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A differentially rotating hypermassive neutron star (HMNS) is a metastable object which can be formed in
the merger of neutron-star binaries. The eventual collapse of the HMNS into a black hole is a key element in
generating the physical conditions expected to accompany the launch of a short gamma-ray burst. We investigate
the influence of magnetic fields on HMNSs by performing three-dimensional simulations in general-relativistic
magnetohydrodynamics. In particular, we provide direct evidence for the occurrence of the magnetorotational
instability (MRI) in HMNS interiors. For the first time in simulations of these systems, rapidly-growing and
spatially-periodic structures are observed to form with features like those of the channel flows produced by the
MRI in other systems. Moreover, the growth time and wavelength of the fastest-growing mode are extracted and
compared successfully with analytical predictions. The MRI emerges as an important mechanism to amplify
magnetic fields over the lifetime of the HMNS, whose collapse to a black hole is accelerated. The evidence
provided here that the MRI can actually develop in HMNSs could have a profound impact on the outcome of
the merger of neutron-star binaries and on its connection to short gamma-ray bursts.

PACS numbers: 04.25.Dm, 04.40.Dg, 04.70.Bw, 95.30.Qd, 97.60.Jd, 97.60.Lf

Introduction. The magnetorotational instability (MRI) refers
to exponentially growing modes that can develop in differen-
tially rotating magnetized fluids [1], and is believed to play
a pivotal role in a variety of astrophysical systems. Various
analytic and numerical studies agree that through the gener-
ation of turbulence, the MRI is the main mechanism for the
outward transport of angular momentum in accretion disks
around compact objects [2]. The MRI can also play a role
in core-collapse supernovae, either by powering the explosion
through the conversion of rotational energy into magnetic en-
ergy and the production of a magnetohydrodynamic (MHD)
outflow [3], or as a source of thermal energy generated by the
MRI-induced turbulence and adding to a neutrino-driven ex-
plosion [4, 5]. Finally, MRI effects are particularly important
when modelling high-energy supernovae and hypernovae [5].

Here we consider a further scenario where the MRI may
play a crucial role: the evolution of hypermassive neutron
stars (HMNSs). HMNSs are metastable objects that can be
formed by the merger of neutron star binaries [6, 7]. They
are differentially-rotating neutron stars which exceed the mass
limits of rigidly rotating stars. The eventual collapse of a
HMNS – induced either by neutrino cooling [8], or by the
removal of differential rotation via magnetic fields [9], fluid
viscosity or gravitational radiation [7] – leads to a spinning
black hole surrounded by a hot and dense torus. The evo-
lution of magnetic fields in HMNSs is of great importance
since their rearrangement following amplification by mag-
netic winding and the MRI may provide the necessary con-
ditions to launch the relativistic jets observed in short gamma-
ray bursts (SGRBs) [9–12].

Numerical simulations of the MRI face a fundamental chal-
lenge: The wavelength of the fastest growing mode of the
instability is proportional to the magnetic field strength and
is typically much smaller than the scale of the astrophysical
system considered. Due to computational limitations, many
simulations therefore fail to resolve the MRI unless very high
initial magnetic fields are employed, or only a small part of

the system is simulated as in local or semi-global simulations
(e.g. [13–15]), or the number of spatial dimensions is reduced
via symmetries (e.g. [10, 16–18]). In addition, most simu-
lations attempting to resolve the MRI were conducted within
Newtonian or special-relativistic MHD. The most advanced
general-relativistic results on the MRI in HMNSs date back to
the exhaustive work of [10, 16], where the system was stud-
ied in axisymmetry and a specific stage of the magnetic-field
amplification was interpreted as evidence for the MRI.

Here, we focus on the pre-collapse phase of the HMNS evo-
lution and provide evidence for the occurrence of the MRI in
global, three-dimensional and fully general-relativistic MHD
simulations. The emergence of well-resolved coherent chan-
nel flows allows us to measure quantities such as the wave-
length and the growth rate of the fastest growing mode, open-
ing the way to a systematic study of the MRI in HMNSs.
Numerical setup. As a typical HMNS, we consider the ax-
isymmetric initial model A2 of [19], which is constructed
using the RNS code [20]. This assumes a polytropic equa-
tion of state (EOS) p = KρΓ, where p denotes the fluid
pressure and ρ the rest-mass density, with K = 100 (in
units where c = G = M� = 1) and Γ = 2. The ini-
tial HMNS has an ADM mass of M = 2.23M� and is
differentially rotating according to a “j-constant law” with
central angular velocity Ωc = (uφ/ut)c = 2π × 7.0 kHz,
where uµ is the fluid 4-velocity. On top of this purely hy-
drodynamic equilibrium model, we add a poloidal magnetic
field confined inside the star and specified by the vector po-
tential Aφ = Ab$

2max{(p − 0.04 pmax), 0}, where $ de-
notes the cylindrical radius and pmax the maximum fluid pres-
sure [9]. We tune Ab so as to have central magnetic fields
Bin
c = (1 − 5) × 1017 G. Despite the very high resolutions

employed here, such strong magnetic fields are essential to
resolve the MRI. Even at these strengths, however, the aver-
age magnetic-to-fluid pressure ratios in these models are only
(0.045− 1.2)× 10−2.

Our simulations are performed with the Whisky [21] and

ar
X

iv
:1

30
2.

43
68

v1
  [

gr
-q

c]
  1

8 
Fe

b 
20

13



2

the Ccatie codes [22]. These solve the coupled Einstein-
MHD equations in 3+1 dimensions on a Cartesian grid em-
ploying high-resolution shock-capturing schemes and the con-
formal traceless decomposition of the ADM formulation of
the Einstein equations (see [9] for details). The fluid is as-
sumed to follow ideal MHD and the ideal-fluid EOS p =
(Γ − 1)ρε, where ε is the specific internal energy and Γ = 2.
The computational grid comprises a spatial box of dimensions
[0, 94.6]× [0, 94.6]× [0, 53.9] km with four mesh-refinement
levels [23] and a fiducial finest resolution with coordinate grid
spacing h = 44 m. This is comparable to the h ' 37 m used
in previous simulations (which, however, assumed axisymme-
try) [10, 16]. All of the results presented here originate from
a spatial region that is entirely confined to the finest refine-
ment level. To reach high enough spatial resolutions and make
these calculations possible at all, we employ a reflection sym-
metry across the z = 0 plane and a π/2 rotation symmetry
around the z-axis. Repeating some simulations with π sym-
metry does not alter results found by assuming π/2 symme-
try. The z-symmetry provides large computational savings,
but suppresses the toroidal field in the equatorial plane and
this could alter the evolution. However, low-resolution simu-
lations in [11] without the z-symmetry do not hint to this.
Analytical predictions. In our initial axisymmetric configura-
tion, magnetic fields are purely poloidal while the fluid ve-
locity is purely toroidal. The fluid does not rotate uniformly
along magnetic field lines, so the magnetic field is “wound
up” as the HMNS rotates. Assuming axisymmetry and a suffi-
ciently slow variation of the 3-metric γij , of the poloidal mag-
netic field and of the angular velocity, the induction equation
can be used to show that

Btor ≈ ($Bi∂iΩ)t = awt . (1)

Here, Btor = γijB
iejφ, where eiφ is the unit vector propor-

tional to the azimuthal Killing field. The linear-in-time growth
is expected only during the first phase of the evolution.

There exists no adequate theoretical description of the MRI
in systems of the type considered here. Nevertheless, we
observe effects similar to those known to arise in simpler
systems like accretion disks. In particular, certain short-
wavelength modes appear to be preferentially amplified over
time. From a linear perturbation analysis of the Newtonian
MHD equations for axisymmetric perturbations, the charac-
teristic timescale and wavelength for the fastest growing mode
with wave vector ki

MRI
may be estimated by [2]

τMRI ∼ Ω−1 , λMRI ∼
(

2π

Ω

)(
Bie

i
k√

4πρ

)
(2)

on an order-of-magnitude level, where eik is the unit vector
along ki

MRI
. Note that τ

MRI
is independent of B while λ

MRI
is

linear in it. If these estimates are approximately valid for our
system, they can only be expected to hold in an appropriate
“inertial frame.” As the 4-metric gµν is significantly different
from the flat spacetime one, the estimate for λ

MRI
needs to

be corrected by a factor
√−g00 (which can be quite far from

unity). Ignoring this correction can easily lead to inappropri-
ate estimates for the numerical resolution required to resolve
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FIG. 1. Rest-mass density contours (ρ = 10j g/cm3 with j =
15.7, 15, 14.7, 14, 13.7, 12.7, and 11) and the norm of the mag-
netic field in G in the (x, z) plane at four representative times. The
region inside the horizon is masked for reasons of clarity.

the MRI. Converting between coordinate and inertial quanti-
ties, τ

MRI
is changed by the same factor as Ω−1. The first

estimate of Eq. (2) is therefore preserved as-is.
Numerical results. Figure 1 shows a section in the (x, z) plane
for our fiducial simulation (i.e. with Bin

c = 5 × 1017 G) in
terms of the color-coded norm of the magnetic field and se-
lected density contours for four characteristic stages of the
evolution. These are: the initial configuration, which shows
a highly flattened HMNS due to rapid rotation; the stage of
pronounced MRI development indicated by the ripples in the
magnetic field and the rest-mass density; the time of col-
lapse to a black hole, when the apparent horizon is formed;
the early post-collapse phase with a magnetized and geomet-
rically thick torus being formed in the vicinity of the black
hole. We concentrate here only on the MRI in the interior of
HMNSs, leaving the discussion of the potential development
of the MRI in the torus to Ref. [11] and to future work.

In order to investigate the properties of the MRI in detail
and since the system at the stage of MRI development is still
essentially axisymmetric, we restrict to a two-dimensional re-
gion in the meridional plane defined by (x, z) ∈ [1.0, 3.0] ×
[1.0, 2.3] km, where the MRI is seen most prominently and
which has the typical dimensions of local Newtonian MRI
simulations. In the upper panel of Fig. 2 we report for
our fiducial model the evolution of the maximum toroidal,
poloidal and total magnetic fields in the selected region un-
til the bulk of the star starts to collapse and an apparent hori-
zon is formed. The maximum total field in the full compu-
tational domain is also shown, which coincides with the lo-
cal one after the magnetic field evolution has become nonlin-
ear around 0.1 ms. This highlights the fact that the strongest
magnetic fields in the entire computational domain are now to
be found inside the selected region. While the poloidal com-
ponent of the magnetic field remains essentially constant up
to the collapse, the toroidal component is significantly am-
plified during the evolution. This is in contrast with previ-
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FIG. 2. Top panel: Evolution of maximum toroidal, poloidal and
total magnetic fields in a selected region (see text) and of the maxi-
mum total field in the full computational domain (global), for Bin

c =
5 × 1017 G. Bottom panel: Toroidal field evolution in log scale for
Bin

c = 4 and 5× 1017 G. The dotted lines represent fits to the expo-
nential growths with identical associated growth times τMRI .

ous axisymmetric simulations [10, 16]. Initially, the toroidal
field shows a linear growth due to magnetic winding, with
a slope aw,fit = (4.4 ± 0.2) × 1018 G/ms that matches the
value aw = (4.3 ± 0.7) × 1018 G/ms obtained by averag-
ing the prediction of Eq. (1) in the region of interest (see
also Fig. 3, upper panel). After ∼ 0.3 ms, we distinguish
two stages of exponential magnetic-field growth which coin-
cide with the appearance of coherent channel-flow structures
in the total magnetic field strength (the “ripples” in the top
right panel of Fig. 1 and the top panel of Fig. 4). These are
the characteristic signatures of the MRI found in local Newto-
nian axisymmetric simulations [14]. Note that the intermedi-
ate phase between the two growth periods coincides with the
rearrangement of channel-flow structures. This can be seen in
the upper portion of the upper panel of Fig. 4, and is remi-
niscent of the channel flow merging reported in [14] (see also
[18]). Growth times τ

MRI
associated with exponential rises in

the toroidal field have been extracted for two different initial
magnetic field strengths (cf. Fig. 2, lower panel). The val-
ues resulting from both fits agree within error bars and give
τ
MRI,fit = (8.2 ± 0.4) × 10−2 ms. This is consistent with the

analytic expectation that τ
MRI

should be independent of the
magnetic field strength. Furthermore, τ

MRI,fit is also in rea-
sonable agreement with the values predicted by Eq. (2) for the
selected region: τMRI ≈ (4− 5)× 10−2 ms.

Figure 3 verifies additional important features of the MRI.
The upper panel presents the maximum toroidal magnetic
field in the selected region for the same initial data (with
Bin
c = 5×1017 G) evolved using five grid resolutions ranging

from 0.9h − 4.0h (with h referring to the fiducial grid spac-
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FIG. 3. Top Panel: Evolution of the maximum toroidal magnetic field
in a selected region for Bin

c = 5 × 1017 G and different resolutions
(0.9 − 4.0)h (see text). The dash-dotted straight line is a fit to the
initial linear growth stage of magnetic winding, common to all the
simulations. Bottom panel: Same as top panel for fixed resolution h,
but different Bin

c .

ing of 44 m). For the two coarsest resolution runs (2h, 4h),
there are fewer than five grid points per λMRI (see below).
The MRI therefore cannot be resolved in these cases. Increas-
ing the resolution, we gradually recover the growth rate of
the fiducial simulation. For the two finest resolutions (0.9h,
1.0h), the extracted growth rates agree within error bars. Note
that small differences in the maximum magnetic field after
the rapid growth periods are expected when the resolution is
changed. This is because with higher resolution we capture
also smaller wavelengths, which couple nonlinearly and lead
to slightly different magnetic-field amplifications. All of our
runs recover the same expected magnetic winding behavior in
the initial phase of the evolution.

The lower panel of Figure 3 illustrates the effect of vary-
ing the initial magnetic field strength at fixed grid resolution
h. It validates the disappearance of the MRI when λ

MRI
be-

comes too small compared with the resolution. Since λ
MRI
∝

ki
MRI

Bi ∝ Bpol and the poloidal field strength Bpol remains
approximately constant even during the MRI development
(cf., upper panel of Fig. 2), the number of grid points per λ

MRI

decreases as the initial magnetic field strength is lowered. At
some point, the MRI can no longer be resolved. We detect a
well-resolved instability only when Bin

c > 3 × 1017 G. The
lower panel of Figure 3 also illustrates that increasing the ini-
tial magnetic field strength decreases the HMNS lifetime (this
amounts to a factor & 2 with respect to the non-magnetized
case). This is due to more efficient outward transport of an-
gular momentum which reduces the centrifugal support in the
HMNS [9].

The upper panel of Fig. 4 is a typical snapshot of the norm



4

1.0 1.5 2.0 2.5 3.0

x [km]

1.2

1.4

1.6

1.8

2.0

2.2
z

[k
m

]

�MRI

t = 0.373 ms

B [1017 G]
4

6

8

10

12

14

16

18

�4 �3 �2 �1 0 1 2 3 4

kx [m�1] ⇥10�2

�2

�1

0

1

2

k
y

[m
�1

]

⇥10�2

~kMRI

t = 0.373 ms

0.0

0.2

0.4

0.6

0.8

1.0
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channel-flow merging (upper part). Bottom panel: Power spectrum
showing a single dominant mode with λMRI ∼ 0.4 km.

of the magnetic field in the selected region after the MRI has
fully developed (t = 0.373 ms). It illustrates the character-
istic coherent channel-flow structures of the instability, which
have not been observed in previous HMNS simulations, nor in
global three-dimensional general-relativistic simulations. The
clarity with which these structures emerge allows us to di-
rectly measure the wavelength of the fastest growing mode.
The corresponding two-dimensional power spectrum is de-
picted in the lower panel of Fig. 4, which – apart from the
maxima around the origin representing large-scale gradients
over the selected region – clearly shows the presence of a
single dominant mode ki

MRI
nearly parallel to the x-axis and

corresponding to a wavelength of λ
MRI

≈ 0.4 km ≈ 9h.
Note that this geometry is different from the most commonly
considered MRI scenarios where ki

MRI
is aligned with the

spin axis. There is not enough resolution in the Fourier
domain to accurately measure the very small angle θkx be-
tween ki

MRI
and the x-axis, which varies slightly with time

(θkx ≈ 3◦ − 7◦). Using this range of values for θkx, the
wavelength predicted by Eq. (2) for the region of interest is
λMRI ≈ (0.5 − 1.5) km, which is in good agreement with
the measured value. It should be emphasized that the analyt-
ical estimates of Eq. (2) arise from a number of simplifying
assumptions such as: Newtonian physics, axisymmetry, near-
equilibrium and the short-wavelength approximation. None
of these assumptions are strictly valid in our simulations.
Notwithstanding the good agreement between our measure-
ments and Eq. (2), a better analytic description of the MRI is
needed for relativistic compact objects.
Conclusions. By performing global three-dimensional MHD
simulations of HMNSs, we have observed the emergence of
coherent channel-flow structures which provide direct evi-
dence for the presence of the MRI in these systems. This is
further supported by the verification of the main properties of
the MRI expected from previous Newtonian analytical and nu-
merical studies in other astrophysical scenarios. We note that
the persistence of these structures is non-trivial as they may be
unstable in three dimensions as a result of non-axisymmetric
parasitic instabilities of the Kelvin-Helmholtz type [14, 24].

Showing the presence of the MRI in HMNSs is of great im-
portance as the instability amplifies magnetic fields exponen-
tially and can thus rapidly build up the very high magnetic-
field strengths needed to launch a relativistic jet. Our re-
sults show that this amplification would already occur in the
pre-collapse phase without having to wait for the torus to be
formed after black hole creation. The dynamics in the torus
can also amplify magnetic fields efficiently, but at much later
times [11]. The amplification of magnetic fields in the HMNS
due to the MRI is less than one order of magnitude in our
model. However, the HMNS considered here is very short-
lived even in the absence of magnetic fields [9]. In longer-
lived HMNSs, the MRI could well reach several e-foldings
and thus be a key ingredient in building the physical condi-
tions necessary for launching the relativistic jet as revealed by
the observations of SGRBs.
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