalent to taking two time-
derivatives, and transformed to the time domain. We use
the same alignment and rotation techniques described in
Sec. III A to prepare the waveforms for interpolation.
To generate the basis vectors that enclose this parameter

space, we construct a stochastic template bank with an
additional constraint. The mass ratios of the templates
are restricted to take on values q 2 fqj ¼ 5xj þ 1jj 2
½1; 6�g, where xj are the nodes associated with the 10th

order Chebyshev polynomial.
With the basis vectors in hand, we project the waveforms

from an interpolation net consisting of the (20, 10)

FIG. 1 (color online). Reconstruction coefficients as a function
of M and q associated with the 3rd and 21st basis vectors are
shown in the left and right columns, respectively. The top row
shows the real part of the reconstruction coefficients. The bottom
row shows the imaginary part of the reconstruction coefficients.

FIG. 2 (color online). The upper panel shows the fitting factor
residual associated with using the interpolation net as templates
in a template bank. The lower panel shows the interpolation
mismatch for waveforms from with the parameter space. The
interpolation mismatch is more than an order of magnitude
smaller than the fitting factor residual.
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2D-Chebyshev nodes onto the basis vectors to obtain the
reconstruction coefficients. These complex coefficients
are rotated as described above, and then used to obtain
the interpolation coefficients. Again, 40� 40 test wave-
forms from within the parameter space, laid out in a grid,
are used for computing mismatches between the interpo-
lated waveforms and the original waveforms. We find
comparable interpolation mismatches for these nonwhit-
ened waveforms, shown in Fig. 3, as for the whitened
waveforms.

IV. CONCLUSION

Using the procedure described above, we have shown it
is possible to produce gravitational waveforms for arbitrary
points in parameter space by interpolating reconstruction

coefficients from the SVD of a set of waveforms uniformly
covering the space.
Results have been presented for both whitened wave-

forms, and raw waveforms. The former could be useful in
the context of parameter estimation associated with com-
pact binary coalescence gravitational wave signals, which
frequently uses Monte Carlo Markov Chain methods to
measure the likelihood ratio from many points in parame-
ter space. This requires the generation of the waveforms for
each point in parameter space and the overlap computation
between the waveform and the data. Using the interpolated
reconstruction coefficients, the same computation could be
approximately performed with generating a subset of the
total waveforms, reconstructing the overlap by appropri-
ately recombining the filter outputs from the basis vectors.
The latter could be used to accurately interpolate wave-
forms that are computationally costly to produce, as is the
case for numerical relativity waveforms.
For future work, these techniques should be expanded to

include additional dimensions of parameter space (e.g.,
binary object spin parameters). In addition, other interpo-
lation schemes that use equispaced or random points in
parameter space might be found to be favorable for differ-
ent applications. We also note that these techniques could
be applied to other gravitational waveforms such as super-
nova waveforms where singular value decomposition has
also been applied [25], or where other methods have been
used to reduce the rank of the parameter space [26].
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for discussions and comments related to this work.
Research at Perimeter Institute is supported through
Industry Canada and by the Province of Ontario through
the Ministry of Research & Innovation. K. C. was sup-
ported by the National Science and Engineering Research
Council, Canada. D.K. was supported from the Max
Planck Gesellschaft. This work has LIGO Document
No. LIGO-P1100101-v2.

[1] E. E. Flanagan and S.A. Hughes, Phys. Rev. D 57, 4535
(1998).

[2] C. Hanna (LIGO Scientific Collaboration and Virgo
Scientific Collaboration), Classical Quantum Gravity 27,
114003 (2010).

[3] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).
[4] M. Campanelli, C. O. Lousto, P. Marronetti, and Y.

Zlochower, Phys. Rev. Lett. 96, 111101 (2006).
[5] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van

Meter, Phys. Rev. Lett. 96, 111102 (2006).
[6] F. Pretorius, in Physics of Relativistic Objects in Compact

Binaries: from Birth to Coalescence, edited by M. Colpi,

P. Casella, V. Gorini, U. Moschella, and A. Possenti
(Springer, Heidelberg, Germany, 2009).

[7] S. Husa, Eur. Phys. J. ST 152, 183 (2007).
[8] M. Hannam, Classical Quantum Gravity 26, 114001

(2009).
[9] I. Hinder, Classical Quantum Gravity 27, 114004

(2010).
[10] T. Baumgarte, P. R. Brady, J. D. E. Creighton, L. Lehner, F.

Pretorius, and R. DeVoe, Phys. Rev. D 77, 084009 (2008).
[11] K. Cannon, A. Chapman, C. Hanna, D. Keppel, A. C.

Searle, and A. J. Weinstein, Phys. Rev. D 82, 044025
(2010).

FIG. 3 (color online). The upper panel shows the locations for
which waveforms were produced, chosen by a stochastic tem-
plate placement algorithm. These waveforms were used in con-
structing the basis vectors enclosing this region of parameter
space. The lower panel shows the interpolation mismatch for
waveforms from within the parameter space. Waveforms inter-
polation accuracies are below a few times 10�4.

KIPP CANNON, CHAD HANNA, AND DREW KEPPEL PHYSICAL REVIEW D 85, 081504(R) (2012)

RAPID COMMUNICATIONS

081504-4

http://dx.doi.org/10.1103/PhysRevD.57.4535
http://dx.doi.org/10.1103/PhysRevD.57.4535
http://dx.doi.org/10.1088/0264-9381/27/11/114003
http://dx.doi.org/10.1088/0264-9381/27/11/114003
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://dx.doi.org/10.1103/PhysRevLett.96.111101
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://dx.doi.org/10.1140/epjst/e2007-00381-6
http://dx.doi.org/10.1088/0264-9381/26/11/114001
http://dx.doi.org/10.1088/0264-9381/26/11/114001
http://dx.doi.org/10.1088/0264-9381/27/11/114004
http://dx.doi.org/10.1088/0264-9381/27/11/114004
http://dx.doi.org/10.1103/PhysRevD.77.084009
http://dx.doi.org/10.1103/PhysRevD.82.044025
http://dx.doi.org/10.1103/PhysRevD.82.044025


[12] K. Cannon, C. Hanna, and D. Keppel, Phys. Rev. D 84,
084003 (2011).

[13] R. P. Croce, T. Demma, V. Pierro, I.M. Pinto, and F.
Postiglione, Phys. Rev. D 62, 124020 (2000).

[14] S. Mitra, S. V. Dhurandhar, and L. S. Finn, Phys. Rev. D
72, 102001 (2005).

[15] P. Ajith et al., Classical Quantum Gravity 24, S689
(2007).

[16] P. Ajith et al., Phys. Rev. D 77, 104017 (2008).
[17] P. Ajith et al., Phys. Rev. Lett. 106, 241101

(2011).
[18] A. Buonanno, G. B. Cook, and F. Pretorius, Phys. Rev. D

75, 124018 (2007).
[19] T. Damour, A. Nagar, E. N. Dorband, D. Pollney, and L.

Rezzolla, Phys. Rev. D 77, 084017 (2008).

[20] A. Buonanno, Y. Pan, J. G. Baker, J. Centrella, B. J. Kelly,
S. T. McWilliams, J. R. van Meter, Phys. Rev. D 76,
104049 (2007).

[21] T. Damour, A. Nagar, M. Hannam, S. Husa, and B.
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