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Singular-value decomposition is a powerful technique that has been used in the analysis
of matrices in many fields. In this paper, we summarize how it has been applied to the
analysis of gravitational-wave data analysis. These include producing basis waveforms for
matched filtering, decreasing the computational cost of searching for many waveforms,
improving parameter estimation, and providing a method of waveform interpolation.

1. Introduction

Within the field of gravitational-wave (GW) data analysis, there are several difficult
problems that need to be addressed in order to extract information from the data
that will be taken by advanced GW detectors. These include determining when a
GW signal occurred, where this signal came from, and what the properties of the
signal’s source are. In this paper, we summarize how singular value decomposition
(SVD) has been used to ease the computational burden of answering these questions.

This paper is outlined as follows: Sec. 2 gives a brief overview of SVD, Sec. 3
describes how SVD can be used to approximate different classes of waveforms, Sec. 4
illustrates how SVD has be used to construct composite detection statistics, Sec. 5
discusses a method of waveform interpolation based on SVD, and Sec. 6 summarizes
the use of SVD in different aspects of parameter estimation.

2. Singular Value Decomposition

SVD decomposes an arbitrary matrix H into three components:

H = VΣU, (1)

where U is a unitary matrix of basis vectors such that the columns of U∗ are the
right eigenvectors of H∗H, V is a unitary matrix of reconstruction coefficients such
that the columns of V are the left eigenvectors of HH∗, and Σ is a diagonal matrix
of singular values whose non-zero components are the square root of the eigenvalues
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associated with H∗H or HH∗.a The eigenvectors of U and V are ordered such that
the entries of Σ are in descending order.

We will see in the following sections that the properties of U, V, and Σ have
been used in different contexts.

3. Classes of Waveforms

GW signal waveforms can be classified into two groups: those that are well mod-
elled, and those that are not.b Collections of waveforms of both types can be called
waveform catalogs, however here we restrict use of that term for non-well-modelled
waveforms. We will refer to waveforms that are well modelled as template banks. Fur-
ther discussion of temaplte banks and waveform catalogs can be found in Secs. 3.1
and 3.2, respectively.

3.1. Waveform template banks

An example of a type of waveform that can be used to construct a template bank
is a GW signal from the inspiral of a compact binary coalescence (CBC). These
waveforms are well described theoretically by the post-Newtonian (PN) approxima-
tion. This has allowed the construction of a metric on the signal parameter space
that characterizes the distance between two points on parameter space based on
the mismatch between the two waveforms.1 Using this metric, a template bank can
be constructed with these waveforms such that any point within a chosen region of
parameter space will be no more than a specified distance from the nearest tem-
plate, commonly chosen such that maximum mismatch between any template in
the bank and any signal in the region of interest is 3%.

In order to meet this requirement with the fewest number of templates, for a two
dimensional parameter space with a constant metric, adjacent templates will have
a mismatch of 9%, which means they have an overlap of 91%. Cannon et al. inves-
tigated how the SVD could compress a matrix H whose rows are composed of the
highly overlapping waveform time-series from such a template bank.2 They derived
the expected fractional signal-to-noise ratio (SNR) loss δρ/ρ of approximating the
waveforms in the template bank by the truncation of the SVD of H to be

δρ

ρ
=

1
2N

N∑
i=N ′+1

σ2
i , (2)

where σi is the ith entry of Σ, N is the number of rows of H or twice the number of
templates in the template bank, and N ′ is where the SVD is truncated. In addition,

aThroughout this paper, M∗ denotes the complex conjugate-transpose of matrix M.
bOne reason a waveform may not be able to be well modelled is because of complex and possibly
chaotic physical processes at work in the production of the GW signal (e.g., the presence of matter
in a GW generating system).
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the maximum phase-averaged fractional SNR loss can be bounded by

(
δρ

ρ

)
max

<
1
2
σ2

N ′+1, (3)

which can be derived from the unitarity of the reconstruction coefficients.
This approach to waveform compression has been implemented within a low-

latency GW search for inspiral waveforms as one of the techniques to reduce the
computational cost of data processing.3 Similar techniques have also been applied
to other types of GW signals using Gram-Schmidt orthogonalization.4,5

3.2. Waveform catalogs

Waveform catalogs are necessary for waveforms that are not well modelled theo-
retically. Such waveforms can arise from numerical simulations that are either too
computationally expensive to study the parameter space thoroughly (e.g., numerical
simulations of merging spinning binary black holes), or from numerical simulations
that include matter (e.g., numerical simulations of supernovas (SNs) or coalescing
binary neutron stars).

Reference 6 first proposed decomposing waveform catalogs of SN waveforms
using Gram-Schmidt orthogonalization. Ref. 7 expanded on this approach using the
SVD and comparing it to Gram-Schmidt orthogonalization. Both approaches were
found to perform similarly, being able to extract and prioritize waveform character-
istics from the SN waveform catalogs. However, in the SVD only a single decompo-
sition of the catalog was needed, and additional information was obtained. Namely,
features that were present in many waveforms produced basis vectors with large
singular values, whereas features present in only a few produce basis vectors with
small singular values.

4. Detection Statistics

Constructing detection statistics when searching for GW signals is different depend-
ing on what type of search you are doing. Searches can be classified into two groups,
those searching for known signal waveforms and those searching for unknown signal
waveforms.

The standard approach to search for any known signal within GW data from a
collection of GW waveforms is to matched filter the data, producing a time-series
of SNR, with each of the template waveforms. GW signals are then identified by
identifying which templates at certain times produce large values of SNR.8

If one is only interested in answering the time component of the question, a
composite detection statistic can be used, which tells whether the data looks like
anything from a collection of template waveforms.8 Cannon et al. showed how the
SVD can be used to construct such a composite detection statistic Γ associated with
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a region of parameter space covered by a template bank of the form

Γ =
N ′∑

k=1

σ2
k

σ2
k + 2N/〈A2〉ρ

2
k, (4)

where 〈A2〉 is the expected signal amplitude squared and ρk is the SNR associated
with the kth basis vector.9 This statistic was derived using the orthonormality of the
reconstruction coefficients and the basis vectors, as well as the ordered significance
given by the singular values. It shows promise in reducing the computational cost
of searching GW data for signals of known waveforms.

When searching for a signal of unknown waveform, the search can be performed
by looking at other aspects of how the signal interacts with the detectors. In par-
ticular, when there is a network of GW detectors in operation, the data from these
detectors can be combined in such a way to produce coherent data streams that are
direction dependent.10,11

Wen outlined how the detector responses associated with a given direction can
be coherently combined and condensed using the SVD.12 The SVD of the network
detector responses A provides the basis vectors U, singular values Σ, and recon-
struction coefficients V. The data from the different detectors d can be recombined
into new data streams d′ using the reconstruction coefficients

d′ = V−1d. (5)

The detection statistics for an unmodelled GW search could then be constructed
using

Γ =
∑

k

wk |d′k|2 , (6)

where wk is a chosen weight associated with different basis vectors, and the sum
can be over different combinations of the new data streams. Different choices for
each of these parameters results in different optimizations of the detection statistic.

5. Waveform Interpolation

Producing the waveforms in the first place can be a computational challenge, which
is the case for binary black hole coalescence waveforms produced by numerical
relativity. To help solve this problem, there have been several efforts to parameterize
these waveforms, allowing waveforms from arbitrary points in parameter space to
be produced.c These efforts are based on models of the waveforms that need to
be tuned. Cannon et al. have pursued a different approach by showing that the
basis vectors from the SVD of waveforms from a template bank approximately
enclose the space of waveforms from that region of parameter space.13 Further,
they have also laid out a procedure that could be used to interpolate waveforms to

cReferences for these efforts can be found in Ref. 14.
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high accuracy from arbitrary points in parameter space using the components of
the SVD.14 This is done by interpolating the reconstruction coefficients. Once the
interpolated reconstruction coefficients V′ are in hand, the interpolated waveforms
can be generated using

H′ = V′ΣU, (7)

where H′ is a matrix containing interpolated waveforms at the locations where V′

was interpolated. With a sufficient density of numerical relativity waveforms, highly
accurate SVD interpolated waveforms could be produced for arbitrary points in
parameter space.

6. Parameter Estimation

Once it is known that there exists a GW signal in a data set, the next question
that comes up is what are the parameters of the source of the signal. Several sets
of authors have used the SVD toward this goal in different contexts.

Wen identified how the SVD could be used to construct null data streams and
semi-null data streams.12 Null data streams are linear combinations of data from a
network of GW detectors that will contain no GW signals,15 which are associated
with zero-valued singular values from the SVD of the response of a network of
GW detectors. Similarly, semi-null data streams are associated with small-valued
singular values from the SVD of the response of a network of GW detectors. Wen et
al. showed how analyzing these semi-null data streams could improve the accuracy
with which one could locate the source of a GW signal on the sky.16

Wen also explained how the SVD could be used to extract a GW signal waveform
from the data of a network of GW detectors.12 This was done by truncating the SVD
of the detector response matrix in order to regularize it. The extracted waveform hT

is then the data from all detectors d combined using the inverse of the regularized
detectors response matrix,

hT =
(
AT

)−1
d, (8)

where AT
ij =

∑N ′

k=1 vikσkukj is the detectors’ response matrix regularized by trun-
cating the SVD after the N ′th singular value.

Röver et al. applied the SVD of waveform catalogs to the parameter estimation
problem.17 Using the basis vectors associated with the SVD of a SN waveform cat-
alog, a parameter estimation search based on Markov chain Monte Carlo (MCMC)
methods extracted the amplitudes of the signal associated with each of the basis
vectors. By associating the extracted amplitudes with those of the waveforms in the
catalog, physical parameters of the simulated signal could be estimated.

Extending the previously mentioned work, Logue et al. applied the SVD to mul-
tiple waveform catalogs, each associated with different SN production mechanisms
or different types of stellar cores.18 By computing the Bayes odd ratios associated
with these different models by nested sampling techniques, the correct model for
the SN can be determined.
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Finally, Cannon et al. discussed how the likelihood function, which is the quan-
tity computed for parameter estimation, could be interpolated to decrease the com-
putation cost of parameter estimation searches.14 Using the interpolated reconstruc-
tion coefficients, the interpolated likelihood function would be given by

ln (Λ′) = V′ρ2, (9)

where the locations the likelihood function is estimated are given by the locations
where the reconstruction coefficients are interpolated.

7. Conclusion

SVD has been applied with good results in a number of contexts within GW data
analysis. From waveform compression and interpolation, to deriving new detection
statistics, to improving parameter estimation, the powerful properties of the SVD
have proved to be of great use.
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